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Abstract Emission tomographic image reconstruction is an
ill-posed problem due to limited and noisy data and various
image-degrading effects affecting the data and leads to noisy
reconstructions. Explicit regularization, through iterative re-
construction methods, is considered better to compensate for
reconstruction-based noise. Local smoothing and edge-
preserving regularization methods can reduce reconstruction-
based noise. However, these methods produce overly
smoothed images or blocky artefacts in the final image be-
cause they can only exploit local image properties. Recently,
non-local regularization techniques have been introduced, to
overcome these problems, by incorporating geometrical glob-
al continuity and connectivity present in the objective image.
These techniques can overcome drawbacks of local regulari-
zation methods; however, they also have certain limitations,
such as choice of the regularization function, neighbourhood
size or calibration of several empirical parameters involved.
This work compares different local and non-local regulariza-
tion techniques used in emission tomographic imaging in gen-
eral and emission computed tomography in specific for im-
proved quality of the resultant images.

Keywords Regularization . Tomographic image
reconstruction . Ill-posedness . Maximum a posteriori (MAP)
reconstruction . Non-local priors

Introduction

Emission tomographic data, in positron emission tomography
(PET) and single-photon emission computed tomography
(SPECT), are considered to be an ideal line integral of the
underlying activity distribution inside an object being imaged
and are used to reconstruct images to evaluate different ana-
tomical or physical processes of the human body [1, 2]. How-
ever, real data from these scanners are incomplete and noisy
and deviate from their true line integral model owing to vari-
ous physical and detector-based effects [3, 4]. Iterative image
reconstruction methods can easily model these effects, as op-
posed to analytical reconstruction techniques, along with sys-
tem geometry response, detector response and emission object
models. This is generally modelled in the form of an explicitly
defined regularization function, which is added to the data
modelling term [5–7]. These methods can reduce
reconstruction-based noise through better conditioning of the
reconstruction problem using an emission object model [1, 8].
A priori knowledge about object distribution properties can
easily be included through regularization functions in order to
obtain some user-defined characteristics of the resultant im-
ages, for example images bearing the highest required user-
defined resolution, with an extra control over these properties
through these functions [9–11].

Commonly used local regularizationmethods, such as local
quadratic or non-quadratic regularization functions, are based
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on Gibbs’ distribution functions, have a simple implementa-
tion form and can easily capture local image properties [8, 12,
13]. However, these functions produce overly smoothed im-
age regions [8], induce staircase or piecewise blocky artefacts
and result in contrast loss because they can provide indiscrim-
inate local prior information available in the image and are less
efficient due to their local behaviour [12, 14]. Recently, sev-
eral non-local regularization schemes have been introduced to
combat these issues of local regularization [2, 12, 14–20].
Non-local regularization makes use of the global image con-
nectivity and continuity available in the objective image and
can prevent, somehow, over-smoothness with robust edge
preservation at the same time, without appreciable staircase
effects or contrast loss [2, 8, 17–19, 21–23].

This work reviews various regularization techniques used
to reduce ill-conditioning of the emission tomographic recon-
struction problem with a focused comparison of the local and
non-local regularization techniques used to reduce image and
reconstruction-based noise and preserve salient image
features.

Review

Emission tomographic measurement data, i.e. the number of
coincident photon pairs detected by an opposite pair of detec-
tors along a line in a PET system or the gamma ray detection
data from a SPECT system, are approximately linearly pro-
portional to the integral of the tracer density along that line as
shown in Fig. 1. These data are used to reconstruct images to
evaluate different anatomical or physical processes of the hu-
man body [24]. Analytical reconstruction methods, such as
filtered backprojection (FBP) or Fourier reconstruction (FR),
assume the data to have a true line integral relationship with
the object distribution function. This line integral model, be-
tween the object emission density function f(x, y),defined over
a 2D real space ℝ2 and its ideal projection data pθ(r), can be
modelled as a function of the radial distance r from the centre
of the detector surface at an angle θ along the line L(r, θ) in
polar coordinates as

pθ rð Þ ¼
Z

Line r; θð Þ

f x; yð Þ d s

pθ rð Þ ¼
Z ∞

−∞

Z ∞

−∞
f x; yð Þδ xcosθþ ysinθ−rð Þdxdy

ð1Þ

A complete collection of all projections around the object
{pθ(r) :θ∈ [0, π], r∈ (−∞,∞)} is known as its Radon transform
[1, 25]. This analytical model cannot incorporate various
physical or detector-based image-degrading effects and the
stochastic nature of the data easily and needs to compromise
the reconstructed resolution for noise in the resultant images

[24]. These effects include attenuation, scatter, scintillation pro-
cess blur and background noise in PETand SPECTor accidental
coincidences, crystal penetration effect and variation in individ-
ual detector performance in PET, which tend to make the data
noisy and incomplete and force it to deviate from its true line
integral representation. This drives the overall analytical recon-
struction problem to be inconsistent and difficult to solve numer-
ically [4, 26]. Additionally, all the above-mentioned effects are
non-uniform across the spatial span of the system’s field of view
(FOV) and add further difficulty in defining the response of the
system or its point spread function (PSF) [3, 27].

Iterative reconstruction methods can easily model different
image-degrading effects, detector geometrical models, the sto-
chastic nature of the emission process and modelling of the
emission object [7]. These methods are the optimization algo-
rithms and iteratively optimize an objective function to esti-
mate the final image.

∅ fð Þ ¼ lng yð Þ
f̂ ¼ max

f ∈Ω
∅ fð Þ ¼ max

f ∈Ω
L g yð Þð Þf g: ð2Þ

Here, g(y) is some function of the data and, generally, its
log is maximized over the solution image set Ω. Two very
popular choices for optimization are the least squares function
in penalty framework and the likelihood function in Bayesian
formulation [8]. Statistical reconstruction methods consider data
and object as realizations of random vectors, such that if y= {yi,
i=1,…,M} denotes the data vector and f={fj, j=1,…,N} de-
notes the object, then conditional probability (log-likelihood) for
p(y|f), conditioned over the object f, may be considered by the
independent Poisson distribution [28]. The maximum likelihood
(ML) estimate is a maximizer of the probability of producing the
measured data y, given the object f or maximizer of the log-
likelihood function given in Eq. (4).

p yj fð Þ ¼ ∏
i

yi
yi!

e−y

L yj fð Þ ¼
XM
i¼1

yilog yi

� �
− yi−log y!ð Þ

f̂ MLEM ¼ max
f ∈Ω

L yj fð Þf g :

ð3Þ

This requires the mean of the data modelled as yi ¼ ∑
j
Hi j

f j withHij as the systemmatrix element defining probabilities

of event detection and can also include other factors and
models [4]. Though the ML solution may exist and achieve
the lowest variance among all unbiased estimators, in general,
the equation represents an inconsistent system and for finite
data, the ML estimate, being a biased estimator, still exhibits
high variance due to these problems and cannot acheive the
least possible variance. Also with an increase in the number of
voxels or the number of iterations, this variance increases
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continuously and indefinitely [7]. These equations represent
an un-regularized form of the optimization method, and in
ECT, an un-regularized image estimate turns out to be noisy
due to its ill-conditioning, owing to limited and noisy data [10,
11, 29]. Hence, although an accurate system model may re-
duce spatial variations, further conditioning of the problem is
needed to reduce reconstruction-based noise with a reduced
ill-conditioned nature [10, 18, 20, 30].

Instead of simple deterministic iterative methods, regular-
ized iterative methods are used to solve ill-posed reconstruc-
tion problems because the behaviour of the deterministic
methods is often unsatisfactory for the noisy data. The use
of regularization improves the performance of the reconstruc-
tion algorithm using local irregularity measurement to restrict
the solution image set. An explicit form of the regularization is
preferably implied to overcome ill-conditioning of the prob-
lem and to gain flexibility over the reconstructed image prop-
erties [31]. The objective function to be maximized will be-
come in this case

∅ fð Þ ¼ lng yð Þ þ lng fð Þ
f̂ ¼ max

f ∈Ω
L g yð Þð Þ þ lng fð Þf g: ð4Þ

Here, g( f ) is the regularization function. In Bayesian for-
mulation, the data term g(y) =p(y|f) and the object prior func-
tion g( f ) = p( f ) are combined through Bayes’ rule, which
turns out to be computing the maximum a posteriori (MAP)
estimate in its logarithmic form [8]:

p f
���y

� �
¼

p y
��� f

� �
p fð Þ

p yð Þ ∅ fð Þ ¼ lnp f
���y

� �
¼ lnp y

��� f
� �

þ lnp fð Þ f̂ PLEM ¼ max
f ∈Ω

L y fð Þð Þ þ β U fð Þf g

where U fð Þ ¼ lng fð Þ f̂ MAP ¼ max
f ∈Ω

L y
��� f

� �
þ β U fð Þ

n o

where U fð Þ ¼ lnp fð Þ

ð5Þ

In this equation, f̂ is known as the MAP estimate or penal-
ized likelihood (PL) estimate. In the penalty framework, the
first term is called the data term, whereas the second one is

termed as the penalty function and the estimator is called the
PL estimator [7]. In both these forms, the purpose of this term
is to impose additional constraints on the solution image setΩ
to improve ill-conditioning of the reconstruction problem and
to select those solutions only, which satisfy the data term
L(y( f )) and the prior term U( f ) at the same time, with its
associated weight β.

Prior Design

The purpose of the prior or the penalty term is to select those
solutions which satisfy the data and which are the most prob-
able in our prior expectations [5, 29, 32–34]. The simplest
form of these functions assumes statistical independence be-
tween voxels so that the images are products of uni-variate
grey levels, such as independent gamma prior [7]:

p fð Þ ¼ ∏
i

1

Γ αið Þ
αi=βi

�αi f αi−1
i exp −αi f i=βi

�
;

�� ð6Þ

where βj is the mean and αi is the coefficient of variation for
the ith voxel fi. These are smoothing functions and due to no
coupling between voxels, we get a closed-form solution.
However, they operate through the mean image values, which
are unfortunately not available in image reconstruction, be-
forehand, and computation of the mean image also induces
coupling [35–37]. These priors work on the basic description
of the medical images that they are locally smooth and random
noise can be tackled, if images are locally smoothed. A qua-
dratic Gaussian model works well to overcome noise and
mathematically has very nice forms with continuous deriva-
tives to make the objective function easier to optimize; how-
ever, it also blurs salient image features such as edges [8, 21].

Local Prior Design

Instead of independent prior models, images may be drawn
from a bigger class of Markov random fields (MRFs), in the
form of Gibbs distribution functions, to empirically capture

Fig. 1 A projection set of an object on a detector continuum is a function of radial distance [3]
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local image properties [12, 28]. These are exponential func-
tions in a simple mathematical formulation, and the exponents
are the sum of functions of neighbouring voxel differences.
Potential function is a very critical choice in defining the final
image properties, and the form of the prior termwill ultimately
decide the behaviour of the overall objective function to be
optimized [8, 12]. These priors are commonly defined as

p fð Þ ¼ 1

Z
e−βU fð Þ where U fð Þ

¼
XN
j¼1

X
k∈ neigh

wjkV f j− f k
� �

ð7Þ

Here, Z is the normalization constant andU( f ) is the Gibbs
energy function. Various forms of these potential functions
attempt to capture characteristics of the tracer distribution in
a local vicinity of an image voxel, while allowing abrupt
changes in the intensity at regional edges at the same time,
for example the Huber prior or the log-cosh prior [8]. A con-
vex form of the functions is used commonly for easiness of
optimization [28]. Weights wjk define the level of interaction
of the jth voxel with the kth voxel, and in locally defined
neighbourhoods, these are taken constants [21]. Parameter β
defines the overall weight of the prior function, and for low β
values, the prior does have a very weak influence on the so-
lution image, while large β values mean that the solution sat-
isfies the prior constraints with more force [34]. Higher order
neighbourhoods may be included in a local prior form; how-
ever, modelling and use of the higher order neighbourhoods
and the computational burden are computationally prohibitive
[7].

In local priors, the value assigned to each voxel depends on
the voxel intensities within a small fixed neighbourhood. An-
other choice for the prior function could also be a generalized
image description-based function or an anatomically defined
image of the object [38]. The difficulty with this approach is
that generally the prior information about the object is not
known beforehand. However, some sort of relational informa-
tion about the object could be used; for example, in emission
tomography, the simplest known information about the emis-
sion object is its non-negativity. In local priors, potential func-
tions are selected to reflect the local smoothness and to pre-
serve regional boundaries, which are two contradicting prop-
erties, and different forms of the prior functions have been
introduced in the literature to capture both of them together
[7, 8, 12, 14, 32, 37, 39, 40]. Functions with higher order
neighbourhoods have also been proposed to capture more
complex correlation structures, with having difficulty of
choosing and defining such model, which is mathematically
not so convenient, for example the thin-plate spline model.
Instead of an implicit boundary model, the compound MRFs
or the weak membrane priors are attempts to model the

boundaries explicitly by a dual lattice of line sites. Higher
resolution imaging modalities can also be used to incorporate
anatomical priors into the reconstruction framework [14].
Most of these prior functions are convex for mathematical
elegance and have their well-defined maxima, whereas non-
convex prior functions have also been introduced. When the
prior function is incorporated into the objective function in a
convex form, the objective function becomes concave and a
Kuhn-Tucker necessary condition is also sufficient to find the
maxima [3]. Another major nuisance with these methods is the
absence of any general criterion to select a weight for the
regularization function as compared to the data likelihood
function for optimization. This weight is commonly defined
in the form of a regularizing parameter whose value defines
the influence of the prior function. This parameter, unlike the
cut-off frequency in FBP, does not have any physical units and
is difficult to evaluate. Several methods have been proposed to
tune this parameter much like a tabulation of cut-off frequen-
cies against resolution [34]. In smoothing priors, a convex
formulation of the cost functions is implemented to better
condition the reconstruction problem, for example quadratic
priors (QPs) below, where a linear solver may be opted to
solve the problem with faster convergence rates.

p fð Þ ¼ 1

Z
e−βU fð Þ with U fð Þ ¼

XN
j¼1

X
k∈N j

w jk

f j− f k
� �2

2
ð8Þ

These priors assume that images are locally smooth, and
plenty of work is based on quadratic regularization due to their
simple implementation and good smoothing properties to re-
duce noise. However, their smoothing is anisotropic and de-
pends on various factors such as activity concentration distri-
bution, system geometry and non-uniform attenuation distri-
bution. Few methods have been proposed to recover for their
non-uniform response; however, smoothness of edges and
high-count areas still remains a problem due to local behav-
iour of the regularizing priors [3]. Various non-quadratic or
edge-preserving priors try to empirically change the behaviour
of the prior function near the edges, using some additional
parameter to define edge thresholds, for example the Huber
prior or the Geman and McClure penalty functions [8, 28];
however, they make the objective function non-convex and
cannot improve the ill-conditioning much as the quadratic
priors and their convergence properties are generally not well
defined and their results are much sensitive to the hyper-
parameter used. Several such edge-preserving priors have
been proposed; however, they are computationally intensive
and use complex edge-defining techniques such as determin-
istic annealing or the method of level sets. These methods use
computationally complex techniques to somehow preserve
the edges empirically and can only incorporate local image
properties [7].
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Quadratic and non-quadratic regularizing functions (except
MRPs) work on a basic description of the images that they are
locally smooth, whereas MRP- and total variation (TV)-based
priors work on local mono-tonicity (voxel values are only
increasing or decreasing in a local neighbourhood) and image
irregularity (image derivatives in a local neighbourhood) mea-
sure, respectively [3, 14]. These priors automatically preserve
edges without any additional parameter used and produce
smoothing with the least amount of blurring induced, and their
non-linear response is less sensitive to the hyper-parameter
values. However, their convergence properties are not known
due to their undefined analytical derivatives and resultant im-
ages suffer from staircase artefacts and contrast loss due to
their local behaviour. TV regularization functions have also
been suggested for electrical impedance tomography (EIT) to
preserve sharp discontinuities at edges, which are generally
smoothed out by standard quadratic regularization [3].
However, for non-differentiability of the leading objective
function, the lagged diffusivity and primal dual-interior
point methods have been proposed to solve it, which
showed improved results, though with additional mathe-
matical complexity [40, 41].

All the above-mentioned local regularization prior func-
tions perform very well to reduce reconstruction-based noise
and to improve conditioning of the problem; however, they
have limitations. For example, local quadratic priors over
smooth edges and high-count regions have hyper-parameter
sensitivity problems and produce anisotropic and asymmetri-
cal responses. Non-quadratic priors can retain edges; however,
they cannot improve the ill-conditioned problem very well,
need additional parameters to define edges empirically, induce
locally unpredictable smoothing behaviour and have conver-
gence issues. MRP- and TV-based priors have robust edge
preservation properties. However, their analytical derivatives
are not available; hence, their convergence properties are not
defined and they produce staircase artefacts, piecewise blocky
artefacts and contrast loss as shown in Fig. 2. Most of these
problems are due to the local dependence of the prior, constant
prior weighting in local neighbourhood, non-convexity of the
mathematical formulation or hyper-parameter sensitivity of
the response of the system. To overcome these problems,
non-local regularization priors have been proposed recently.

Non-local Regularization

Local priors provide only local information, where image
roughness or variational information of the structures or tex-
ture available in the image is calculated considering the voxel
differences in a local neighbourhood only, which is not robust
[8, 42]. Non-local regularization techniques have been devel-
oped to include image regularization based on voxels exterior
to the local neighbourhoods and are theoretically meant to
include global connectivity and continuity present in the

objective image [12, 13, 17, 18, 28, 32, 38, 39, 42]. The start
of the non-local regularization techniques was mainly inspired
by Buades and colleagues with an introduction of the non-
local means filtering for image de-noising [21]. Many non-
local regularization functions have been introduced for image
de-noising [23] and image reconstruction [12] afterwards with
efforts devoted to find a generalized solution for inverse prob-
lems using non-local regularization [18, 43]. Theoretically,
three basic choices need to be made for local or non-local
regularization to be implemented, i.e. mathematical formula-
tion of the prior energy function, the size of the
neighbourhood used and the form of the weight function used
to evaluate weights for different pixels or neighbourhoods.
Prior energy function, given in Eq. (6), can be re-written for
non-local regularization as the sum of the potential functions
with non-local weighting introduced as follows:

UNL fð Þ ¼
XN
j¼1

X
k∈N j

∅ jkV f j− f k
� �

ð9Þ

Here,∅ jk are the weight functions and define the contribu-
tion of the kth patch or neighbourhood with respect to the jth
patch and V(fj− fk) are the potential functions of the voxel
intensity differences in various patches or non-local regions
in the image as shown in Figs. 3 and 4.

Non-local prior design may use energy functions in the
form of quadratic functions of the voxel intensity differences
[12, 33] or quadratic function with the Huber prior function
[8], the TV roughness function [44], non-local median priors
[14] or some proposed optimization transfer functions [31].
For example, a dynamic PET image cluster-based non-local
prior, with a quadratic potential function, has been proposed
with equally normalized weights using the total number of
voxels in a cluster, and it was shown that the prior resulted
in a quantitatively better parametric image in dynamic PET
[42]. Normalized standard deviation (NSD) versus bias trade-

Fig. 2 Images of a thorax phantom reconstructed withML, PLwith QPs,
MP and TV priors for 15 and 200 iterations for the given 0 value. QPs
produce blurry images whereas TV priors produce blocky artefacts [3]
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off method was used to optimize the number of clusters used.
Assuming that intensity difference-based local priors cannot
calculate image roughness accurately, non-local patch-based
regularization has been suggested with a non-quadratic func-
tion, achieving better contrast levels for smaller objects with
lower parameter dependency as compared to MRPs [31]. Au-
thors claim that their method is more robust in distinguishing
edge pixels from noisy pixels as compared to other local non-
quadratic priors; however, it is based on a new optimization
transfer algorithm, similar to that of PLEM reconstruction,
and is computationally complex. A non-local TV prior has
been proposed, which minimizes a linear combination of
non-local TV and least squares fitting term with the split
Bregman algorithm and has been shown to produce a better
signal to noise ratio and recovers staircase artefacts and con-
trast loss artefacts in MRI image reconstruction [32].

An extension of the variational framework to a non-local
TV prior with a convex form of the prior to allow flexibility
has been proposed [22] and for MR [32] to evade their stair-
case artefacts for local TV regularization. A coherence regu-
larization prior has been introduced, with an energy function
based on the diffusion equation of adaptive image filtering, to
directly extract image features from noisy data, and structure

detection was carried out using a non-local means filter [38].
This way, the intra-structure intensity changes, which contrib-
ute towards local noise, are penalized and salient features such
as edges are preserved. A non-local prior for Bayesian image
reconstruction in PET and SPECT has been proposed to im-
prove the reconstructed images by exploiting information in
larger neighbourhoods in the image [12, 31]. Though various
functional forms have been used as the prior energy function,
the simple forms make the overall objective function convex
and easy to optimize, whereas it is difficult to mathematically
model the dependence of the complex functions on the image.

Conventionally, the value of the prior function is calculat-
ed, as a weighted sum of the potential functions of voxel
differences in a local neighbourhood [14]. These weights de-
note the degree of interaction between neighbouring voxels,
and for local priors, they are assumed to be constants equal to
the inverse of the distance between voxel centers. It was ob-
served that constant prior weighting in a local neighbourhood
produces anisotropic and asymmetric responses of the system
with local priors. A non-local prior, mentioned above, has
further been extended and applied to low-dose X-ray comput-
ed tomography with an improved adaptive weighting ap-
proach [8]. It has been shown that this prior can exploit selec-
tively global image information with effective resolution re-
covery and noise removal as compared to the local priors and
can remove negative regularization by excluding irrelevant
neighbourhood pixels. Improved adaptive weighting present-
ed a similarity measure between neighbouring patches and
was calculated using the latest estimated image as a decreasing
Euclidean distance between two neighbouring patches. Strat-
egies to calculate weights are broadly based on similarity mea-
sures between neighbourhoods [14, 31], maximum entropy
measure [28], non-local means affinity function [21] or some
simple measure of the inverse of the distance between voxels
[12]. For example, the following equation presents a method
to evaluate weight function in a non-local neighbourhood
based on similarity measured by a decreasing function of the

Fig. 3 Different pixel neighbourhoods get different weights based on the
similarity of the pixel neighbourhoods. For example, point p2 has higher
weight associated with it than pixels p1 and p4

Fig. 4 A 11 × 11-pixel edge
image (top left) with its weight
distribution calculated using a
smaller window of size 3 × 3
(bottom left). Weights are
reasonably distributed along the
edge. However, in a noisy version
(top right) where Poisson noise
has been added, the weights
(bottom right) are distributed
randomly. This indicates that
noisy patches (smaller windows)
may not bear well-distributed
weights and may cause further
noise
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Gaussian-weighted Euclidian distance (L2 norm convolved
with a Gaussian kernel with standard deviation a) between
two smaller neighbourhood vectors xj and xk of size N in a
larger window of size M.

wjk ¼ 1

Z jð Þ e
−
jjx j−xk jj22;a=2h ð10Þ

Here, Z(j) is the normalization factor and h2 controls the
decay of the function and is a user-defined empirical parame-
ter [14]. A cluster-based non-local prior for dynamic PET
defines weights derived from similar kinetics of clusters where
equally normalized weights have been used with respect to the
total number of voxels in a cluster [42]. However, Euclidean
distance-based weighting has also been introduced to over-
come bias due to noise. A non-local TV (NLTV) function uses
a non-local weight function based on graph function with an
assumption that the weight function should represent a simi-
larity of two points with their significance represented by the
weight [32]. A patch similarity mixture (PSM) prior model, as
a high-level MRF prior to model higher order neighbourhood
patterns, has been proposed for CT data extending the same
non-local prior [28], where prior weights are calculated using
a constrained entropy maximization and an automatic balance
between data and prior was also introduced [28].

A basic problem with the local priors is to smooth out the
uniform regions while recovering the edges at the same time.
Practically, adaptive prior weights are found to be aligned
along the edges inside the image and hence better define
priors’ behaviour for edge preservation and uniform region
smoothing. This signifies the edge-preserving nature of the
non-local priors using adaptive non-local image information.
Similarly, there is not a consensus to use the size of the larger
neighbourhood or the search window [12] used around the
voxel of interest. Technically, smaller neighbourhoods cannot
capture global image informat ion , whi le larger
neighbourhoods increase computational burden a lot, though
an empirically defined compromise has been introduced [28,
31]. In patch-based non-local priors, suggestively, few of the
patches corrupted by noise receive smaller weighting as com-
pared to the less noisy patches. A non-linear anisotropic struc-
ture tensor (NAST)-based prior has been introduced to correct
for this problem [13]. Figure 2 shows a comparison of nor-
malized means weights and median weight distribution for an
image corrupted by Poisson noise.

Non-local priors may include geometric and continuity in-
formation in the image, while they can better define edges or
texture and can overcome limitations of local priors; still, they
have certain problems associated with their design. Non-local
priors have complex mathematical formulations, and general-
ly, no straightforward model of the prior and its dependence
on the image is defined [8]. Mathematical complexity comes
in two different ways, i.e. dependency of the prior on the

image intensities is not well modelled and results in an incon-
sistent posterior function. Similarly, their analytical deriva-
tives are not well defined and the convexity of the prior func-
tion may not be known [45, 46]. It is, theoretically, not easy to
address convergence properties of some non-local priors due
to these reasons [18, 37]. Non-local prior formulations are also
computationally expensive, and almost in every proposed
non-local prior, some method to speed up the reconstructions
is suggested as a correction. Computational requirements in-
crease with larger patch sizes, and one has to resort to a com-
promise between patch size and computational times [8, 28].
Non-local priors, similar to many local priors, require several
parameter adjustments and face parameter sensitivity [8, 28,
34]. For example, non-local priors introduced for image de-
noising or for Bayesian tomographic reconstruction require
several parameters which require manual adjustments [8].

Most of these recently introduced regularization techniques
are non-quadratic and non-linear and are computationally ex-
pensive due to their complex and heavy computational re-
quirements. Implementation of these algorithms has been
made possible by increasing the speed and storage capabilities
of the recent advances in computer systems. All these regular-
ization methods are meant to achieve low noise and lesser
artefacts, whereas a task-based comprehensive and multi-
application-based analysis of these techniques is required to
fully exploit their abilities, because an empirical and limited
analysis for a limited number of applications has been carried
out till now.

Conclusions

Tomographic image reconstruction problems are an ill-posed
mathematical problem and are affected by noise and various
image quality-degrading effects. Explicit regularization is im-
plied to alleviate the problem, in the form of locally defined
prior functions. However, local priors can only accommodate
local image properties and are mainly categorized as smooth-
ing or edge-preserving priors. Smoothing priors produce over-
ly smoothed images with smoothed edges, whereas edge-
preserving local priors result in staircase artefacts with piece-
wise patchy blocks. To overcome these issues of local priors,
recently, non-local priors have been proposed. Non-local
priors address the global image connectivity and continuity
and lead to images with better characteristics. Certain choices
need to be made and optimized to implement non-local priors,
such as prior energy function, form of the weight function,
size of the neighbourhood and the hyper-parameter used. Un-
fortunately, non-local priors are based on computationally ex-
pensive and mathematically complex forms and have unde-
fined convergence properties. Similarly, their dependence on
image intensities is not well modelled, and in case of larger
non-local neighbourhoods, the problem may become
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intractable in real-time studies. The design considerations of
non-local priors are random, and comparison of various tech-
niques, found in literature, is empirical and limited to a few
particular applications or methods. A comparative analysis of
these regularization methods to find their commonalities, oth-
er than being non-local, is required. Non-local regularization
seems to promise better image quality and enhanced accuracy;
however, the comparative analysis is limited to few noise
types and applications. We may conclude that non-local,
non-quadratic and non-linear regularization is more favoured,
in recent works, due to fast computing facilities available now,
where various regularization schemes have been introduced in
order to combat artefacts produced by the previous local reg-
ularization methods. However, an option for a universal tech-
nique to provide the best image quality with the fastest speed
and to work for different imaging systems is still missing.
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