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Abstract The purpose of this study is to evaluate transfer
learning with deep convolutional neural networks for the clas-
sification of abdominal ultrasound images. Grayscale images
from 185 consecutive clinical abdominal ultrasound studies
were categorized into 11 categories based on the text annota-
tion specified by the technologist for the image. Cropped im-
ages were rescaled to 256 × 256 resolution and randomized,
with 4094 images from 136 studies constituting the training
set, and 1423 images from 49 studies constituting the test set.
The fully connected layers of two convolutional neural net-
works based on CaffeNet and VGGNet, previously trained on
the 2012 Large Scale Visual Recognition Challenge data set,
were retrained on the training set. Weights in the
convolutional layers of each network were frozen to serve as
fixed feature extractors. Accuracy on the test set was evaluated
for each network. A radiologist experienced in abdominal
ultrasound also independently classified the images in the test
set into the same 11 categories. The CaffeNet network classi-
fied 77.3% of the test set images accurately (1100/1423 im-
ages), with a top-2 accuracy of 90.4% (1287/1423 images).
The larger VGGNet network classified 77.9% of the test set
accurately (1109/1423 images), with a top-2 accuracy of
VGGNet was 89.7% (1276/1423 images). The radiologist
classified 71.7% of the test set images correctly (1020/1423
images). The differences in classification accuracies between
both neural networks and the radiologist were statistically

significant (p < 0.001). The results demonstrate that transfer
learning with convolutional neural networks may be used to
construct effective classifiers for abdominal ultrasound
images.
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Introduction

Classification of images by anatomic or pathologic features is
a fundamental cognitive task in diagnostic radiology.
Although computers are currently far from being able to re-
produce the full chain of reasoning required for medical image
interpretation, the automation of basic image classification is a
focus of research in computer vision, a multidisciplinary field
that incorporates ideas from image processing, machine learn-
ing, and neuroscience. A digital image can be regarded as a
matrix of numbers encoding the brightness and color of indi-
vidual pixels. An image classification algorithm typically re-
duces this matrix into a simpler vector of image features such
as edges, curves, blobs, and textures. These features in turn
can be combined to encode larger scale features such as the
identity, shape, orientation, and environment of objects. Until
recently, improvements in automated image classification re-
lied heavily on engineering of hand-crafted image features for
discriminating the image categories of interest.

A branch of machine learning termed Bdeep learning^ has
recently provided breakthrough performance improvements
in diverse tasks including image classification, object detec-
tion, speech recognition, natural language processing, and
game playing [1–4]. A deep learning system most commonly
uses a multilayer artificial neural network, an arrangement of
mathematically interconnected nodes inspired by biological
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neural networks. Neural networks have a long history in ma-
chine learning, including various applications in radiology,
e.g., [5–7]. However, Bdeep^ neural networks feature hierar-
chical multilayer architectures allowing them to learn not only
the mappings of data features to categories but also the fea-
tures themselves [1]. For effective training, these systems have
benefited from the recent availability of large amounts of la-
beled input data as well as improvements in computing power.

For image classification, convolutional neural networks
have proven particularly effective in processing raw pixel da-
ta. These networks employ a hierarchical topology of connec-
tions inspired by biological visual systems, whereby low level
nodes in the network process a spatially limited grid of pixels,
and higher level nodes encode increasingly complex features
by combining simpler features from lower levels. Weights are
shared among nodes in the same layer in a manner allowing
recognition of the same image motif in any number of spatial
positions. Convolutional neural networks of increasing depth
and complexity have been used to advance the state of the art
in image classification. This has been most visibly demon-
strated by recent winning entries in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [8–10], an
annual competition in object recognition based on a dataset
of over a million images in hundreds of object categories [11].

As convolutional neural networks have become widely
used in image classification, there has been increasing interest
in evaluating the use of these networks in medical imaging [4,
12–16]. However, slow adoption of convolutional neural net-
works in radiology is partly due to the relative lack of large
labeled medical image data sets for training and testing. In this
work, we employ transfer learning [13, 14, 17, 18] to partially
overcome the problem of relatively small medical image
datasets. Specifically, we re-trained two large convolutional
neural networks, originally trained to classify color photo-
graphs for the ImageNet Large Scale Visual Recognition
Challenge, to classify a set of clinical greyscale abdominal
ultrasound images. We hypothesize that the pre-trained
weights of these convolutional neural networks can serve as
an effective image recognition baseline for classification of
ultrasound images.

Materials and Methods

Institutional Review Board approval was obtained for the ret-
rospective data collection and analysis in this study.

Ultrasound Images

A total of 9298 grayscale images from 185 consecutive clin-
ical abdominal ultrasound studies performed on distinct pa-
tients (108 male and 77 female) from August to December
2015 were retrospectively obtained from the picture archival

and communications system (PACS). Ninety-eight studies
were obtained from a Philips EPIQ 7G ultrasound scanner,
and 87 studies from a Toshiba Aplio XG scanner. Patient ages
ranged from 20 to 78 years (mean ± SD, 53 ± 13 years). The
studies were performed for a variety of indications, but many
(101 studies) were performed in patients with end-stage renal
disease, for pre-transplant screening (Table 1).

All images were obtained using curved array transducers.
The images were categorized into 11 categories based on the
text annotation specified by the technologist for the image.
Images that did not fall into any of the 11 categories were
excluded. In addition, images were excluded that employed
color or spectral Doppler, or contained any superimposed an-
notations or measurements. Finally, images were excluded
which were thought to have very limited or no recognizable
anatomy of the labeled target organ. The classifications and
exclusions were performed and reviewed by an abdominal
radiologist with 7 years of post-fellowship clinical experience.
A total of 5518 images remained, with category statistics giv-
en in Table 2.

Each image was cropped to a central square for use in the
training and test sets in order to exclude surrounding text and
graphics annotations. The sizes of the crop squares were de-
termined by the resolution of the images for each ultrasound
scanner, and the maximum square that could be used without
including surrounding text or graphical annotations.
Specifically, the crop squares measured 600 × 600 pixels for
the Philips scanner images (from 1024 × 768 pixel source im-
ages) and 372 × 372 pixels for the Toshiba scanner images
(from 716 × 537 pixel source images). Each grayscale image
was then downsampled and saved in a 256 × 256 resolution in
24-bit RGB JPEG format to fit the size of the 3-channel input
layers of the neural networks.

The 185 studies were randomized with 4094 images from
136 studies constituting the training set, and 1423 images
from 49 studies constituting the test set. Images were grouped
by study in the randomization in order to keep potentially
correlated images together. As shown in Table 2, the category
distributions for the training and test set images were similar,

Table 1 Clinical indications for the abdominal ultrasound studies used
for training and testing the neural networks

Indication Number of studies

End stage renal disease (pre-transplant) 101

Elevated liver function tests 22

Tumor evaluation/surveillance 20

Abdominal pain 14

Organ size assessment 5

Other 23

Total 185
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reflecting the category distribution for images in a typical
abdominal ultrasound study.

Neural Networks

For training and testing the neural networks, we used the open
source deep learning framework Caffe [19]. All training and
testing was performed on a Windows 64-bit desktop personal
computer with an Intel Core i7 4770 central processing unit
(CPU), 8 GB random access memory, and no graphical pro-
cessing unit (GPU).

The first neural network architecture we used is CaffeNet
[20], a modified version of the AlexNet winning architecture
used in the ILSVRC 2012 competition [8]. The network con-
sists of 5 convolutional layers (CONV1 to CONV5) followed
by 3 fully connected layers (FC6 to FC8) and a softmax (mul-
tinomial logistic regression) classifier (Fig. 1a). We used pub-
licly available weights for the network [20], trained against the

ILSVRC12 challenge data set. The final fully connected layer
FC8 was replaced with a layer with 11 outputs corresponding
to the 11 image categories, and initialized with random
weights. For training, the weights for the five convolutional
layers were frozen to serve as a feature extractor. We used a
batch size of 256 images for each iteration of training. The
learning rates for the fully connected FC6, FC7, and FC8
layers were fixed at 0.001, 0.001, and 0.01 respectively during
training, allowing learning to occur faster for the final fully
connected layer (FC8). For each image, a training set mean
image was subtracted, and random 227 × 227 pixel crops of
the 256 × 256 pixel input images were used to match the di-
mensions of the input layer (the random crops provide a de-
gree of data augmentation for training).

Training was set to occur over 1000 iterations (62.5 train-
ing epochs), which required approximately 2.5 h. The cross-
entropy loss function for the training batches reached a low
plateau toward the end of training (Fig. 2a). For each test
image, the training set mean image is subtracted, and fixed
central 227 × 227 pixel crops of the 256 × 256 pixel input
images are used in the input layer of the network. Test set
classification required an average of 0.10 s per image.

The second neural network architecture we used is a mod-
ified version of the 16-layer model from the VGG team in the
ILSVRC-2014 competition (denoted as configuration D in
[9]); in our study, we denote it as VGGNet. The network
consists of 13 convolutional layers followed by 3 fully con-
nected layers (FC6 to FC8) and a softmax classifier (Fig. 1b).
We used publicly available weights for the network [21],
trained against the ILSVRC12 challenge data set.

As with the CaffeNet network, the final fully connected
layer FC8 in VGGNet was replaced with a layer with 11
outputs, initialized with random weights. For training, the
weights for the 13 convolutional layers were frozen to
serve as a feature extractor. Due to the larger size and

Table 2 Categories of images in the training and test sets

Category Training set Test set Total images

Liver left longitudinal 482 (11.8%) 191 (13.4%) 673 (12.2%)

Liver left transverse 464 (11.3%) 164 (11.5%) 628 (11.4%)

Liver right longitudinal 531 (13.0%) 171 (12.0%) 702 (12.7%)

Liver right transverse 653 (15.9%) 223 (15.7%) 876 (15.9%)

Spleen 137 (3.3%) 48 (3.4%) 185 (3.4%)

Pancreas 273 (6.7%) 104 (7.3%) 377 (6.8%)

Kidney left longitudinal 183 (4.5%) 65 (4.6%) 248 (4.5%)

Kidney left transverse 318 (7.8%) 99 (7.0%) 417 (7.6%)

Kidney right longitudinal 193 (4.7%) 67 (4.7%) 260 (4.7%)

Kidney right transverse 285 (7.0%) 93 (6.5%) 378 (6.9%)

Gallbladder 576 (14.1%) 198 (13.9%) 774 (14.0%)

Total 4095 1423 5518

Fig. 1 Layer structures of the modified aCaffeNet and bVGGNet neural networks used in the study. Numbers in brackets indicate the number of nodes
within a layer of the neural network. CONV = convolutional layer, FC = fully connected layer

236 J Digit Imaging (2017) 30:234–243



memory requirements of this model compared to
CaffeNet, we used a batch size of 32 images for each
iteration of training (1/8 the batch size for CaffeNet). To
provide training comparable to CaffeNet, the learning
rates for the fully connected FC6, FC7, and FC8 layers
were fixed at 1/8 the value for the CaffeNet training
(0.000125, 0.000125, and 0.00125, respectively), but for
8 times the number of iterations (8000 iterations, equiva-
lent to 62.5 training epochs given the smaller batch size).
For each image, the training set mean image was
subtracted, and random 224 × 224 pixel crops of the
256 × 256 pixel input images were used to match the input

dimensions of the input layer. Note that we used mean
image subtraction instead of the mean pixel subtraction
used in the original VGGNet description [9], due to the
consistent sector shape of input image data resulting from
the ultrasound curved array transducers.

Training for the 8000 iterations required approximately
27.5 h. The cross-entropy loss function for the training batches
reached a low level toward the end of training, though with
more pronounced oscillations compared to CaffeNet (Fig. 2b).
For each test image, the training set mean image was
subtracted, and fixed central 224 × 224 pixel crops of the
256 × 256 pixel input images were used in the input layer of

Fig. 2 Learning curves for a
CaffeNet and b VGGNet. Loss
curves indicate the training cross-
entropy loss as a function of the
training iteration. The test curves
provide information on the loss
function and classification accu-
racy of the test set during training,
but were not used to optimize
training hyperparameters
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the network. Test set classification required an average of
0.52 s per image.

For both neural networks, the softmax classifier pro-
vides a probability for each of the 11 categories for a
given input image. The category with the highest predict-
ed probability was taken as the classifier prediction for the
image, and we calculated classification accuracy based on
this prediction (top-1 accuracy). We also calculated top-2
accuracy for each network on the test set, using the
highest two probability classes for each image as the clas-
sifier prediction.

Both of the convolutional nets can be regarded as
transforming the input images into 4096-dimensional vec-
tors (the size of the last fully connected layer FC7 before
the classifier). In order to better visualize the classifica-
tion behavior of the networks, we calculated the FC7 vec-
tor representations of the images of the training set, and
reduced them to 50 dimensions using principal compo-
nents analysis (PCA). We then further reduced the dimen-
sionality of these 50-dimensional vectors to two dimen-
sions using t-distributed stochastic neighbor embedding
(t-SNE), a machine learning technique which reduces di-
mensionality while tending to preserve pairwise Euclidean
distances between data points [22]. We used the scikit-
learn open source implementations of both PCA and t-
SNE [23].

Human Classifier

The human classifier for this study was a fellowship-
trained abdominal radiologist with 5 years of post-
fellowship experience, who spends more than 50% of
his clinical time in diagnostic ultrasound, and who is fa-
miliar with the abdominal ultrasound protocol performed
by the technologists in this study. This radiologist had
previously dictated 4 studies from the training set and 1
study from the test set; these ultrasound studies had been
performed and dictated more than 5 months prior to the
classification task required for this study. A custom graph-
ical user interface allowed browsing of classified images
in the training set and shortcut-enabled manual classifica-
tion of the images in the test set. The order of the test set
images was randomized. The total amount of time re-
quired to classify the test set, over several sessions, was
approximately 12 h.

Statistical Analysis

Comparisons between the classification accuracies of the two
neural networks, as well as between the radiologist and each
network, were performed with χ2 tests with a p value of 0.05
or less taken to indicate a statistically significant difference.

The calculations were performed using the R statistical envi-
ronment, version 3.30 [24].

Results

After training, the convolutional neural network based on
CaffeNet classified 99.8% of the training set accurately
(4088/4095 images). The convolutional neural network based
on VGGNet classified 100% of the training set accurately
(4095/4095 images).

On the test set, the Caffenet network classified 77.3% of the
images accurately (1100/1423 images). Considering the top 2
candidate classes for each image (top-2 accuracy), the net-
work’s accuracy is 90.4% (1287/1423 images). By compari-
son, the larger VGGNet network classifies 77.9% of the test
set accurately (1109/1423 images). The top-2 accuracy of
VGGNet was 89.7% (1276/1423 images). The classification
accuracies of the two neural networks were not significantly
different, with χ2 (df = 1) = 0.129, p = 0.719.

Classification accuracies for CaffeNet on images acquired
on the Toshiba scanner versus the Philips scanner were slight-
ly different at 73.8% (432/585 images) and 79.7% (668/838
images), respectively, with χ2 (df = 1) = 6.43, p = 0.011. On
the other hand, classification accuracies for VGGNet on im-
ages acquired on the Toshiba scanner versus the Philips scan-
ner were similar at 77.4% (453/585 images) and 78.3% (656/
838 images), respectively, with χ2 (df = 1) = 0.10, p = 0.75.

Confusion matrices for the CaffeNet network on the test set
of images (Fig. 3) show that the largest sources of error were
in distinguishing between transverse and longitudinal images
of the liver, between views of the left and right kidney, and
between pancreas images and transverse views of the left he-
patic lobe. The VGGNet network performed slightly better
than CaffeNet on distinguishing transverse and longitudinal
images of the left hepatic lobe, and distinguishing pancreas
views from transverse views of the left hepatic lobe.

The radiologist classified 71.7% of the test set images cor-
rectly (1020/1423 images). The difference between the radi-
ologist classification accuracy and the classification accura-
cies of the neural networks was statistically significant.
Comparing the radiologist and CaffeNet, χ2 (df = 1) = 11.54,
p < 0.001. Comparing the radiologist and VGGNet, χ2 (df =
1) = 14.44, p < 0.001.

A Venn diagram of correctly classified images in the
test set shows significant overlap among images correctly
classified by the radiologist and two neural networks
(Fig. 4). Difference confusion matrices for the radiologist
relative to CaffeNet or VGGNet (Fig. 5) show that an
outlier source of excess error for the radiologist was in
distinguishing between longitudinal and transverse images
of the right hepatic lobe, and in distinguishing between
longitudinal and transverse images of the left hepatic lobe.

238 J Digit Imaging (2017) 30:234–243



If the excess radiologist error from these images com-
pared to CaffeNet was eliminated, the radiologist’s classi-
fication accuracy would be 76.6%. Alternatively, if the
excess radiologist error from these images compared to
VGGNet was eliminated, the radiologist’s accuracy would
be 77.5%.

A t-SNE plot for CaffeNet (Fig. 6) depicts the distribution
of two-dimensional representations of the 4096-element vec-
tors to which the training images are mapped in the last fully
connected layer (FC7). The plot demonstrates areas of overlap
that correspond to classification confusion categories on the
test set images. For instance, there is significant overlap be-
tween the representations of the longitudinal views of the left

and right kidney, and of longitudinal and transverse images of
the right hepatic lobe.

Examples of misclassified images are shown in Fig. 7.

Discussion

This study demonstrates that deep convolutional neural net-
works trained to classify color nonmedical photographs can be
retrained to classify greyscale abdominal ultrasound images.
In particular, the convolutional layer features of these net-
works can be used as unmodified feature extractors for classi-
fying ultrasound images, despite the contrasting image noise

Fig. 3 Confusion matrices for a CaffeNet, b VGGNet, and c an ultrasound radiologist. Numbers in each box indicate the number of images
corresponding to each combination of predicted and true labels. Counts of correctly labeled images are along the diagonal
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texture and lack of color information in the ultrasound images.
At the same time, the fully connected layers of these networks
are sufficiently flexible to be retrained on a very different
image set.

Through transfer learning, we were able to train both
neural networks with a relatively small amount of training
data—4094 grayscale ultrasound images, versus the more

than 1.4 million images in the ILSVRC data set [11]. As
we did not evaluate classification accuracy as a function
of training set size, it is possible that the training set could
have been even smaller without severely impacting clas-
sification performance [12]. In any case, we believe that
the success of transfer learning in this study is promising
for the prospect of training convolutional neural networks
for other medical imaging tasks, where the availability of
large image data sets with concise labels may be similarly
limited.

The image classification task in this study is based on clin-
ical diagnostic grayscale abdominal ultrasound images with
readily available ground truth labels. Some image label ambi-
guity arises from the fact that these labels were assigned by the
ultrasound technologist to describe a particular diagnostic
view, rather than the specific anatomy within a given image.
Certain image labels were challenging to reconstruct because
different ultrasound views may overlap. Other image labels
were uncertain because of a lack of distinctive anatomic fea-
tures in a given image to specify a particular view. For in-
stance, our study population included a disproportionately
high number of patients with atrophic kidneys with poorly
distinguishable renal parenchyma.

We felt that it was important to retain these labeling chal-
lenges from the training and test sets in order for them to
constitute a realistic sample of clinical images. In order to
approximate an upper bound for classification within the con-
straints of these ambiguities, we asked an experienced ultra-
sound radiologist to attempt the same classification task,
namely to give the most likely technologist label for a given

Fig. 4 Venn diagram for images correctly classified by the two neural
networks (CaffeNet = dashed circle, VGGNet = dotted circle) and the
radiologist (solid circle). The areas of the diagram are approximately
proportional to the number of images; the large common area in the
center represents the 799 images classified correctly by both neural
networks and the radiologist. A total of 123 images were incorrectly
classified by both neural networks and the radiologist

Fig. 5 Difference confusion matrices comparing incorrectly classified
images between a the radiologist and CaffeNet and b the radiologist
and VGGNet. Positive numbers indicate excess errors by the radiologist

compared to the neural networks; negative numbers indicate excess errors
by the neural networks compared to the radiologist. For clarity, counts of
correctly classified images along the diagonal are omitted
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ultrasound image. We found that while the neural networks
were similar to each other in their classification accuracies,
both networks slightly outperformed the radiologist in overall
classification accuracy.

Although this result was initially surprising, the perfor-
mance of the human radiologist and the neural networks dif-
fered primarily in a few specific categories, such as
distinguishing between transverse and longitudinal views of
the liver. These are distinctions that are not commonly critical
in routine clinical practice, and even when these distinctions
are clinically important, the technologist’s image labels are
readily available and a radiologist does not need to mentally
reconstruct scan planes and locations. Furthermore, we
learned after the classification task was completed that the
ultrasound radiologist in our study did not make use of the
supplied labeled training data. Careful review of the training
data could have improved the radiologist’s performance in
some of the image category distinctions; previous work has
shown that for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), increased human training on labeled
data improved human classification performance [11].

However, this study differs from the ImageNet study in that
the categories are significantly fewer (11 categories in this
study versus 1000 categories in ILSVRC) and are familiar
labels from clinical practice. As a result, we do not believe
that a lack of awareness of the available image categories is a
source of significant human error in our study, in contrast to
the ImageNet study. Careful human consultation and review
of the training images would have also added significant effort

and time to the classification task. Furthermore, even if we
were to subtract the error discrepancies between the ultra-
sound radiologist and neural networks in the main categories
of increased human error relative to the neural networks, the
radiologist’s classification accuracy would still be slightly
lower than that of the neural networks.

A common valid critique of neural networks is that their
distributed internal representations of learned knowledge limit
insight into how they achieve their results, however impres-
sive. One approach to understanding the networks’ internal
representations is to apply dimensionality reduction tech-
niques to vector representations of input data at downstream
layers of the network.We found that t-SNE applied to the final
fully connected layers of the networks provides a comprehen-
sible map of the structure of the high dimensional space into
which the networks project the input ultrasound images. In
this map, ultrasound images that have similar high dimension-
al representations project near each other. The probabilistic
outputs of the softmax layers of the neural networks provide
further insight into the confidence levels, next-best-category
considerations, and confusion errors associated with neural
network image classification.

It is uncertain to what degree the neural network classifica-
tion performance could have been significantly improved in
this study, given the training data. Stronger regularization of
the training process might be considered to improve perfor-
mance, since both neural networks overfit the training data
even without optimization of training hyperparameters such
as the learning rate. However, both networks already incorpo-
rate randomized deactivation of the fully connected nodes
during training (i.e. Bdropout^), which has been shown to be
effective against overfitting [25]. In addition, continued
overfitting of the networks on the training set data during
prolonged training did not clearly impair test accuracy, as
the test accuracy in both networks reached a plateau rather
than a peak throughout the later training iterations. The similar
classification accuracies of the two networks in this study
despite their differences in layer depth suggest that further
increased network depth is unlikely to yield improved perfor-
mance on this limited data set. We believe that future attempts
to improve the classification accuracy in this study should be
focused on an increase in the size of the training data, though
the intrinsic label ambiguity in this classification problemmay
place an upper bound on test accuracy.

This study is limited in several respects. The ultrasound
image sets were obtained from a skewed population, with
numerous patients undergoing renal transplant evaluation or
cancer staging. Anatomic and pathologic variations likely will
differ in other populations. We also used images from only
two ultrasound machines for this study. Although we did not
expect the images to be significantly different, one of the
networks (CaffeNet) did have slightly different classification
accuracies for images from the twomachines. As noted above,

Fig. 6 Visualization by t-SNE of CaffeNet’s high dimensional vector
representations of the 4094 training set images. Images with a similar
high dimensional vector representation are displayed close to each other
in this map
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the classification task in this study is not a typical clinical task
for an ultrasound radiologist; we chose the particular task in
this study primarily due to the simplicity with which we could
construct a sufficiently large clinical data set with ground truth
labels. As a result, radiologist performance may not be an

optimal comparison standard for evaluating neural network
performance. In addition, we only had one human radiologist
to classify all the test images. Other radiologists with either
increased clinical experience or substantial time to study the
training set images may have performed better on the test set.

Fig. 7 Examples of misclassified images. The correct technologist label
appears above each image; the bar graph below each image depicts the
top three category probabilities given by the CaffeNet network, with the
dark bar corresponding to the correct image label. Images (a) and (b)

were incorrectly classified by the radiologist but correctly classified by
both neural networks. Images (c) and (d) were correctly classified by the
radiologist but incorrectly classified by both neural networks
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Transfer learning as performed in this study may not be suit-
able for higher resolution medical images due to the limited
spatial resolution of the input layers of the neural networks
(e.g., 227 × 227 for CaffeNet). Training on high resolution
radiographs, for instance, would require either downsampling
the input images, or cropping the input images and classifying
only portions of the images at a time. Finally, image classifi-
cation is only a preliminary step in the automated processing
and interpretation of a radiologic image. Evaluation of the
efficacy of deep neural networks in downstream tasks of im-
age segmentation and feature localization is beyond the scope
of the current study.

Conclusions

In summary, transfer learning with convolutional neural net-
works can be used to construct effective classifiers for abdom-
inal ultrasound images, with classification accuracies in this
study slightly exceeding that of a human radiologist. Further
research is required to evaluate the limits of transfer learning
for classification of images in both ultrasound imaging and
other medical imaging modalities.
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