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Abstract Mammographic breast density has been established
as an independent risk marker for developing breast cancer.
Breast density assessment is a routine clinical need in breast
cancer screening and current standard is using the Breast
Imaging and Reporting Data System (BI-RADS) criteria in-
cluding four qualitative categories (i.e., fatty, scattered density,
heterogeneously dense, or extremely dense). In each mammo-
gram examination, a breast is typically imaged with two dif-
ferent views, i.e., the mediolateral oblique (MLO) view and
cranial caudal (CC) view. The BI-RADS-based breast density
assessment is a qualitative process made by visual observation
of both the MLO and CC views by radiologists, where there is
a notable inter- and intra-reader variability. In order to main-
tain consistency and accuracy in BI-RADS-based breast

density assessment, gaining understanding on radiologists’
reading behaviors will be educational. In this study, we pro-
posed to leverage the newly emerged deep learning approach
to investigate how the MLO and CC view images of a mam-
mogram examination may have been clinically used by radi-
ologists in coming up with a BI-RADS density category. We
implemented a convolutional neural network (CNN)-based
deep learning model, aimed at distinguishing the breast den-
sity categories using a large (15,415 images) set of real-world
clinical mammogram images. Our results showed that the
classification of density categories (in terms of area under
the receiver operating characteristic curve) using MLO view
images is significantly higher than that using the CC view.
This indicates that most likely it is the MLO view that the
radiologists have predominately used to determine the breast
density BI-RADS categories. Our study holds a potential to
further interpret radiologists’ reading characteristics, enhance
personalized clinical training to radiologists, and ultimately
reduce reader variations in breast density assessment.
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Introduction

In mammographic breast cancer screening, breast density is a
routine clinical measure visually assessed by breast imaging
radiologists. Breast density measures the relative amount of
the dense (i.e., fibroglandular) tissue depicted on digital mam-
mogram images. In current clinical workflow, breast density is
mainly evaluated in terms of the Breast Imaging and
Reporting Data System (BI-RADS) breast density criteria
[1], including four qualitative categories, i.e., fatty, scattered
density, heterogeneously dense, or extremely dense. There are
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computational approaches to determine a quantitative breast
density assessment [2–4]. Commercially available software
such as Quantra [3] and Volpara [4] can compute a volume-
based breast density but these methods function only on the
raw (BFOR PROCESSING^) digital mammogram images,
which are not routinely stored in most medical centers.
Current clinical standard of breast density assessment is pre-
dominately the BI-RADS-based qualitative categories.

The importance of breast density assessment is mainly due
to the fact that breast density has long been shown to be a risk
biomarker of developing breast cancer. Comparing women
with Bextremely dense^ breasts to women with Bfatty^
breasts, their breast cancer risk is about four to six times higher
[5]. When women’s breast density falls into the category of
either Bheterogeneously dense^ or Bextremely dense,^ they
are considered to have Bdense breasts^—indicating a higher
risk of breast cancer than Bnon-dense^ breasts (i.e., Bfatty^ or
Bscattered density^)—and that may trigger additional actions
such as supplementary screening. In the clinical setting, it is
apparently easy to distinguish the Bfatty^ breasts from the
Bextremely dense^ breasts. However, it is highly confusing
and difficult for radiologists to visually and consistently dis-
t i ngu i s h b e tween t h e Bs c a t t e r ed d en s i t y^ and
Bheterogeneously dense^ categories [6]. There is a notable
inter- and intra-reader variability in the visual breast density
assessment made by radiologists [5, 6]. It poses a clinical need

for radiologists to reliably assign a precise and consistent BI-
RADS breast density category.

In screening digital mammography, each breast is typically
imaged with two different views, i.e., the mediolateral oblique
(MLO) view and cranial caudal (CC) view (Fig. 1). The MLO
view is taken from the center of the chest outward, while the
CC view is taken from above the breast. While CC view
depicts the entire breast, MLO view reflects more of the breast
in the upper-outer quadrant, giving the best view of the lateral
side of the breast, which statistically is themost common place
for pathological changes. While both the MLO and CC views
were read by radiologists, only one BI-RADS density catego-
ry is assigned. It has been roughly suspected that the differ-
ence of breast density assessment is small between the CC and
MLO views. It however remains unclear how radiologists
actually rely on or Bsubconsciously^ use the two views in
assigning a BI-RADS breast density category from the two
views, particularly between the two difficult-to-distinguish
categories, i.e., Bscattered density^ vs Bheterogeneously
dense.^

In this study, we aim to understand radiologists’ mammo-
graphic reading behaviors or characteristics. More specifical-
ly, we propose to leverage a newly emerged machine learning
technique, i.e., deep learning, to investigate the underlying
mechanism of how radiologists use the two mammogram
views (MLO and CC) in giving rise to a BI-RADS breast

Fig. 1 Examples of the mediolateral oblique (MLO) view (row 1) and
cranial caudal (CC) view (row 2) digital mammogram images, illustrating
the four qualitative Breast Imaging and Reporting Data System (BI-

RADS) breast density categories, i.e., fatty (column 1), scattered density
(column 2), heterogeneously dense (column 3), and extremely dense
(column 4)
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density category. Using clinical visual observation to deter-
mine a BI-RADS breast density category is somewhat a
Bsubconscious^ and qualitative decision-making process. By
employing deep learning-based classification, this process can
be modeled Bbackward^ to discover which view may play a
predominant or equivalent role in assigning the BI-RADS
breast density categories. This is an important clinical ques-
tion to answer because by gaining knowledge on radiologists’
reading patterns, it would help come up potential solutions to
enhance their reading consistency and reduce reader varia-
tions, and thus, generate a more reliable breast density assess-
ment. However, understanding such reading behaviors is not
straightforward by traditional approaches, because the visual
and qualitative decision-making process is hard to directly
model or interpret. Hence, we propose to employ a novel deep
learning-based approach to study this question.

Conventional machine learning is based on a strong feature
engineering, i.e., using hand-crafted descriptors and prior ex-
pert knowledge of the data to build strong features. This pro-
cess is time-consuming and hard for many scenarios; in par-
ticular, for the studied question of this work, it is difficult to
directly summarize prior knowledge from radiologists’ quali-
tative reading practice. On the other hand, deep learning can
extract features directly and automatically from original data.
Based on a large training dataset, deep learning has shown
promising performance in many recent artificial intelligence
applications. In biomedical imaging analyses, deep learning
demonstrated impressive capabilities in thoraco-abdominal
lymph node detection and interstitial lung disease classifica-
tion [7], chest pathology identification [8, 9], real-time 2D/3D
image registration [10], mammographic lesion detection and
diagnosis [11], image segmentation [12], etc.

In this paper, we applied a deep learning architecture,
convolutional neural network (CNN), to build a two-class
breast density classifier aiming at distinguishing the breast
density categories, using separately the MLO view and CC
view of the same patient cohort. The goal is to evaluate the
CNNmodel’s classification accuracywith respect to the use of
the MLO and CC views of a large mammogram imaging
dataset, such that gain insights into the potential role of the
MLO and CC view images in BI-RADS-based clinical breast
density assessment.

Materials and Methods

Study Cohort and Imaging Data

This study received institutional review board (IRB) approval
and was compliant to the Health Insurance Portability and
Accountability Act (HIPAA). Informed consent from patients
was waived. From a retrospectively identified cohort who
underwent mammographic breast cancer screening at our

institution, we identified a cohort of 963 women who
underwent standard digital mammography screening from
2005 to 2016 with a total of 15,415 negative or breast
cancer-free digital mammogram images. In average, there
are 4 (range 1–7) mammogram examinations per patient.
Out of the 15,415 images, there are 1135 Bfatty^ images,
6600 Bscattered density^ images, 6600 Bheterogeneously
dense^ image, and 1080 Bextremely dense^ images, respec-
tively. Each examination includes the MLO and CC views of
the left and right breasts (i.e., 4 images). For each examina-
tion, the BI-RADS-based breast density categories assessed in
standard clinical procedures by radiologists specialized in
breast imaging were retrieved from mammogram reports. In
this study, our analyses focused on the processed (i.e., BFOR
PRESENTATION^) mammogram images because the raw
(i.e., BFOR PROCESSING^) images were not routinely
stored in our clinical setting.

CNN-Based Breast Density Classifier

We built two deep learning-based classification models each
with two output classes. In the first model, the two classes
correspond to the two most confusing BI-RADS categories
of Bscattered density^ and Bheterogeneously dense,^ respec-
tively. In the second model, the two classes correspond to the
Bnon-dense breasts^ (combination of the fatty and scattered
density images) and Bdense breasts^ (combination of the het-
erogeneously dense and extremely dense images), respective-
ly. Note that here the Bdense^ vs Bnon-dense^ classification
represents specific clinical demand because the Bdense
breasts^ are more concerned by both clinicians and patients
in terms of elevated breast cancer risk and possible supple-
mentary screening.

The deep learning-based classifier was implemented using
the CNN structure [13] and an improved AlexNet model [14],
which is not trained with the relighting data-augmentation.
The CNN structure consists of five convolutional layers, three
max-pooling layers, and three fully connected layers with a
final two-way softmax function. The deep learning platform
we used is Caffe running on a graphics processing unit (GPU)-
accelerated desktop computer (Intel® Core™ i7-4790
CPU@3.60 GHZ with 8 GB RAM and a Titan X Pascal
GPU). We also used rectified linear units (ReLU) in place of
the traditional tangent function and the sigmoid function as the
activation function [13] to speed up training.

In each image, the whole-breast region was first segmented
automatically [15] from non-breast regions and used as input
data of the CNN model. In order to calibrate the intensity
contrast of the images, we applied histogram equalization to
all images as a preprocessing step. We also generated the
mean image of training data and subtracted the mean image
from each input image to ensure that every feature pixel has a
zero mean. CNN training was based on six-fold cross-
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validation, with 70% of the entire images of each BI-RADS
category for training, 15% for validation, and 15% for testing.
In each time, the training and validation samples were ran-
domly selected from the entire images and the remaining sam-
ples accordingly for testing. Receiver operating characteristic
(ROC) analysis was used with computing the area under the
ROC curve (AUC) as the performance metric of the breast
density classifier [16]. We repeated the training and testing
processes for ten times and the averaged classification AUCs
were reported. Delong test [17] was used to assess the statis-
tical significance for the differences of AUCs.

Results

As shown in Fig. 2, for the CNNmodel distinguishing the two
categories of Bscattered density^ vs Bheterogeneously dense,^
the AUC of the classification model is 0.95 when using only
the MLO view images. In comparison, the AUC is 0.88 when
using only the CC view images. It is observed that the AUC
difference is significant (p ≤ 0.001) when comparing theMLO
vs. CC view. When both the MLO and CC view images were
combined as a single dataset and the whole training and test-
ing experiments were repeated on this combined dataset, the
AUC is 0.92.

Similarly, the CNNmodel’s accuracy of classifying the two
classes of Bdense breasts^ vs Bnon-dense breasts^ was shown
in Fig. 3. As can be seen, the AUC is 0.97 or 0.92 when using
only the MLO or CC view images (the AUC difference is
significant with p ≤ 0.001). AUC is 0.95 on the combined
dataset of the CC and MLO view images.

Discussion and Conclusions

In this study, we investigated a deep learning-based clinical
application to understand how radiologists may use MLO and
CC view mammogram images in assessing a patient’s breast
density by the BI-RADS-based density categories. In breast
cancer screening, a large amount of digital mammogram ex-
aminations are acquired annually and it is a routine clinical
need to assess breast density for every examination. However,
a radiologist may not be able to reproduce his/her assessment,
and amongst different radiologists, there are substantial dis-
crepancies on assessing a breast either as Bscattered density^
or Bheterogeneously dense.^ Reducing the reading variations
on breast density represents a real clinical demand. In order to
achieve so, it is critical to first get an understanding on some of
the aspects of how radiologist actually Bread^ the images, like
how the different views of a mammogram are used.We realize
that there is essentially no Bground truth^ for the BI-RADS-
based breast density assessment. However, breast density as-
sessment represents a significant clinical question and routine
requirement in mammographic reading. While there is no sat-
isfactory truth, we chose to study real clinical data and aimed
to improve current existing clinical workflow.

Currently, there are more than 30 states in the USA that
have enacted lawful breast density notification [18], requiring
delivering some level of information of breast density assess-
ment to patients after a screening mammogram. This notifica-
tion may help patients understand the implications of breast
density in perceiving their breast cancer risk and developing
potential supplementary screening strategies. Therefore, re-
ducing reader variations and improving consistency of breast
density assessment hold important necessity and value in

Fig. 2 Convolutional neural network (CNN)-based breast density
c lass i f ica t ion accuracy between Bsca t te red dens i ty^ and
Bheterogeneously dense,^ when using the MLO view images alone, the
CC view images alone, and the combination of the two view images. This
result showed that the classification using MLO view is more
predominate in comparison to that using the CC view

Fig. 3 Convolutional neural network (CNN)-based breast density
classification accuracy between Bdense breasts^ and Bnon-dense
breasts,^ when using the MLO view images alone, the CC view images
alone, and the combination of the two view images. This result showed
that the classification using MLO view is more predominate in
comparison to that using the CC view
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better informing patients. One way to address this is to better
understand the actual clinical mammogram reading behaviors
of breast imaging radiologists. By studying classification ac-
curacy of MLO and CC view images individually, and in
combination, with respect to the actual clinical outcome, i.e.,
the assigned BI-RADS density categories, it will help discover
radiologists’ reading patterns to potentially help calibrate the
reading to be more consistent.

In this study, we used a large real-world digital mammo-
gram imaging dataset and standard clinical BI-RADS assess-
ment as an effective end point. In our results, it is shown that
the AUC of using the MLO view images is significantly
higher than that using the CC view images. This indicates that
most likely it is the MLO view that the radiologists have
predominately used to determine the breast density BI-
RADS categories. This is a clinically valuable finding because
this knowledge can be educational in calibrating/training radi-
ologists’ reading towards generating a more consistent BI-
RADS density assignment. In this regard, we believe further
exploration is needed in future work. It should be noted that
this is a single-center retrospective study, and therefore, the
generalizability of our findings warrants further evaluation by
a potential multi-center dataset.

In this work, the studied images were read by many radi-
ologists during a long time period of the past several years.
This is advantageous because the results are less likely to be
driven by a certain radiologist’s reading pattern. On the other
hand, it is beyond the efforts that we could afford to track for
all images that which images were read by which specific
radiologists. If we were to have such information, it would
enable us to examine the reading behaviors of a mixture of
individual readers, and as a result, the insights we gained from
that would bring us significant values in providing personal-
ized training on improving image reading for clinical breast
density assessment. This process has a great potential to be
integrated in clinical quality control and enhance education to
the radiologists.

While we focused on clinically used BI-RADS-based cat-
egories for breast density assessment, we acknowledge that
using objective and quantitative measures of breast density
will enhance the work. Unfortunately, the Volpara and
Quantra softwares are not currently available at our institution
or laboratory so we were not able to generate quantitative
density measures using them. Moreover, the raw mammo-
gram images were not routinely stored in our clinics, which
prevented us from retrospectively computing quantitative den-
sity measures even if we had these softwares at hand. We
expect the preliminary but promising results shown in this
study will help us pursue future studies to look into more data
analysis using quantitative density measures.

In addition, in our dataset, there were multiple examina-
tions per patient. The correlations between these multiple ex-
aminations may have to do with the classification

performance. The relationship will be worth of an in-depth
analysis in our future work, when we have an adequately large
number of patients where each patient has only one examina-
tion to compare with.

The principle of this study lies in the excellent capa-
bility of deep learning and CNN in directly learning rel-
evant traits/features from annotated imaging data [13].
Because the BI-RADS-based density categorization is a
qualitative process made by radiologists reflecting their
visual observation and subconscious perception, it would
be hard to directly interpret the radiologists’ reading be-
haviors by traditional feature engineering of imaging. In
this work, we demonstrated how we attempted to gain
understanding of mammogram reading by the novel deep
learning-based CNN models. This study represents a
good example of showing strength of deep learning in
identifying image reading patterns from a large data fed
to the neural network. Potentially, we anticipate that our
study will enhance current clinical assessment of breast
density.
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