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Abstract
Radiation therapy plays an essential role in the treatment of cancer. In radiation therapy, the ideal radiation doses are delivered to
the observed tumor while not affecting neighboring normal tissues. In three-dimensional computed tomography (3D-CT) scans,
the contours of tumors and organs-at-risk (OARs) are often manually delineated by radiologists. The task is complicated and
time-consuming, and the manually delineated results will be variable from different radiologists. We propose a semi-supervised
contour detection algorithm, which firstly uses a few points of region of interest (ROI) as an approximate initialization. Then the
data sequences are achieved by the closed polygonal line (CPL) algorithm, where the data sequences consist of the ordered
projection indexes and the corresponding initial points. Finally, the smooth lung contour can be obtained, when the data
sequences are trained by the backpropagation neural network model (BNNM). We use the private clinical dataset and the public
Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset to measure the accuracy of the
presented method, respectively. To the private dataset, experimental results on the initial points which are as low as 15% of the
manually delineated points show that the Dice coefficient reaches up to 0.95 and the global error is as low as 1.47 × 10−2. The
performance of the proposed algorithm is also better than the cubic spline interpolation (CSI) algorithm. While on the public
LIDC-IDRI dataset, our method achieves superior segmentation performance with average Dice of 0.83.
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Introduction

With the advancement of medical imaging technology, the
amount of data obtained in the clinical images has increased
exponentially. The important information for organ diseases
can be quantitatively provided by the clinical images, while
quantification is often manually implemented in some clinics.
In order to speed up the manual task and reduce workload,
combining computer-aided diagnosis (CAD) with automatic
detection method is becoming a research hotspot. A contour is
an ordered set of data points with segments connecting them
into a piecewise-defined curve. The obtained contour can be
represented in a simple form, and it can be useful in solving

various problems such as shape matching and retrieval, char-
acter recognition, and medical image analysis [1]. In order to
overcome the interference factors, such as noise, occlusion,
and artifacts, both detection and representation problems will
face a big challenge. Therefore, accurate detection of region of
interest (ROI) contour of medical image is necessary.

Most current medical image edge detection techniques can
be categorized as feature-classify approaches [2–5], threshold
segmentation approaches [6, 7], and contour curve detection
approaches [8–11]. Tang et al. [12] have developed a splat
feature classification method to detect retinal hemorrhage.
The authors show that an area under the receiver operating
characteristic (ROC) curve [13] is 0.96 and 0.87 at the splat
and the image level, respectively. Maggio et al. [14] have
successfully exploited hybrid feature selection algorithm to
prune unimportant features and realize rapid computation.
However, both of their techniques only test a single dataset.
In Ref. [15], Pu et al. have presented a computerized scheme
to automatically segment the 3-D human airway tree based on
selecting a multithreshold. However, the author does not use
the Dice coefficient [16, 17] treated as a standard for assessing
similarity to prove the performance of the proposed method.
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The contour curve detection approach has an impact on de-
scribing the shape of the specific organ, where the contour
curve consists of the data points of the edge [18].
Comparing with the other two approaches, the form of exper-
imental results obtained by the contour curve detection ap-
proach can save more storage space, while the shape feature
of the specific organ can be easily extracted.

The main purpose of contour detection is to use shape
representation models to approximately represent a boundary
curve [18, 19]. Related work can be found on studies about
shape representation [20–22] and curve approximation [23,
24]. Shepherd et al. [25] have proposed a segmentation meth-
od combined statistical shape model (SSM) with online and
offline learning method based on shape priors, while Song
et al. [26] have devised a method for multi-object segmenta-
tion using context and shape prior in a 3-D graph-theoretic
framework with good accuracy. However, both of them only
use a subset of the whole shape as the prior shape, where it
will ignore some information. Zhang et al. [27] have exploited
dictionary learning and local shape prior model to detect the
ROI in whole body CT with increased overall accuracy.
However, the author did not consider noisy inputs. Heibel
et al. [28] have combined Markov random fields with B-
spline curve algorithm to approximate a contour curve that
the sequence of points was previously known. Aquino et al.
[29] have used edge detection and morphological methods
followed by the Circular Hough Transform to achieve the
optic disc boundary curve approximation. In Ref. [29], they
do not compare their result to the ground truth.

Among many other contour detection methods, principal
curve technique is a useful tool for noisy inputs and can obtain
a robust result [30]. Principal curve was described by Hastie
[31] as a smooth curve which passes through the Bmiddle^ of
a set of data points. The notion is successfully utilized in many
applications such as skeletonization [32, 33] and curvilinear
feature detection from data points [34]. In Ref. [30], the au-
thors have used principal curve to extract the coronary artery
centerlines. Further, the artificial neural network [2–4], which
is treated as a classifier, can be well used to detect the tumor
regions from non-tumor regions. Thus, principal curve com-
bining with machine learning is a promising candidate in de-
tecting discriminative information from the dataset [35, 36].

Lavdas et al. [37] have used classification forest (CF),
Convolutional Neural Networks (CNN) and a multi-atlas
(MA) approach for multi-organ segmentation, respectively.
The CNN algorithm can have the capability of learning com-
plex data associations, while the training configuration is too
complex. In Ref. [38], Tseng et al. have proposed a deep
reinforcement learning (DRL) method for dynamic clinical
decision making in adaptive radiotherapy. However, develop-
ment of the method into a fully credible autonomous system
would require further validation on larger multi-institutional
datasets. Ma et al. [39] have utilized Cascade convolutional

neural networks to evaluate a fully automatic detection of
thyroid nodules from 2D ultrasound images, while Shaukat
et al. [40] have developed a fully automatic detected method
to lung nodules using a hybrid feature set with Support Vector
Machine (SVM) classifier. However, both of them cannot de-
tect micronodules (< 3 mm) accurately. Considering that deep
learning is more suitable for the large dataset [41, 42], we
choose backpropagation neural network for training.

In this work, we use less than 15% points of ROI as an
approximate initialization; the approximate contour of lung
image can be obtained by combining closed polygonal line
and backpropagation neural network model (CPL-BNNM)
algorithm. Experimental results show that the obtained lung
contours can be smoothly and accurately expressed, when the
relation between the data points and their corresponding pro-
jection indexes is identified by training with BNNM. The
computational complexity and the workload of radiologists
can be well reduced. At the same time, comparing with the
cubic spline interpolation (CSI) algorithm, the performance of
the proposed algorithm can be further proved.

Materials and Methods

This section firstly introduces brief discussions on two theo-
ries that are relevant to this article, which is named principal
curve and machining learning, respectively. Then the overall
process of the proposed algorithm will be described. Finally,
the quantitative evaluation parameters which consist of global
error and Dice coefficient can be proposed.

Principal Curve

K-Segment Principal Curve

In d-dimensional space Rd, when the curve f(t) satisfies the
three conditions, firstly f(t) does not intersect itself, secondly
f(t) has finite length inside any bounded subset in d-
dimensional space Rd, and thirdly f(t) is self-consistent, then
f(t) is regarded as a principal curve. The property of the prin-
cipal curve f(t) can be defined that f(t) = E(X| tf(X) = t).
Figure 1 shows the projection from the points to the curve,
The projection index tf(xi) is a value of t which makes f(t)
closest to xi.

t f xið Þ ¼ sup t : xi− f tð Þk k ¼ in f τ xi− f τð Þk kf g ð1Þ

The goodness of the method can be confirmed by
constraining the length of the curve. For data distribution X,
we say that f is described as k-segment principal curve
(KSPC) where the constrained length of principal curve is L.
On all curves which lengths are not larger than L, the
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minimized distance function of f is designed using the follow-
ing equation:

Δ fð Þ ¼ Δ X ; fð Þ ¼ E Δ X ; fð Þ½ � ¼ E X− f t f Xð Þ� ��� ��2h i
ð2Þ

Kegl et al. [33] give the convergence confirmation of the
KSPC; it can guarantee the learning ability of the principal
curve and propose the polygonal line algorithm for finding the
KSPC.

Polygonal Line Algorithm

The two crucial steps of the Polygonal Line (PL) algorithm are
the projection and vertex optimization step.

(1) In the projection step, the data points are classified ac-
cording to which segment or vertex they project. Let f be
a polygon curve composed of vertexs v1, v2,…, vk + 1 and
line segments s1, s2,…, sk,. si connects vi, vi + 1, where in
i ∈ (1, k), i is a positive integer. The dataset Xn is divided
into 2k + 1 disjoint sets which consist of (V1, V2, .., Vk + 1)
and (S1, S2, .., Sk), and they are called the sample points
which belong to the vertex Vi or line segment Si.

Vi ¼ x∈X n : Δ x; við Þ ¼ Δ x; fð Þ;Δ x; við Þ < Δ x; vmð Þ;m ¼ 1; 2; ::; i−1f g
ð3Þ

Si ¼ x∈X n : x∉V ;Δ x; sið Þ ¼ Δ x; fð Þ;Δ x; sið Þ < Δ x; smð Þ;m ¼ 1; 2; ::; i−1f g
ð4Þ

(2) In the vertex optimization step, the position of each ver-
tex is adapted on the principle that distance from the
sample points to the principal curve is the smallest. The
gradient-based minimization method which minimizes
the penalty distance function makes the position of the
point changed while changing each line segment.

G
0
n fð Þ ¼ Δ

0
n fð Þ þ λpp fð Þ ð5Þ

WhereG
0
n fð Þ produced by line segment si infinitely extense to

line segment s
0
i on f is the minimized penalty distance

function. When Δ
0
n fð Þ shows the fitting level is small, the fold

line will be close to the fitting data. p( f ) is the average curva-
ture penalty, which affects the smooth degree of the fold line.

λp balance between Δ
0
n fð Þ and p( f ) is the penalty factor,

where λp ¼ λ;
pkn

−1=3Δn f k;n
� �1=2r−1, the value of λp is opti-

mally set to a constant 0.13 by experiment vertification [43].
In the vertex optimization step, the length constraint can be

transformed into the angle constraint; the smooth principal
curve can be obtained by penalizing angle. The constraint
condition P(vi) of the vertex vi can be obtained by

P við Þ ¼

2μþ við Þ þ π viþ1ð Þ if i ¼ 1
μ− við Þ þ π við Þ þ π viþ1ð Þ if i ¼ 2

π vi−1ð Þ þ π við Þ þ π viþ1ð Þ if 2≤ i≤k−1
π vi−1ð Þ þ π við Þ þ μþ við Þ if i ¼ k
π vi−1ð Þ þ 2μ− við Þ if i ¼ k þ 1

8>>><
>>>:

ð6Þ

Where γi is the angle which vertex is vi and r is the radius of
the data described.

Machine Learning

BNNM is the machine learning algorithm for training a mul-
tilayer neural network. It trains multilayer feedforward neural
networks which contains iterative gradient descent property.
In this section, we summarize the essential equations which
are used to implement the BNNM.

For a set of training vectors X, it exists output vector set Y
which is associatedwithX. Themean square error between the
actual output of the neural network and the expected output
can be written as

Ek ¼ 1

N
∑
N

t¼1
ykt−cktð Þ2 ð7Þ

where ykt is the actual output and ckt is prediction output.
The goal of the algorithm is to minimize the global error

function E according to the following equation:

E ¼ ∑
m

k¼1
Ek ð8Þ

where m is the cardinality of E. The training process termi-
nates with positive results when the global error function E
reaches the presetted minimum value. Otherwise, the training
process will keep on running. The training process successes
when E reached the presetted minimum value. On the other
hand, the training process fails when E does not reach the
presetted minimum value within the given epoch number.

Proposed Algorithm

When we deal with the dataset, the first principal component
line is regarded as the starting step. The projection indexes of
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f(tf(x3))

f(tf(x4))

f(tf(x5))

f(tf(x6))

f(tf(x7))

Fig. 1 Projection from the points to the curve
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dataset could not be correctly described when we calculate the
data sequences with the PL algorithm; the expected result
could not be obtained on training step. Aiming at the charac-
teristics of this problem, the CPL-BNNM algorithm is pro-
posed to find the principal curve algorithm. The flowchart of
the proposed CPL-BNNM algorithm is exhibited in Fig. 2.

Obtain Data Sequences

In the first step, normalize the dataset {x1, x2, .., xn} and record
the coordinates (xi, yi)(i = 1, 2, .., n) of the dataset. Then in
order to introduce uniformly, the dataset which consists of
the coordinate form is used to handle. Normalize all the
dataset to the range {(−1, −1)~(1, 1)}.

In the second step start with a small square as the starting
step, where small squares are

V ¼ V1;V2;V3;V4;V5f g
¼ −0:1;−0:1ð Þ; −0:1; 0:1ð Þ; 0:1; 0:1ð Þ; 0:1; −0:1ð Þ; −0:1; −0:1ð Þ� �

In the third step, enter into the outer loop and calculate the
value of the outer loop distance function.

In the fourth step, run the inner loop and adjust the position
of each vertex. When the angle between lines is greater than
90o and the shape is closed, by projecting the dataset to the
line and the vertex projection, the distance function from data
points to the curve can be calculated. During the value of
distance function becomes smaller, the position of vertex will
be changed under the principle of the vertex optimization step.
Comparing the value of the current distance function with the
value of the last inner loop distance function, when the re-
duced value is smaller than the max distance deviation Δs =
0.002, it reaches the inner loop stop condition and executes the
fifth step. Otherwise, the new vertex will be added and the
fourth step will be re-executed.

In the fifth step, comparing the value of the current
distance function with the value of the previous outer loop
distance function, when the reduced value is smaller than
the max distance deviation Δs = 0.002, the outer loop stop
condition is reached, and a closed polygon formed by a
piecewise straight line can be obtained, then it goes to the
sixth step. Differently, the new vertex will be added, and it
goes to the third step to re-execute the outer loop opera-
tion step.

Start

Normalize the
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Insert a
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step
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Convergence

Convergence

Y

Y
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Fig. 2 The flowchart of the
proposed CPL-BNNM algorithm
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In the sixth step, the projection indexes {t1, t2,…, tn} of the
dataset can be achieved by projecting the dataset to the closed
polygon. According to the sequence of projection index ti
defined from small to large, the dataset (xi, yi)(i = 1, 2, .., n) is
sorted. Finally, the data sequences consist of the ordered pro-
jection indexes, and the corresponding data points {(ti, (xi,
yi)), i = 1, 2,…, n, 0 ≤ t1 < t2 <… < tn ≤ 1} can be obtained.

Training

By looking for a continuous, differentiable, and integrable
smooth function, the principal curve is used to approximate
the distribution of the dataset points. Due to the complicated
relationship of function, simple regression method cannot be
well fitted. The BNNM minimizes the global error of dataset
to approximate function and fit curve to obtain a smooth prin-
cipal curve.

BNNM which consists of three layers (an input layer, a
hidden layer, and an output layer) is a multi-layer perception
machine. In order to make the hidden layer suitable for all
useful functions, the multilayer network must have a non-
linear activation function which is used for multiple layers.
The paper chooses sigmoid function is specified that

f xð Þ ¼ 1

1þ e−λx
ð9Þ

The steepness parameter λ determines the active region of
the activation function. When the steepness parameter λ is
from infinity to zero, the sigmoid function alters from the unit
step function to the constant value of 0.5 as well.

The feedforward network contains the hidden layer which
can approximate any continuous function. Considering that the
feedforward network contains one hidden layer is a general
function approximator, this paper selects the BNNM with one
hidden layer to train. In order to find the relation between the
ordered projection indexes and the corresponding data points,
the x and y can be regarded as the continuous function x(t) and
y(t) on t respectively, where the projection index is taken as the
independent variable, and the coordinates of the initial data
points are the dependent variable. The corresponding mathe-
matical expression of the principal curve which is expressed as

f tð Þ ¼ x tð Þð Þ; y tð Þð Þð Þ

¼ 1

1þ e
− ∑

N

i¼1

1

1þe− twi−Tið Þvi;1−r1
� � ;

1

1þ e
− ∑

N

i¼1

1

1þe− twi−Tið Þvi;2−r2
� �

0
B@

1
CA

ð10Þ

The corresponding parameters are denoted as follows:

N the number of the neurons at the hidden layer
wi the weight from the input layer to the i-th neuron at the

hidden layer

Ti the output threshold of the i-th neuron at the hidden
layer

vi,
k

the weight from the i-th neuron at hidden layer to the k-
th neuron at the output layer

rk the output threshold of the k-th neuron at the output
layer

i ¼ 1; 2; ::;N ; k ¼ 1; 2:

Quantitative Evaluation

In order to confirm the performance of the proposed CPL-
BNNM algorithm, the Dice coefficient and the global error
will be used.

Global Error

In the BNNM, we train the BNNM to achieve the goal by
minimizing the global error E, where the global error E is
the sum of the mean square Ek and the mean square error Ek
which represents the deviation between the actual output and
the expected output in the neural network.

Dice Coefficient

To evaluate the accuracy of the proposed CPL-BNNM algo-
rithm, the Dice coefficient is used to quantify the overlap
between the detection results and the manually drawn con-
tours by radiologists. The Dice coefficient treated as a stan-
dard for assessing similarity is calculated with

d ¼ 2
jA∩Bj
Aj j þ jBj ð11Þ

where the A and B denote the coordinates of points which
belong to the edge of the detection result; the A is the detection
result of the proposed algorithm; the B is the detection result
by radiologists manually.

Results and Discussions

In this section, in order to prove the performance of the pro-
posed CPL-BNNM algorithm, we use the private high-
resolution lung dataset and the public Lung Image Database
Consortium and Image Database Resource Initiative (LIDC-
IDRI) dataset for contour detection, respectively. The private
dataset is acquired by 3D-CT scans in which the detection
results are compared with the manually delineated contours
by overlapping ratio. All contours of ROIs are manually de-
lineated by professional radiologists as a reference for
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evaluation. The detection results of the proposed algorithm
can be evaluated quantitatively and qualitatively. The anony-
mous 3D-CT dataset is provided by the Second Affiliated
Hospital of Soochow University. The dataset format is
DICOM; the image size is 512 × 512, while the public
LIDC-IDRI dataset of CT scans was acquired from the Lung
Imaging Database Consortium (LIDC) and Image Database
Resource Initiative (IDRI) [44]. The experiments run on a
computer with 2CPU i5-4590 3.3GHz, 2GB RAM.

The over-oscillation of the system is resulted by high mo-
mentum parameter. On the other hand, local minimization will
be caused by low momentum parameters in which the system
training will slow down. Hence, the momentum parameter α
will be set 1 in the BNNM. In the CPL algorithm, the range of
the distance deviation is Δs ∈ [0,0.002] and the curvature pen-
alty factor is λ;

p ¼ 0:13. The following experimental part will

give a comparison of the actual dataset; the blue lines show the
contours obtained by the proposed algorithm, and yellow lines
show the manually delineated contours.

Contour Detection under Different Learning Rates
on Private Dataset

In order to obtain the corresponding training time, the Dice
coefficient and E at different learning rates, the number of
neurons at the hidden layer is set to 10 and the number of
epochs is set to 5 × 105. Figure 3 shows the corresponding
training times which obtained at different learning rates from
0.2 to 0.7. As can be seen from Fig. 3, due to the smaller
number of points in Lung A, the overall training time is shorter
than Lung B and Lung C. In the whole view, with the increas-
ing learning rate, the training time is always increasing until
the learning rate reaches 0.5. After that, the training time al-
most remains the same. In Lung B and Lung C, with the
appropriately initialized learning rate, when the learning rate

is varied from 0.4 to 0.5, the training time increases slightly,
where the BNNM converges very fast.

Figures 4 and 5 show the Dice coefficient and E at different
learning rates. The Dice coefficient represents the overlap be-
tween the detection contours obtained by the proposed algo-
rithm and the manually drawn contours by radiologists, where
E represents the global error of the proposed algorithm. From
the whole view of Figs. 4 and 5, the trends of the Dice coef-
ficient and E are almost opposite at the same learning rate. To
Lung A in Fig. 4, the BNNM can obtain the optimal Dice
coefficient very fast with the different learning rates. When
the learning rate is 0.4, the max Dice coefficient is as high as
0.95 in which the initial points are only a small number of
points. In Lung B, the iterative process is unstable, which is
caused by rapidly altering learning rate; the curve of the Dice
coefficient suddenly drops when the learning rate is 0.3. From
Fig. 5 in Lung A, we can see that when the curve of the E is at
the concave vertice, the corresponding optimally learning rate
η is 0.4 and the E is reduced to 1.47 × 10−2. After that, the
algorithm converges and the E is close to constant. Figure 6
shows the comparison between the contours obtained by the
proposed CPL-BNNM algorithm and the manually delineated
contours at different learning rates.

In the BNNM, the selection of learning rate is critical. More
steps are needed to achieve acceptable results with small
learning rates. On the contrary, when the learning rate is too
large, it will lead to oscillation near extreme points which
prevents to converge. In order to prove the influence of epochs
number and the number of neurons in the BNNM, a compro-
mise scheme is selected to set the learning rate η = 0.5.

Contour Detection under Different Numbers
of Neurons at the Hidden Layer on Private Dataset

At the hidden layer, the selection of neuron number has a great
impact on the learning accuracy and training speed. Figures 7
and 8 show the results of the Dice coefficient and E with
different numbers of neurons, respectively. As illustrated in
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Fig. 7 and 8, when the neuron number is 5, the Dice coeffi-
cient is as low as 0.51, while the E reaches up to 6.08 × 10−2.
A complex problem fails to be dealt with the BNNM, in case
the number of neurons is not enough at the hidden layer. From
Fig. 7, with increasing number of neurons at the hidden layer,
training time sharply increases. Meanwhile, it may lead to
overtraining and reduce the ability of anti-interference; the
Dice coefficient has a greater fluctuation. Because of more
points in Lung B and Lung C, the max fluctuation of the
Dice coefficient is 44.08%. Figure 9 shows the comparison
between the detected contours and the manually drawn

contours with different numbers of neurons at the hidden lay-
er. The promising results prove the feasibility of the algorithm.

Contour Detection under Different Numbers
of Epochs on Private Dataset

In this part, we use the three-layer feedforward neural network
which consists of ten neurons at the hidden layer. As can be
seen from Lung A and Lung C in Fig. 10, the Dice coefficient
increases with more complex BNNM when the number of
epochs increases; it leads the BNNM to be more complex.
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The dice reaches its peak when the number of epoches reaches
5 × 105, where the Dice of Lung A is 0.94 and the Dice coef-
ficient of the Lung C is 0.95. At this time, the BNNM goes on
to train, the Dice coefficient does not rise but drop. One pos-
sible reason is that at this time, the complexity of the BNNM
reaches a certain extent in which overfitting can be a result
with excessively increased number of epochs. The common
way to avoid the overfitting phenomenon is to require the
standard regularization methods, early stopping, or dropout
[45, 46], considering that overfitting is not a big problem with
our method and therefore we do not pay more attention to deal
with it. Moreover, according to the variation of E shown in

Fig. 11, when the epoch training time passes, the E decreased
constantly with longer training time; however, the result tend
to be more stable with epochs greater than 5 × 105.

Figure 12 shows the comparison between the contours ob-
tained by the proposed algorithm and the manual contours at
different numbers of epochs. Comparing the dataset in Fig. 12,
it can be found that the overall overlapping ratio of Lung A is
higher than the second and the third. With the increasing num-
ber of epochs, the overlaps of the dataset are increasing as
well. When the epochs number of Lung A reaches 3 × 105,
the curve of overlapping ratio attains steady state. However,
because of more points in Lung B and Lung C, the curve of
overlapping ratio is nearly stable until the epochs number
reaches 4 × 105. The overlapping ratio curves of the actual
dataset are in good agreement with the trend of the Dice co-
efficient and E. Totally, the contour of the principal curve
obtained by the proposed CPL-BNNM algorithm can truthful-
ly summarize the manually delineated contours.

Contour Detection under Different Algorithms
on Private Dataset

To prove the effectiveness of the proposed algorithm in lung
contour detection, we choose the fitting accuracy to be criteria
for judging. The existing principal algorithms are chosen to com-
pare with the proposed CPL-BNNM algorithm. Nowadays, the
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current main algorithms are the least squares (LS) algorithm and
the cubic spline interpolation (CSI) algorithm. The LS algorithm
is recommended to use by the International Electrotechnical
Commission. And the CSI algorithm which has a high accuracy
can be modeled for the closed curve.

To the closed dataset, the LS algorithm needs to segment
processing. Hence, the results obtained by the LS algorithm
will be affected. In summary, the CSI algorithm is chosen to
compare with the proposed CPL-BNNM algorithm; both al-
gorithms only use as low as 15% of the manual points to be
initial points. The parameters of the proposed CPL-BNNM
algorithm are selected as follows: the learning rate is 0.5, the
number of neurons is 10, and the number of epochs is 5 × 105.
Figure 13 shows the global comparison graph of curve fitting.
Figure 14 shows the partial magnification graph of curve
fitting. In order to make the results more intuitive, the red solid
circles are used to describe the approximate trajectory of the
initial points. When the red solid circles are loaded into the
curve of the proposed CPL-BNNM and CSI algorithm respec-
tively, it is easy for analysis.

Figure 13(A), (B) show the left lung image dealt by the CSI
and CPL-BNNM algorithm, respectively. Figure 13(C), (D)
show the right lung image dealt by the CSI and CPL-BNNM

algorithm, respectively. The △( f ) represents the global
European square distance function regarded as the evaluation
index. In principle, when the △( f ) decreases, the curve f is
much closer to the dataset, while the similarity of the proposed
results is much higher. Thus, the phenomenon in the dataset is
similar, Lung Awill be used as an example to analyze. In Lung
A, compared with the △( f ) of the left lung image in
Fig. 13(1A), (1B), the △( f ) = 1.44 × 10−2 obtained by the
CSI algorithm is much larger than the △( f ) = 2.83 × 10−3

achieved by the proposed CPL-BNNM algorithm.
Meanwhile, to the right lung image in Fig. 13(1C), (1D), the
△( f ) = 1.78 × 10−2 received by the CSI algorithm is much
larger than the △( f ) = 4.36 × 10−3 obtained by the proposed
CPL-BNNM algorithm. Through the nine compared results, it
can be concluded that when the discrete data points are exces-
sively many, the inverse matrix becomes more complicated,
while the fitting result of CSI algorithm is not good. The
proposed CPL-BNNM algorithm contains feedforward neural
network with the hidden layer which can approximate any
continuous function with arbitrary precision. It can be seen
that the fitting precision of the proposed CPL-BNNM algo-
rithm is better than that of the CSI algorithm.

Furthermore, although the closed curve can also be fitted
by the CSI algorithm, the sequence of the projection indexes
needs to be obtained manually during collecting dataset,
where the complexity of operation is increased. In this paper,
the projection indexes can be obtained by the proposed CPL-
BNNM algorithm.When dataset is collected, more data points
are obtained by the retention algorithms. With the property of
passing the Bmiddle^ data points, the principal curve has a
certain ability to process the data error. Hence, the requirement
of data acquisition accuracy is reduced, so the proposed CPL-
BNNM algorithm is more favorable for practical application.

According to Fig. 13, considering that the dotted line 1
shows the crack which the CSI algorithm appears, it is easy
to verify the superiority of the proposed CPL-BNNM algo-
rithm to deal with the closed dataset. In this way, we only use
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the dotted line 2 in Fig. 13 for analysis in which Fig. 14 can be
gotten to show the partial magnification graph of curve fitting.
Because of more characteristic of Lung B than others, Lung B
is mainly analyzed. From Fig. 14, each pixel point of the
dataset is too small to observe, in order to improve the contrast
of the experimental results; the cross form will be used to
denote each pixel of the dataset in this paper. It can be seen
from Fig. 14(2A), (2B) that when the turn occurs, the principal

curve obtained by the CSI algorithm is more deviated from the
approximate trajectory of the initial points. The reason is that
the robust ability of the obtained principal curve is weakened
by the influence of the excessive oscillation. On the contrary,
with continuous training in the proposed CPL-BNNM algo-
rithm, the complete and smooth expression of the principal
curve can be acquired. In addition, the center position which
the principal curve processes the initial points is recorded as
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Table 1 Comparison of proposed study with previous works (Dice values in mean ± standard deviation)

Authors, years Technique/method Database Dice coefficient

Proposed method CPL-BNNM LIDC-IDRI 0.83 ± 0.11

Wang et al., 2017 [47] Multi-view deep convolutional neural network LIDC-IDRI 0.78 ± 0.16

Wang et al., 2017 [48] Central Focused Convolutional Neural Networks LIDC-IDRI 0.82 ± 0.11

Song et al., 2016 [49] Toboggan Based Growing Automatic segmentation LIDC-IDRI 0.81 ± 0.04

Kubota et al., 2011 [50] Distance transform, region growing, convex hull LIDC-IDRI 0.69 ± 0.18

Lavdas et al., 2017 [37] 3D Convolutional Neural Network Private 0.81 ± 0.13
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well. So that the fitting problem of the complex data distribu-
tion is solved, while the mathematical expression of lung im-
age based on the principal curve can be obtained.

By looking at the results of Fig. 14(2C), (2D), it is observed
that when the dataset is very much or the curvature of the
obtained curve is very large, the obtained curves of the CSI
and the proposed CPL-BNNM algorithm are all deviated from
the center lines. Intuitively, the achieved curve of the CSI
algorithm seems to be much closer to the approximate trajec-
tory of the dataset, but the curve obtained by the proposed
CPL-BNNM algorithm covers the more initial points relative-
ly. In addition, the curve achieved by the proposed CPL-
BNNM algorithm can be repaired automatically to approach
the center of dataset by keeping on learning.

Contour Detection under Different Algorithms
on Public LIDC-IDRI Dataset

To further validate the performance of the proposed algorithm,
the public LIDC-IDRI dataset is used for experimental evalu-
ation. All the ground truths in this dataset are verified and
corrected by up to three board-certified radiologists. The pub-
lic LIDC-IDRI database contains a different set of 1018 cases
from seven institutions. All the CT scan images are stored in
DICOM format with the size of pixels (512 × 512). The pro-
posed method has been evaluated on 100 images from the
public LIDC-IDRI dataset, which are randomly chosen. We
compare our results to some current methods in lung segmen-
tation. Table 1 describes the comparison of proposed study
with previous works.

Conclusion

In CT images, detection and recognition of organs are prob-
lems in the field of image processing, and lung contour detec-
tion is one of the key problems in CT imaging. In this paper,
we use the private dataset and the public LIDC-IDRI dataset
to evaluate the proposed method, respectively. To the private
dataset, the data points manually delineated by radiologists are
treated as the initial dataset. The data sequences are generated
by the CPL algorithm, where the data sequences are made up
of the ordered projection indexes and the corresponding data
points. The projection index is taken as the independent var-
iable, while the initial data points are regarded as the depen-
dent variable; the data sequence is trained by the BNNM, after
that, the smooth contour of the lung can be obtained. With the
proposed CPL-BNNM algorithm, the computational com-
plexity of the contour extraction and the workload of radiolo-
gists can be reduced. The quantitative and qualitative experi-
mental results show that our proposed semi-automatic detec-
tion method has better extraction accuracy for high-resolution
lung datasets obtained by 3D-CT scans. A clear lung contour

is retrieved by the proposed CPL-BNNM algorithm by train-
ing the data. While compared with other methods on the pub-
lic LIDC-IDRI dataset, our method achieves superior segmen-
tation performance with average Dice of 0.83. However, the
BNNM can be too complex with excessive training and
overfitting. In machine learning, overfitting is a common phe-
nomenon; it will lead to the deviation between the actual out-
put and the expected output to be very large. To solve the
problem of overfitting, we plan to use the regularization or
dropout to optimize the BNNM in the future. In addition, we
plan to apply the proposed two-dimensional method into the
three-dimensional medical reconstruction, which is based on
the contour extraction of the two-dimensional lung image.
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