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Abstract This study aimed to compare shallow and deep
learning of classifying the patterns of interstitial lung diseases
(ILDs). Using high-resolution computed tomography images,
two experienced radiologists marked 1200 regions of interest
(ROIs), in which 600 ROIs were each acquired using a GE or
Siemens scanner and each group of 600 ROIs consisted of 100
ROIs for subregions that included normal and five regional
pulmonary disease patterns (ground-glass opacity, consolida-
tion, reticular opacity, emphysema, and honeycombing). We
employed the convolution neural network (CNN) with six
learnable layers that consisted of four convolution layers and
two fully connected layers. The classification results were

compared with the results classified by a shallow learning of
a support vector machine (SVM). The CNN classifier showed
significantly better performance for accuracy compared with
that of the SVM classifier by 6–9%. As the convolution layer
increases, the classification accuracy of the CNN showed bet-
ter performance from 81.27 to 95.12%. Especially in the cases
showing pathological ambiguity such as between normal and
emphysema cases or between honeycombing and reticular
opacity cases, the increment of the convolution layer greatly
drops the misclassification rate between each case.
Conclusively, the CNN classifier showed significantly greater
accuracy than the SVM classifier, and the results implied
structural characteristics that are inherent to the specific ILD
patterns.

Keywords Interstitial lung disease . Convolution neural
network . Deep architecture . Support vector machine .
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Introduction

Interstitial lung diseases (ILDs) represent a major cause of
morbidity and mortality [1]. High-resolution computed
tomography (HRCT) has become critical to characterize
the imaging patterns of ILD [2, 3], but this approach re-
mains vulnerable to inter- and intra-observer variation. To
overcome human variation, automated techniques have
been applied for differentiating a variety of obstructive
lung diseases based on the features of a density histogram
[4–7] and texture analyses [8–12] and for making ILD
diagnoses based on the features of texture analysis
[13–18]. Although the quantification and classification
performances of these approaches for ILD remain unsat-
isfactory, automated schemes that provide a quantitative
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measurement of the affected lung or the probability of a
certain disease with perfect reproducibility would be use-
ful, as even experienced chest radiologists frequently
struggle with differential diagnoses [8].

Generally, an automated scheme involves two main
steps of quantification that analyze histogram, texture,
and so on, along with classification using a machine
learning mechanism. Therefore, the success of this
scheme depends on identifying the most significant fea-
tures to solve the classification problem and choosing
which learning algorithm to use. Recently, deep learning
methods have attracted considerable attention from vari-
ous fields because of their remarkable performance en-
hancement [19–21]. Using a deep architecture to mimic
the natural neuromorphic multi-layer network, these
methods can automatically and adaptively learn a hierar-
chical representation of patterns from low- to high-level
features and subsequently identify the most significant
features for a given task. Compared to the conventional
machine learning methods, a point of difference in deep
learning should be that the quantification step of
extracting features is omitted. Some recent reports on
medical image analyses using deep learning algorithms
have been introduced for basal-cell carcinoma cancer de-
tection [22], multi-atlas segmentation of cardiac magnetic
resonance images [23], and brain segmentation [24].
Neuromorphic networks have been applied to studies of
ILDs [25], but a simple shallow architecture was
employed in this study. Some studies have used
neuromorphic networks with a deep architecture
[26–29], but they employed different schemes in ILD sub-
regions compared with our current approach and the pres-
ent study focuses on the structural characteristics inherent
to the specific ILD.

Materials and Methods

Subjects

Both of Asan Medical Center (AMC) and National Jewish
Health Center institutional review board for human inves-
tigations approved the study protocol, removed all patient
identifiers, and waived informed consent requirements be-
cause of the retrospective design of this study. From AMC
(Seoul, Republic of Korea), where a Siemens CT scanner
(Sensation 16, Siemens Medical Solutions, Forchheim,
Germany) was used for examining the subjects, HRCT
images were selected from a collection of images of 106
patients including 14 healthy subjects, 16 patients with
emphysema, 35 patients with cryptogenic organizing
pneumonia, 36 patients with usual interstitial pneumonia,
4 patients with pneumonia, and 1 patient with acute

interstitial pneumonia. From the National Jewish Health
Center (Denver, CO, USA), where a GE CT scanner (GE
Lightspeed 16, GE Healthcare, Milwaukee, WI) was used,
HRCT images of 212 patients including 39 patients with
emphysema, 70 patients with cryptogenic organizing
pneumonia, 72 patients with usual interstitial pneumonia,
18 patients with pneumonia, and 13 patient with acute
interstitial pneumonia were selected. All the images were
obtained using typical HRCT protocol parameters, includ-
ing 220 mAs and 120–140 kVp with patients. Images
were reconstructed at a slice thickness of 1 mm and inter-
vals of 10 mm using an enhancing reconstruction kernel
(B70f in the Siemens scanner and a sharp kernel in the
GE scanner). CT image was scanned with breath-holding
at full inspiration by radiographer’s instruction.

The following six types of image characteristics were
examined: normal (Fig. 1a), ground-glass opacity
(Fig. 1b), consolidation (Fig. 1c), reticular opacity
(Fig. 1d), emphysema (Fig. 1e), and honeycombing
(Fig. 1f). Ground-glass opacity is an abnormally hazy fo-
cus in the lungs that is not associated with obscured un-
derlying vessels. A similar finding that is associated with
obscured underlying vessels is defined as consolidation.
Increased reticular lung opacity is the product of a thick-
ened interstitial fiber network of the lung resulting from
fluid, fibrous tissue, or cellular infiltration. In emphyse-
ma, there are focal areas of very low attenuation that can
be easily contrasted with the surrounding higher attenua-
tion of the normal parenchyma. Emphysema can typically
be distinguished from honeycombing based on areas of
emphysematous destruction that lack a visible wall,
whereas honeycomb cysts have thick walls of fibrous tis-
sue. Honeycombing is also characterized by extensive fi-
brosis with lung destruction, which results in a cystic,
reticular appearance. However, a problematic middle area
still exists in which more than two regional characteristics
are simultaneously shown or when a regional characteris-
tic is too ambiguous for radiologists to arrive at a
consensus.

Image Representation

Two expert radiologists, who each had more than 20 years
of experience, were asked to select rectangular regions of
interest (ROIs) of 30 × 30 pixels on CT images from each
scanner, which were categorized independently into one
of five disease regional patterns or as a normal regional
pattern excluding the airway, vessel, and pleura. The ra-
diologists selected the 2D ROIs using 3D information. To
reduce selection bias, only one ROI was selected per lobe.
Subsequently, the two radiologists reached a consensus on
the classification for each given ROI. For each scanner,
the radiologists chose 100 ROIs for each class, resulting
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in the consideration of a total of 600 ROIs for each
scanner.

The location of the ROI set used in the present study is
the same with the ROIs used in our previous work [18], in
which two shallow learning methodologies of Bayesian
and SVM classifiers were compared and evaluated. The
only difference was that 30 × 30 pixels of ROIs instead of
20 × 20 pixels of ROI were used. The reason for enlarg-
ing the ROI is to use data augmentation for the
convolutional neural network (CNN) which is a widely
used technique to improve the generalization performance
of CNN [19–21].

Research Design

To classify each ROI into one of six subregions, the CNN,
which is a representative classifier of a deep architecture,
was used. Without pre-training, CNN enables supervised
learning using back-propagation processes and interpixel
data for an image. For various visual classification issues,
this method is known to show a better performance com-
pared with conventional shallow learning methodologies
[19, 21, 30]. To evaluate the effects of different scanners
on the accuracy of the classification of regional disease
patterns, the following three study designs were
employed: intrascanner, interscanner, and integrated scan-
ner. In the intrascanner experiment, the training and test
sets were obtained from the same scanner. In the
interscanner experiment, the training and test sets were
acquired from the other scanner. Finally, in the integrated
scanner experiment, data from the two scanners were first
merged and then were split into separate training and test

sets. These three experimental designs are presented in
Table 1.

In each experiment, we performed fivefold cross-
validations to evaluate the performance of the model.
Specifically, we randomly split data into five folds and
used four of these as a training set and the remainder as
a test set for validation. This resulted in a training set of
480 samples and a test set of 120 samples from each
scanner for intrascanner cases. For integrated scanner
cases, we merged data from each scanner into a single
set and performed random sampling for cross-validation,
which resulted in a training set of 960 samples and a test
set of 240 samples. Chang et al. [18] previously evaluated
the effect of increasing the sample size from 600 to 1200
using an identical integrated data set approach and report-
ed that there was no significant difference between the
accuracy results based on the sample size variation. For
interscanner cases, we randomly split the data set into five
subsets and used four of them from one scanner as the
training set, while one subset from the other scanner was
used as a validation set. We repeated fivefold cross-
validations 20 times for each case. Figure 2 summarizes
the procedures used in the proposed automatic classifica-
tion system.

Automated Classification

The overall CNN architecture used to train the network is
described in Fig. 3. The network includes six learnable
layers that consist of four convolution layers and two
fully connected layers. To feed data into the input layer,
we performed two basic data augmentation approaches to

Fig. 1 Images from high-
resolution CT scans of the chest
are shown. Each image shows the
ROI that is a typical of each
particular condition: a normal
lung parenchyma, b ground-glass
opacity, c consolidation, d
reticular opacity, e emphysema,
and f honeycombing
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supplement the relatively small number of training data
sets and reduce overfitting. The first form was random
cropping and flipping. From the original 30 × 30 image
pixels, 20 × 20 pixels of ROI patches were randomly
cropped and an image with a probability of 0.5 was hor-
izontally flipped. A second form of augmentation, which
applies mean centering and random noise to all input
pixels, was also applied. Specifically, the mean and stan-
dard deviation of all training pixel values and the mean
value from all pixels of the training image were
subtracted. Additionally, random noise was added, which
was sampled from a Gaussian distribution with a mean of
zero and standard deviation and was used based on one

tenth of the value of the standard deviation of all pixel
values. In every iteration, these two forms of data aug-
mentation were applied to each mini-batch of samples.

In this study, the same 30 × 30 pixels of ROI were
employed in both of the SVM and CNN approaches. For
getting each best performance, however, the CNN adopted
the data augmentation above and the SVM did not. To
verify the effect of data augmentation, in another experi-
ment, the same augmented data set of 20 × 20 pixel ROI
patches cropped from the original 30 × 30 pixel ROI were
applied to both of the classifiers and the classification
accuracy results were compared.

The first convolutional layer learned 64 filters with a
size 4 × 4 pixels and a stride of 1. The size of the first
feature map became 19 × 19 because we used zero-
padding for the input image. Additionally, local response
normalization and max pooling, which leads to signifi-
cant gains in performance, were applied. The size of
pooling kernel is 3 × 3 with stride 2. Although it is
optional to use local response normalization for general
8-bit image data sets, such as ImageNet or MINIST, local
response normalization is critical to analyze 12-bit med-
ical images to prevent activation of the upper layers,
which are dominated by a set of high-input pixel values
that reduce overfitting. The 64 filters with a 3 × 3 pixel
size for the second convolution layer with a stride of 1
were used, and both local response normalization and
maximum pooling were again applied. The third and
fourth convolution layers were 64 filters with a 3 × 3
pixel size and a stride of 1 without local response nor-
malization or pooling. The fourth convolutional layer was
connected to the first fully connected layer with 100
nodes. The number of neurons in the first fully connected
layer was chosen by cross-validation with 50, 100, and
200, in which 100 showed the best performance. The
number of output classes was 6. Additionally, dropout
with a ratio of 0.5 in the first fully connected layer was
used to reduce overfitting. The output layer consisted of
six nodes with softmax activation. The network was
trained by minimizing cross-entropy loss between this
softmax output and one hot-coded true label. Finally,
for all layers in the architecture, rectified linear unit
(ReLU) activation was used. The only data-dependent

Fig. 2 Flow diagram of the automated classification system used in the
CNN

Table 1 Study design for
assessments of automatic
quantification

Notation Study set Study design Training set (N) Test set (N)

intra.G Intrascanner study GE GE (480) GE (120)

intra.S Siemens Siemens (480) Siemens (120)

integ Integrated scanner study Integrated set GE + Siemens (960) GE + Siemens (240)

inter.G2S Interscanner study GE to Siemens GE (480) Siemens (120)

inter.S2G Siemens to GE Siemens (480) GE (120)
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hyper-parameter was standard deviation of Gaussian ran-
dom noise. The other hyper-parameters such as momen-
tum, weight decay, learning rate, and number of training
epochs were chosen by fivefold cross-validation. We did
not use learning rate scheduling since the speed of con-
vergence was fast and the performance was not highly
sensitive to the value of learning rate.

The network was trained with stochastic gradient de-
scent and a batch size of 20 samples, a momentum of 0.9,
and a weight decay of 0.001. All weights and biases were
initialized from a Gaussian distribution with a mean of
zero and a standard deviation of 0.01, except for the first
convolutional layer that had a standard deviation of 0.001.
The CNN has been developed in-house, for all ROIs were
processed with 12 bits per pixel. We used Nvidia Titan
Black GPU with 6-GB memory for the present
experiment.

For imaging features, the 22-dimensional features used
by SVM are quantitative values from histogram, gradient,
run-length, gray level co-occurrence matrix, low-
attenuation area cluster, and top-hat transformation de-
scriptors [18]. For CNN, the features are automatically
learned from the raw training ROI patch images while
maximizing the classification performance. We used
100-dimensional features obtained from the fully connect-
ed layer when we feed the ROI patches through the CNN.

Statistical Analysis

Accuracy was measured to compare the classification perfor-
mance of the CNN and SVM classifiers for intrascanner,
interscanner, and integrated scanner data. The classification
accuracy of a classifier ‘Γ’ was defined as follows:

Accuracy ¼ 1

n
∑
n

i¼1
Γ Rið Þ � 100 %ð Þ

where

Γ Rið Þ ¼ 1; if correctly classifies Ri into one of the six classes
0: otherwise;

�

Here, Ri is the i-th ROI of the test data in a trial of
fivefold cross-validation and n is the number of ROIs in
the test data. When the classifier Γ correctly classifies the
ROI, Ri, into one of six classes (normal, ground glass
opacity, consolidation, reticular opacity, emphysema, or
honeycombing), the classification accuracy increases. To
compare the accuracy performance between classifiers or
between experimental sets, an unpaired t test was applied
in all cases because each two data sets of the accuracy-
tested groups were obtained independently. Here, the p
value was calculated with the classification performance
of all the fivefold cross-validations and their 20 replicates,
which meant that unpaired the t test was done with 100
values for each set. For each fivefold cross-validation, we
kept the indices of each fold and synchronized these in-
dices for two classifiers.

Results

For the SVM and CNN classifiers, the mean and stan-
dard deviation of the classification accuracy were evalu-
ated in three experimental designs to evaluate the
intrascanner, integrated scanner, and interscanner data
sets (Table 2). In all experiments, the CNN classifier
showed better overall performance in accuracy (p value

Fig. 3 Overall architecture for training the CNN network

Table 2 Comparisons of classification-based accuracy between the
SVM and CNN classifiers for six subregions of ILD

Study Classification accuracy (%) p value

SVM CNN

intra.G 90.06 ± 1.99 96.06 ± 1.61 < 0.001

intra.S 89.01 ± 2.20 96.11 ± 1.19 < 0.001

integ 88.07 ± 1.63 95.12 ± 1.91 < 0.001

inter.G2S 77.26 ± 3.08 86.13 ± 2.28 < 0.001

inter.S2G 77.03 ± 3.42 85.04 ± 1.91 < 0.001
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< 0.001) than the SVM classifier by 6–9%. In another
data set in which the same condition of image augmen-
tation was equally applied to exclude augmentation issue,
our findings also showed a similar tendency for a better
accuracy of the CNN by 4–11% (Appendix Table 4).
Confusion matrix of subclasses in the case of training
Siemens data and testing Siemens data was shown in
Appendix Fig. 4. This finding establishes the significant-
ly better performance of the classifier with a deep archi-
tecture compared with those with a shallow architecture,
even in diagnostic images of regional patterns of ILD.
Both classifiers showed accuracy degradation according
to interscanner variation from intra- to integrated and
then interscanner set. The degree of the accuracy degra-
dation rates between the SVM and CNN were similar,
but the CNN showed slightly lower degradation rates
than the SVM with a statistical significance (Appendix
Table 5).

In the pathological point of view, there exists the sub-
regional ambiguity between normal case and emphysema
or between honeycombing and reticular opacity. To quan-
titatively evaluate differences in the rates of progress be-
tween these specific subregions, the classification error
rates from normal case (or reticular opacity) to emphyse-
ma (or honeycombing) classifications and the reverse
comparisons were determined with the convolution layer
increment (Table 3). As the number of the convolution
layer increased, the overall classification accuracy showed
better performance from 81.27 to 95.12%, in which it
became nearly saturated at the stage of four convolution
layers from the classifiers with two convolution layers.
The increment of the convolution layer greatly drops the
misclassification rate between subregions. The classifica-
tion error rates of the normal case (emphysema) with em-
physema (normal case) dropped to 0.48% (1.21%), and

those of honeycombing (reticular opacity) to reticular
opacity (honeycombing) dropped to 2.12% (4.91%).

Discussion

Automated schemes for classifying or diagnosing diseases
have generally involved two steps for the quantification of
features and classification of conventional classifiers with
a shallow architecture, e.g., the SVM. However, deep
learning methods have recently been found to show re-
markable performance enhancement without extracting
features or feature optimization [19–21]. Using a CNN
classifier having a deep architecture, in the present study,
we could achieve better accuracy compared to the SVM
by 6–9% in all experiments for the intrascanner, integrat-
ed scanner, and interscanner tests. This finding establishes
that the better performance of deep learning methods
could also be applied to diagnostic images of ILD. We
also could estimate a degree of similarity or relationship
among subregions, which it might explain the relative
distance of the structural characteristics that are inherent
to each subregion of ILD. For example, the increment of
convolution layer in the CNN shows the processes of
differentiating among ILD subregions. The degree of the
remaining mixture between subregions, e.g., reticular
opacity and honeycombing, can be quantitatively calculat-
ed based on the error rate for misclassification. It may
help to elucidate a degree of similarity between specific
subregions and to understand the differentiation process
among ILD subregions and to provide clinicians with
findings to discuss and to help determine the number of
subregions or provide standards in diagnosing a
subregion.

Deep learning approach has been considered to be ro-
bust in many application domains because it does not use

Table 3 Classification error rates based on the CNN between subregions with increasing numbers of convolution layers

Study set No. of
convolution
layers

Classification accuracy
(%)

Error rate (%)

N > Ea E > Nb H > Rc R > Hd

Integrated
set

1 81.27 ± 1.57 14.92 22.81 14.71 17.11

2 90.67 ± 1.02 5.44 7.69 8.46 7.29

3 93.73 ± 0.71 2.50 1.46 7.14 6.13

4 95.12 ± 0.52 0.48 1.21 2.12 4.91

a Normal case was misclassified as an emphysema case
b Emphysema case was misclassified as a normal case
c Honeycombing case was misclassified as a reticular opacity case
d Reticular opacity case was misclassified as a honeycombing case
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pre-defined features for training classifiers. Instead, deep
learning models learn and extract features automatically
from the data. In the condition of the different scanner’s
data getting mixed, therefore, the SVM took the fixed pre-
defined feature extraction and the CNN extracted features
automatically with learning. In this study, since the top
two layers of CNN is essentially a simple nonlinear clas-
sifier, we concluded that the difference in performance
between the two methods was mostly due to the way their
features are extracted. Especially in this ILD classification
application, their subtypes of ground-glass opacity, con-
solidation, reticular opacity, emphysema, honeycombing,
and normal pattern have very vague and abstract bound-
aries to define each other. Therefore, it has been thought
that the deep learning method as a data-driven method has
better performance rather than the conventional feature-
based method does. Of course, both of the pre-defined
features in SVM and the automatically learned features
in CNN must be dependent on the scanner or the filter.

Although achieving better performance accuracy in
classifying ILD subregions can be acquired using the
CNN, several limitations still exist in this study. Even
with data augmentation being employed, the data samples
used in the present study were too small in typical deep
learning structures. In medical applications, actually, it
seems to be difficult to prepare a large image data set with
the gold standard qualified by the radiologist. It is be-
lieved that a larger data set could give us higher and more
robust classifying performance in accuracy. For this lim-
ited number of data, nevertheless, the performance of the
CNN with feature learning was shown to be significantly
better than the SVM with feature engineering in this
study. We also wanted to try the developed machine to
apply public data, but ILD data set, which is well classi-
fied and is proper to the present approach, seems to be
rarely found. Unfortunately, NLST is also not an ILD
cohort but lung cancer cohort (https://www.cancer.gov/
types/lung/research/nlst). In fact, the present study was
able to be performed because we already have the well-
prepared ILD data set due to the previous study. In addi-
tion, the present ROI-based study design is an important
limitation in real clinical applications because whole lung
quantification data obtained using an automation tool
would be needed to assist radiologists in real clinical sit-
uations as a computer-aided diagnosis (CAD). Our meth-
odology has attempted to take whole lung quantification
into account (Appendix Fig. 5). However, it does not ad-
dress the totally independent issue of avoiding misclassi-
fications by airways, vessels, and lung boundaries.
Another requirement for a better lung CAD must be to
use 3D information [9, 13, 29]. In general, however,

clinical HRCT of ILD images consists of the repetition
of a 1-mm axial image with a 10-mm interval on the Z-
axis. Therefore, it scans a 3D human body (the lung in
this study), but images do not have continuity along the
Z-axis. Volumetric CT scan which has been used recently
in a real clinical environment would enable a 3D CAD in
the near future.

Conclusions

In our present study, the performance of a CNN classifier
with a deep architecture was tested for subregion-
demarked parenchymal lung disease of ILD. In all the
interscanner variations, the CNN showed a better perfor-
mance, as indicated by increased accuracy compared with
the SVM with a shallow architecture. From the classifica-
tion error rates between subregions, we could evaluate
quantitative information as objective criteria to help radi-
ologists arrive at a consensus when diagnosing subregions
of ILD.
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Appendix

Appendix 1

Table 4 Comparisons of classification-based accuracy between the
SVM and CNN classifiers for six subregions of ILD with the same
augmented data set. From each original 30 × 30 ROI patch, 10 ROI
patches of 20 × 20 pixels were cropped from the five fixed positions
(top-left, top-right, center, bottom-left, and bottom-right) and all the
cropped patches were horizontally flipped. Both of the classifiers used
the same data set augmented 10 times

Study Classification accuracy (%) p value

SVM CNN

intra.G 88.93 ± 1.19 95.86 ± 1.29 < 0.001

intra.S 90.31 ± 1.00 95.21 ± 1.60 < 0.001

Integ 86.81 ± 0.84 94.89 ± 1.60 < 0.001

inter.G2S 75.90 ± 1.57 86.04 ± 2.22 < 0.001

inter.S2G 73.11 ± 1.49 84.67 ± 2.50 < 0.001
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Appendix 2

Appendix 3

Fig. 4 Confusion matrix of
subclasses in the case of training
Siemens data and testing Siemens
data

Table 5 Classification-based accuracy comparisons between experimental sets. The scheme for calculating the accuracy for each classifier was the
same as that indicated in Table 2

Study Classification accuracy (%) Improvement (%) Accuracy degradation rate (%)

SVM p value CNN p value SVM CNN p value

intrascanner set 89.53 ± 2.15 < 0.001 96.09 ± 1.41 < 0.001 6.56 1.61 ± 6.04 0.99 ± 5.40 0.03
integrated scanner set 88.07 ± 1.63 95.12 ± 1.91 7.05< 0.001 < 0.001 12.37 ± 9.51 9.98 ± 6.76 < 0.001
interscanner set 77.14 ± 3.25 85.59 ± 2.17 8.45
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