
J Digit Imaging (2018) 31:224–234

Statistical Geometrical Features for Microaneurysm
Detection

Arati Manjaramkar1 ·Manesh Kokare2

Published online: 7 August 2017
© Society for Imaging Informatics in Medicine 2017

Abstract Automated microaneurysm (MA) detection is
still an open challenge due to its small size and similarity
with blood vessels. In this paper, we present a novel method
which is simple, efficient, and real-time for segmenting and
detecting MA in color fundus images (CFI). To do this,
a novel set of features based on statistics of geometrical
properties of connected regions, that can easily discrimi-
nate lesion and non-lesion pixels are used. For large-scale
evaluation proposed method is validated on DIARETDB1,
ROC, STARE, and MESSIDOR dataset. It proves robust
with respect to different image characteristics and camera
settings. The best performance was achieved on per-image
evaluation on DIARETDB1 dataset with sensitivity of 88.09
at 92.65% specificity which is quite encouraging for clinical
use.
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Introduction

Motivation

First, clinically visible signs of diabetic retinopathy (DR)
are microaneurysms (MA). MA count indicates progres-
sion of DR. If the disease is recognized and treated at an
early stage then treatment is quite effective. MA detection
is therefore crucial for diagnosis and for monitoring the
DR disease. Early detection facilitates timely treatment and
reduces further complications of the retina. With increased
diabetes instances worldwide, it is expected that by 2030,
more than 500 million patients will need yearly retinal
examination [9]. Considering these statistics and the limited
human expertise available, we need to automate the system
for detection of DR and grading its severity.

Background

Diabetes affects our body from head to toes. This includes
our eyes. Eye complication because of diabetes is called
DR which affects the retina and may cause blindness if
left untreated. People with known long-term diabetes have
some degree of retinopathy. There are two types of DR:
non-proliferative and proliferative. Non-proliferative DR
(NPDR) is early stage while proliferative DR (PDR) is an
advanced stage of the disease where retina starts growing
new blood vessels (neovascularization [10]). NPDR con-
sists of dark/red lesions (MAs, hemorrhages (HM))and PDR
consists of bright lesions (exudates, cotton wool spots).

DR is the major cause of complete or partial vision loss in
patients suffering from long-term diabetes. It is an asymp-
tomatic disease, i.e., patient is unaware of its presence and
remains undiagnosed till it progresses to advance stage. At
the advanced stage, treatment is complicated and not very
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effective. Diabetic patients are therefore advised to undergo
annual screening [15]. But screening requires several exami-
nations and is costly. Earlier research in this field proved that
analysis of CFI is the simplest way to detect DR. Apart from
being cheap, they can be acquired and performed easily. So
CFI is preferred over FA for large-scale screening purposes.

According to the medical definition, MAs are tiny
swelling within the wall of a blood vessel (BV). It appears
in the retinal capillaries as a small, round, red spot. And is
commonly found in DR, retinal vein occlusion or absolute
glaucoma [18]. MAs are usually 10 to 125 microns in size
and are vision threatening if they occur into macula region
of the retina.

Summary of Contribution

Objective of our research is to find MAs in CFIs and grade
these fundus images for disease severity (Table 1). These
identified images can then be referred to human experts
for review, reducing their burden, examination time, and
avoid further complications by giving them timely prompt
treatment. To achieve this, two novel contributions are pro-
posed in this paper. First, statistical geometrical features
for discriminating MAs in CFI without segmenting BV is
proposed. Second, to improve classification of MA and
non-MA objects an object rule-based classifier has been
proposed. Support vector machines was also been used for
comparison and better results were obtained with proposed
classifier. The proposed system attempts to present a simple,
efficient, and real-time automated system for clinical use.
The remaining paper is organized as “Related Work,” dis-
cusses state of art methods for MA detection in CFI and FA.
In “Proposed Method,” proposed method based on statis-
tics of geometrical properties for MA detection is presented.
Experimental results are discussed in “Experimental Results
and Analysis.” Finally, in “Conclusion,” conclusions are made.

Related Work

The very first attempt for detecting MA was in fluorescein
angiograms (FA) by [3, 14]. As MAs have fairly uniform

Table 1 DR severity grading (Dupas et al. [7])

L0: No DR (normal)

(MA = 0) AND (HM = 0)

L1: Mild DR

(0 < MA <= 5) AND (HM = 0)

L2: Moderate DR

((5 < MA < 15) OR (0 < HM < 5))

L3: Severe DR

(MA >= 15) OR (HM >= 5)

shape and size. These attempts were based on mathematical
morphology. Spencer et al. [26] used shade correction and
matched filtering technique for MA detection. The goal here
was to distinguish MAs from elongated structures. Even
tough MAs appears more contrasted with the background
in FA; however, intravenous use of fluorescent dye used in
FA has problems associated such as dark urination, pupil
dilation, nausea etc., which persist for several days after the
examination. These problems prohibited FA to be used for
mass screening purpose.

From now on, all algorithms discussed in this paper are
for CFI only. Walter et al. [27] used diameter criteria for
detecting MA candidates. A supervised classifier based on
density was used for MA classification. Fleming et al. [8]
proved that contrast normalization can be used for differ-
entiating MA from other artifacts. After comparing several
normalization methods, watershed transform achieved best
performance. Despite that, the system is complex as its out-
come is based on training set cross-validation. Niemeijer
et al. [20] used pixel classification technique for MA can-
didates extraction, the feature set of [26] was enhanced and
k-NN classifier was used for MA recognition. Kande et al.
[12] also proposed red lesion detection based on mathe-
matical morphology and pixel classification. Red and green
channel intensity information is taken into consideration
and thresholds based on local relative entropy discriminates
red lesions from matched filter response background image.

Apart from the abovementioned MA detection tech-
niques, several other algorithms are proposed. Zhang et al.
[29] used multiscale correlation filter(MSCF) and thresh-
olding with a two-level architecture: coarse level and fine
level. In the coarse level, MA candidates are detected. Fine-
level true MA classified by extracting features from coarse
level. Five different Gaussian kernel scales were applied to
the CFI. For each feature, a corresponding threshold was
then applied to decide MA candidates and then true MAs.
But setting threshold, for all features, was a crucial task and
required expert knowledge. So choosing the useful feature
set for MA candidate classification needs to be considered.

Quellec et al. [24] presented wavelet template match-
ing for MA detection. Non-uniform illumination and noise
problems were effectively tackled by this method. Su et al.
[28] proposed singular spectrum analysis(SSA) for locat-
ing MAs close to BV. MA candidates are extracted and
cross-section profiles in 12 directions are considered for
each of these MA candidates. For identifying true MA,
SSA was used. Zhou et al. [30] presented an unsupervised
classification method for MA detection based on sparse
posterior cerebral artery, which does not consider non-MA
training set. A new single T 2 statistic was used for discrim-
inating true MAs and non-MA candidates automatically.

Although all these reported MA extraction techniques
have some advantages associated but segments BV prior to
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Fig. 1 The proposed flow chart of an automated MA detection system

MA candidate detection. The problems with these strategies
are: The majority of the false positives (FP) in vessel segmen-
tation are actually true lesions and once they are removed
with BV they cannot be retrieved back. Secondly, they have
difficulty in extractingMAs that are located close to BVs and
discriminatingMAs from vessel crossings and elongated HMs.

Main contribution in this paper is a new method consist-
ing set of statistical and geometrical features for MA detec-
tion that does not need vessel segmentation. Proposed MA
segmentation strategy is direct translation of medical defini-
tion of MA. MAs have fairly uniform shape and clear edges
they seem as holes in edge detected image. These holes
are filled by morphological reconstruction and subtracted it
from original edge detected image. Statistical and geometri-
cal features [5] are extracted for true MA classification.

Proposed Method

The proposed method involves following steps: preprocess-
ing, MA candidate extraction, feature extraction, and object
rule-based classification for true MA detection (Fig. 1).

Preprocessing

Fundus image is a photograph of the inner eye. As per radi-
ation transport model, [6, 22] when light traverses into the
inner eye it gets reflected, absorbed, and transmitted. The
amount of refraction, absorption, and transmission depends
on melanin and hemoglobin concentration. Since absorption
of blue light is more in the eye, its contribution to the fundus
image color spectrum is very less. For green light absorp-
tion, coefficient is the highest in hemoglobin part of the
spectrum. As a result, hemoglobin features of the eye have
high absorption of green light than surrounding. Red light is
least absorbed by inner eye pigments, thus makes the fundus
images appear reddish. So in RGB images, the red channel
is low-contrast saturated, blue channel has the poor dynamic
range, and is noisy whereas green channel has high con-
trast to hemoglobin features like BV or red lesions (Fig. 2).
Considering this fact green channel of RGB fundus image
is considered for further processing as MAs are better visu-
alized in green band as can be seen in Fig. 3b. For shade
correction, the image is transformed by histogram equal-
ization. To achieve this transformation histogram of green

Fig. 2 Cross-section of
intensity profile, a green
channel view of MA. Pixels
belonging to MA has dark
intensity than background,
b gray intensity profile
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channel was equalized by operating on small regions called
tiles. The contrast factor was set to 0.05 for preventing over-
saturation of the image specifically in homogeneous areas
[16]. As seen in Fig. 3c, MAs are more clearly visible in
shade corrected image than original CFI Fig. 3a.

MA Candidate Extraction

The proposed MA segmentation algorithm is summarized in
Algorithm 1.

MAs exhibits a Gaussian shape as seen in Fig. 2b. A
Gaussian operator, is thus applied on the shade corrected
image for smoothing.

g(x, y, σ ) = 1

2πσ 2
exp

(− x2+y2

2σ2
)

(1)

Edge detection is performed on this shade corrected image.
Sobel operator is used for edge detection. Choosing thresh-
olds for edge detection was one of the most critical task. We
experienced those threshold parameters which do not con-
sider image characteristics and preprocessing methods does
not yield satisfying results. So, thresholds were deliberately
set to ensure that true edges are segmented. Two thresholds
were set T1 and T2. Threshold values were varied and tested
in order to access performance of proposed method. The
thresholds are varied as follows:

T1 ∈ {0.06, 0.07, 0.075, 0.08, 0.09}

T2 ∈ {0.15, 0.16, 0.175, 0.19, 0.20}
A slight change in threshold was causing over segmentation
or under segmentation problem. However, many spurious

objects having similarity with MAs are also segmented.
Experimentation showed the value of T1 = 0.06 and
T2 = 0.16 gave a good balance between detected MAs and
spurious objects. Segments with a small number of pixels or
segments that are very thin were removed.

Considering the edge detected and filled-in image differ-
ence. The resulting binarized image is obtained by η(th) [21].

η(th) = Arg{ max
1≤th<L

[σ 2
B/σ 2

T ]} (2)

where σ 2
B and σ 2

T are between class variance and total vari-
ance, respectively. It is based on discriminant analysis which
partitions resulting binarized image, of L gray levels, into
two classes C0 = {0, 1, 2, ...t} and C1 = {t + 1, t +
2, ...L − 1}. C0 and C1 corresponds to the object and back-
ground, respectively, and probability of the two classes are

w0 =
t∑

i=0
pi and w1 =

L−1∑

i=t+1
pi , where pi = ni/n is

probability of occurrence of gray level i. Also, the means

of the two classes are μ0(t) =
t∑

i=0
ipi/w0(t) and μ1(t) =

L−1∑

i=t+1
ipi/w1(t). Now, let σ 2

B(th) and σ 2
T are between class

variance and total variance, respectively. An optimal η(th)

can be computed by maximizing σ 2
B . And, σ

2
B can be com-

puted as w0(μ0 − μT )2 + w1(μ1 − μT )2, where μT is total
mean of whole image. σ 2

B is identified as 0.498 in our study
and hence η(th).

Since MAs have clear edges, they appear as holes in
the edge detected image and are filled by morphological
reconstruction (Fig. 3d).

zk ← (zk − 1 ⊕ s) ∩ f (3)

where s- structuring element, an 3 × 3 matrix of ones, iter-
ated until zk = zk − 1. Each candidate segmented from the
filled out image is 8-connected and stored in the database for
further feature extraction. Geometrical attributes are calcu-
lated for each connected objects and their non-compactness
(irregularity) is statistically considered for segmenting each
binary object.

Feature Extraction

After image binarization left outs are candidate MAs, thin
vessel fragments, and some noise/ other artifacts. MA and
noise have an almost same area but the difference lies in
shape. MAs are circular whereas noise is irregular elon-
gated shape. Circularity measure can be used to discriminate
between these two classes. MAs are compact and circular
shaped whereas BV fragments are non-compact, elongated
shaped. The classification errors arising from confusion



228 J Digit Imaging (2018) 31:224–234

Fig. 3 MA detection stages of
proposed method. a Input
image, b green channel image,
c pre-processed image,
d edge-detected image,
e candidate MAs, and f True
MAs

between MA and other artifacts are minimized by these
facts. Following five facts were considered for improving
classification accuracy.

F1 MAs are circular whereas BVs fragments are oblong.
F2 MAs are compact whereas BVs fragments are non-

compact.
F3 MAs are typical < 125 μm whereas BVs have a

larger area.

F4 MAs has unity (bounding box) aspect ratio whereas
BVs have non-unity aspect ratio.

F5 MAs being circular has low eccentricity.

During our research, we have asked retina experts how they
recognize MAs in a fundus image so that our feature extrac-
tion will mimic retina experts. We found that retina experts
give much importance to intensity, size, shape, and color
features. Taking all these facts in consideration we propose
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following, set of relevant and significant features for extrac-
tion of MA candidates. For each feature, explanation of
general motive, and its consequences on classification are
explained here.

A) Area (Ak), let � be a number of pixels in the region.
The area is defined as number of pixels in the object

and is given by: Ak =
�∑

k=i

Ok . Area feature eliminates

false positives from MA candidates. True MAs area is
10 to 125 μm. Objects with an area below 4 pixels and
above 25 pixels are excluded.

B) Eccentricity (e), given as the ratio of the longest
chord(length) lc and longest perpendicular chord lp.
Since MAs are circular its eccentricity should be zero
or close to zero. e = (x2 − x1) + (y2 − y1)/lp.

C) Perimeter P is the total number of objects pixels hav-
ing one or more background pixels. P8 = {(r, c) ∈
R|N4(r, c) − R �= φ}, where P8 is 8-connected
perimeter.

D) Compactness C, a measure of roundness, is given by
C = P 2/4piAk , Where P is perimeter and A is area
of candidate region. True MAs are compact. For cir-
cular object it should be ≈ 1. During our research, we
analyzed several MAs of various sizes and found that
mostly they have compactness in the range of 1 to 0.85.

E) Irregularity R, measure of non-compactness (irregular-
ity) of candidate region, given as R = P 2/4piAk .
Higher this ratio, the object is more round. By this cri-
terion, irregular shaped objects, and elongated objects,
which show smaller values, i.e., closer to 0, are
removed.

F) Object length (l), is a scalar which specifies length
(pixels) of ellipse major axis having same second cen-
tral moments (normalized) as that of region being
analyzed.

G) Object width(w), minor axis length (pixels) of the
ellipse with the same normalized second central
moments as the region that is being analyzed.

H) Aspect ratio s, is a measure of the relationship between
bounding box dimensions of an object. s = l/w. For
true MAs both dimensions should be same.

I) Object intensity (I), the intensity of pixels within the
object region. I = ∑

jε�

Goj , where Go is green

component of RGB image.

J) Standard deviation, σ =
√

L−1∑

j=0
(rj − m)2p(rj ), where

m is mean gray value, representing average intensity.

This new feature set, based upon the statistical geometri-
cal properties of connected components of the binary image
is taken into consideration with an objective to improve

the classification accuracy. Besides these ten features, we
have tested many other features, such as homogeneity, skew-
ness, solidity, etc. But, they did not improve performance
significantly. Also, more features contribute to more con-
fusion for classification and curse of dimensionality, so we
aimed to have less confusion between similar classes. Even
though proposed method has less number of features but
they contain enough information for effectively detecting
MAs.

Object Rule-Based Classification

The proposed object rule-based (ORB) classification sys-
tem will help to make the decision for the referral. We have
trained the data and devised rules from these training data.
The classifier uses these learned rules to classify unseen
data.

Notations used

Notations used in ORB classifier are as follows:

R- Rules used in the classifier
Rb- Set of rules, rule base
D- Training data
T - Set of tuples
V - Feature vector space
C- Number of class labels in classifier
Ak- k-attributes used to describe sample data
p- literal, an attribute-value pair

Every tuple t, in the set of tuples, have a form
(A1, A2 . . . Ak). Thus, p is represented as an attribute-value
pair (Ai, v), Ai is an attribute and v is its associated value.
A tuple t satisfies p = (Ai; v) iff ti = v, where ti is the
value of the ith attribute of t. So the rule R takes the form:

R : {p1 ∧ p2 ∧ . . . pn} −→ C (4)

where p1, p2 are literals and C is class. These rules were
used to extract true MAs from candidate MAs. Objects sat-
isfying all the rules are considered are true MAs else they
are considered as FPs.

In our research, we choose a set of rules R for D. If there
is no rule that applies to the unseen case, it takes on default
class, i.e, normal. One of the classification rules of proposed
system is: high

(I = high) ∧ (s = unity) ∧ (Sk ≤ λ) −→ MA

where λ is 4 to 15 pixels in our case. Collection of such rules
called rule base Rb is used in object classification and is
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defined as follows: Collection of such rules called rule base
Rb is used in ORB classification and is defined as follows:
Rb = {R1, R2, R3, ....R7} (5)

R1) If compactness of object is close to 1, then object is
likely to be an MA.

R2) If eccentricity of an object is more, then object is
likely to be a BV.

R3) If intensity of object is high and is circular, then object
is likely to be an MA.

R4) If the aspect ratio of an object is unity, then object is
likely to be an MA.

R5) If object is circular and its perimeter is small, then
object is likely to be an MA.

R6) If object intensity is high and aspect ratio is unity, then
the object is likely to be an MA.

R7) If Intensity of object is high, aspect ratio of object is
unity and area is λ, then object is likely to be an MA.

Accuracy of detecting MA is increased when more rules
are satisfied by the object.

Experimental Results and Analysis

Datasets used

Performance of our method was evaluated on four datasets:
DIARETDB1 [13], ROC [19], STARE [11], and Messidor
[17]. Since images are of different characteristics while
preprocessing, they were resized with bilinear interpolation.

STructured Analysis of the Retina (STARE) [11]

STARE database has ∼ 400 retinal images. Topcon TRV-
50 fundus camera with 350 FOV was used for capturing
images. Every image sizes 605 × 700 with 24 bits per pixel.
All images are hand labeled by two experts. Expert annota-
tions of the manifestations (features) visible in each image

are tabulated in text files. BV segmentation work including
40 hand labeled images, their results, and a demo. MAs are
also categorized as many, few, absent and unknown.

Standard Diabetic Retinopathy Database DIARETDB1 [13]

The database is of 89 CFIs out of which 5 are normal accord-
ing to all experts called for evaluation and 84 images contain
at least mild NPDR signs (MAs). Five delgrees of FOV was
set for capturing fundus images of varied imaging settings.
Each image size is 1500 × 1152 with 24 bits/ pixel. This
data set is called “calibration level 1 fundus images.” The
ground truth confidence levels < 50, 50, 100% represents
the certainty of the decision about a marked finding is correct.

Methods to Evaluate Segmentation and Indexing
Techniques (MESSIDOR) [17]

Messidor database with 1200 retinal images captured in 3
different ophthalmologist departments. Out of 1200, 800
images were acquired with pupil dilation and 400 without
dilation. It is available publicly since 2008. Images were
captured by Topcon TRC NW6 with a 45◦ FOV and packed
in three sets. Each set has four zipped sub sets of 100 images
each in TIFF format and excel file with medical diagnoses
for each image. Reference standard is provided containing
two diagnose: retinopathy grade and risk of macular edema.

Retinopathy Online Challenge (ROC) [19]

Retinopathy online challenge (ROC) database has 50
images in training and testing set each, selected from a large
DR screening program. These DR screening programs was
from multiple sites; used various cameras with varied field
of view and image resolution for capturing fundus images
(Table 2). Only training set of ROC has MA locations pro-
vided “ground truth.” Earlier, ROC used to have a multi-year
challenge for MA detection; researchers were able to test

Table 2 Characteristics of datasets used for evaluaion

Database Image
size

Field of view
(FOV)

Image
format

Total no.
of imgs

No. of images
with MA

Pupil dilated
/ non-dilated

No. of experts
in annotation

Reference

DIARETDB1
[13]

1500 × 1152 500 png 89 84 Non-dilated Four experts Per lesion

ROC [19] Multiple
768× 576
to
1389× 1383

450 jpeg 100 Not reported Non-dilated Three experts Per-Lesion

Messidor [17] 1440×960,
2240×1488,
2304 × 1536

450 jpg 1200 226 800 dilated, 400
non-dilated

One expert Per-image

STARE [11] 700 × 605 350 ppm 400 72 Not reported Not reported Per-image
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Table 3 Performance of
proposed system compared
with existing methods

Author Dataset used No of images used Sensitivity (%) Specificity (%)

Adal et al. [2] DIARETDB1, ROC, 380 64.62 92.31

UTHSC private dataset

Purwita et al. [23] DIARETDB1 89 NR NR

Zhang et al. [29] DIARETDB1, ROC 11, 50 71.30 NR

Sopharak et al. [25] Non-dilated dataset 80 85.68 99.99

Bhalerao et al. [4] DIARETDB1 89 82.6 80.2

Proposed method DIARETDB1, ROC, 89, 50, 1200, 400 88.09 92.65

MESSIDOR, STARE

NR not reported

their algorithms on ROC test dataset, but now this website is
inactive [1]. So, we were unable to test our algorithm on the
ROC test dataset. We have randomly selected images from
training set of ROC here for testing and verifying our model.

Performance Evaluation

Proposed ORB classifier is trained on 50 images from
DIARETDB1 [13] dataset whose ground truth is available,
remaining 39 images of the same were used for testing.
Both positive and negative samples are taken for training.
A training set is established set for which feature values
and its classification result is known. Each object is char-
acterized by vector V in an n-dimensional feature space
(n = 10 here). The last step is to decide its class whether a
candidate belongs to ω1(MA) or ω2(non-MA) knowing its
representation in train.

T RAIN = {(Vi, ω
i
k)|i = 1.....N K = 1, 2} (6)

In final classification rule base Rb is applied to detect true
MAs from unseen data. The DIARETDB1 [13], ROC [19],

STARE [11], and Messidor [17] dataset images were then
used for testing.

This made us evaluate our method on images with dif-
ferent characteristics which are listed in Table 2. As images
were from different datasets, image sizes are also differ-
ent. We have re-sized images to 576 × 750 for analyzing
computational efficiency. We have evaluated our method
on lesion level detection and image level detection. Later
evaluation results were more promising. Table 3 shows
the performance of proposed MA method with other exist-
ing methods. None of these were compared with the same
dataset, commonly the algorithm performance was reported
by receiver operating characteristic on a per lesion basis
[2, 23] and per image basis. In receiver operating charac-
teristic analysis, the true positive rate is plotted against the
false positive rate.

Per Lesion Evaluation

Generally, quantification consists of counting specific type
of objects or lesions like MAs. This lesion count predicts the
severity of disease. Number of MAs and associated disease
severity is tabulated in Table 1. Here each pixel is classified

Table 4 Per image and per lesion evaluation results of proposed method on used datasets

Dataset used No. images in
dataset

No. images
with MA

Per-lesion evaluation Per image evaluation

Sensitivity (%) Specificity (%) No. images cor-
rectly classified

Sensitivity (%) Specificity (%)

DIARETDB1 89 84 84.15 93.50 74 88.09 92.65

ROC 50a 37 82.06 91.93 43 86.00 91.58

Messidor 1200 226 NA NA 1021 85.08 89.56

STARE 387b 72 NA NA 316 81.65 89.80

aTraining set only
bKnown
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Fig. 4 a True MA detected by
proposed method. Highlighted
to better visualize confidence
interval, b Ground truth image
(image019) from DIARETDB1

asMA or non-MA. The proposed method counts the number
of MAs detected and grade disease severity as per Table 1.
The grade will help to make decision for referral.

From used dataset, only the DIARETDB1 dataset has
a per-lesion reference standard. The proposed method
achieves a sensitivity of 84.15% at a specificity of 93.50%
on DIARETDB1 dataset. Even if MA detection is inac-
curate in certain cases, the specificity value is quite high.
Table 4 shows per lesion evaluation of proposed method on
DIARETDB1 dataset. One-sided confidence intervals were
calculated for each lesion Fig. 4 shows confidence interval
of lesions identified by proposed method when compared
to the reference. The performance of proposed system is
also evaluated by plotting true positive rate against the false
positives per image seen in Fig. 5 as a dotted curve.

Per Image Evaluation

At least one MA in retinal fundus image is considered
as a sign of DR, while absence indicates healthy retina.
An image is graded as No DR, mild, and severe DR
as per Table 1. Proposed method image level detection

Fig. 5 Performance Evaluation on DIARETDB1 dataset

results are better compared to lesion-level as we are only
grading them. The ability of our method to detect DR
images and separate them from healthy ones on the basis
of the presence or absence of MAs is quite satisfactory.
Table 4 shows per image evaluation of proposed method on
used datasets. When classifying DR images, the proposed
method obtained a sensitivity of 88.09% at a specificity of
92.65%.

Computational Complexity

Let I = [ixy]x×y be an image with intensity value at pixel,
(x, y), ixy ∈ G=0, 1, ..., L-1. The time and space com-
plexity associated with processing I (segmentation, edge
detection, feature extraction, etc.) increases with X, Y, or L.
Let r1, r2, ..., rp be p objects, each ri having in pixels and
rN be detected binary objects.

Computational complexity of proposed method is O(n)
where n = x × y, total number of pixels in image I. There-
fore, the complexity of proposed method is O(n + k2),
where k is the total number of objects detected. As k2 
n, the computational complexity of proposed method is
normally O(n). Complexity can be further reduced by care-
fully eliminating redundant features or reducing number of
features. The major challenge lies in searching feature sub-
set which enhances performance of classifier by removing
redundant and unnecessary features. The efficacy of feature
selection technique is usually assessed by performance of
trained model with feature subset. The proposed ORB clas-
sifier’s performance on trained data with selected 10 feature
subset is shown by area under the ROC curve (AUC) in
Fig. 5.

We have implemented proposed algorithm in Matlab
2016a on core i7, 3.40 GHz, without doing any paral-
lel computing. Computation time of proposed algorithm
takes approximately 0.6 s for smaller STARE images after
re-sizing and maximum 3 s for largest Messidor images
without re-sizing. On average, it takes 0.82 s to process one
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Table 5 Lesion level performance of classifiers on DIARETDB1
dataset

Classifier Sensitivity(%) Specificity(%) Accuracy(%)

Proposed ORBC 84.15 93.50 84.15

Support vector machine 82.10 89.12 82.10

image. The results of the proposed system on four publicly
available datasets demonstrate that the best performance is
achieved when images of the same dataset are used for
training and testing.

We have compared proposed ORB classifier with sup-
port vector machines, a machine learning algorithm as well

(Table 5). The SVM kernel is K(x, x′) = exp〈 ‖x−x′||2
−2σ 2 〉,

where K(x,x’) is the squared Euclidean distance between
two feature vectors.

Conclusion

In this paper, we have presented a novel method for MA
detection in CFI based on statistics of geometric features
and object rule-based classification eliminating BV extrac-
tion step. We have evaluated our method on for publicly
available standard data-sets: DIARETDB1, ROC MESSI-
DOR & STARE. Results demonstrate that proposed auto-
mated MA detector has been found robust with respect
to different imaging modalities. Proposed method achieved
competitive results in detecting MAs. Despite these results
are not optimum, they are encouraging and reveal that some
improvements may be done for detecting HMs as well.
Currently, we are working on a novel machine learning deci-
sion based method for feature selection which discriminates
MAs efficiently in real-time.
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