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Abstract Melanoma is a fatal form of skin cancer when
left undiagnosed. Computer-aided diagnosis systems pow-
ered by convolutional neural networks (CNNs) can improve
diagnostic accuracy and save lives. CNNs have been suc-
cessfully used in both skin lesion segmentation and clas-
sification. For reasons heretofore unclear, previous works
have found image segmentation to be, conflictingly, both
detrimental and beneficial to skin lesion classification. We
investigate the effect of expanding the segmentation border
to include pixels surrounding the target lesion. Ostensi-
bly, segmenting a target skin lesion will remove inessential
information, non-lesion skin, and artifacts to aid in clas-
sification. Our results indicate that segmentation border
enlargement produces, to a certain degree, better results
across all metrics of interest when using a convolutional
based classifier built using the transfer learning paradigm.
Consequently, preprocessing methods which produce bor-
ders larger than the actual lesion can potentially improve
classifier performance, more than both perfect segmenta-
tion, using dermatologist created ground truth masks, and
no segmentation altogether.
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Introduction

One in 33 men and one in 52 women in the USA will
develop melanoma, a deadly form of skin cancer, in their
lifetimes [1]. In 2016, Melanoma is estimated to have killed
over 10,000 people in the USA alone [1]. 98% of patients
survive when melanoma is diagnosed early, however only
17% of patients survive when melanoma is left undiagnosed
until its distant stage [1]. Melanoma treatment costs over
$3.3 million dollars in the USA annually [2], while the
indirect cost of melanoma due to premature mortality is esti-
mated to be over $3 billion [3]. Early detection is key to
minimizing economic costs and saving lives.

Dermatologists have developed many methods to diag-
nose melanoma, including the ABCD (Asymmetry, Border,
Color, and Differential structure) Rule [4], the 7-point
Checklist [5], and the CASH (Color, Architecture, Sym-
metry, and Homogeneity) algorithm [6]. However, studies
have shown that the success of these heuristic algorithms
is limited [7–9]. This has provided a strong motivation for
the use of computer aided diagnosis (CADx) systems pow-
ered by deep learning architectures, which might improve
the accuracy and sensitivity of melanoma detection methods
and potentially outperform medical professionals working
on the same task [10].

This paper focuses on the role, importance, and impact
of skin lesion segmentation prior to classification on the
eventual results of classification architectures. More specif-
ically, we evaluate the performance of two state-of -the-art
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convolutional classification architectures after applying
varying levels of a post-segmentation morphological dila-
tion [11]. Although excellent classification results have
been achieved without any image preprocessing whatsoever,
given the current nature of readily available clinical data
sets, image segmentation is necessary to ensure both accu-
rate CNN training and classification results. Many images
contain background noise and/or artifacts (Fig. 1), which
can potentially lead to incorrect classification results due to
the network either learning incorrect features while training
or the already trained classifier using invalid image data. As
such, without perfect skin lesion images, skin lesion image
segmentation methods [12] are necessary to produce reliable
results.

By performing comparisons between augmented seg-
mentation and prior methods in a systematic and repro-
ducible manner, we demonstrate empirically that a certain
amount of segmentation border enlargement can improve
image classification results. This departure from conven-
tional methods, which traditionally use no segmentation
or aim for dermatologist-like segmentation, could improve
classification performance.

Related Work

Previous works have developed deep learning solutions
which classify melanoma with accuracies ranging between
70 and 95% [10, 13–17]. While segmentation is often a
key step in image classification [18], recent works have
produced excellent results without segmentation [10, 16]
and have even found segmentation to be detrimental to

accuracy in skin lesion classification [13, 15]. However,
in [13], authors found that sensitivity increases despite
the decrease in accuracy when classification is performed
on unaltered—instead of perfectly segmented—skin lesion
images.

Methods

This section explains the methods used to investigate the
effects of including additional pixel data that lie outside
the target lesion in an image. Conceptually, our goal is to
demonstrate empirically that extending borders beyond the
lesion to include background pixels may improve the per-
formance of a two-class (melanoma vs. benign) skin lesion
classifier using a CNN. To demonstrate, we use morpholog-
ical dilation to produce progressively more dilated versions
of the manually generated ground-truth masks that pre-
cisely outline the skin lesion of interest, producing a series
of masks which increasingly expand the segmented area
beyond the lesion (Fig. 2).

Input Image Preparation

Dilated masks were created, prior to the subsequent resiz-
ing, through a morphological dilation, using the original
raw images and binary masks provided by the ISIC dataset
(Section “Dataset”) as reference images and disk-shaped
structuring elements of various pixel sizes (25, 50, 75 and
100 pixels). For the few images containing artifacts (such as
markers or stickers, see Fig. 1), the dilated versions of the
masks do not include any marker information.

Fig. 1 Sample input images
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Fig. 2 Input images: a perfectly segmented image (a), progressively larger imperfectly segmented images (obtained with dilation using disk
structuring elements with radii 25 (b), 50 (c), 75 (d), and 100 (e) pixels, and an unsegmented image (f)

Classifier Architecture

CNNArchitecture Two deep convolutional classifier arch-
itectures were implemented: VGG-Net [19] and Incep-
tionV3 [20]. VGG-16 is a well-known CNN, made popular
due to its excellent performance achieved on the ImageNet
dataset [21]. The VGG-16 architecture has been shown
to generalize well to a variety of datasets [19] and—in
previous works—has produced promising results on the
ISIC dataset [13, 16]. InceptionV3, the third version of the
Inception architecture [22], is popular due to its lower com-
putational cost compared to VGG and other widely used
CNN architectures [20].

Design Considerations Since the input layer of the VGG-
16 architecture expects a 224×224 pixel RGB image and
the InceptionV3 architecture expects a 299×299 pixel RGB
image, the input images must be resized accordingly. After
an input image has been loaded, it is passed through the lay-
ers as designated by the given architecture. The networks
are concluded with a classifier block consisting of fully
connected (FC) layers.

A few modifications were made to the original VGG-16
and InceptionV3 architectures:

– The final fully connected output layer performs a binary
classification (melanoma vs. benign), not 1,000 classes
as previously designed for the ImageNet dataset.

– In VGG-16 three, not four, fully connected layers are
implemented as the final classifying block.

– In InceptionV3, a global average pooling layer followed
by two fully connected layers is implemented as the
final classifying block.

– The activation function in the modified final layer has
been changed from Softmax to Sigmoidal.

Transfer Learning

Rather than attempting to train an entire CNN from scratch
using a small dataset, a transfer learning approach was uti-
lized. Transfer learning makes use of features previously
learned from a different, larger dataset [23]. Using the prin-
ciples of transfer learning, we initialized the architecture by
loading weights from the networks pre-trained on the Ima-
geNet dataset [24]. ImageNet contains 1.2 million images

labeled with 1,000 classes, none of which include skin
lesions.

In this work, the initial layers of the network were frozen
(prevented from being modified during training) because
they contain more generic features which can be transferred
to any natural image. By training only the final layers of
the network on the ISIC dataset, the network learns finer
features specific to skin lesion images.

All convolutional layers in the original VGG-16 archi-
tecture are initialized with weights from the ImageNet
dataset. The first four convolutional blocks were frozen
while the fifth, and final, convolutional block was initial-
ized with weights saved from the pretrained architecture
and left unfrozen for training. A similar principle was
applied to the InceptionV3 architecture, where all layers in
the base model were initialized with weights from train-
ing the model on the ImageNet dataset and subsequently
frozen.

Implementation Considerations

Python [25] was selected as the main programming lan-
guage. In some specific tasks, such as creating the dilated
masks, MATLAB [26] was also used. Keras [27], a deep
learning framework that provides a layer of abstraction on
top of lower level deep learning libraries was used as the
main deep learning based classification framework. During
experimentation, Theano [28] was the underlying frame-
work implemented for the VGG-16 architecture and Tensor-
flow [29] was the underlying framework implemented for
the InceptionV3 architecture. Notable additional libraries
and dependencies include a general purpose machine learn-
ing and image processing library—Scikit-learn library [30]
and PIL [31], respectively.

GPUs (Graphics Processing Units) were used to meet
the computational demands of training a CNN. CuDNN
and CUDA libraries [32], required for programming Nvida
GPUs, were utilized.

Experiments and Results

This section presents the results of the experiments using
the proposed methods and the selected implementation.
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Dataset

The ISIC Archive dataset [33], as used in the ISBI 2016
Challenge [34], was adapted for this work. The ISIC
Archive dataset is publicly available and contains 1279
RGB images that are pre-partitioned into 900 training
images and 379 testing images. All images are labeled
(benign or malignant) and include a corresponding binary
image mask. The training dataset was manually split 70–
30% to create a validation dataset while training. As the
original dataset is unbalanced, containing a majority of
benign images, the training, validation, and testing subsets
were balanced through down sampling to produce an equiv-
alent number of images for each class. The final training,
validation, and test sets contain 115, 58, and 75 images,
from each class, respectively.

Parameters

Information on classifier related parameters can be found in
the Keras documentation [27]. In VGG-16, stochastic gra-
dient descent was used as the optimizing function with a
learning rate of 10−6 and a momentum value of 0.9. An
adaptive optimizer, RMSProp [35], was used for Incep-
tionV3. The binary cross entropy loss function was selected
as the loss function for both architectures. All layers in the
fully connected classifier block, with the exception of the
final output single node which was sigmoidal, were spec-
ified to have a ReLU activation function. In VGG-16, the
second to last fully connected layer (256 nodes) was initial-
ized with a normalized distribution of random values and
included a dropout value of 0.5. The final classifier block
in InceptionV3 is three layers deep; the first layer, a global
average pooling layer, is followed by two fully connected
layers (64 nodes and 1 node, respectively). To ensure con-
sistency, the random number generator was seeded with a
constant value for all methods.

Results

The model evaluation was performed using the created
balanced testing dataset.

The main metrics used in the evaluation of this work are
listed below:

– Accuracy, the number of correct predictions divided by
the total number of samples.

– Sensitivity, the fraction of true positives that are cor-
rectly identified.

– Precision, the fraction of positives that are relevant.
– AUC (Area Under the Curve), the area under an ROC

curve plotting the true positive rate vs. the false positive
rate.

Table 1 Test results for VGG-16

Dilation Accuracy Sensitivity Precision AUC

None 0.587 0.453 0.568 0.622

25 0.613 0.533 0.598 0.642

50 0.607 0.560 0.598 0.626

75 0.593 0.573 0.590 0.608

100 0.553 0.347 0.538 0.579

N/A 0.513 0.240 0.509 0.532

In VGG-16, all methods and inputs were trained for a
consistent number of epochs—selected based on the behav-
ior of the loss and accuracy reported during training. 60
epochs with a batch size of 26 were performed in VGG-16
and 25 epochs with a batch size of 32 were performed in
InceptionV3.

Testing results are shown for different amounts of dila-
tion (“none,” 25, 50, 75, and 100-pixel radius, plus a base-
line case—where no segmentation mask is used—denoted
as “N/A”) in Tables 1 and 2, with the best values highlighted
(in italics). Sample results are shown for the unsegmented
set in Fig. 3.

Discussion

We found that dilating the original binary masks to include
a border of skin pixels surrounding the actual lesion con-
sistently improved every classification metric—accuracy,
sensitivity, precision, and AUC—when any amount of mor-
phological dilation was applied. More interestingly, expand-
ing the border of the segmented region at first improved
and then deteriorated classification performance, suggest-
ing that there is an ideal amount of contextual information
that is beneficial to the classifier. For the given dataset,
classifiers, and methodology, all metrics performed best
when the raw image was segmented and subsequently
dilated to include roughly 75 additional pixels in each
direction.

Table 2 Test results for InceptionV3

Dilation Accuracy Sensitivity Precision AUC

None 0.573 0.667 0.590 0.643

25 0.627 0.667 0.638 0.696

50 0.613 0.680 0.631 0.700

75 0.693 0.760 0.723 0.739

100 0.653 0.733 0.683 0.738

N/A 0.633 0.613 0.628 0.680
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Fig. 3 Confusion matrix
example images from
unsegmented inputs classified
on the VGG-16 classifier

The process of segmenting and subsequently expanding
the segmentation border to include values beyond the tar-
get lesion has produced better results across all metrics of
interest when using a deep learning based classifier built
upon the transfer learning paradigm. The results, though
collected on a small dataset, reveal a clear range within
which the dilation of the segmentation border improves clas-
sification results. It should be noted that the balanced test
split used for evaluation does not accurately represent the
balance a classifier would face in a clinical setting, where
the balance may be shifted considerably in favor of benign
lesions.

Limitations

The main limitations of the proposed approach are as fol-
lows:

– Resizing the images for each network’s specified input
dimensions may adversely affect the classifier’s per-
formance. It is possible that fine structure information,
such as texture, globules, vessels, etc., which may pro-
vide information relevant to classification, is lost when
the images are downsized.

– Balancing the dataset may also adversely affect the clas-
sifier performance by decreasing the total number of
samples available for training and validation.

Conclusions

Our work investigated how the inclusion of a non-lesion
border around a lesion of interest impacts classification
results when classifying skin lesions with a convolutional
neural network.

Results indicate that the skin surrounding the lesion may
provide contextually relevant information to a deep learning
classifier that aids in skin lesion classification. Segmenta-
tion with enlarged, rather than dermatologist-like, masks
achieves higher performance in image classification. There
appears to be a “sweet spot,” in which the degree to which
the surrounding skin included is neither too great nor too
small, providing a “just right” amount of context. Specifi-
cally, experimental results for the given dataset, classifier,
setup, and methodology indicate that implementing a seg-
mentation method that captures a border of roughly 75
pixels surrounding the lesion in all directions as a prepro-
cessing step results in better classification performance in
the indicated metrics of interest.

Potential avenues for future work include (i) using larger
and/or different datasets, (ii) using a dilation size that is pro-
portional to the target lesion rather than absolute, and (iii)
investigating transfer learning’s role in these results.
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