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Abstract
The set of criteria called Response Evaluation Criteria In Solid Tumors (RECIST) is used to evaluate the remedial effects of lung
cancer, whereby the size of a lesion can be measured in one dimension (diameter). Volumetric evaluation is desirable for
estimating the size of a lesion accurately, but there are several constraints and limitations to calculating the volume in clinical
trials. In this study, we developed a method to detect lesions automatically, with minimal intervention by the user, and calculate
their volume. Our proposedmethod, called a spherical region-growingmethod (SPRG), uses segmentation that starts from a seed
point set by the user. SPRG is a modification of an existing region-growingmethod that is based on a sphere instead of pixels. The
SPRG method detects lesions while preventing leakage to neighboring tissues, because the sphere is grown, i.e., neighboring
voxels are added, only when all the voxels meet the required conditions. In this study, two radiologists segmented lung tumors
using a manual method and the proposed method, and the results of both methods were compared. The proposed method showed
a high sensitivity of 81.68–84.81% and a high dice similarity coefficient (DSC) of 0.86–0.88 compared with the manual method.
In addition, the SPRG intraclass correlation coefficient (ICC) was 0.998 (CI 0.997–0.999, p < 0.01), showing that the SPRG
method is highly reliable. If our proposedmethod is used for segmentation and volumetric measurement of lesions, then objective
and accurate results and shorter data analysis time are possible.
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Introduction

Lung cancer has the highest incidence and mortality rates
among cancer cases worldwide. In the USA, the survival
rate was only 17% from 2003 to 2009 and the mortality rate
was 29.5% for men and 26.1% for women from 2006 to
2010 [1]. For this reason, clinical categorization, proper

treatment, and objective response assessment of cancer
cases are required [2, 3]. The Response Evaluation
Criteria In Solid Tumors (RECIST), published by an inter-
national collaboration of the European Organization for
Research and Treatment of Cancer (EORTC) and the
National Cancer Institute of the USA, is used in clinical
fields for the objective assessment of treatment effects.
RECIST categorizes lesions with the longest diameter
≥ 10 mm as measured by a spiral computed tomography
(CT) scan as measurable lesions. Up to five of these mea-
surable lesions are identified as target lesions, and the sum
of the longest diameter of these target lesions is used as the
reference on which to evaluate the response to treatment
[4]. However, a one-dimensional (1D) diameter does not
reflect the real size of a lesion. To accurately calculate the
size of a lesion and evaluate small changes, volumetric
evaluation is necessary. Zhao et al. [5] found that volumet-
ric measurement is more sensitive in detecting changes in a
lesion than existing 1D measurements. However, all three-
dimensional (3D) boundaries must be defined to measure
the volume of a lesion, but defining the boundaries is time-
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consuming and difficult. In addition, interrater variability
makes manual measurement less reliable.

Our study aimed to resolve the problems of the manual
measurement of a lesion by developing a semiautomatic 3D
tumor segmentation method based on computer-aided diag-
nosis (CAD) to compute the volume of a tumor. CAD is an
ancillary diagnostic tool with various image-processing
techniques for performing difficult measurements.
Physicians save time with CAD because tumor volume is
measured almost automatically using a variety of indices
such as intensity or relationship between pixels [6, 7].
Additionally, the objective and quantitative measurements
yield results with high reproducibility and reliability. In a
comparison of manual volumetric measurement and auto-
matic volumetric measurement using CAD to evaluate tu-
mor response to chemotherapy, Marten [8] showed that
there was no significant mismatch among the radiologists
with the automatic measurement, but the manual measure-
ment had a 24% mismatch among the radiologists.
Currently, most studies in which CAD was used focused
on isolated lung cancer; published studies on lung cancer
with involvement of the chest wall or mediastinum are rare.
In addition, the accuracy of the results of studies on lung
cancer with involvement of the chest wall or mediastinum is
generally low because the unclear boundary between tumor
tissue and normal tissue makes segmentation difficult. In
2013, Gu et al. [9] designed a 3D region-growing algorithm
using a lung tumor analysis (LuTA) application with CT
images to perform automatic lung cancer segmentation
and obtained an average similarity of 78.01% with 15 man-
ual measurements. In 2014, Guo et al. [10] used automatic
segmentation of tumors via a Markov random field model
in positron emission tomography/computed tomography
(PET/CT) and obtained a dice similarity coefficient (DSC)
of 0.85 ± 0.013 for seven CT scans. Also in 2014, Cui et al.
[11] used automatic segmentation via a graph-based model
in PET/CT and obtained a DSC of only 0.791 for 20 CT
scans. Of the abovementioned studies, the Guo et al. study
was the only one that showed relatively high accuracy.
However, it required the use of PET and CT together and
only two-dimensional (2D) segmentation was possible. In
addition, the number of scans used (seven) was not suffi-
cient to obtain reliable results. The main purpose for using
CAD for tumor segmentation in lung cancer cases is to
minimize manual intervention. However, the segmentation
results of some tumors that have invaded the chest wall or
mediastinum require modification by some manual inter-
vention because of low accuracy. In addition, using CAD
for only isolated tumors is inefficient. To overcome these
limitations, we propose and verify an algorithm that accu-
rately segments lung cancer of various types such as isolat-
ed cancers or invaded cancers with minimal user
intervention.

Materials and Methods

Study Dataset and Development Environment

For our study, we collected CT images of the chest from 80
patients (49 men, 31 women; age range = 43–79 years) receiv-
ing chemotherapy at the Korean National Cancer Center and
periodically assessed the images using the RECIST guidelines.
CT images were 512 × 512 pixels and in 16-bit Digital Imaging
and Communications in Medicine (DICOM) format.
Information about each patient was deleted, and all CT data
were classified and managed using serial numbers. Programs
used in the experiment were Microsoft Visual Studio (ver.
2010, Microsoft Corp., Redmond, WA, USA), ITK (Insight
Segmentation and Registration Toolkit; Kitware Inc., Clifton
Park, NY, USA), andVTK (Visualization Toolkit; Kitware Inc.).

Manual Segmentation

To assess the accuracy of the proposed segmentation method,
we used the results of manual segmentation as the gold stan-
dard. Using software developed in-house, the tumor was
outlined manually to define the region of interest (ROI). The
ROI was drawn on all axial planes where the tumor was pres-
ent, and all ROIs were joined to construct the 3D model.

Semiautomatic Segmentation

The proposed method begins with the user setting the seed
point at the center of the tumor and performing a preprocess-
ing step before conducting the algorithm following the flow-
chart shown in Fig. 1.

Fig. 1 Flowchart of the proposed algorithm
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Preprocessing

Preprocessingwas conducted to reduce image noise and improve
image quality and thus increase the accuracy of lesion segmen-
tation. A bilateral filter was used to denoise the image because of
the difficulty in using an anisotropic diffusion filter. The filter
reduces noise using a smoothing and range parameter while pre-
serving the edge of the image effectively [12]. Figure 2b shows
that the noise was entirely removed, but the edge of the lesion
was hardly effected despite decreasing the noise.

After denoising, the image underwent improvement to help
in the accurate classification of surrounding tissues. The goal
of image improvement is the clear segmentation of the lesion
by increasing the pixel gradient and adjusting the image con-
trast. The bottom-hat filter is used to emphasize the bright side
and darken the other side of an image [13]. We maximized the
contrast between tumor and tissues by combining the bottom-
hat-filtered image and the original image (Fig. 2c).

Tumor Segmentation

The 3D region-growing algorithmwas used to detect the tumor.
Region growing is a general method for segmenting a homo-
geneous region by expanding out from a seed point in 3D. The

expansion of the region is efficient when the target area is
clearly separate from the surrounding area [14–16]. However,
leakage occurs when a pixel does not satisfy the region-
growing criterion. When the tumor has invaded the chest wall
or mediastinum in the CT image, the general region-growing
algorithm has a risk of leakage due to the similar contrast dis-
tribution between the tumor and the surrounding tissues.
Accordingly, we developed the spherical region-growing
(SPRG) method in which a 3D spherical mask is used to pre-
vent leakage from neighboring tissues. Figure 3 shows the con-
cept of the SPRG algorithm. A collection of voxels, W, on a
segmented region undergoing analysis is defined as

W ¼ x; y; zð Þ∉RGjN x; y; zð Þ∩RG≠∅f g; ð1Þ
where N(x, y, z) are 26 neighboring voxels to voxel (x, y, z)
in W, and RG is a collection of voxels detected in this iter-
ation. W consists of surrounding voxels that have not yet
been checked. All voxels in W are determined suitable for
inclusion in RG by checking the growing condition, which
is defined by Eqs. 2 and 3:

δ1 x; y; z;RGð Þ ¼ mean RGð Þ−2SD RGð Þ; ð2Þ
δ2 x; y; z;RGð Þ ¼ mean RGð Þ þ 2SD RGð Þ: ð3Þ

Fig. 3 Comparison of the concept
of general region-growing
algorithms and that of the
proposed algorithm

Fig. 2 Result of image
improvement. aOriginal image. b
Result of denoising by using a
bilateral filter. c Improved image
after using a bottom-hat filter
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Because RG voxels are added to every growth re-
gion, the growing condition changes by adapting to
the brightness distribution of the tumor as the region
is grown.

In a general region-growing method, the growing
condition around the current voxel (x, y, z) is examined.

However, in our method, inspection occurs around δ1(x,
y, z, RG) and δ2(x, y, z, RG) using a 3D spherical mask
S(x, y, z) defined as

S x; y; zð Þ ¼ xi; yi; zið Þj xi−xð Þ2 þ yi−yð Þ2 þ zi−zð Þ2≤r2
n o

;

ð4Þ

C x; y; zð Þ ¼ x j; y j; z j
� �

j x j; y j; z j
� �

∈S x; y; zð Þ⋀ x j; y j; z j
� �

: δ1 x; y; z;RGð Þ≤g xj; y j; z j
� �

≤δ2 x; y; z;RGð Þ
n o

; ð5Þ

where S(x, y, z) is a set of voxels (xi, yi, zi) in a 3D sphere of
radius r and centered at current voxel (x, y, z). C(x, y, z) is the
set of voxels around S(x, y, z) that satisfy the growing condi-
tion of δ1(x, y, z, RG) and δ2(x, y, z, RG). All voxels inC(x, y, z)
are elements of S(x, y, z), and g(xj, yj, zj) is the brightness of
each voxel (xj, yj, zj) in a set of voxels in the range of δ1(x, y, z,
RG) and δ2(x, y, z, RG).

After the examination of growth conditions is completed,
the current voxel (x, y, z) is checked for inclusion in RG using
Eq. 6:

θ S x; y; zð Þ;C x; y; zð Þ½ �

¼ 1; if S x; y; zð Þ−C x; y; zð Þ ¼ ∅
0; otherwise

�
ð6Þ

Table 1 Comparison of
sensitivity, specificity, accuracy,
and DSC between the results of
the manual and the SPRG
measurements

Sensitivity (%) Specificity (%) Accuracy (%) DSC

Manual1 SPRG1 81.68 99.97 99.89 0.86

SPRG2 81.69 99.97 99.89 0.86

Manual2 SPRG1 84.81 99.97 99.91 0.88

SPRG2 84.73 99.97 99.91 0.87

Fig. 4 Comparison of the segmentation results between the manual and the SPRG. a, e Results of the Manual1. b, f Results of the Manual2. c, g Results
of the SPRG1. d, h Results of the SPRG2
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If S(x, y, z) and C(x, y, z) are the same, then all voxels in the
3D sphere have met the growing condition. Thus, θ[S(x, y, z),
C(x, y, z)] = 1 and RG includes the current voxel (x, y, z).

In the proposed method, if the leakage area is smaller than
the 3D sphere of radius r, the tumor is segmented and leakage is
prevented. However, if the leakage area is greater than the 3D

sphere of radius r, leakage occurs. Therefore, the appropriate
size of the 3D sphere must be determined. The size of the 3D
sphere is determined automatically as it changes according to
the change in the volume resulting from segmentation.

Results

We segmented a lung tumor on a chest CT image using our 3D
SPRG method. The result is shown in Fig. 4.

We also compared and performed statistical analysis on the
results of manual segmentation and segmentation using the
proposed SPRG method for 80 cases. The two radiologists
who participated in the study detected the lung tumor in the
same 80 cases via manual measurement (Manual1, Manual2).
In addition, they performed lung tumor segmentation using
the SPRG method (SPRG1, SPRG2). The volume of the tu-
mor was determined based on all of the detected results.

Fig. 5 Bland–Altman plots comparing the manual and the SPRG volumetric measurements. aManual1 and SPRG1. bManual1 and SPRG2. cManual2
and SPRG1. d Manual2 and SPRG2

Table 2 Verification and comparison of the results of the SPRG and the
manual volumetric measurements

Mean ± standard deviation F P valuea ICC P valueb

Manual1 45.39 ± 60.83 0.161 0.922 0.998 < 0.01
Manual2 44.37 ± 59.19

SPRG1 40.48 ± 54.58

SPRG2 40.48 ± 54.55

aP value for ANOVA test
bP value for ICC
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Fig. 6 Interobserver variation of the measured volume. a Scatter plot comparing theManual1 and theManual2. b Scatter plot comparing the SPRG1 and
the SPRG2. c Bland–Altman plot comparing the Manual1 and the Manual2. d Bland–Altman plot comparing the SPRG1 and the SPRG2

Fig. 7 Comparison of elapsed time needed for segmentation of 20–40-ml tumor
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The accuracy of the SPRG measurement method was eval-
uated using sensitivity, specificity, accuracy, and DSC. For
evaluation, we obtained true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) by calculat-
ing, pixel-by-pixel, the position of the lung tumor detected by
the SPRG and manual methods; the results are presented in
Table 1. The sensitivity of SPRG1 and SPRG2 compared to
that of Manual1 was 81.68 and 81.69%, respectively, and the
DSCwas 0.86 for both. The sensitivity of SPRG1 and SPRG2
compared to that of Manual2 was 84.81 and 84.73%, respec-
tively, and the DSC was 0.88 and 0.87.

We also evaluated the comparability, correlation, and reli-
ability of the results of the manual and SPRG volumetric mea-
surements using comparative analyses. In addition, the clinical
reliability of the measured volume obtained using the SPRG
method was verified on the basis of the results of the compar-
ative analyses. We performed a one-way ANOVA test, obtain-
ed Bland–Altman plots for the equivalence of the measure-
ment results, and determined the intraclass correlation coeffi-
cient (ICC) for reliability.

The mean volume determined by Manual1 and Manual2
was 45.39 ± 60.83 and 44.37 ± 59.19 ml, respectively. On the
other hand, the mean volume determined by SPRG1 and
SPRG2 was 40.48 ± 54.58 and 40.48 ± 54.55 ml, respectively.
The median volume of Manual1 and Manual2 was 19.88 ml
(quartile 8.35, 62.84) and 18.84 ml (quartile 7.78, 61.72),
respectively, and that of SPRG1 and SPRG2 was 18.39 ml
(quartile 7.34, 7.14) and 18.39 ml (quartile 7.14, 58.54), re-
spectively. There is significant correlation between the two
SPRG volumes and Manual1: SPRG1 r = 0.993, p < 0.01;
SPRG2 r = 0.993, p < 0.01. Besides, the volumes of SPRG1
and SPRG2 show significant correlation with the volume of
Manual2.

The one-way ANOVA test result for the volumes deter-
mined by the manual and SPRG measurements, presented in
Table 2, shows no significant differences between the two
methods (F = 0.161, p > 0.05). The ICC for the manual and
SPRG volumetric measurements indicates a reliability as high
as 0.998 (CI 0.997–0.999, p < 0.01). In the Bland–Altman
plots, the bias between the manual method and the SPRG
method measured by the two radiologists was in the range

3.88–4.92 ml, and the variability between each graph was
constant (Fig. 5).

The interobserver variation between and the segmentation
time of the manual and the SPRGmeasurement methods were
compared to verify the clinical usefulness of the proposed
method. To compare the error, interobserver correlation anal-
ysis was performed and Bland–Altman plots were created, as
shown in Fig. 6. Although the manual measurement had a
high interobserver correlation (r = 0.998, p < 0.01) (Fig. 6a),
that of the SPRG measurement was even higher (r = 1.000,
p < 0.01) (Fig. 6b). Bland–Altman plots confirmed that the
interobserver difference of the volume measured by the
SPRG method (Fig. 6d) is less than that of volume measured
by the manual method (Fig. 6c).

To evaluate the usefulness of the SPRG method, we selected
20 CT scans, out of the 80, that had a 20–40-ml tumor and
compared the elapsed time before a lung tumor was detected
by the SPRGmethod and themanualmethod. Themean elapsed
time ofManual1 andManual2was 335.21 ± 165.69 and 458.63
± 182.87 s, respectively, and that of SPRG1 and SPRG2 was
only 1.14 ± 0.62 and 1.15 ± 0.61 s, respectively (Fig. 7).

Discussion

The RECIST guideline, widely used to objectively evaluate
the treatment response of lung tumors, is based on the diam-
eter, not the volume, of the tumor. Because measuring the
volume of a tumor is difficult and time-consuming, the use
of RECIST in clinics is difficult. Thus, we proposed the SPRG
method for the segmentation and measurement of lung tumors
using computer image-processing techniques. The sensitivity
of the result of SPRG segmentation compared to that of the
results of the manual method used by two radiologists
(Manual1 and Manual2) was 81.68–84.81% with a DSC of
0.86–0.88. This result is more accurate than the results of
other studies that attempted autosegmentation of lung tumors
(Table 3). In addition, the high accuracy of the SPRG method
was confirmed using 80 CT scans, while the majority of other
studies used fewer than 20 CT scans. Three main factors con-
tributed to this positive result: use of a 3D region-growing

Table 3 Comparison of the
semiautomatic segmentation of
lung tumors by our proposed
method with that of other studies
that used semiautomatic
segmentation

Modality Algorithm Case Validity

Yuhua Gu et al. CT Multi 3D region growing 15 SI 78.29(vs Reader1)

SI 77.72 (vs Reader2)

Guo Yu et al. PET/CT Markov random field model 7 DSC 0.85 ± 0.013

Cui Hui et al. PET/CT Graph-based model 20 DSC 0.791

Proposed method CT SPRG 80 DSC 0.873 (vs Reader1)

DSC 0.891 (vs Reader2)
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method instead of a probability distribution-based algorithm
to detect a lung tumor with various shapes, inclusion of as
much potential area with a lung tumor as possible by using a
localized adaptive region-growing method, and the minimiza-
tion of error extension by using a 3D sphere in the image.

The ANOVA test and the ICC result presented in Table 2
show the clinical reliability of the proposed method. The
ANOVA test results showed no significant difference between
the manual and SPRG volumetric measurements, and the ICC
(0.99) for the manual and SPRG volumetric measurements
indicated high reliability for the SPRG method.

The interobserver variation between the manual and SPRG
measurement methods is shown in Fig. 6. The segmentation
results of the SPRG method indicated that they had a higher
interobserver correlation than those of the manual method. In
addition, the Bland–Altman plots showed that the interobserv-
er difference of the volume measured by the SPRG method
was less than that of the volume measured by the manual
method. Therefore, the SPRG method has the potential for
providing more objective results and results with better repro-
ducibility than the manual method.

Comparison of elapsed time for segmentation by the two
methods showed an approximately 347-fold reduction in time
needed for tumor detection by the SPRG method. The manual
method required ~ 6 min to detect a 30-ml lung tumor, while
the SPRG method needed only 1 s. It is expected that the
bigger the lung tumor, the more significant the time reduction.

The proposed method does not always achieve complete
segmentation of lung tumors. In some cases, there is an ~ 20%
error between the results from the proposed method and those
of the radiologist that requires post-processing manual modi-
fication. Nevertheless, segmenting lung tumors with the pro-
posedmethod andmaking aminor correction ismore effective
than performing the entire lung tumor segmentation manually.

A CT image is the basic element of our proposed method,
but the proposed algorithm was designed by considering the
relative values of pixels and morphological characteristics.
Because the algorithm is simple and easy to use, it can be
applied to other lesions such as brain and breast tumors and
can work with other medical imaging techniques such asMRI.

Finally, significant reduction in procedure time and quan-
titative as well as objective results can be achieved with our
proposed method for the segmentation and volumetric mea-
surement of a lung tumor. Additionally, the method can be a
supplement to RECIST in the evaluation of the response to
treatment. The proposed method has the potential for evaluat-
ing the response to treatment more accurately and objectively.
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