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Abstract To address the low compression efficiency of
lossless compression and the low image quality of general
near-lossless compression, a novel near-lossless compres-
sion algorithm based on adaptive spatial prediction is pro-
posed for medical sequence images for possible diagnos-
tic use in this paper. The proposed method employs adap-
tive block size-based spatial prediction to predict blocks
directly in the spatial domain and Lossless Hadamard
Transform before quantization to improve the quality of
reconstructed images. The block-based prediction breaks
the pixel neighborhood constraint and takes full advan-
tage of the local spatial correlations found in medical
images. The adaptive block size guarantees a more ra-
tional division of images and the improved use of the
local structure. The results indicate that the proposed al-
gorithm can efficiently compress medical images and pro-
duces a better peak signal-to-noise ratio (PSNR) under the
same pre-defined distortion than other near-lossless
methods.

Keywords Adaptive block size . Spatial prediction . Block
searching . Lossless Hadamard transform . Near-lossless
compression

Introduction

Large amounts of image data are produced in the field of
medical imaging, especially computed tomography (CT)
and magnetic resonance images (MRI), which are always
a succession of 2D images (slices). The amount of data
generated may be so large that it results in impractical
storage, processing, and communication requirements
[1]. Image compression solves these problems. Lossless
compression methods are traditionally used to avoid los-
ing any critical diagnostic information. Although lossless
methods are preferable for medical images, the compres-
sion ratios achieved using these methods are rather mod-
est, ranging from 2 to 4 depending on the images and the
methods employed. Thus, many researchers in the medi-
cal image compression community argue that some dis-
tortion must be allowed in the reconstructed images to
obtain higher compression ratios. These researchers argue
that the use of lossy compression in diagnostic imaging is
justified only if diagnostically important information is
preserved [2]. To ensure the high diagnostic quality of
compressed images, very little distortion can be allowed.
Methods with these characteristics are defined as Bnear-
lossless^ compression. The definition of near-lossless
compression, first established in the field of medical im-
aging [3], assumes that the peak of absolute error (PAE)
between the original and the reconstructed image should
be user-defined.

Many block-based compression algorithms used on still
images are based on transforms, that is, they are performed
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in the frequency domain, such as discrete cosine transform
(DCT) and discrete wavelet transform (DWT). Singh et al.

[4] proposed an adaptive threshold-based block classification
for DCT in medical image compression. Lee et al. [5] pro-
posed a frame rate conversion method using adaptive block
sizes and search windows corresponding to motion activity
levels. Muhit et al. [6] proposed a block-partitioning scheme
that incorporates both geometry-adaptive partitioning and an
elastic motion model as extensions to the standard procedure

for motion estimation. Zhao et al. [7] developed a super-
spatial prediction method for structural regions of natural im-
ages. Medical images have two characteristics that differ from
natural images: they contain many structural similarities and
symmetric characteristics resulting from inherent symmetry of
human anatomy, and there is usually a large amount of diag-
nostically useless dark background in medical images, with
pixel values approximately 0. Thus, both in the object region
and in the background, medical images contain many local
spatial correlations. Most block-based methods are construct-
ed in the frequency domain, which not only fails to utilize
local spatial redundancy but also has high computational
complexity.

One of the most popular methods used in near-
lossless systems is predictive coding, such as differen-
tial pulse code modulation (DPCM) [8]. Aràndiga et al.
[9] proposed a multiscale compression algorithm within
Harten’s interpolatory framework for multiresolution,
which yields a specific estimate of precise error between
the original and the decoded signal. Caldelli et al. [10]
used JPEG-LS [11] to design a near-lossless system,
which is expressly used in remote sensing and telemed-
icine applications. Miguel et al. [12] compressed predic-
tion residuals with a near-lossless bit plane coder for
hyperspectral images. Wavelet-based methods have also
been used in near-lossless compression [13]. In these
near-lossless methods, the peak signal-to-noise ratio
(PSNR) decreases rapidly as PAE increases. The high
quality of medical images must be preserved, so in this
paper, we propose a near-lossless method that can guar-
antee a high PSNR even when PAE is large.

Referring to the above idea of block-based prediction
and the idea of motion estimation from video coding, we
propose an adaptive block size-based spatial prediction in
2-D spaces. Through block searching and matching, an
image is predicted directly in the spatial domain in a
block-by-block basis. The block size is adaptively select-
ed according to a Lagrange cost function. Block-based
spatial prediction can effectively explore local spatial re-
lationships, which is appropriate for the characteristics of
medical images. An adaptive block size guarantees a more
rational division of images and the improved use of local

Fig. 1 Division of the first 32 × 32 block

Fig. 2 a A demonstration of block division. b The corresponding
scanning order of a

Fig. 3 Adaptive reference blocks
with different sizes. a The size of
block BE^ is 8 × 8. b The size of
block B7^ is 16 × 16. c The size of
block BIII^ is 32 × 32
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structure for different types of images. During the block
searching process, an improved search method is pro-
posed instead of using the full search to improve
searching speed, which will be described in more detail
later in the paper. After block searching, prediction resid-
uals are transformed by Lossless Hadamard Transform
before quantization to obtain a high quality reconstructed
image. Extensive experimental results demonstrate that
the proposed method achieves good compression perfor-
mance and outperforms some other near-lossless methods
in terms of PSNR.

The remainder of the paper is organized as follows.
The proposed block-based algorithm is described in
Section 2. Near-lossless results are compared with the
results of other algorithms in Section 3. Finally,
Section 4 presents the paper’s conclusions.

Proposed Method

This section presents the proposed compression algorithm
in detail. In the proposed method, initially, an input image
is segmented into non-overlapping blocks with a maxi-
mum block size of 32 × 32. Each block is predicted using
any previously encoded blocks; meanwhile, some trans-
formation templates are defined during block matching to
obtain better prediction results. According to the Lagrange
cost function, if treating a block as a whole does not result
in good performance, it will be quadtree partitioned into
four small subblocks. This process proceeds iteratively
until the minimum block size is reached. Then, the pre-
diction residuals are transformed using a Lossless
Hadamard Transform to further remove statistical redun-
dancy, and quantization is performed on the transformed
coefficients to achieve near-lossless compression. Finally,
the quantized coefficients are entropy coded. Details of
each stage of the method will be discussed in the follow-
ing subsections.

Adaptive Block Size-Based Prediction

The primary question of block-based prediction is how
large the block size should be. When the block size is
large, complex textures or distortions in structural regions
or regions with a variety of content will not be captured
well. When the block size is small, performance can im-
prove, but complexity is higher and the searching process
can be longer. To optimize these conditions, we use an
adaptive block size. The maximum block size is set as
32 × 32 instead of 16 × 16, as specified in H.264, because
medical images have wider flat regions than video im-
ages. Research has shown that the minimum block size
of 8 × 8 is a reasonable choice in terms of coding perfor-
mance, and we therefore adopt this minimum block size.

The first 32 × 32 block, which has no reference blocks,
will be directly stored as prediction residuals. Considering
its large amount of data, it is further hierarchically divided

Table 1 Eight
transformation templates No. Geometric operation

T1 Vertical flip

T2 Horizontal flip

T3 Left rotation (90°)

T4 Right rotation (90°)

T5 Rotation (180°)

T6 Diagonal flip along 135°

T7 Diagonal flip along 45°

T8 No operation Fig. 4 Histograms before LHT and after LHT. a CT_Aperts b MRI_
liver_t1
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as shown in Fig. 1. The final first block is indicated by a
five-pointed star, whose size is reduced to the minimum
block size.

Any 32 × 32 block may be predicted as a whole block
or may be quadtree partitioned into four subblocks 16 ×
16 in size. Any 16 × 16 block may be predicted as a whole
block or may be quadtree partitioned into four subblocks
8 × 8 in size. The choice to divide a block is performed by
selecting the block size that minimizes the Lagrange cost
function, which is given by:

J ¼ Dþ R ð1Þ

Here, D is the sum of the absolute residuals between
the original and the reconstructed pixels within the current
block, and R is the number of bits required to transmit the
block. If the sum, J, of the four quadtree partitioned sub-
blocks is smaller, division is performed.

Because the block size is adaptive, the sizes of cor-
responding reference blocks should also be adaptive,
and the searching process should obey certain orders.
For any current block, all of the encoded blocks are
partitioned or merged into blocks of the same size as

its reference blocks. Blocks of size 32 × 32 are proc-
essed in raster-scanning order; inside a block, its sub-
blocks of the same level are also scanned in raster-
scanning order. Figure 2a shows an example of block
division and Fig. 2b indicates its corresponding scan-
ning order. Figure 3 shows some examples of adaptive
reference blocks with different sizes, which are indicat-
ed in gray.

Block Searching Process

The smaller the values of the prediction residuals, the
better the compression performance that can be obtained.
The values of the prediction residuals depend on the ef-
fectiveness of block matching. To describe the spatial re-
lationships between blocks in detail, eight transformation
templates are defined and presented in Table 1. These
templates depict all available block transformations and
efficiently describe their spatial and structural similarities.

Blocks are predicted using any previously encoded
blocks after undergoing the above-mentioned transforma-
tions. For a current block bc, the block resulting in the

Table 2 Descriptions of the
medical sequence images used Databases File name History Age Sex Voxel size

(mm)
Volume size

CIPR CT_Aperts Apert’s syndrome 2 M 035 × 0.35 × 2 256 × 256 × 97

CT_carotid Internal carotid
dissection

41 F 025 × 0.25 × 1 256 × 256 × 74

CT_skull Tripod fracture 16 M 070 × 0.70 × 2 256 × 256 × 203

CT_wrist Healing scaphoid
fracture

20 M 070 × 0.70 × 2 256 × 256 × 183

MR_liver_t1 Normal 38 F 145 × 1.45 × 5 256 × 256 × 58

MR_liver_
t2e1

Normal 38 F 137 × 1.37 × 5 256 × 256 × 58

MR_ped_
chest

Congenital heart disease 1 M 078 × 0.78 × 5 256 × 256 × 77

MR_sag_head Left exophthalmos 42 M 098 × 0.98 × 3 256 × 256 × 58

CVG Mr_brain – – – – 256 × 256 × 16

Fig. 5 Descriptions of medical
sequence images: first slice of
each data set. a CT_Aperts. b
CT_carotid. c CT_skull. d CT_
wrist. e MR_liver_t1. f MR_
liver_t2e1. g MR_ped_chest. h
MR_sag_head. i Mr_brain
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minimum matching difference is selected as the optimal
reference block. The sum of the absolute difference
(SAD) is used to measure the matching difference. We
assume that the size of block bc is M ×M and that bm
denotes one of the reference blocks. With m = (i,j) as the
blocks’ relative displacement, the SAD between block bc
and bm is calculated as follows:

SAD mð Þ ¼ ∑
M

x¼1
∑
M

y¼1
bc x; yð Þ−bm xþ i; yþ jð Þj j ð2Þ

Because structural components may be repeated or
distorted not only in neighboring domains but also at symmet-
rical positions, the full search should be applied for block
matching. However, the full search is time-consuming.
Many fast algorithms, such as three step search [14] and cross
search [15], search only a small subset of available reference
blocks; consequently, the optimal matching block found is a
local rather than global optimum. Moshnyaga et al. [16]

presented a progressive block matching method in which all
reference blocks are processed in parallel and matches are
iterated row by row. Despite the decline in the total number
of operations, comparisons are performed more than once for
each block. The characteristics of SAD were used to reduce
computational complexity in ([17, 18]). If one reference block
does not match the SAD conditions, it is omitted directly. In
this paper, we use SAD characteristics to improve the block
searching speed. Then, Eq. (2) becomes:

SAD mð Þ ¼ BC−BMj j ð3Þ

BC ¼ ∑
M

x¼1
∑
M

y¼1
bc x; yð Þ ð4Þ

BM ¼ ∑
M

x¼1
∑
M

y¼1
bm xþ i; yþ jð Þ ð5Þ

BC and BM denote the sums of pixel values within blocks
bc and bm, respectively. According to the property of absolute
inequality, we obtain

BC−SAD mð Þ≤BM ≤BC þ SAD mð Þ ð6Þ

Assuming that we have obtained a SAD(m) from refer-
ence block bm. If another reference block, bn, is a better
choice, it must satisfy the condition SAD(n) ≤ SAD(m).
Thus, block bn should be searched only if the following
inequality holds:

BC−SAD mð Þ≤BN ≤BC þ SAD mð Þ ð7Þ

Similarly, BN denotes the sum of pixel values within
block bn. Because BN is a constant value independent of
which transformation has been performed, for each refer-
ence block, we first determine whether it satisfies the
inequality (7). If condition (7) holds, the current best
matching block bm would be replaced by block bn. If
not, block bn would be skipped, the eight types of trans-
formation would be omitted, and then the time spent on
searching would be saved.

Lossless Hadamard Transform and Quantization

The prediction residuals obtained from perfect prediction should
not contain any correlations. However, the residuals are still spa-
tially correlated to a certain extent. To further sharpen the histo-
gram distribution before entropy coding, and therefore to im-
prove the efficiency of the proposed algorithm, the prediction
residuals are transformed by Lossless Hadamard Transform
(LHT). Each element of the Hadamard transformation matrix is
either plus or minus if the normalization factor is ignored, which
is beneficial for implementation. However, for a 4 × 4 block, the
dynamic range of the coefficients will be 16 times larger than that

Fig. 6 Adaptive partitioning maps. a CT_Aperts b MRI_liver_t1
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of the input. Therefore, we decompose the coefficients into inte-
gers and remainders by dividing them by 16 and use four bits to
represent the remainders. Due to the inherent redundancies in the
last four bits of the transformed coefficients, the remainder can be
represented by two bits [19], each of which contains all of the
information of the original two bits. Take a 4 × 4 block for
example.

Figure 4 shows the histogram of prediction residuals of two
sample images. After LHT, the distribution of coefficients is
much sharper and closer to 0, so the range of residuals is
narrowed efficiently.

In this study, we quantize the two-bit remainders of the
transformed coefficients to achieve near-lossless compression.
A direct method of discarding bits is used to implement quan-
tization.When the last bits of the remainders are discarded, we
discard the last two bits of the original coefficients. The cor-
responding PAE is 3; we then use (PAE+ 1)/2 to modify the
remainders to decrease the PAE, and the final PAE is 2. When
two bits of remainder are discarded, we discard the last four
bits of the original coefficients. The corresponding PAE is 15,
which after modification becomes 8. The near-lossless results of
this method are compared with those of other algorithms in the
next section.

Entropy Coding

Our proposed algorithm uses combined entropy coding.
Spatial redundancy can be removed by prediction. Similarly,
statistical redundancy can be removed by entropy coding the
residuals [20]. Entropy coding allots fewer bits to higher fre-
quency symbols and more bits to lower frequency symbols.
Arithmetic coding is frequently used for entropy coding.
However, the initial residuals range from −256 to 255, or 0 to
255 after remapping, which is still very large. Directly using the
residuals for arithmetic coding is difficult. To avoid this imple-
mentation issue, binary arithmetic coding is adopted. The simple
method of exp-Golomb coding is used for binarization.
Specifically, we use the adaptive exp-Golomb coding proposed
by [21]. The level of the exp-Golomb coder is selected adaptively

Table 3 Comparison of bit rates (in bpp) for adaptive and fixed block sizes

Image sets 8 × 8 16 × 16 32 × 32 Adaptive size

CT

CT_Aperts 1.583 1.664 1.783 1.562 

CT_carotid 2.431 2.541 2.705 2.406 

CT_skull 3.368 3.491 3.646 3.356 

CT_wrist 2.398 2.465 2.602 2.364 

Average 2.445 2.540 2.684 2.422 

MRI

MR_liver_t1 4.139 4.225 4.378 4.090 

MR_liver_t2e1 3.081 3.127 3.266 3.004 

MR_ped_chest 3.765 3.802 3.890 3.724 

MR_sag_head 3.450 3.515 3.599 3.428 

mr030 2.998 3.096 3.211 2.938 

Average 3.487 3.553 3.669 3.437

Average (CT, MRI) 3.024 3.103 3.231 2.986

Average rows are in gray.
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according to the input symbol. To enhance the efficiency of
binary arithmetic coding, a generic order 3 arithmetic coder

[22] is used to encode the binary residuals. Finally, the encoded
bit stream is set to the decoder.

Table 5 Comparison of bit rates (in bpp) and PSNR (in dB) for the proposed method and some lossless methods

Image sets CALIC JPEG-LS JPEG2000 SPIHT

Proposed

Lossless PAE=2 PAE=8

bpp bpp PSNR bpp PSNR

CT

CT_Aperts 1.178 0.984 1.271 2.365 1.562 1.269 61.04 1.054 48.68 

CT_carotid 1.817 1.764 2.030 3.274 2.406 1.935 60.33 1.546 48.52 

CT_skull 2.785 2.549 3.001 4.375 3.356 2.725 58.98 2.160 47.07 

CT_wrist 1.780 1.515 1.767 3.148 2.364 1.855 60.27 1.458 48.53 

Average 1.890 1.703 2.017 3.291 2.422 1.946 60.16 1.555 48.20

MRI

MR_liver_t1 3.249 3.148 3.266 4.704 4.090 3.210 58.40 2.535 46.78 

MR_liver_t2e1 2.413 2.410 2.582 3.731 3.004 2.494 60.07 1.999 48.37 

MR_ped_chest 3.035 2.930 3.031 4.493 3.724 2.867 58.47 2.250 47.04 

MR_sag_head 2.598 2.573 2.915 4.336 3.428 2.814 58.73 2.314 46.62 

mr030 2.172 2.154 2.484 3.771 2.938 2.612 56.58 2.228 44.20 

Average 2.693 2.643 2.856 4.207 3.437 2.799 58.45 2.265 46.60

Average(CT, MRI) 2.336 2.225 2.483 3.800 2.986 2.420 59.21 1.949 47.31

The worst results are underlined. Average rows are displayed in gray.

Fig. 7 Reconstructed images of
CT_ Aperts. a Original. b
PAE = 2 (PSNR = 62.21 dB). c
PAE = 8 (PSNR = 49.81 dB)

Table 4 Comparison of encoding time (in seconds) for improved search and full search

Image Full search Improved search Percentage time saved

CT CT_Aperts 25.38 4.25 83 %

CT_carotid 19.54 4.28 78 %

CT_skull 39.59 6.22 84 %

CT_wrist 10.04 2.81 72 %

MRI MR_liver_t1 61.40 8.79 86 %

MR_liver_t2e1 33.88 5.78 83 %

MR_ped_chest 37.60 6.46 83 %

MR_sag_head 24.13 4.55 81 %

mr030 34.85 5.02 86 %

712 J Digit Imaging (2016) 29:706–715



Experimental Results

Datasets Used for Experiments

We tested the proposed algorithm on 8-bit CT and MRI med-
ical sequence images. More than 500 CT and 300 MRI slices
from nine data sets were used. These data sets contain images
from the Mallinckrodt Institute of Radiology Image
Processing Laboratory, available at CIPR http://www.cipr.
rpi.edu/resource/sequences/sequence01.html, and MRI
images from the Computer Vision Group [23] at the
University of Granada. Table 2 gives descriptions of these
images. The first slices of each data set are shown in Fig. 5.

Analysis of Adaptive Block Size

The adaptive block size used in this paper is compared with
the fixed block size in this subsection. Figure 6 shows the
adaptive partitioning maps of two sample images. Because
the block size used in our method is adaptively selected from
among 32 × 32, 16 × 16, and 8 × 8, comparisons among these
three conditions are made in Table 3. The adaptive block size
outperforms the fixed block size because it can guarantee a
more rational division of images and the improved use of local
structures.

Analysis of Block Searching Method

The improved block searching method used in this paper is
compared with the full search, as shown in Table 4. Using
SAD characteristics during block searching can improve the
encoding speed by 72–86 %. This makes up for the greater
time consumed while providing the same search results as the
full search.

Comparison of Near-Lossless Results

We use bit rate and PSNR to measure near-lossless compres-
sion performance. For many near-lossless methods, as PAE
increases, PSNR decreases rapidly. Because medical images
must maintain a high quality, PAE is always set to be small to
meet the quality requirements of the reconstructed images. We

use PAE = 2 to represent a small value and PAE = 8 to repre-
sent a relative large distortion.

We first compare the near-lossless compression performance
of the proposed method with that of several state-of-the-art
algorithms such as CALIC [24], JPEG-LS (version 2.1),
JPEG2000 [25] (JasPer version 1.900.0), and SPIHT [26]
(based on a 5/3 integer wavelet and 2 levels of transform).
Table 5 shows a comparison of bit rates averaged across each
data set and the PSNR results of our proposed method. The
results of these state-of-the-art algorithms are lossless. In terms
of bit rate, SPIHT performs poorly because its zerotree structure
is more suitable for lossy compression. The proposed near-
lossless method can efficiently compress medical images.
When PAE is 2, the performance of our algorithm is compara-
tively equivalent to that of other algorithms.When PAE is 8, the
compression performance of our algorithm is 16.6 %, 12.4 %,
21.5 %, and 48.7 % better than CALIC, JPEG-LS, JPEG2000,
and SPIHT, respectively. For our proposed method, when PAE
is 2, the average PSNR is approximately 59 dB, which is an
excellent result; when PAE is 8, the average PSNR is approx-
imately 47 dB, which is a good result. Figures 7 and 8 show
reconstructed images under these two PAEs for two sample
images. Visually, there are nearly no differences.

Table 6 provides a comparison of PSNR and bit rates for the
proposed algorithm and some near-lossless algorithms under
different PAEs. The bit rates of the proposed algorithm are
similar or sometimes slightly lower than those of other

Fig. 8 Reconstructed images of
MRI_liver_t1. a Original. b
PAE = 2 (PSNR = 58.39 dB). c
PAE = 8 (PSNR = 46.85 dB)

Table 6 Comparison of bit rates (in bpp) and PSNR (in dB) for the
proposed method with some near-lossless methods (results are averaged
across all data sets)

PAE = 2 PAE = 8

PSNR bpp PSNR bpp

DPCM [8] 45.21 2.30 38.30 1.40

EC [9] 49.23 1.03 38.88 0.30

JPEG-LS +WAT [10] 45.19 3.59 38.56 2.31

SPIHT [26] 45.21 2.30 40.17 1.20

SPIHT +AC [13] 45.17 2.12 38.17 0.79

BP coder [12] 44.33 4.16 36.34 1.92

Proposed 59.21 2.42 47.31 1.95

The averaged PSNR of the proposed algorithm are in bold

J Digit Imaging (2016) 29:706–715 713
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algorithms. The PSNR of our proposed algorithm is muchmore
efficient than that of the comparison algorithms. The PSNR of
our method with PAE = 8 is even better than the PSNR of other
algorithms with PAE = 2. Due to the redundancy of Hadamard
Transform coefficients, quantization is performed on the trans-
formed coefficients rather than the prediction residuals, and
after inverse transformation, errors are mainly found in the first
coefficient of each 4 × 4 block, while the other coefficients are
recovered nearly losslessly. Thus, the high quality of the recon-
structed image is preserved even for a high PAE.

In Fig. 9, the percentages of image pixels with a certain
distortion error with respect to the original image are reported
for two sample images. Approximately 90 % of the image
pixels are losslessly recovered, and the actual PAE may be
lower than the theoretically obtained values of 2 and 8. For
example, the second PAE in Fig. 9b is 5, rather than 8.

In conclusion, when compared with the state-of-the-art
lossless algorithms, the near-lossless version of the proposed
algorithm can achieve a higher compression ratio. When com-
pared with other near-lossless algorithms, the proposed algo-
rithm performs similarly in terms of compression ratio; mean-
while, it can provide much higher PSNR values, i.e., its re-
constructed images are of better quality than those produced
by other near-lossless algorithms.

Conclusions

Accounting for the characteristics of medical images, we pro-
pose a near-lossless compression algorithm for medical se-
quence images for possible diagnostic use with adaptive block
size-based spatial prediction. The block-based prediction used
breaks the neighborhood constraint for pixels, performing
block matching directly in the spatial domain through block
searching. An improved block searching method is proposed
that improves searching speed. Before quantization, the pre-
diction residuals are transformed by the Lossless Hadamard
Transform to obtain high image quality. Our extensive exper-
imental results demonstrate that the proposed adaptive predic-
tion method is efficient for the near-lossless compression of
medical images.
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