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Abstract
Retinal fundus images are often corrupted by non-uniform and/or poor illumination that occur due to overall imperfections in the
image acquisition process. This unwanted variation in brightness limits the pathological information that can be gained from the
image. Studies have shown that poor illumination can impede human grading in about 10~15% of retinal images. For automated
grading, the effect can be even higher. In this perspective, we propose a novel method for illumination correction in the context of
retinal imaging. Themethod splits the color image into luminosity and chroma (i.e., color) components and performs illumination
correction in the luminosity channel based on a novel background estimation technique. Extensive subjective and objective
experiments were conducted on publicly available DIARETDB1 and EyePACS images to justify the performance of the
proposed method. The subjective experiment has confirmed that the proposed method does not create false color/artifacts and
at the same time performs better than the traditional method in 84 out of 89 cases. The objective experiment shows an accuracy
improvement of 4% in automated disease grading when illumination correction is performed by the proposed method than the
traditional method.
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Introduction

Fundus photography is a widely used imaging modality for
non-invasive examination of the eye and is considered an
efficient modality to screen for and diagnose several eye dis-
eases including age-related macular degeneration (AMD) [1]
and diabetic retinopathy (DR) [2]. The widespread availability
of fundus cameras and the easily manageable data format have
made this imaging popular nowadays [3, 4].

Retinal images obtained in a screening program are ac-
quired at different sites, using different cameras that are oper-
ated by qualified people who have varying levels of experi-
ence [4]. Fundus images frequently show unwanted variations
in brightness due to overall imperfections in the imaging in-
strument itself [5–7] or by error in the alignment of the mea-
surement subject [7]. Figure 1 shows a typical example of

non-uniform illumination in fundus image in which the center
of the image is considerably brighter than its surroundings.

This non-uniformness in illumination across the retina limits
the pathological information that can be gained from the image.
Studies have shown that poor illumination can impede human
grading in about 10~15% of retinal images [8]. For automated
grading, non-uniform and/or poor illumination can significantly
affect the grading performance [9, 10]. Thus, methods for auto-
mated correction of non-uniform/poor illumination have got ut-
most importance. Majority of the illumination correction
methods in retinal imaging context focuses on gray scale or green
channel of the RGB fundus image [11, 12]. Green channel is
typically consideredmore robust against noise compared to other
channels in RGB fundus image and is used explicitly for auto-
mated detection and analysis of pathologies. Thus, performing
illumination correction only on the green channel serves the
purpose to some extent. However, the use of color information
for detection/ analysis of pathologies is very likely to bring fur-
ther improvement, especially when we already know that color
serves as an important visual clue among different pathologies
[13, 14] in fundus photographs. On that perspective, this paper
focuses on developing illumination correction methods for
color fundus images.
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In recent years, a few arbitrary attempts are made to devel-
op illumination correction methods for color fundus photo-
graphs [9, 15, 16]. While these methods were found to im-
prove the automated detection/classification accuracy of cer-
tain pathologies [9], or to improve the segmentation of retinal
vessels [16], it remained unjustified whether these methods
will create false color/artifacts on the image or not.
Unsurprisingly, creation of false color/ artifacts is very likely
to interfere with other pathology detection/classification.

In this paper, we propose an illumination correction method
of color fundus photograph that does not create false color/
artifacts in the image, which we validate through extensive
subjective experiment. The simple and efficient background
subtraction based illumination correction method [17] has been
amended by incorporating a novel background estimation tech-
nique and by adapting the model for color image processing.

Specific contributions of the paper include:

1. A novel method for illumination correction of color fundus
photographs. Specifically, we augment the background
subtraction based illumination correction model for color
image processing and propose a novel background estima-
tion technique in the context of retinal imaging.

2. Extensive subjective experiment to justify that the pro-
posed method does not create false artifacts at least in
the areas that did not suffer non-uniform or poor illumi-
nation prior to correction.

3. Subjective and objective experiments to justify that the pro-
posed method performs better than the traditional method.

Related Works

Several methods for non-uniform illumination and shade cor-
rection have been described in the literature. Popular methods
for non-uniform illumination and shade correction can be clas-
sified into filtering-based [18, 19], surface fitting-based [20],
segmentation-based [21], and others. Filtering-based methods

assume that shading components that have distorted the image
can be estimated by filtering the acquired imagewith a low-pass
filter. Surface fitting method assumes that the intensity varia-
tions of the background can be estimated by fitting a shading
model [22]. Usually, a second-order polynomial is used as the
function of the model for least-squares fitting. Segmentation-
based method repeatedly performs image segmentation and
bias field fitting [21]. Histogram equalization [17], Gamut map-
ping and Gamma correction [23], and Retinex approach [24,
25] are some of the other commonly used methods for illumi-
nation correction. Each of the methods has its pros and cons
[15]. This paper focuses on filtering-based methods which are
typically considered simple, however, efficient [16].

Specific methods for illumination corrections have been
already proposed for retinal image processing and analysis.
Simple and fast method using large-kernel median filter to
obtain a low-pass correction coefficients in retinal images
was proposed by Niemann in [26]. Narasimha-Iyeret et al.
[27] proposed an illumination correction method that com-
bines the advantages of filtering and surface fitting. The meth-
od also exploits and uses retina-specific information. In [10],
Foracchia et al. proposed a method for automated luminosity
and contrast normalization of retinal images. The method es-
timates of the luminosity and contrast variability in the back-
ground part of the image and then develops methods to com-
pensate them. Leahy et al. [7] applied Laplace interpolation
and a multiplicative image formation model illumination cor-
rection of retinal images. In [28], Zheng et al. used the sparsity
property of image gradient distribution for illumination cor-
rection of retinal fundus images. Majority of the illumination
correction methods in retinal image analysis uses only the
green channel of the RGB photograph. There are only a few
methods that perform illumination correction of color fundus
images. In an attempt to perform illumination correction of the
color fundus photographs, Grisan et al. proposed a model-
based approach in [15]. The method uses the hue, saturation,
and value (HSV) color space to better decouple the luminance
and chromatic information. Then, it fits an illumination model
on a proper subregion (the retinal background) of the satura-
tion and value channels. Kolar et al. [16] relied on B-spline
approximation of the illumination surface to perform illumi-
nation correction. Varnousfaderani et al. [9] used LUV color
space transformation and a standard reference image for illu-
mination correction as well as contrast enhancements. These
methods in general does not justify whether they will create
false color/artifacts on the image or not. We differ from these
studies by providing a clear justification through our subjec-
tive experiment that shows the proposed method does not
create false color/artifacts at least on the areas that did not
suffer non-uniform/poor illumination prior to correction. At
the same time, we have performed extensive subjective and
objective experiments to vindicate that the proposed method
performs better than the traditional method.

Fig. 1 An example fundus image which shows poor/ non-uniform
illumination
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Proposed Illumination Correction

Color Transform to Split the Luminance Channel

RGB color space is not well suited for illumination correction
and chromatic preservation, since the channels are correlated
[15]. Therefore, color space transformation is required to
transform the RGB image into a space where luminosity can
be separated from the chroma. Widely used color transfor-
mation models include HSV [15, 29], LUV [9, 29], and
LAB [29]. Inspired by the findings of Grisan et al. [15],
we have used HSV color space transform [30] here. HSV
color space contains three components—hue, saturation,
and value [30, 31], where the value channel represents the
luminance. HSV components are computed from the RGB
values as below:
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Background Estimation and Illumination Correction

The illumination correction systemwe propose is based on the
following background subtraction model [32]

f
0 ¼ f −bþ mean bð Þ;

where f is the observed image, b is the background image,
mean (b) represents the mean of the background image, and
f′ is the image after correction.

Typically, the background is estimated by applying a
smoothing filter (e.g., median filter [26], Gaussian filter
[17]) with a very large kernel on the original image [16].
The major drawback of this method is that it may cause
smoothing effect on pathological regions [15]. This may lead
to poor pathological detection. Here, we proposed a novel
background estimation method that overcomes this problem.

To estimate the background image, we rely on the follow-
ing model of the observed fundus image f:

f ¼ g f oð Þ ¼ g f oback þ f oforeground
� �

;

where fo is the original image, f oback is the original background
image, and f oforeground is the original foreground image.

The original background image f oback is free of any vascular
structure, optic disk, and visible lesions. The original fore-
ground image f oforeground on the other hand includes vascular

structures, the optic disk, visible pathology, etc., i.e., all the
features that are not in the background image.

To compute the background image, we require a prelimi-
nary extraction of the pixels belonging to the background set
β. To form β, we rely on the following two assumptions about
the background pixels [10]:

1. The intensity values of background and foreground pixels
are different enough to be detected.

2. In a neighborhood of w ×w pixels, at least 50% of them
are background pixels.

The window size w × w plays an important role for the
assumptions to be satisfied. Ideally, the window size should
be big enough so that when it covers the biggest pathology in
the image, at least 50% pixels in the window are still back-
ground. However, bigger window size causes computational
cost to increase significantly. In this work, experimentally, we
found that w equal to one-half of the optic disk diameter pro-
vides an optimal choice. It is worth mentioning when the
above assumptions are not satisfied, for example, for extreme-
ly large pathology (in a part of the image), then the back-
ground image generated (for that part of the image) by the
proposed method and the traditional method will be identical;
which eventually means in the worst-case scenario as well, the
proposed method will perform at least as good as the tradi-
tional method.

To implement the above assumptions what is done is for
each pixel (x, y) in the image, we compute a mean intensity
μ(x, y) using a window of size w × w around the (x, y),
which is then compared with the pixel’s intensity. The pixel
(x, y) belongs to β if its intensity is close to the mean inten-
sity. This is mathematically expressed by saying that the
pixel (x, y) belongs to β if |μ(x, y) − f(x, y)| < t, where f(x,
y) is the intensity of the pixel (x, y) and t is a predefined
threshold. The value of t has been experimentally set to
0.015.

The background image b is computed by applying a
Gaussian blur of σ, equal to one half of w on β.

Figure 2 shows the luminosity channel of the image shown
in Fig. 1, pixels belonging to the background set, and the
luminosity image obtained after illumination correction.

J Digit Imaging (2018) 31:553–561 555



Efficient Computation of Mean Intensity

The proposed approach requires computing the mean intensity
within a window for each pixel of the image. To ensure effi-
cient computation, integral image [33, 34] is used. Integral
image is an efficient way of computing sum of values of rect-
angular subset within an image. It is a two-dimensional array,
and the value at a point (x, y) in the array is just the sum of all
the elements above and to the left of (x, y). Mathematically, the
integral image f∑ is computed from the original image f as
below,

f ∑ ¼ ∑x0 ≤ x
y0 ≤ y f x

0
; y

0
� �

:

Once we have computed f∑, then the summation of inten-
sities within a window w ×w around (x, y) is computed as
below,
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From s(x, y), the mean μ(x, y) is computed as below,

μ x; yð Þ ¼ s x; yð Þ
w� w

:

Experimental Analysis

Subjective Experiment

Subjective experiment was conducted to visually analyze the
effect of illumination correction methods on the appearances
of pathologies in the images. The experiment was performed
in the presence of an experienced ophthalmologist. The pro-
posed method, the traditional method, and the original image
prior to corrections were compared. In order to have a fair
comparison, Gaussian smoothing and HSV color space trans-
formation were used for the traditional method as well.

Figure 3 shows an example color fundus image with poor
and non-uniform illumination, the corrected image by the pro-
posed method, and the image produced by traditional method.

Dataset

The publicly availableDIARETDB1 dataset (http://www.it.lut.fi/
project/imageret/diaretdb1/) was used for the experiment. The
dataset contains 89 color fundus images of dimensionality
1500 × 1152. The visible pathologies that are present in the
images include microaneurysms, hemorrhages, and soft and
hard exudates. The pathologies were outlined by four
independent experts. The images were either optic disc (OD) or
macula-centered.

(c) (d) 

(a) (b) 

Fig. 2 Background estimation
and illumination correction on an
example image. a Luminosity
channel of the image shown in
Fig. 1. b Background and
foreground pixels following
intensity thresholding—1 means
foreground and 0 means
background. c Estimated
background by the proposed
method. d Illumination-corrected
luminosity channel
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Experiments and Results

One experienced ophthalmologist performed the experiment.
A computer platformwas developed for the experiment. Three
different images including the original image, the image pro-
duced by the proposed correction method, and the image pro-
duced by the traditional method were shown on the platform.
The ophthalmologist was asked to rank the images based on
how clinically informative they were, specifically, based on
visibility of pathologies, overall color appearance, illumina-
tion, and contrast. While choosing a processed image over the
original, the ophthalmologist was told to be careful that the
processed image should not create false color or artifacts at
least in the regions that were clearly visible in the original
image. At the same time, the ophthalmologist should choose
the original image as the best if he found any pathologies that
were visible in the original image, however, became dimmed
in the processed image. The ophthalmologist had the option to
give comments for any particular selection.

A snapshot of the platform is shown in Fig. 4.
It is worth mentioning, in order to avoid any possible bias,

the ophthalmologist was not made aware that method 1
(Fig. 4) corresponds to the proposed method and method 2
corresponds to the traditional approach.

Figure 5 depicts the findings of the experiment.
From the illustration, it is observable that in majority of the

cases, the ophthalmologist chose the corrected images over
the original images, 84 out of 89 cases to be exact. Out of
these 84 cases, in 80 cases, the corrected images produced

by the proposed method were ranked better than the corre-
sponding one from the traditional method. The ophthalmolo-
gist chose the original images over the corrected images in 5
out of 89 cases. By analyzing the image data and ophthalmol-
ogist’s comments, we found that in 1 out these 5 cases, the
original images had a barely noticeable non-uniformness in
illumination and, at the same time, the processed methods did
not make them look any better. In the rest 4 cases, illumination
correction methods affected the visibility of the pathologies
(pathologies appeared dim) to some extent (though slightly).
Of these 5 cases, in 4 cases the proposed method was ranked
topper than the traditional method. Overall, neither the pro-
posed nor the traditional method was found to produce false
color/artifacts on the images to an extent that would be rele-
vant in practice; however, the tradition method was found to
make the pathologies to appear dim in many cases.

Objective Experiment

Here, computer vision methods were applied for automated
pathology detection/classification and grading of the images
prior and after illumination correction. Color fundus images
obtained from DIARETDB1 and Kaggle (https://www.
kaggle.com/c/diabetic-retinopathy-detection/data) datasets
were used for the experiment.

In the first part of the experiment, we applied a machine
leaning technique to detect and classify DR pathologies,
namely, microaneurysms, hard exudates, soft exudates, and
hemorrhages. DIARETDB1 dataset had 89 images—28

(a) 

(b) (c) 

Fig. 3 An example of fundus
images before and after
illumination correction. a
Example image with non-uniform
illumination. b Corrected image
by the traditional method. c
Corrected image by the proposed
method
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training images and 61 test images. The ground truth images
representing the pathologies of these images were also
available.

We applied the deep learning framework proposed in [35]
for the automated detection and classification of pathologies
from the images. Deep features of dimensionality 4096 were
learnt at the first fully connected layer. Support vector ma-
chine (SVM) classifier was applied on top of these activation
features to classify the pathologies. LibSVM (https://www.
csie.ntu.edu.tw/~cjlin/libsvm/) toolbox was used with default
parameters. Optic disk (OD) [36] detection was also

performed prior to deep learning to avoid the ambiguous color
feature match with exudates.

Figure 6 shows the receiver operating characteristic (ROC)
curves for the detection and classification of DR features.
Table 1 summarizes the area under the ROC curves obtained
for different methods.

From the results, it is observable that microaneurysms are
likely to be better detected/classified on the processed images
than on the original images. However, for other pathologies,
improvements are not to an extent that would be relevant in
practice. The difference between the proposed method and the
traditional method is also not statistically significant. By visually
analyzing the image data, we found that the original images
themselves did not have much of non-uniform/poor illumination
that blocked the pathology appearance. That possibly explains
why the difference among different methods is negligible.

In order to better understand the overall improvement, in
the second part of the experiment, fundus images from
EyePACSwere used. EyePACS has 35,126 retinal images that
are graded (by human graders) into five different categories
based on DR severity levels. Out of these 35,126 images,
25,810 images are normal, 2443 images are mild non-
proliferative DR (NPDR), 5292 images were moderate
NPDR, 873 images are severe NPDR, and 708 images are
proliferative DR. We aimed to use almost same number of
images for each of these categories for this experiment, in
order to ensure fair learning for each category by a deep learn-
ing model [13]. We performed data augmentation on the pro-
liferative DR images, specifically by rotation (in the range of
− 5° to 5°) and flipping, to increase the number of images by

Fig. 4 A snapshot of the
computer platform
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Fig. 5 Ranking of images by the participant. Each dot represents an
image
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eight times in this category. Similarly, we performed data aug-
mentation of images in the severe NPDR category to increase
their number by six times. For the moderate category, we used
all the images. For the mild category, we performed data aug-
mentation likewise to increase the number of images by 2.5
times. For normal images, we selected 6500 images randomly.

Thus, for the objective experiment here, a total of 29,664
images were used (details are provided in Table 2).

A deep convolution neural network (CNN) [37] was used
to classify the images into five categories as explained above.
Specifically, we used the inception v3 model [37] for this
experiment. Ninety percent of the data were used for training
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Fig. 6 ROC curves for pathology detection: a microaneurysms, b hard exudates, c soft exudates, and d hemorrhages

Table 1 Area under the ROC curve

Lesion types Area under the ROC curve (AUC) (in %)

Original Traditional method Proposed method

Microaneurysms 83.84 86.97 87.37

Hard exudates 78.68 78.58 78.68

Soft exudates 87.56 87.32 88.05

Hemorrhages 89.25 90.86 91.07

Table 2 Details of the
image categories used
for the experiment

Categories Number of images

Normal 6500

Mild 6107

Moderate 5292

Severe 6111

Proliferative 5664

Total 29,664
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and 10% were used for testing. CNN classifications were per-
formed on the original images and on the illumination-
corrected images by the proposed and traditional methods
(performed on the HSV space) separately. Without illumina-
tion correction, the overall classification accuracy (after 5
epochs) was 56%. With illumination correction by the tradi-
tional method, the accuracy turned to 59%, and with illumi-
nation correction by the proposed method, the overall classi-
fication accuracy turned to 63%.

Discussions and Conclusion

A method for efficient correction of poor and non-uniform
illumination of retinal images has been proposed, implement-
ed, and verified. A novel method for estimation of background
image in the context of retinal imaging is proposed.
Traditional approach applies the smoothing filter directly on
the original image to estimate the background, whereas the
proposed method splits the background and foreground com-
ponents and then applies the smoothing filter accordingly. Our
subjective and objective experiments have demonstrated that
the proposed method performs better than the traditional
method and also it does not create false color/artifacts on the
image.

Evaluating the performance of the illumination correction
method is non-trivial, as suitable metrics are difficult to define
[7]. In [9], Varnousfaderani et al. relied on quantitative analy-
sis of retinal features and automated grading using machine
learning to evaluate the performance of the proposed correc-
tion. While such analysis serves the purpose to some extent,
the effect on overall color appearance following correction
and creating of false color (if there any) needs further consid-
eration. On that perspective, in line with Kolar et al. [16], we
feel that a subjective experiment is necessary along with the
objective experiment to properly evaluate a correction meth-
od. That is what has been done in this paper.

The subjective experiment confirms that the proposed
method does not create false color/artifacts in the image, at
the same time performs better illumination correction than the
traditional method. In 84 out of 89 cases, the proposedmethod
performs better than the traditional method.

The objective experiment on EyePACS images shows that
the proposed method ensures higher accuracy in disease grad-
ing than the traditional method when used as a pre-processing
technique in a deep learning framework. An improvement of
4% has been observed when illumination correction is per-
formed by the proposed method than the traditional method.
For DIRETDB1 dataset, no significant improvement in pa-
thology detection/classification has been observed. However,
it is due to the fact that the original images did not have much
of non-uniform/poor illumination that could affect pathology
detection.
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