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Abstract
Pathological disorders may happen due to small changes in retinal blood vessels which may later turn into blindness. Hence, the
accurate segmentation of blood vessels is becoming a challenging task for pathological analysis. This paper offers an unsuper-
vised recursive method for extraction of blood vessels from ophthalmoscope images. First, a vessel-enhanced image is generated
with the help of gamma correction and contrast-limited adaptive histogram equalization (CLAHE). Next, the vessels are extracted
iteratively by applying an adaptive thresholding technique. At last, a final vessel segmented image is produced by applying a
morphological cleaning operation. Evaluations are accompanied on the publicly available digital retinal images for vessel
extraction (DRIVE) and Child Heart And Health Study in England (CHASE_DB1) databases using nine different measurements.
The proposed method achieves average accuracies of 0.957 and 0.952 on DRIVE and CHASE_DB1 databases respectively.

Keywords Retinal blood vessels . Ophthalmoscope . CLAHE . Gamma correction

Introduction

Digital fundus imaging in ophthalmology is a principal step in
computer-aided diagnosis and treatment of various patholo-
gies like diabetic retinopathy, hypertension, glaucoma, obesi-
ty, and retinal artery occlusion [1]. Hence, precise and accurate
segmentation of the retinal blood vessels is becoming an es-
sential task for analysis and treatment of these diseases.
However, steadfast extraction of vessels encounters several
challenges [2, 3] such as retinal blood vessels which have an
extensive range of widths and tortuosity; excluding blood ves-
sels, it also embraces some other structures like the optic disc
and fovea which interrupt the vessel segmentation. As the thin
vessels have lower contrast compared to background, they
create a problem in the detection process. Therefore, many
researchers have worked to address these issues but still vessel
segmentation is a challenging task. The segmentation process

can be divided into two categories, viz., supervised methods
and unsupervised methods.

Supervised methods are dependent on classification of
pixels where each pixel is classified into two groups, vessels
and non-vessels. Here, classifiers are trained by supervised
learning with data from manually labeled images [4]. In [2],
a novel method has been proposed by the author for automatic
segmentation of the retinal blood vessels. First, the radial pro-
jection method locates the vessel centerlines that include low-
contrast and thin vessels. Then the steerable complex wavelet
is modified to give better enhanced vessels under different
scales and then the feature vector is constructed to represent
the vessel pixels by line strength. In the next stage, large ves-
sels are extracted with the help of semi-supervised self-train-
ing approach. The final segmentation output is obtained by the
combination of two types of vessels. Marin et al. [3] proposed
a supervised method where a 7D feature vector is extracted
from the input retinal images and given as input to the neural
network. The classification result obtained from neural net-
work is thresholded to classify the pixels as vessels or non-
vessels. In [4], the author introduced a method using 2D
Gabor wavelet and supervised classification where the method
classifies each image pixel either as vessel or non-vessel based
on pixels feature vector. The author in [5] explained a new
supervisedmethod by utilizing a decision tree-based ensemble
classifier to extract the retinal blood vessels. Vega et al. [6]
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applied an automated segmentation method that utilizes a
Lattice Neural Network with Dendritic Processing (LNNDP)
to extract the retinal blood vessels from the ophthalmoscope
images. Roychowdhury et al. [7] introduced a three-stage nov-
el retinal blood vessel segmentation algorithm using fundus
photographs. Fraz et al. [8] introduced a supervised method
using ensemble classifier of bagged decision trees to extract
vessels of 9- to 10-year-old children of different ethnic origin.
In [9], Tan et al. proposed an automated method that segments
exudates, hemorrhages, and microaneurysms using a single
convolutional neural network. In [10], the author proposed a
supervised method that all together locates and segments the
vessels, optic disc, and fovea using a seven-layer
convolutional neural network. In [11], Aslani et al. illustrated
a supervised method for blood vessel segmentation using en-
semble RF classifier and based on multifeature analysis.

Unsupervised learning is a kind of machine learning proce-
dure used to appeal inferences from data sets entailing of input
data without labeled responses. Unsupervised methods were
presented in [12–29]. Zhao et al. [12] proposed a retinal blood
vessels segmentation method based on level set and region
growing method, where first the extracted green channel image
is enhanced using CLAHE and 2D Gabor wavelet transform
followed by an anisotropic diffusion filter that smoothed the
enhanced image and preserves the vessel boundary. The thin
and large vessels are then extracted by region growing and level
set method respectively. The final segmentation output is obtain-
ed by the union of the results obtained from both the methods.
An automated method for blood vessel extraction using a com-
bination of vessel centerline detection and morphological bit
plane slicing was elaborated by Fraz et al. [13]. In [14], Fraz
et al. explained a unique combination of the vessel skeleton
extraction and application of bit planes on morphologically en-
hanced fundus images for blood vessel extraction. In [15], the
author elaborated a novel method for blood vessel extraction by
taking a pair of zero-mean Gaussian filter and first-order deriv-
ative of Gaussian filter. Cinsdikici et al. [16] offered a hybrid
scheme using ant-based clustering and MF algorithm that im-
proves the accuracy and true/false ratios of the subsequent im-
ages. In the method explained in [17], the retinal blood vessels
are detected by optimizing the parameters of the matched filter
by means of genetic algorithm. In [18], Azzopardi et al. present-
ed a novel method for blood vessel detection by using a non-
linear bar-selective COSFIRE filter to detect the retinal blood
vessels. Budai et al. [19] illustrated a novel method for blood
vessel segmentation to segment the specular reflexes of thick
vessels that are invisible in lower-resolution fundus images. A
new blood vessel extraction algorithm using improved matched
filtering is proposed by Odstrcilik et al. [20] for accurate identi-
fication of retinal vasculature in a wide range of vessel widths.
Mapayi et al. [21] presented a method for blood vessel extrac-
tion using a local adaptive thresholding technique based on gray
level co-occurrence matrix (GLCM) energy information. A new

Binary Hausdorff Symmetry (BHS) measure for automatic seed
selection along with the EDSRG algorithm is proposed by
Panda et al. [22] for blood vessel extraction from fundus images.
In [23], an unsupervisedmethod uses an iterative vessel segmen-
tation algorithm that segments the major vessels foremost,
followed by addition of improved vessel branches by adaptive
thresholding in iterative steps. A BRibbon of Twins^ active con-
tour model is proposed in [24], for retinal blood vessel segmen-
tation that uses two pairs of contours to capture each vessel edge.
In [25], Tan et al. explained a method that extracts the blood
vessel using the Ramer-Douglas-Peucker algorithm. In [26], the
author introduced a method that initially locates the center point
and width of the vessel using a Gaussian filter, and in the next
phase, both the Gaussian filter and extended Kalman filter are
used for optimal linear estimation of the next possible location of
the blood vessel. A multiscale analysis-based method, using
multipass region growing procedure [27], is used to extract ret-
inal blood vessel from both red-free and fluorescein fundus im-
ages. In [28], Mendonca et al. presented a pixel processing-
based approach for vessel extraction from fundus images. In
[29], Farokhain et al. proposed a method that extracts the blood
vessels by designing a bank of Gabor filter and then use impe-
rialism competitive algorithm for automatic parameter selection.

Though these approaches have revealed their novel perfor-
mance for retinal blood vessel segmentation, there are some
limitations comprising connectivity loss for the blood vessels
and thin vessels which are not extracted accurately that need to
be rectified. Thus, there is a necessity of a common technique
with less complexity and high segmentation accuracy in de-
tection of both large and thin vessels. In this present article, an
unsupervised local adaptive thresholding technique is pro-
posed for extraction of retinal blood vessels. In the former
step, the green channel of the image is enhanced using an
exclusive combination of contrast-limited adaptive histogram
equalization (CLAHE) [30] and gamma correction. The blood
vessels are then extracted using local adaptive thresholding
followed by morphological cleaning for getting the final
vessel-extracted image. This approach outperforms most of
the existing supervised and unsupervised approach with high
segmentation accuracy. It also performs better in detection of
both thick and thin vessels.

The rest of this paper is structured as follows. The
BMethodology^ section describes the proposed segmentation
method. The BResults and Discussions^ section explains ex-
perimental evaluations and comparisons. At last, the
BConclusions^ section elaborates the conclusion part.

Methodology

This paper introduces an unsupervised method for extraction
of retinal blood vessels based on a local adaptive thresholding
technique [31]. The extracted green channel is enhanced using
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gamma correction and CLAHE onwhich segmentation course
is applied to extract retinal blood vessels. Along with vessels,
some non-vessels are identified and that can be removed with
the help of a post-processing phase. Figure 1 shows the flow-
chart for the proposed segmentation method.

Pre-processing

In order to attain higher performance accuracy, it is crucial to
have an actual pre-processing step. Use of pre-processing
methods makes the system more robust mainly utilizing image
enhancement, noise removal, etc. So, before preparing the im-
age for next stage in the segmentation process, the pre-
processing is an essential step [32]. In fundus image analysis,
it can be observed that the green channel of the RGB represen-
tation exhibits best contrast, while the red channel is saturated
with the lowest contrast and the blue channel is very noisy and
suffers from poor dynamic range. Hence, for the course of
segmentation, the green channel is selected as the blood vessels
which can be accurately identified and reveals maximum con-
trast [33]. Figure 3a, b represents the input retinal image (orig-
inal image) and the extracted green channel image respectively.

Gamma Correction

The power-law transformation can be given by the expression

O ¼ CIγ ð1Þ
where O = output, C and γ are positive constants, and I = input.

The method used to correct power-law response phenom-
ena is named as gamma correction. Gamma correction is

imperative in presenting an image exactly on a monitor.
Images that are not corrected can look either bleached out or
too dark. With varying the value of gamma, not only the
brightness but also the ratios of red-to-green-to-blue changes
are found. In this paper, the values of C and γ are taken as 1
and 0.8, respectively, because below this value the contrast of
the particular image is reduced and above that value the image
get darker to an unacceptable level [34]. Output images at
different values of gamma (γ) are shown in Fig. 2. Figure 3c
shows the output image using gamma correction.

Contrast-Limited Adaptive Histogram Equalization

Contrast-limited adaptive histogram equalization is originally
developed for medical imaging and gives successful result in
enhancing low-contrast images. CLAHE is an improved ver-
sion of the adaptive histogram equalization (AHE) that divides
the image into small regions and works on individual constit-
uency where the contrast of respective small constituency is
amplified so that the histogram of the output image corre-
sponds to the histogram specified by the distribution parame-
ter. The small adjacent sections are then joined using bilinear
interpolation which overwhelms the artificially induced limits
[35]. Over noise amplification can be avoided by limiting the
contrast of the individual homogeneous region. This is used to
equally distribute the intensity values of the image and makes
the hidden features more visible [36]. Figure 3d represents
output of the contrast-limited adaptive histogram equalization.

Vessel Extraction Using Adaptive Threshold Surface

Thresholding is the process of altering the grayscale image
into binary image. Mainly two types of thresholding tech-
niques are there such as global thresholding and local
thresholding. In global thresholding, a global threshold value
is defined and all the pixels having greater values than the
declared threshold value are set to 1 or foreground and the rest
of the pixels are set to 0 or background [37]. In local
thresholding, the thresholding is rested on the local image
characteristics and a threshold surface is built which is a func-
tion on the image domain. Although various researchers have
proposed many global thresholding methods, but due to its
incompatibility in many real time images, the local
thresholding methods are taken in to consideration.

From the existing local thresholding methods, it can be
found that the used parameters are required to be adjusted
separately for different intensity images and also the values
of these parameters vary significantly for various images [38].
Here, we have used a local adaptive thresholding method
based on the maximization and minimization of an energy
function that consists of a data term and a regularization term
[39] in the absence of manual adjustment of parameters. The
data term boosts the threshold surface to transect the image
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surface at high-gradient location and the regularization term
which enforces smoothness on the threshold surface. There
are two conditions considered for segmentation depending
on data and regularization term as follows: when the data term
leads over the regularization term, the threshold surface un-
dergoes from discontinuity and false segmentation. However,
when the regularization term dominates over the data term,
then it suffers from under segmentation. The weighting pa-
rameters control the impact of the data term and regularization
term in the energy functional. The variational minimax opti-
mization algorithm is adopted to obtain the threshold surface,
weighting parameter, and saddle point with the help of energy
function. This saddle point is picked by making the energy
functional concave with respect to the weighting parameters
and convex with respect to the threshold surface [40].

Let IE(x, y) and T(x, y) represent the enhanced image and
threshold function respectively.

The adaptive threshold T(x, y) segments the image into a
label image that is [41].

L x; yð Þ ¼ 1; if IE x; yð Þ > T x; yð Þ
0; if IE x; yð Þ≤T x; yð Þ

�
ð2Þ

The energy functional can be expressed as

F T ;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
1−ω2

p
D Tð Þ þωR Tð Þ ð3Þ

where ω, the weighting parameter, lies between 0 and 1. D(T) is
the data term andR(T) is the regularization term and can be given
as [42]

D Tð Þ ¼ 1

2
∬e x; yð Þ IE x; yð Þ−T x; yð Þð Þ2dxdy ð4Þ

where e(x, y) is an edge-sensitive component and function of an
image gradient term and it lies between 0 and 1. If e is high then it
indicates the presence of edges.

e x; yð Þ ¼ ∇ IE x; yð Þj jq
max ∇ IE x; yð Þj jqð Þ ð5Þ

R Tð Þ ¼ ∬ ∇T x; yð Þj j2dxdy ð6Þ

The q value is taken as 1. The threshold surface is opti-
mized by searching the minmax solution that minimizes the
energy cost function F, and due to its concave and convex
nature with respect to ω and T, the min and max are duals of
each other and we can change the order of min and max. The
obtained optimum solution is

T* ¼ argmax
ω

min
T

F T ;ωð Þ ¼ argmax
T

min
ω

F T ;ωð Þ ð7Þ

T is first initialized as IE. If maximum iterations are not
reached, then first, D(T) and R(T) are computed using Eqs.
(2) and (3), then the cost function F is differentiated with
respect to ω and equating it to 0 to obtained maximum; ω∗ is
obtained which can be given as [42]

ω* ¼ R Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D Tð Þ2 þ R Tð Þ2

q ð8Þ

Fig. 3 a Original image. b Green channel image. c Gamma corected image. d Contrast limited adaptive histogram equalized image

Fig. 2 Segmented images at different values of gamma (γ) and C = 1. a γ = 0.3. b γ = 0.6. c γ = 0.8. d γ = 1.5



Again, F is minimized using gradient descent technique for
T keeping ω∗ for ω to be fixed and the process continued until
the minimum solution is reached. The equation can be
expressed as follows [43]:

∂T
∂t

x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ω*ð Þ2

q
e x; yð Þ IE x; yð Þ−T x; yð Þð Þð Þ

þ ω* ∇ 2T x; yð Þ� � ð9Þ

Finally, by using the local adaptive thresholding method
with variational minimax optimization, the blood vessels are
extracted and the image is obtained after the segmentation
method is shown in Fig. 4a.

Post-processing

Post-processing is the last step of the proposed method where
the required segmentation output is obtained from the local
adaptive thresholding method. First, a median filter is applied
to eliminate salt and pepper noise. Due to presence of noise,
sometimes the isolated pixels are misclassified as vessel pixels
which can be eliminated with the help of morphological
cleaning operation. This operation removes all the pixels
wholly encircled by vessel points but not considered as part
of a vessel. This is completed by considering that each pixel
with at least six neighbors marked as vessel points must also
belong to a vessel [13, 44]. Figure 4b, c represents the output
images after median filtering andmorphological cleaning. The
segmentation result of different images of both DRIVE and
CHASE_DB1 databases are shown in Fig. 5.

Results and Discussions

The performance of the segmentation process is verified and
estimated on the publicly available DRIVE (digital retinal
images for vessel extraction) [45] and CHASE_DB1 (Child
Heart And Health Study in England) [46] databases.

DRIVE database is the most commonly used database. In
this database, a canon CR5 non-mydriatic 3CCD camera with
a 45° field of view (FOV) is used to acquire the images where

each image taken using 8 bits per color plane at
584× 565pixels. The FOV of each image is circular with a
diameter of approximately 540 pixels where the images have
been cropped around the FOV. For each image, the mask is
available that portrays the FOV. The database contains total of
40 images which are divided into a training and a test set
where each of them includes 20 images. Here, the images
are JPEG compressed. The retinal images of both of the eyes
of each child are recordedwith a hand-held NM-200-D fundus
camera prepared by Nidek Co. Ltd., Gamagori, Japan. The
images are apprehended at 30° field of view (FOV) with a
resolution of 1280× 960 pixels. The images are taken in sub-
dued lighting using flash and illumination setting of 3. The
levels are adjusted by the operator. The images are saved in
tagged image file (TIF) format. The data set of images is
characterized by nonuniform background illumination, poor-
contrast blood vessels as compared with the background, and
a wider arteriole having a bright strip running down the center
termed as central vessel reflex.

In order to enumerate the algorithm performance of the pro-
posed method, the segmentation output is compared with the
manually segmented image by computing the following four
parameters such as true positive (TP), false negative (FN), true
negative (TN), and false positive (FP). If the pixel is counted as
vessel in both ground truth and segmented image, then it is
known as TP, and if it is counted as non-vessel, then it is termed
as TN. On the other hand, if the pixel is classified as vessel in
the ground truth image and non-vessel in the segmented image,
then it is termed as FN. Similarly, when the pixel is classified as
vessel in the segmented image and non-vessel in the ground
truth image, then it is termed as FP [47].

The performance of the proposed method is calculated in
terms of sensitivity (Se), specificity (Sp), positive predictive
value (PPV), negative predictive value (NPV), false discovery
rate (FDR), Matthews’s correlation coefficient (MCC),
Jaccard’s index, and Dice coefficient and accuracy (ACC).
The mathematical form of performance metrics for retinal
blood vessels segmentation is given in Table 1 [48]. The sen-
sitivity can be defined as the ratio of correctly classified vessel
pixels to the total number of vessel pixels in the ground truth
image. The specificity is defined as the total number of
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Fig. 4 Blood vessels
segmentation of proposed method
(a) output of adaptive
thresholding, (b) output of
median filter, and (c) output of
morphological cleaning



counted non-vessel pixels divided by the total number of non-
vessel pixels in the ground truth image. The positive predic-
tive value is the ratio of pixels appropriately categorized as

vessel pixels that are true vessel pixels. The negative predic-
tive value is the ratio of pixels classified as non-vessel that are
counted correctly. The false discovery rate is the predictable
proportion of false positives among all significant hypotheses.
Matthews’s correlation coefficient is used as a part of the value
of binary classifications. The Jaccard index neglects the true
negatives and relates the true positives to the number of pairs
that belong to the same class. The Dice coefficient is defined
as the harmonic mean of precision and sensitivity. The accu-
racy is the measure of capability to classify the amount of
conventionality of the resulted image to the manually seg-
mented image [49].

The performance matrices are calculated by taking
gamma value (0.8) and number of iterations (140) for
both DRIVE and CHASE_DBI databases which are listed
in Tables 2 and 3 respectively. These two values are set

Table 1 Performance metrics for retinal blood vessel extraction

Mathematical
measures

Expression

Se TP
TPþFN

Sp TN
TNþFP

PPV TP
TPþFP

NPV TN
TNþFN

FDR FP
FPþTN

MCC TP�TN−FP�FN= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ

p
Jaccard index TP

TPþFPþFN
Dice coefficient 2TP

2TPþFPþFN
ACC TPþTN

TPþFNþTNþFP

862 J Digit Imaging (2018) 31:857–868

(b)(a) (c)

C
H

A
S

E
_
D

B
1
 

D
R

IV
E

 

Input Images 
Segmented 

Images 

Ground truth 

Images 

Fig. 5 Segmentation results for
DRIVE and CHASE_DB1
databases. a Original images. b
Ground truth images. c
Segmented images



for obtaining the maximum average accuracies in both the
databases. The different gamma values are obtained by
calculating the accuracy for both the databases which
are shown in Fig. 6. From Fig. 6, it is found that the
maximum accuracy is achieved at gamma value of 0.8.
The performance matrices are calculated for every image
of both the databases by using the formula presented in
Table 1 and then the values are averaged in order to ob-
tain a single performance measure.

Out of all the performance matrices, Se, Sp, and ACC
are taken as measures of algorithm’s performance to com-
pare the proposed method with other state-of-the-art algo-
rithms. Table 4 represents the comparison of proposed
method with different supervised and unsupervised
methods given by Ricci et al. [1], You et al. [2], Marin

et al. [3], Soares et al. [4], Fraz et al. [5], Vega et al. [6],
Roychowdhury et al. [7], Tan et al. [10], Aslani et al. [11],
Zhao et al. [12], Fraz et al. [13], Fraz et al. [14], Zhang
et al. [15], Cinsdikici et al. [16], AI-Rawi et al. [17],
Azzopardi et al. [18], Budai et al. [19], Odstrcilik et al.
[20], Mapayi et al. [21], Panda et al. [22], Roychowdhury
et al. [23], AI-Diri et al. [24], Tan et al. [25], Martinez-
Perez et al. [27], Mendonca et al. [28], and Farokhain et al.
[29] for DRIVE database. Table 5 shows the comparison of
presented method in terms of Se, Sp, and ACC with the
publ i shed me thod repor t ed by Fraz e t a l . [5 ] ,
Roychowdhury et al. [7], Fraz et al. [8], Azzopardi et al.
[18], and Roychowdhury et al. [23] for CHASE_DB1 da-
tabase. In method [2], in the case of some pathological
fundus images in the border of the optic disc, several spots

Table 3 Performance evaluation on the CHASE_DB1 database

Image Sn Sp PPV NPV FDR MCC Jaccard index Dice coefficient ACC

Image_01L 0.7622 0.9859 0.7378 0.9649 0.2590 0.6377 0.6472 0.7486 0.9536
Image_02L 0.7200 0.9794 0.6895 0.9594 0.2099 0.6802 0.6411 0.7122 0.9430
Image_03L 0.8414 0.9843 0.7717 0.9687 0.2544 0.6966 0.6276 0.6912 0.9563
Image_04L 0.7520 0.9898 0.8044 0.9586 0.2004 0.6539 0.6470 0.7070 0.9512
Image_05L 0.8381 0.9825 0.7518 0.9674 0.2436 0.6914 0.6488 0.7083 0.9577
Image_06L 0.6765 0.9886 0.7872 0.9613 0.2129 0.6423 0.6942 0.7063 0.9527
Image_07L 0.7098 0.9858 0.7544 0.9604 0.2600 0.6387 0.6516 0.6782 0.9495
Image_08L 0.6690 0.9763 0.6147 0.9687 0.2925 0.6856 0.6411 0.6837 0.9486
Image_09L 0.7752 0.9686 0.7374 0.9830 0.2934 0.6614 0.6570 0.6823 0.9543
Image_10L 0.7430 0.9717 0.5716 0.9711 0.2144 0.6844 0.6423 0.6974 0.9464
Image_11L 0.8519 0.9631 0.5389 0.9865 0.3640 0.6843 0.6544 0.6721 0.9526
Image_12L 0.6484 0.9849 0.7249 0.9630 0.2921 0.6219 0.6542 0.7244 0.9509
Image_13L 0.7326 0.9863 0.6950 0.9664 0.3214 0.5901 0.6423 0.7164 0.9550
Image_14L 0.8574 0.9830 0.7297 0.9727 0.2673 0.6911 0.6763 0.7313 0.9580
Average 0.7555 0.9807 0.7077 0.9680 0.2634 0.6614 0.6517 0.7042 0.9521

Table 2 Performance evaluation
on the DRIVE database Image Sn Sp PPV NPV FDR MCC Jaccard

index
Dice
coefficient

ACC

01_test 0.7923 0.9838 0.8224 0.9789 0.1615 0.7769 0.6591 0.7958 0.9659
02_test 0.7325 0.9954 0.9457 0.9679 0.0694 0.7702 0.6533 0.7782 0.9662
03_test 0.7584 0.9945 0.9115 0.9595 0.0493 0.6554 0.6832 0.7521 0.9568
04_test 0.7037 0.9861 0.8148 0.9608 0.1722 0.6546 0.6650 0.7234 0.9509
05_test 0.7622 0.9879 0.8345 0.9725 0.1700 0.6766 0.6834 0.7388 0.9663
06_test 0.6924 0.9919 0.7876 0.9319 0.1724 0.5364 0.7832 0.7172 0.9320
07_test 0.8658 0.9812 0.7396 0.9761 0.1842 0.6446 0.6591 0.7264 0.9603
08_test 0.6517 0.9946 0.8697 0.9651 0.1004 0.6214 0.6944 0.6571 0.9640
09_test 0.6075 0.9909 0.7808 0.9467 0.2044 0.6443 0.6175 0.6982 0.9497
10_test 0.8573 0.9767 0.7956 0.9811 0.1963 0.6695 0.6367 0.6884 0.9658
11_test 0.7536 0.9791 0.7531 0.9729 0.2537 0.6697 0.6144 0.6932 0.9559
12_test 0.6793 0.9886 0.8120 0.9625 0.2004 0.6654 0.6842 0.6786 0.9542
13_test 0.7097 0.9887 0.8396 0.9485 0.1710 0.6363 0.6072 0.7375 0.9416
14_test 0.7559 0.9931 0.8822 0.9715 0.1126 0.7746 0.6833 0.7034 0.9667
15_test 0.7597 0.9590 0.5916 0.9782 0.3975 0.6409 0.6422 0.7477 0.9424
16_test 0.7794 0.9892 0.8326 0.9616 0.1975 0.6983 0.6972 0.6534 0.9593
17_test 0.7544 0.9952 0.9020 0.9649 0.0943 0.7035 0.6321 0.7712 0.9621
18_test 0.6915 0.9797 0.7461 0.9735 0.2295 0.6495 0.6720 0.7650 0.9568
19_test 0.7306 0.9870 0.8366 0.9759 0.1368 0.7199 0.6814 0.7278 0.9658
20_test 0.6972 0.9802 0.7372 0.9760 0.2345 0.6622 0.6718 0.7275 0.9594
Average 0.7417 0.9861 0.8117 0.9663 0.1753 0.6735 0.6660 0.7240 0.9571
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are falsely counted as vessels. The level set and region
growing method [12], in some cases, result in inaccurate
segmentation as the active contour moves toward the path-
ological regions for some abnormal images. The method
proposed by Soares et al. [4] cannot identify the thin

vessels properly and takes only local information. The
method using bit planes and centerline detection [13] is
less suitable for younger aged fundus images. In the MF-
FODG method [15], some unwanted structures are not
eliminated completely, and in the output obtained from
MF/ant technique [16], the obtained blood vessels are
thicker as compared to the blood vessels present in the
ground truth image. As compared to the other existing
methods, the proposed method can extract retinal blood
vessels more precisely from the DRIVE database. The pro-
posed method is robust and easier to implement as com-
pared to other methods. It can also identify both large and
thin vessels accurately. The presented method performs
better for child fundus images. However, in the case of
some pathological images, it is unable to handle the con-
nectivity which can lead to inaccurate segmentation re-
sults. The segmentation performances of Marin et al. [3],
Azzopardi et al. [18], Odstrcilik et al. [20], Budai et al.
[19], Fraz et al. [13], Vega et al. [6], Cinsdikici et al.
[16], Fraz et al. [14], Tan et al. [10], Aslani et al. [11],
AI-Diri et al. [24], Tan et al. [25], Martinez-Perez et al.
[27], Mendonca et al. [28], and Farokhain et al. [29] are
obtained from the original literature. The segmentation
performances of Zhang et al. [15], Soares et al. [4], and
You et al. [2] are obtained from Zhao et al. [12], whereas

Table 4 Segmentation performance comparisons of different methods
on the DRIVE database

Supervised methods Method Se Sp ACC

Ricci et al. [1] – – 0.959

You et al. [2] 0.741 0.975 0.943

Marin et al. [3] 0.706 0.980 0.945

Soares et al. [4] – – 0.946

Fraz et al. [5] 0.740 0.980 0.948

Vega et al. [6] 0.744 0.960 0.941

Roychowdhury et al. [7] 0.724 0.983 0.951

Tan et al. [10] – – 0.926

Aslani et al. [11] 0.754 0.980 0.951

Zhao et al. [12] 0.735 0.978 0.947

Fraz et al. [13] 0.715 0.976 0.943

Fraz et al. [14] 0.730 0.972 0.942

Zhang et al. [15] 0.712 0.972 0.938

Cinsdikici et al. [16] – – 0.929

AI-Rawi et al. [17] – – 0.942

Unsupervised
methods

Azzopardi et al. [18] 0.765 0.970 0.944

Budai et al. [19] 0.644 0.987 0.957

Odstrcilik et al. [20] 0.706 0.969 0.934

Mapayi et al. [21] 0.731 0.972 0.951

Panda et al. [22] 0.733 0.975 0.953

Roychowdhury et al. [23] 0.739 0.978 0.949

Al-Diri et al. [24] 0.728 0.955 –

Tan et al. [25] – – 0.93

Martinez-Perez et al. [27] 0.724 0.933 0.934

Mendonca et al. [28] 0.734 0.976 0.945

Farokhian et al. [29] 0.693 0.979 0.939

Proposed method 0.741 0.986 0.957

Table 5 Segmentation performance comparisons of different methods
on the CHASE_DB1 database

Method Se Sp ACC

Fraz et al. [5] 0.722 0.971 0.946

Roychowdhury et al. [7] 0.720 0.982 0.953

Fraz et al. [8] 0.725 0.977 0.952

Azzopardi et al. [18] 0.758 0.958 0.938

Roychowdhury et al. [23] 0.761 0.957 0.962

Proposed method 0.755 0.980 0.952
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Fig. 6 Accuracy of the
segmentation process as a
function of gamma. a DRIVE
database. b CHASE_DB1
database



Fraz et al. [5] and Roychowdhury et al. [7] are obtained
from Azzopardi et al. [18].

Figure 7 represents the comparison of proposed method
with other existing methods in DRIVE database. From
Fig. 7, it is observed that the proposed method is able to
extract both large and thin vessels by achieving higher ac-
curacy than other existing methods. Figures 8 and 9 show
the comparison of segmentation result of large and thin ves-
sels on selected region respectively. The proposed method is
tested on the sub-images containing large and thin vessels. It
is found that the proposed method extract both the vessels
precisely with average Se, Sp, and ACC of 0.8309, 0.9777,
and 0.9436 for large vessels and 0.761, 0.970 and 0.954 for
thin vessels respectively. The performance matrices for

selected region of large and thin blood vessels are presented
in Table 6.

Conclusions

An unsupervised iterative method is proposed for extraction
of blood vessels followed by two enhancement techniques
before the segmentation process. The blood vessels are then
extracted using an adaptive threshold surface derived from
variational minimax optimization. The use of double enhance-
ment technique gives a better result in enhancement of blood
vessels. Both large and thin blood vessels are extracted pre-
cisely with sensitivity, specificity, and accuracy of 0.830,
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Fig. 7 Segmentation results of
first retinal image from the
DRIVE database using different
methods. a Original image. b
Ground truth image of the first
observer. cCinsdikici et al. [16]. d
AI-Rawi et al. [17]. e Zhang et al.
[15]. fMapayi et al. [21]. g Panda
et al. [22]. h Soares et al. [4]. i
Proposed method



0.977, and 0.943 for large vessels and 0.761, 0.970, and 0.954
for thin vessels respectively. It achieves an average accuracy
of 0.957 and 0.952 for DRIVE and CHASE_DB1 databases
respectively. The advantage of the proposed method is that it
does not require user intervention and manual segmentation
for training because it is found unsupervised in nature. At the
same time, the method is robust and easier to implement as
compared to other methods. It is also effective in detecting
both thick and thin vessels with good values of sensitivity
and specificity. The drawback of the proposed method is that
in case of some pathological images, it is unable to handle the

Table 6 Performance
evaluation on sub-image Performance

matrices
Large
vessel

Thin
vessel

Se 0.830 0.761
Sp 0.977 0.970
PPV 0.915 0.689
NPV 0.950 0.972
FDR 0.084 0.310
MCC 0.836 0.699
Jaccard index 0.784 0.712
Dice

coefficient
0.825 0.752

ACC 0.943 0.954
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Fig. 9 Detection of thin blood vessels on selected sub-region. a Marked
sub-region. b Ground truth image of the first observer. c Cinsdikici et al.
[16]. d AI-Rawi et al. [17]. e Zhang et al. [15]. f Mapayi et al. [21]. g
Panda et al. [22]. h Soares et al. [4]. i Proposed method

Fig. 8 Detection of large blood vessels on selected sub-region. aMarked
sub-region. b Ground truth image of the first observer. c Cinsdikici et al.
[16]. d AI-Rawi et al. [17]. e Zhang et al. [15]. f Mapayi et al. [21]. g
Panda et al. [22]. h Soares et al. [4]. i Proposed method



connectivity, which can lead to inaccurate segmentation re-
sults. The manifestation of the proposedmethod has important
clinical implication for different ophthalmological diseases
like screening of diabetic retinopathy, evaluation of retinopa-
thy prematurity, computer-assisted laser surgery, and vessel
diameter estimation. It is expected that this problem will be
resolved in the future by examining different deep learning
techniques to evaluate the connectivity of the segmented ret-
inal vessels.
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