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Abstract Log files of information retrieval systems that re-
cord user behavior have been used to improve the outcomes of
retrieval systems, understand user behavior, and predict
events. In this article, a log file of the ARRS GoldMiner
search engine containing 222,005 consecutive queries is ana-
lyzed. Time stamps are available for each query, as well as
masked IP addresses, which enables to identify queries from
the same person. This article describes the ways in which
physicians (or Internet searchers interested in medical images)
search and proposes potential improvements by suggesting
query modifications. For example, many queries contain only
few terms and therefore are not specific; others contain spell-
ing mistakes or non-medical terms that likely lead to poor or
empty results. One of the goals of this report is to predict the
number of results a query will have since such a model allows
search engines to automatically propose query modifications
in order to avoid result lists that are empty or too large. This
prediction is made based on characteristics of the query terms
themselves. Prediction of empty results has an accuracy above
88 %, and thus can be used to automatically modify the query
to avoid empty result sets for a user. The semantic analysis and
data of reformulations done by users in the past can aid the
development of better search systems, particularly to improve
results for novice users. Therefore, this paper gives important
ideas to better understand how people search and how to use

this knowledge to improve the performance of specialized
medical search engines.
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Introduction

Medical imaging studies have increased significantly in both
quantity and complexity over the past 30 years [1]. Images are
an essential part of medical diagnosis and treatment planning,
and many tools have been created to search and interpret im-
ages, as well as to give medical doctors decision support [2, 3].
Among medical specialties, radiologists are at the forefront of
analyzing images, searching for specific patterns in them, and
describing them in reports that form a basis for further decision
making. In general, physicians increasingly use online re-
sources to search for information. Radiologists commonly
use standard search engines to look for image information for
medical images [4]. Specialized radiology search engines such
as ARRSGoldMiner,1 Yottalook,2 or Shambala3 allow users to
search for images in the medical literature using text queries or,
in some cases, image examples to search for visual similarity.
Research has shown that text search, filters for imaging mo-
dality, and image and region-of-interest search are requested by
radiologists [5].

In contrast to other approaches to study users’ web-site
usage, search log analysis is an unobtrusive method that
shows significant advantages compared to surveys and

1 http://goldminer.arrs.org
2 http://www.yottalook.com
3 http://shambala.khresmoi.eu
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laboratory studies in scale, power, scope, and location [6].
Despite limitations such as possibly imprecise user represen-
tation, less versatility, less richness, and a loose link to con-
cepts supposed to be measured [6], search log analysis has
been used in the biomedical domain to examine textual and
visual retrieval systems [7].

Search logs of general search engines have been used to
predict flu outbreaks and to analyze medication use [8]. They
also have been used to analyze image search behavior [9, 10].
Analysis of MedLine search behavior in the medical literature
was conducted based on log files [11, 12]. Closest to the pre-
sented work are the analyses of Tsikrika et al. [7] and Rubin
et al. [13] that both used ARRS GoldMiner log files, but a
much smaller set of queries (25,000 and 30,000, respectively,
so around 10 % of the data used in this text). None of these
systems performs user profiling, which would be possible
with registered users of a search system. Detecting user pro-
files from log files was attempted in [14], but we do not try to
separate queries into several user categories for ARRS
GoldMiner as the technologies do not seem fully stable and
our objective is to rather predict problematic queries for any
user group.

Tsikrika et al. [7] analyzed 25,000 ARRS GoldMiner
queries to investigate the process of query formulation and
query modification in order to identify medical professionals’
information needs with the aim to improve the effectiveness of
the search support of such systems. This article extends the
previous work using a dataset of 222,005 search queries with
timestamp information. Timestamp information was not avail-
able in the previous study and was used to create user sessions
with specific time limitations. Additionally, the key contribu-
tion of this paper lies in the use ofmachine learning algorithms
to predict a query’s success and the number of results for a
specific query.

Similarly, Rubin et al. [13] analyzed 30,000 queries to
ARRS GoldMiner and Yottalook, and implemented an algo-
rithm for mapping search terms to RadLex,4 an ontology
consisting of radiology terms, with the goal of determining
what radiologists search for on the Web. As their research
showed, giving the queries a RadLex semantic context im-
proves the robustness of the analysis. Therefore, this paper
also includes mapping to RadLex terms and axes, using an
automatic text categorization system [15] that gives a robust
mapping. This system does the mapping in three different
ways, which allows to differentiate a query that is itself a
RadLex term from one that includes several RadLex terms,
among other cases.

The first part of the paper builds on the past work to con-
struct a detailed analysis of a larger log file of the ARRS
GoldMiner search system, while also aiming to improve tech-
nical aspects of the methodology. The second part of the paper

uses machine learning to build a predictive model that is able
to determine the range of the number of query results. ARRS
GoldMiner retrieves all documents containing all query terms
(with BAND^ connection by default); additionally, if the term
is in a vocabulary, the search is also done using the corre-
sponding concept (MeSH, SNOMED, etc.). Therefore, it is
possible to have queries with too many results and others with
no results. Machine learning techniques, though widely used
when working with search log files from search engines [8],
have not been applied to analyze ARRS GoldMiner nor radi-
ologists’ image search behavior [4].

The results presented in this paper provide a better un-
derstanding of the way in which physicians search for in-
formation. Given the fact that ARRS GoldMiner was orig-
inally a search engine with only radiology articles/images
and supported by the American Roentgen Ray Society, it is
still very strong in this domain. The behavior of its users
can be considered somewhat representative for the behavior
of radiologists even though the system can be accessed by
any Internet user, an assumption that is supported by the
high percentage of queries that can be mapped to RadLex,
especially when it is taken into account that many radiology
queries cannot be mapped due to spelling mistakes or ab-
sence of terms in the RadLex terminology. It also proposes
two algorithms to predict whether a query will have at least
one result and in what range the number of query results
will be, respectively. Both algorithms have a very high ac-
curacy and use very simple data as input, two characteristics
that make them a viable alternative to be implemented in
search engines as a criterion to determine when a query
modification should be suggested as the computation is ex-
tremely fast. For example, if the algorithm predicts there
will be too many results, the search engine could suggest
the user to narrow the search; similarly, if the prediction
forecasts no results, the search engine could suggest alter-
native queries that return results. To propose alternative
queries, the analysis of what other users have done in the
past in terms of query reformulations, such as the one pre-
sented in this paper, can be extremely useful. For example,
modifications that have been successful for other users in
the past could work as a basis for suggestions made to new
users. Such a recommendation system would potentially
work better the more queries and query modifications it
contains. Spelling correction can be another source for que-
ry modifications.

This paper is organized as follows: BMethods^ section
includes a description of the data, of the methods used
to produce descriptive analysis, and of the machine
learning models. BResults^ section presents the descrip-
tive analysis of user search behavior and the results of
the predictive models. Finally, in BDiscussion^ section,
results are discussed and BConclusion^ section contains
the conclusions.4 http://www.radlex.org
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Methods

Data Source

The examined query log was produced by the American
Roentgen Ray Society (ARRS) GoldMiner medical image
search engine [16], which currently provides access to more
than 485,000 selected images from peer-reviewed biomedical
journals targeted mainly to clinical professionals. The images
are indexed using the keywords of the caption, the imaging
modality, and the age and the gender of the patient, which are
all automatically extracted from the text.

The search procedure within ARRS GoldMiner always
starts with a keyword search, with the possibility of filtering
results at a later stage by gender, age groups, and modality.
The results are returned as a set of pages, each consisting of a
list of up to ten results, or a display of up to 40 image thumb-
nails. Each result contains the image thumbnail, the caption,
the modality, and a link to the article containing the image.
The acquired log file contains 222,005 consecutive queries.
Each log entry includes a timestamp, a client identifier
(encrypted IP address to preserve privacy), the query itself,
and the number of results found for that query.

Preprocessing of the query logs was done in the same way
as Tsikrika et al. [7]: all queries were converted to lowercase,
various special characters were removed, and medical imag-
ing modalities were normalized (for example, BXR,^ BX-ray,^
and Bxray^ were mapped to a single term). Consecutive iden-
tical queries in the same session and with the same number of
results were considered as a single query. Such entries occur
when a searcher submits a query, then views a document, and
returns to the search engine. TheWeb server typically logs this
second visit with the identical user identification and query
but with a new timestamp. Also, result page navigation can
cause the same logging behavior. The log also contained iden-
tical queries in the same session that yielded different result
sets; these queries were kept because they could reflect the use
of filters (for age group or modality, for example).

Descriptive Analysis

Understanding the user’s behavior is key to enhance informa-
tion retrieval systems. The first part of this paper provides
descriptive analysis of the data contained in the log files.

Log analysis at session level can provide valuable informa-
tion. A session is defined as a series of queries done by a single
user within a small range of time where he/she attempts to fill
a single information need [17]. As commonly applied, a ses-
sion cut-off time of 30 minutes was defined [18]. This means
that all consecutive queries within less than 30 minutes of
inactivity to the previous query will be considered a session.
A query made later than the cut-off time to the previous query
will be put into a new session. Query modification analysis is

conducted within session boundaries and identifies the rela-
tionship between consecutive queries with three possible out-
comes: query generalization, query specification, and query
reformulation.

In order to put the queries into a semantic context, a map-
ping from queries to RadLex terms was applied. RadLex is a
reference ontology for the radiology domain that currently
contains more than 30,000 terms used mainly for standardized
indexing and retrieval of radiology information resources. It
was developed by the Radiological Society of North America
(RSNA) in order to satisfy needs of software developers, sys-
tem vendors, and radiology users by adopting the best features
of existing terminology systems, while producing new terms
to fill critical gaps [19, 20]. Standard lexicons such as RadLex
can be used to solve data-mining challenges that occur due to
synonyms, negation, and inheritance5; for example, all syno-
nyms are mapped to the same RadLex term. This mapping
was mainly done to determine which of the RadLex axes were
most often represented in the queries, as well as to count the
term frequency of the mapped RadLex terms. The mapping
from queries to RadLex terms was achieved by using Ruch’s
system for automatic assignment of biomedical categories
[15] using lexical similarity of terms. Each term that could
be mapped to RadLex was classified into one of the following
15 axes of RadLex: Imaging protocol, Report, Procedure,
RadLex descriptor, Property, Anatomical entity, Imaging ob-
servation, Process, Imaging modality, Non-anatomical sub-
stance, RadLex non-anatomical set, Report component, Pro-
cedure step, Object, and Clinical finding, which are the main
RadLex axes.

Predictive Models

A machine learning approach was applied to build a system
capable of predicting the number of results a query will have.
Two different tasks were defined: predicting if a query will
have no results and predicting the range of the number of
results (0–10 results, 10–100 results, or more than 100 re-
sults). These three classes were chosen because fewer than
ten results could be considered a query with too few results
and more than 100 could be considered a very broad query
where no one would look at all results, whereas in between
could be considered a desirable result set.

Each query was represented by 18 attributes that were used
to train the machine learning algorithms. The attributes were
the following:

RadLex mappings: As explained in the BDescriptive
Analysis^ section, queries were mapped to RadLex terms
in order to place them in a semantic context. Four types of
mappings were possible: exact (the whole query

5 http://www.rsna.org/RadLex_in_Your_Practice.aspx
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corresponds to a term in the RadLex ontology), all terms (all
the terms in the query can bemapped to a RadLex concept),
partial (at least one, but not all, the terms in the query are
mapped to RadLex), and none (no term in the query can be
mapped to RadLex). The first RadLex-related attribute is the
type of mapping done. Given there are multiple types of
mappings, each query can have between 0 and N RadLex
mappings,N being the number of terms in the query. There-
fore, 13 attributes were created, one for every RadLex axis
present in the log files. These are binary attributes; every
query is assigned a 0 or 1 in each of these variables, depend-
ing on whether the query was mapped to the axis or not.
Number of tokens in query: Two attributes were created
based on the number of tokens in the query: total number
of tokens and number of tokens without stopwords. The
query Btumor in lung^, for example, has three tokens and
two non-stopword tokens.
Appearances of terms in log files: A dictionary with all
the words in the queries was created, and for each of them
the total number of queries in which it appears was count-
ed. Later, this information was used to build two attri-
butes of the vector representation of each query: min
logfile appearances and max logfile appearances. In the
previous example, Btumor in lung^, let us assume
Btumor^ appears 108 times, Bin^ appears 2000 times,
and Blung^ appears 520 times. Then, for this query, min
appearances=108 and max appearances=2000.

To prevent deceitful results due to unbalanced classes, the
Synthetic Minority Over-Sampling Technique (SMOTE) [21]
was used to balance the classes. Once this was done, a set of
machine learning algorithms was selected based on the state-of-
the-art tools used in the field, and experiments were conducted
on these methods to determine which has the best performance
in this specific case. The experiments were done using 10-fold
cross-validation on all the data. The methods considered were
support vector machines [22], logistic regression [23], random
forests [24], and other decision trees. The criteria used to com-
pare them were based on correctly classified instances, kappa
statistic [25], F-measure [26], and the area under the receiver
operating characteristic (ROC) curve [26].

Finally, in order to analyze the impact of each attribute in
the predictive model, providing understanding on which ele-
ments are relevant for prediction and which are not, an infor-
mation gain attribute ranking [27] was applied to determine
the importance of each attribute.

Results

This section describes the main outcomes of this article. In the
first part, the descriptive analysis is presented. Then, the pre-
dictive models, their accuracy, and other metrics are exposed.

Descriptive Analysis

Terms and Queries A query corresponds to the exact text a
user types into the search engine, whereas terms are extracted
from the queries and might constitute the whole or part of a
query. The total number of queries was reduced from 222,005
to 200,361 after preprocessing, with 92,909 queries (46 %)
being distinct and 75,118 queries (37.4 %) appearing only a
single time. In comparison to these results, the study in [7],
working with 25,000 records, 63 % of the queries appeared a
single time; the difference between these two numbers shows
there is a gain in information when working with a larger
dataset.

Each query was repeated on average twice, and 17,791 of
the 200,361 queries (8.9 %) occurred more than once. This
shows that relatively few queries are repeated. The high aver-
age can be explained by the fact that the ten most frequently
occurring queries represented approximately 2 % of all
queries. Queries that occurred only once were extremely spe-
cific terms, minor spelling mistakes that did not occur fre-
quently, or totally off-topic queries.

Regarding the most frequently occurring terms, 33,903
(17 %) of the queries contained at least one of the ten most
frequently occurring terms, and 91,589 (46 %) contained one
of the top 100 terms, with Bcyst^ being the most frequent.
Figure 1 shows the proportion of queries containing the most
frequently occurring terms. Tables 1 and 2 show the most
frequently occurring queries and terms, respectively. Results
are very similar to [7] with seven of the most frequent queries
and nine of the most frequent terms occurring in both albeit
with a slightly changing order and very different absolute
numbers.

The majority of the queries consisted of two terms, follow-
ed by queries with one term, and then by those with three
terms. The mean number of terms per query was 2.21; the
median was 2. Among all queries, 182,004 (90.8 %) consisted
of three or fewer terms. In contrast, PubMed averages 3.54
terms per query [12], with a median of 3 terms per query; 80%

Table 1 The most
frequent queries in the
logfile

Query Frequency

1 mega cisterna magna 820

2 baastrup disease 798

3 limbus vertebra 462

4 toxic 428

5 cystitis cystica 405

6 buford complex 274

7 thornwaldt cyst 274

8 splenic hemangioma 254

9 double duct sign 249

10 cystitis glandularis 245
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of all queries have no more than 4 terms. Figure 2 shows the
number of queries given the number of terms in it. Again,
these results are very similar to results in [7].

Sessions In the log files, 103,029 user sessions were identi-
fied. Among these, 100,761 (97.8 %) contain less than seven
queries, 64,679 (62.7 %) contain only one query, 17,379
(16.9 %) have two queries, and 8453 (8%) have three queries.
The longest session has 126 queries.

Studying 97,315 query pairs of consecutive queries in ses-
sions showed that, out of these, 36,056 (37.1 %) do not share
any common terms and only 741 (0.76 %) are identical (this is
influenced by result filtering), making 61,259 (62.9 %) of con-
secutive queries in a session share at least one common term.

When analyzing the modifications done by a user in a ses-
sion, 30,622 (31.4 %) query pairs represent a query reformu-
lation, followed by query generalization 16,757 (17.2 %) and
query specification 13,139 (13.5 %). This confirms results
obtained by Tsikrika et al. [7] and thus opposes the large
majority of studies analyzing Web search engines logs, where
reformulation is also the mostly frequently observed query
modification type, but it is followed by specification and gen-
eralization [28]. Unlike Tsikrika et al. [7], available query time

information allowed this study to limit the analysis to consec-
utive queries inside a search session, instead of all consecutive
queries by the same client IP, leading to a much smaller num-
ber of query pairs relative to the search log size. According to
our analysis, among the 91,375 subsequent queries in a ses-
sion, the vast majority of queries 66,819 (73.1 %) have a time
span of less than 1 min between two queries.

RadLex Mapping From the 200,361 queries left after pre-
processing, 124,719 (62.2 %) queries could be mapped to
RadLex with one of the three techniques used: 36,372
(18.2 %) queries where an exact match to a RadLex concept,
while 76,928 (38.4 %) could be partially mapped, and 11,419
(5.7 %) had every term mapped to a concept in the ontology.
The remaining 75,642 (37.8 %) queries could not be mapped
to RadLex at all. The terms include non-medical terms, many
spelling mistakes, and terms that are too specific and not part
of RadLex. In [13], 52 % of the terms could be mapped to a
smaller and older version of RadLex.

The most common RadLex axis is clinical finding, with 79,
721 queries being or containing a term that could be mapped
to it, which represents 40 % of all queries. The second most
common axis is anatomical entity with 38,791 (19.3 %)
queries, having a huge gap with the third most common axis,
RadLex descriptor, which is only present in 22,321 (1.1 %)
queries (for analyzing these percentages, it is very important
to remember every query can be mapped to more than one or
to none RadLex terms). Figure 3 shows the relationship be-
tween number of queries and RadLex axes. In [13], the most
frequent axis was anatomic location (52.3 %), but RadLex
was much smaller at the time and it is possible that this is
responsible for part of these differences with findings only
covering 10.7 % of the queries in this older analysis.

Among the queries, 99,060 (49.4 %) are mapped to one
single RadLex axis, while 23,477 (11.7 %) were mapped to
two axes; 2130 (1.1 %) contained terms belonging to three

Table 2 The most
common terms occurring
in the queries

Term Frequency

1 cyst 6346

2 mri 3536

3 disease 3536

4 ct 3504

5 fracture 3366

6 tumor 3233

7 syndrome 2994

8 liver 2486

9 pulmonary 2424

10 sign 2293

Fig. 1 Proportion of the queries containing the most frequently occurring
terms

Fig. 2 The number of queries with a specific number of terms in the
query
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different axes and 52 (0.03 %) to four different axes. No query
was mapped to more than four axes. A similar analysis was
not done in the prior work of [13].

At this point, an important question is: what axes do users
tend to combine for formulating their information needs? To
answer this question, the matrices in Tables 3 and 46 show the
number of times each pair of axes co-occurs. As expected,
clinical findings and anatomical entities, being the most fre-
quent axes, co-occur with others frequently. For example, the
two of them co-occur in 11,787 queries, which correspond to
20 % of the queries mapped to anatomical entity. Among the
queries mapped toRadLex descriptor, 8272 were also mapped
to clinical findings, which corresponds to 22 %. The distribu-
tion of co-occurrences, however, is not only due to the fre-
quency with which each axis appears; for imaging
observation, for example, clinical findings is only present in
1.9 % of the queries containing it, while anatomical entity co-
occur with it on 9.4 % of its queries.

Predictive Models

Machine learning algorithms were used to perform two tasks:
predicting the range in which the number of results will be and
predicting whether a query will or will not have results. This is
a classification task, for which we aim to obtain the highest
possible accuracy. Several experiments were conducted to de-
termine which algorithm to use. In a first set of experiments,
logistic regression, support vector machines (sequential mini-
mal optimization), and random forests were tested. Amodel to
predict the number of query results using the features based on

appearances of terms in log files and number of terms in query
gave an accuracy of 50.19 % for logistic regression, 49.99 %
for support vector machines, and 81.32 % for random forests.
This accuracy is obtained using a 10-fold cross-validation
using the entire dataset, which is the evaluation technique used
in all the experiments mentioned here. Note that the accuracy
of random forests is lower than the accuracy finally reported
since these experiments were conducted in the first phase of
the project, without taking into account the features based on
RadLex mapping. Nonetheless, after finding random forests
to perform radically better than the other techniques, which do
not even outperform the baseline (49.99 % if every query is
assigned to the majority class), random forests were chosen as
the preferred method for the task. The default Weka7 param-
eters for random forests allow the model to choose how deep
each tree will be and sets the number of trees to 10. Once the
model had been trained using the whole set of features, exper-
iments were conducted to determine if increasing the number
of trees would improve the results. However, increasing the
number of trees to 15 had a barely null impact on the accuracy
(in the order of 10−3), and therefore the final choice of algo-
rithm uses 10 trees.

The dataset used for building the model is unbalanced,
which means it is not divided evenly among the classes.
Therefore, after representing each query as a vector in R18,
the data were preprocessed with SMOTE, in order to prevent
unbalanced classes in the training data from altering the re-
sults, and used to train a predictive model. To assess the per-
formance of the algorithm, a 10-fold cross-validation was
used. Promising results were obtained: an accuracy of
85.19 %, with an average ROC area of 0.95 and a Kappa

Table 3 Co-occurrence of RadLex axes in the queries (first part
containing CF, O, AE, NS, RD, PP)

CF O AE NS RD PP

CF 79,721 175 11,787 150 8272 225

O 175 1243 229 4 89 7

AE 11,787 229 38,791 116 5217 166

NS 150 4 116 1161 55 7

RD 8272 89 5217 55 22,321 18

PP 225 7 166 7 189 109

P 280 18 357 4 163 16

PS 0 1 12 0 1 0

IO 97 6 488 2 543 16

IM 552 25 580 2 249 9

RC 2 0 5 0 3 0

R 4 0 1 0 0 0

PC 1 1 5 0 0 0

6 CF: clinical findings, O: object, AE: anatomical entity, NS: non-
anatomical substance, RD: RadLex descriptor, PP: property, P: proce-
dure, PS: procedure step, IO: imaging observation, IM: imagingmodality,
RC: report component, R: report, PC: process.

Fig. 3 Number of queries mapped to each RadLex axis

7 http://www.cs.waikato.ac.nz
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statistic of 0.77. More detailed information is included in
Table 5.

For predicting whether a query would have results,
SMOTE was also used to balance the classes in the training
data and the algorithm with the best performance was also
random forests. Once again, increasing the number of trees
gave almost null variation in accuracy. While the first one
was a classification task between two classes, the second
one classifies into three classes: 0–10 results, 10–100 results,
andmore than 100 results. The evaluation was also done using
10-fold cross-validation and the performance is also remark-
able: an accuracy of 88.29 %, with a ROC area of 0.95 and a
Kappa statistic of 0.76. More details about the performance
can be seen in Table 6.

The downside of several machine learning algorithms, such
as random forests, is the low interpretability; it is hard to
understand which variables are important and which are not.
In order to gain insight into the role variables play in the
prediction, Information Gain Attribute Ranking was used.
For a class C and an attribute A, Ent being the entropy, the
information gain, I, is measured by

I C;Að Þ ¼ Ent Cð Þ−Ent CjAð Þ

Table 7 and 8 show the attributes’ information gain for both
tasks.

Given the information gain is the difference between two
entropies and for each task the entropy of the class is dif-
ferent, the numbers cannot be directly compared (for exam-
ple, the fact that in both cases min logfile appearances is
around 35 does not mean anything). However, conclusions
can be drawn from the distribution of the values, as well as
for values close to zero, since these ones mean the entropy
of the class and the entropy of the class given the attribute
is almost the same, meaning there is no information gain
from this attribute.

In both cases, min logfile appearances is by far the most
relevant attribute. The type of RadLex mapping done to the
query, the number of tokens (both with and without
stopwords), and the max logfile appearances are important
in both cases, although this last one is more relevant in the

Table 5 Results of Random Forests for predicting the range of the number
of query results—R1 has less than ten results (including no results), R2 has
between 10 and 100 results, and R3 has more than 100 results

R1 R2 R3 Weighted average

Precision 0.842 0.819 0.874 0.85

Recall 0.876 0.688 0.92 0.851

F-measure 0.899 0.748 0.897 0.849

ROC area 0.955 0.92 0.971 0.953

Table 6 Performance of Random Forests for predicting if a query will
have results or not

# Res>0 # Res=0 Weighted average

Precision 0.899 0.865 0.884

Recall 0.899 0.864 0.884

F-measure 0.899 0.865 0.884

ROC area 0.951 0.951 0.951

Table 4 Co-occurrence of RadLex axes in the queries (second part
containing P, PS, IO, IM, RC, R, PC)

P PS IO IM RC R PC

CF 280 0 97 552 2 4 1

O 18 1 6 25 0 0 1

AE 357 12 488 580 5 1 5

NS 4 0 2 2 0 0 0

RD 163 1 543 249 3 0 0

PP 16 0 16 9 0 0 0

P 1889 1 11 23 0 1 0

PS 1 101 0 0 0 0 0

IO 11 0 4044 12 0 0 0

IM 23 0 12 2211 0 0 0

RC 0 0 0 0 10 0 0

R 1 0 0 0 0 16 0

PC 0 0 0 0 0 0 12

Table 7 Relative influence of variables for predicting if a query will
have no results, according to Info Gain Evaluation

Variable Info Gain

min logfile appearances 0.35278316

Type of RadLex mapping 0.10706495

max logfile appearances 0.09828245

Number of tokens 0.07604782

Number of non-stopword tokens 0.07554565

RadLex: clinical finding 0.02718913

RadLex: non-anatomical substance 0.00130726

RadLex: imaging observation 0.00129999

RadLex: anatomical entity 0.00082734

RadLex: procedure 0.00047458

RadLex: property 0.00042359

RadLex: RadLex descriptor 0.00035407

RadLex: imaging modality 0.00033401

RadLex: object 0.00026038

RadLex: procedure step 0.00016858

RadLex: process 0.00001056

RadLex: report component 0.00000342

RadLex: report 0.00000335
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second task, which could be expected since this task also aims
to predict when a query will have too many results. In both
cases, RadLex axes do not provide much additional
information.

Discussion

In this paper, image search behavior of physicians and other
web searchers for medical image information is analyzed
based on the usage of log files and predictive models to deter-
mine how many results a query will have are presented. The
high accuracy of the predictive models, combined with the
strong patterns identified in the descriptive analysis of user
behavior, can be used to improve medical image search en-
gines. The process of suggesting query modifications to users
can be divided into two questions: when to suggest a modifi-
cation and what to suggest. The findings of this paper can
provide answers to both questions.

Predicting the range of the number of query results, or
predicting whether a query will have results or not (depending
on the desired complexity), can be used as a criterion to de-
termine when the engine should suggest to the user a query
modification. The good performance of both classifiers makes
them suitable candidates for being used by search engines. As
these parameters are extremely simple when removing the
RadLex categories, they are also extremely fast to execute,
much faster than executing a query; without optimization,
much less than half a second could be obtained. Adding this

time to a query is invisible for the user and the user can then be
informed on the modifications done and the reasons for it,
allowing potentially to reuse the initial query.

Once the system predicts that the query will probably not
give a suitable number of results, it can make a suggestion.
The information obtained from session analysis can be useful
for this. Successful reformulations made by other users in the
past can be used as suggestions for new users. This could be
an appropriate approach whenever the query was made by
another user in the past; however, as previously shown, less
than 10 % of the queries occur more than once, so many
queries would not have a candidate for suggestion unless the
log file grows massively and is available over a long period of
time. Therefore, complementary methods have to be devel-
oped. The first element that can help in improving a search
engine is applying orthographic correction. This can reduce
the number of queries with no results. As a second step, con-
sidering many searches give no results because they are too
specific and others give too many results because they are too
broad, it would be desirable to suggest a less or a more specific
query, respectively. For the first case, a query in the log files
which is contained in the current query and has obtained re-
sults could be a good candidate for a suggestion. For example,
aortitis retroperitoneal fibrosis gives no results, so the search
engine could propose the user to look for retroperitoneal
fibrosis, which does have results. In the second case, the most
common queries which contain the current query could be
suggested as possible modifications. For example, if the initial
input is fibrosis, the search engine could suggest a set of more
specific queries for the user to choose from, such as cystic
fibrosis, interstitial pulmonary fibrosis, retroperitoneal
fibrosis. In this case, initial results can be shown in addition
to the recommended reformulations.

To further improve the results, an interesting task would be
to identify off-topic queries, such as Bhappy new year^ and
BSan Valentine’s^ that occurred in the log files. For these
cases, there would be no suitable suggestion that improves
the results, so the search engine could warn the user about this.

As described, the main contribution of this paper on user
search log file analysis is to propose a model for medical
image search engines to suggest query modifications to the
users based on automatic predictions based on single queries.
However, the results can also be useful for other purposes. The
frequency with which certain RadLex axes appear in searches
and the way in which they are combined answers the question
Bwhat are physicians looking for?^. This gives valuable infor-
mation to those proposing medical image retrieval tasks as
benchmarks, as it is the case of CLEF eHealth [29] or
ImageCLEF [30]. Knowing what radiologists or physicians
in general search for is key to establishing useful tasks.

In the machine learning portion of the research, the infor-
mation gain measure provides valuable insight. The fact that
the most relevant attribute ismin logfile appearances suggests

Table 8 Relative influence of variables for predicting the range of the
number of query results, according to Info Gain Evaluation

Variable Info Gain

min logfile appearances 0.3625514

max logfile appearances 0.1735592

Number of non-stopword tokens 0.1498272

Number of tokens 0.1497191

Type of RadLex mapping 0.1130494

RadLex: clinical finding 0.0122519

RadLex: RadLex descriptor 0.0091736

RadLex: imaging observation 0.0018093

RadLex: property 0.0016000

RadLex: non-anatomical substance 0.0013986

RadLex: anatomical entity 0.0013594

RadLex: imaging modality 0.0009119

RadLex: object 0.0006390

RadLex: procedure 0.0001619

RadLex: procedure step 0.0001126

RadLex: report 0.0000384

RadLex: process 0.0000363

RadLex: report component 0.0000165
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there is an Boffer-demand^ relation since the number of times
a query has been done is useful for predicting the number of
results it will get. The same happens with max logfile
appearances.

The fact that RadLex axes are not useful for prediction is an
unexpected result since according to the hypothesis it was
expected this would have impact on the number of results.
However, RadLex mapping is still useful since the type of
mapping has a high information gain. This classification be-
tween the three types of mapping, part of Ruch’s method [15],
is particularly useful for this analysis.

Conclusion

This paper focuses on understanding how medical image
search is performed and using this knowledge to improve
specialized search engines. Data mining and machine learning
techniques are applied to layout solid bases for a model of
query modification suggestions. Two accurate predictive
models are presented; the first one to determine when a query
will have no results and the second one to determine the range
of the number of query results. In a search engine, giving no
results is always a bad performance. Suggestions and modifi-
cations should be used to prevent this, and therefore predicting
when it will happen is key to improving the system. The
findings are promising, proving search log files can be used
to train a system able to predict the level of success a search
will have based on the query terms. Furthermore, a viable
model that can be used by medical search engines for identi-
fying problematic queries and modifying them to get better
results is presented.

Larger log files can even improve results since this can help
to create self-learning systems. Past session information can
be a valuable asset for modification suggestions to users, a
field in which medical search engines still have some road
ahead. In standard search engines such as Google or Bing,
already queries are auto-completed while typing based on past
queries and their frequencies. A similar possibility exists for
medical image search if sufficiently large log files are avail-
able. Even dictionaries with standard spelling mistakes can be
build based on such log files.Mapping of queries to RadLex is
reliable and also allows to avoid problems with synonyms as
they are all mapped to a single term. Like this, more can be
found out on user intentions when querying, which can again
be used to deliver better results than simply using key words.

Within log files, there is potentially more information that
could be used to good advantage, such as click information
and time spent visiting links. For GoldMiner, we unfortunate-
ly did not have this information available, but it is again a
technique frequently used in web search log files that could
be transferred to medical search. The strong patterns identified
in user behavior corroborate this is a subject that should be

studied further, aiming to improve image retrieval and search
engines performance for medical search. Already the de-
scribed analyses potentially allow to adapt the GoldMiner
system much better to the user needs by only small modifica-
tions in its functionality.
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