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Abstract
This work presents an approach for synchronization and alignment of Digital Imaging and Communications in Medicine
(DICOM) series from different studies that allows, e.g., easier reading of follow-up examinations. The proposed concept
developed within the DICOM’s patient-based reference coordinate system allows to synchronize all image data of two
different studies/examinations based on a single registration. The most suitable DICOM series for registration could be set
as default per protocol. Necessary basics regarding the DICOM standard and the used mathematical transformations are
presented in an educative way to allow straightforward implementation in Picture Archiving And Communications Systems
(PACS) and other DICOM tools. The proposed method for alignment of DICOM images is potentially also useful for various
scientific tasks and machine-learning applications.

Keywords DICOM · Medical image registration · Image alignment · Image coordinate system · Reference coordinate
system · Multiparametric analyses

Background

Synchronization of DICOM (Digital Imaging and Commu-
nications in Medicine) image data is a common feature
of Picture Archiving and Communications System (PACS)
viewers. If this function is activated by the user, the simul-
taneous display of multiple image datasets of a particular
examination is instantly synchronized. In our institution,
this synchronization function is frequently used for read-
ing of multiparametric magnetic resonance imaging (MRI)
datasets. For example, by clicking on a suspicious lesion on
a T2-weighted dataset, the currently displayed slice posi-
tion of all other sequences (e.g., a T1-weighted dataset)
is changed accordingly. Additionally, the selected area is
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marked by a crosshair in all image datasets. This point-to-
point live synchronization works independent of the image
orientation (e.g., transversal, coronar, sagittal). However,
the synchronization of DICOM images without prior reg-
istration is limited to datasets that were acquired in a
single study. To allow synchronized viewing of follow-
up examinations, e.g., for assessment of the progress of a
lesion, some form of image registration is required. Some
systems already offer such registration functionality (typ-
ically as a black-box application) but it is not standard
in DICOM viewers for clinical research [1]. Hence, the
aim of this project was to present a simple and easy-to-
implement approach within the DICOM concept, which
allows synchronization and alignment of image data that
were recorded in different examinations. In principle, the
approach is also applicable to DICOM image data acquired
at different modalities.

Methods

This section provides all necessary basics with respect
to the DICOM standard and the used mathematical
transformations. Transformation matrices are a fundamental
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prerequisite for live synchronization, which is basically a
coordinate transformation between two image coordinate
systems (ICSs). Furthermore, it is explained how to
create a corresponding transformation matrix based on
DICOM metadata, and how it can be applied for live
synchronization. The illustrative derivation also points out
why this procedure is not adequate for synchronization
of image data from different examinations. The proposed
solution to this problem is then presented in the result
section. All examples were implemented in MATLAB (The
MathWorks, Inc., Natick, MA) and C.

Basics of TransformationMatrices

Figure 1 shows two rectangular, right-handed coordinate
systems. Curly braces indicate a coordinate system.
Suppose we have a certain point A. The coordinates of point
A are described in a coordinate system called {1}. Now we
want to calculate the coordinates of point A with respect
to a different coordinate system {2}. To achieve this, we
need the transformation matrix between the two coordinate
systems which we denote 1

2T . The transformation matrix
contains information about the position and rotation of the
two coordinate systems relative to each other. It is composed
of a rotation matrix 1

2R and the position vector of the
coordinate origin 1

2O. The rotation matrix can be calculated
by scalar products of the axes of the mutually rotated
coordinate systems [2]. Of note, the algebraic inverse
matrix of a transformation matrix also represents the inverse
transformation. This means that the transformation matrix
that describes the transformation of coordinate system {1}
to {2} can be calculated by computing the inverse of the
transformation matrix that describes the transition from

Fig. 1 Illustration of a point A, which is described in two different
coordinate systems {1} and {2} by respective position vectors A

1 P

and A
2 P . To obtain the coordinates of point A in the respective other

coordinate system, the relative position of the two coordinate systems
has to be defined by a transformation matrix T which is then applied
by a matrix-vector multiplication

coordinate system {2} to {1}. Equation 1 shows the structure
of a transformation matrix:

1
2T = 2

1T
−1 =

( 1
2R

1
2O

0 0 0 1

)

=

⎛
⎜⎜⎝

�x1 · �x2 �y1 · �x2 �z1 · �x2 1
2ox

�x1 · �y2 �y1 · �y2 �z1 · �y2 1
2oy

�x1 · �z2 �y1 · �z2 �z1 · �z2 1
2oz

0 0 0 1

⎞
⎟⎟⎠ (1)

where 1
2O ∈ R

3×1 is the origin of coordinate system {2}
described in coordinate system {1} and 2

1R ∈ R
3×3 is the

rotation matrix, which describes the rotation of {2} to {1}.
�xi/�yi/�zi are the unit vectors of the two coordinate systems
that must be described in the same system. To transform
the position vector of point A described in the coordinate
system {1} (denoted by A

1 P ) into a position vector that
describes point A in coordinate system {2} ( A

2 P ), the posi-
tion vector is extended by a one in the fourth dimension.
This type of coordinates are called homogeneous coordi-
nates. Now the position vector can be multiplied by the
transformation matrix 2

1T in R4×4:

A
2 P ′ =

(
A
2 P

1

)
=

⎛
⎜⎜⎝

A
2 Px
A
2 Py
A
2 Pz

1

⎞
⎟⎟⎠ = 111

2T · A
111 P ′ (2)

Note that in the notation used here, there is a mnemonic to
the correct sequence of non-commutative matrix multiplica-
tion: The system that is to be eliminated from the notation
by matrix multiplication must be diagonally opposed from
top left to bottom right (highlighted in Eq. 2).

Synchronization of Image Data from the Same
Examination

DICOM [3] is a standard container format for medical
image data. The live synchronization function of PACS
viewing systems uses metainformation called C.7.6.2 Image
Plane Module [4] from the DICOM header, which describes
the position and orientation of the image data within
the patient-based reference coordinate system (RCS). This
RCS is a right-handed left-posterior-head (LPH) coordinate
system [5]. To create the transformation between the image
inherent coordinate system {D} of a three-dimensional
single-frame DICOM dataset and the RCS (denoted {W}),
the DICOM elements Image Position Patient (0020,0032)
(IPP), Image Orientation Patient (0020,0037) (IOP), and
Pixel Spacing (0028,0030) (PS) are applied. Figure 2
illustrates how these tags refer to the RCS. IPP is the
coordinate of the upper left pixel described in {W} in
millimeter. IOP contains direction cosines of the first row
and the first column with respect to {W}. The directional
cosines in the direction of the slices can be determined by
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Fig. 2 Visualization of the ICS of a DICOM image {D} and the
RCS {W}, to which the DICOM image refers. The information of the
position, orientation, and scaling of the two systems to each other are
stored in the DICOM elements Image Position Patient (IPP), Image
Orientation Patient (IOP), and Pixel Spacing (PS). The transformation
matrix of the ICS to its RCS is determined by Eq. 3

the cross product of the vectors of the row and column
direction or from the normalized vector between the IPP
entries of the first and last DICOM file of a single-frame
dataset. PS contains the physical distance between the voxel
centers in row direction and column direction in millimeter.
The distance between the voxel centers in slice direction can
be determined by the length of the vector between the IPP
entries of the first and last DICOM files of a single-frame
dataset, divided by the number of frames N − 1. Section
C.7.6.6.2.1.1 of the DICOM standard [4] holds the formula
for calculating the transformation matrix of DICOM image
to the RCS. Using the DICOM elements of the Image
Plane Module and using the results of the above-described
calculations, the transformation matrix between {D} and
{W} can established:

Di
W T =

⎛
⎜⎜⎝

IOP (4) · PS(2) IOP (1) · PS(1)
IOP (5) · PS(2) IOP (2) · PS(1) . . .

IOP (6) · PS(2) IOP (3) · PS(1)
0 0

( IPP 1(1) − IPP N(1) ) / (N − 1) IPP 1(1)
( IPP 1(2) − IPP N(2) ) / (N − 1) IPP 1(2)
( IPP 1(3) − IPP N(3) ) / (N − 1) IPP 1(3)

0 1

⎞
⎟⎟⎠ (3)

Note that the first two columns of the transformation matrix
are swapped compared to the description in [4] and [6],
since we use a programming language with a column-major
order (image coordinates in the order row i, column j,
slice k). Combining the transformation matrices Di

W T of
two DICOM image datasets yields the direct transformation
between D1

D2T between the ICSs, provided the image data
refer to the same RCS (cf Fig. 3):

D1
D2T = W

D2T · D1
W T = D2

W T −1 · D1
W T (4)

This is the case with image data that was created in a
single examination during which the object did not move
and the RCS origin was not modified by the operator.
For each point A (i1, j1, k1) within D1, the corresponding

Fig. 3 Visualization of two DICOM image datasets {D1} and {D2},
which were acquired during the same examination. They can be
synchronized using Eq. 4 as the header information refer to the same
reference coordinate system W

coordinate (i2, j2, k2) in D2 can be calculated by matrix-
vector multiplication with the transformation matrix of {D2}
to {D1},
A
D2P

′ = D1
D2T · A

D1P
′ (5)

where A
DiP

′ represents the coordinate extended by 1 in the
fourth dimension. Figure 4 shows an overlay of two MRI
image datasets. The superposition was determined by Eq. 4.

Results

Synchronization of Image Data from Different
Examinations

If the DICOM image data originate from different exam-
inations, the datasets cannot be synchronized directly via
the DICOM header information. It is irrelevant whether the
objects shown were positioned differently in the patient-
based RCS at both examinations or the origin of the RCS
was set at a different location at the beginning of the two
examinations. We assume that DICOM image data from dif-
ferent examinations refer to different RCS {W1} and {W2}
as shown in Fig. 5 and therefore cannot be synchronized
by Eq. 4:

W2
D2T · D1

W1T �= D1
D2T (6)

To enable synchronization in such a case, images from
the two examinations must first be registered. Here, the
registration problem is the search for the best geometric
alignment of two volumetric DICOM series. The two
datasets are referred to as fixed image {D1} and moving
image {D2}. A common way to solve the registration
problem is to optimize a transformation which, when
applied to the moving image, aligns the two images best. In
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Fig. 4 a Transversal T2-weighted DICOM image. b Sagittal T1-
weighted DICOM image. c Overlay of both images. Since the two
images were acquired in the same examination, the geometrical

information stored in the DICOM header refer to the same RCS {W}.
Hence, the superposition could be computed by applying equation (4)

the notation used here, this transformation is represented by
the transformation matrix between the ICS D1

D2T ; hence, the
optimization problem reads

D1
D2T

∗ = argmin
D1
D2T

C
(
D1, D2′ (D2, D1

D2T
))

(7)

where C represents the cost function, which has a minimum
for the optimal alignment of the image datasets, and D2′
represents dataset D2 after it has been transformed by D1

D2T .
We denote the optimal solution D1

D2T
∗. Since the resulting

transformation matrix is only valid for the particular moving
image D2, it cannot be used for synchronizing the view of
further datasets of the second examination.

Instead of searching directly for the transformation
matrix D1

D2T between the ICS of two images, the aim of
the approach described in the following is to find the trans-
formation between the two reference coordinate systems
of the two examinations. This procedure has the following
advantages:

• The scaling of the data is maintained because the reg-
istration process inherently includes the corresponding
information from the DICOM header.

Fig. 5 Visualization of two DICOM image data {D1} and {D2}, which
were acquired during different examinations. DICOM image data from
different examinations refer to different RCS and thus cannot be
directly synchronized by Eq. 4

• The transformation between the RCS W1
W2T

∗ can be
applied to all images {Di} of the second examination;
hence, all datasets of two examinations can be
synchronized based on only one registration.

To achieve this, the transformation matrix between the
two reference coordinate systems W1

W2T is incorporated
in the formulation of the registration problem by expre-
ssing D1

D2T in dependency on W1
W2T

∗:

D1
D2T

(
W1
W2T

)
= W2

D2T · W1
W2T · D1

W1T (8)

A rigid registration can be defined by six parameters, where
three parameters represent the rotation and the other three
translations. Equation 9 describes one way to define such a
transformation between the two RCS, using the cosine (c)
and sine (s) of three Z-Y-X Euler angles (ϕ/θ/ψ) and three
translations (tx/ty/tz)[7]:

W1
W2T =

⎛
⎜⎜⎝
cθ · cψ cψ · sϕ · sθ − sψ · cϕ
sψ · cθ sϕ · sθ · sψ + cϕ · cψ . . .

−sθ cθ · sϕ
0 0

cϕ · cψ · sθ + sϕ · sψ tx
sθ · sψ · cϕ − sϕ · cψ ty

cϕ · cθ tz
0 1

⎞
⎟⎟⎠ (9)

Three-dimensional rotations could alternatively be defined
by quaternions, which are very common, e.g., in computer
graphics. Quaternions parameterize a rotation by a hyper-
complex number which consists of a real part and three
imaginary parts. In principle, Euler angles have the disad-
vantage that certain rotation states can be described by a
multitude of angle combinations. This condition is known
as gimbal lock. However, when rotation parameters are opti-
mized based on Euler angles, we nevertheless receive a valid
solution with the advantage that only three instead of four
parameters of rotation have to be optimized.

During the registration process, the similarity between
the two image datasets (after applying the transformation to
the moving image) has to be determined as explained above.
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To allow a voxel-by-voxel comparison of the two datasets,
the moving image has to be rescaled to the dimension of
the fixed image. To do this, each image coordinate n

D1P
′ =

(i1, j1, k1, 1)T from the fixed image is multiplied by the
current transformation matrix D1

D2T , which was computed
using Eq. 8:

n
D2P

′ = D1
D2T · n

D1P
′ (10)

The resulting image coordinates n
D2P

′ = (u, v, w, 1)T

are likely to be non-integer valued so that an interpolation
is required. If the coordinates u, v, and w lie within the
dimension of the moving image, tri-linear interpolation can
be applied using the surrounding eight voxels, which we
call neighbors Nijk . Alternatively, a tri-cubic interpolation
could be implemented, which provides better results but
at a higher computational expense [8]. If the resulting
index is outside the dimension of the moving image, a
corresponding voxel value cannot be generated. This voxel
is then excluded in the subsequent evaluation of the cost
function. The indices of Nijk denote the index of row i2,
column j2, or layer k2 within the moving image, computed
from the non-integer image coordinates. A “1” stands for
the rounded-up index and “0” for the rounded-down index.
Now a corresponding voxel value Vn can be calculated for
each i1, j1, and k1 by tri-linear interpolation:

Vn = N000 · (1 − �i) · (1 − �j) · (1 − �k)

+N001 · (1 − �i) · (1 − �j) · �k

+N010 · (1 − �i) · �j · (1 − �k)

+N011 · (1 − �i) · �j · �k

+N100 · �i · (1 − �j) · (1 − �k)

+N101 · �i · (1 − �j) · �k

+N110 · �i · �j · (1 − �k)

+N111 · �i · �j · �k (11)

where �i = u − f loor(u) is the relative position of the
coordinate n in row direction within the neighbors Nijk . �j

and �k are calculated in the same way as �i. After creation
of the transformed and interpolated moving image dataset
D2′, the cost function C can be evaluated for the search of
W1
W2T ,

W1
W2T

∗ = argmin
W1
W2T

C
(
D1, D2′ (D2, D1

D2T
(

W1
W2T

)))

(12)

where D1
D2T ( W1

W2T ) is the transformation matrix defined by
Eq. 8 with which the moving image D2 is transformed.

Typical cost functions for intramodal registration (i.e.,
same contrast, e.g., two T1-weighted datasets) are based on
sum of squared differences, sum of absolute differences, or
cross correlation [9]. Cost functions for intermodal regis-
tration are, e.g., Kulback–Leiber divergence or normalized

mutual information [10]. Image preprocessing for optimized
automatic registration [11], methods for optimization, and
dedicated cost functions [12] are not in the focus of this
work.

After optimization, the determined transformation
between the two RCS W1

W2T
∗ can be used to calculate D1

D2T
∗

with which a live synchronization can be performed (see
Eq. 5). In the same way, W1

W2T
∗ can now be applied for syn-

chronization of all DICOM images {Di} originating from
the same examination as the fixed image and all DICOM
images {Dj} originating from the same examination as the
moving image:

Di
DjT

∗ = W2
Dj T · W1

W2T
∗ · Di

W1T (13)

This is possible because image data of a single exami-
nation typically refer to the same RCS, as described in
Fig. 3. Figure 6 shows a visual demonstration of the syn-
chronization by overlaying image series of two different
MRI examinations. For this purpose, a standard intermodal
registration of the RCS using normalized mutual informa-
tion was carried out and the result was applied to two
other images originating from the same examination as the
moving image. The optimization was performed by the
MATLAB function fminunc, a solver for nonlinear program-
ming, which uses the quasi-Newton method followed by a
cubic line search.

Discussion

The aim of this project was to present a simple and
easy-to-implement approach within the DICOM concept
for alignment of DICOM datasets allowing advanced
synchronization functions. The proposed registration based
on the RCS enables synchronization of all image data from
two different examinations based on only one registration.
Such functionality can significantly improve the workflow
of time demanding comparison of follow-up examinations,
since the view can be synchronized not only between
different image datasets of a single study (e.g., different
MRI sequences) but also between data from different
time points. Applying the described concept, the most
geometrically robust sequence could be set as default for
the automated registration process, e.g., for brain MRIs,
high-resolution 3D T1-weighted data sets are well suited,
which are often part of standard brain MRI protocols. A big
advantage of the proposed approach is that the results of
the rigid registration performed on geometrically reliable,
typically unimodal image data, can also be transferred to
sequences that are more prone to artifacts like diffusion-
weighted images (DWI). Due to geometrical instabilities,
images of that type could otherwise not be registered on a
image to image basis.
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Fig. 6 (a) Sagittal 3D T1-
weighted dataset and (b) coronar
FLAIR dataset. The two image
series derive from two different
examinations, hence refer to
different RCS {W1} and {W2}.
Thus, the header information of
the DICOM files cannot be used
to synchronize the images by
Eq. 6 directly (c). After the
transformation between {W1}
and {W2} has been determined
by the registration (d), it can be
applied to all image data of the
second examination, e.g.,
coronar (e) or tranaversal
T2-weighted images (f)

The described processing steps could also be applied for
automated generation of perfectly aligned slices by mutli-
planar reconstructions, provided the spatial resolution of
the image data is sufficient. To the best of our knowledge,
current PACS systems do not offer such functionality
but only provide a point-to-point synchronization. This
is suboptimal, e.g., for synchronized scrolling through
two transversal sequences that where acquired at slightly
different angles.

Furthermore, the described concepts of registration and
interpolation are also of value for various scientific appli-
cations. If the transformation between images is known by
registration, ROI, seed points for segmentation, or segmen-
tation results can be transferred easily between different
datasets. For example, a manually or automatically defined
volume mask of a tumor can be transferred between the
images in order to analyze it multiparametrically in a quanti-
tative way. Furthermore, the transfer of volumes of interests
(VOIs) between different image datasets can contribute to
the collection of training data for machine-learning pur-
poses [13]. In machine-learning applications, typically all
image data have to be aligned and resampled to a unique
resolution and orientation. In a well-known challenge in
the field of machine learning in medical imaging, namely
Brain Tumor Image Segmentation Challenge (BraTS) [14],
this is already done prior to the publication of the datasets.
The multiparametric MRI datasets available to the partici-
pants for training and validation are aligned, resampled to
a standard resolution, and stored in a research data format.
Our manuscript may serve as a guide on how to gener-
ate such aligned training data staying within the DICOM

framework. All necessary steps from registration to interpo-
lation are described. The presented method of registration
within the RCS could accelerate the creation of such a col-
lection of aligned image data. PACS system viewers could
be expanded by a function that allows creation and export of
image data for machine-learning applications directly from
DICOM data. Lastly, also integration of machine-learning
tools into PACS viewing systems requires corresponding
data processing.

As a limitation of this work, only rigid registration
was considered. The assumption of rigid objects should be
valid in case of brain examinations but may be violated
in other body areas. This however is also an issue when
synchronizing image data of a single examination, e.g.,
when the bladder fills up during a prostate examination.
However, based on our experience, synchronization appears
to be of value also in case of movement and neverthe-
less eases navigation through multi-parametric datasets.
Moreover, the results of a rigid registration may provide a
good starting point for non-rigid, deformable registration
applying locally applied transformations on top [15, 16].

Conclusion

In this project, we presented a method that allows alignment
and synchronization of DICOM image data from different
examinations. The in-depth explanation and illustration of
the required processing steps is potentially also helpful for
development of other applications in the field of medical
image analyses.
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