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Abstract
Catheters are commonly inserted life supporting devices. Because serious complications can arise from malpositioned
catheters, X-ray images are used to assess the position of a catheter immediately after placement. Previous computer vision
approaches to detect catheters on X-ray images were either rule-based or only capable of processing a limited number or type
of catheters projecting over the chest. With the resurgence of deep learning, supervised training approaches are beginning to
show promising results. However, dense annotation maps are required, and the work of a human annotator is difficult to scale.
In this work, we propose an automatic approach for detection of catheters and tubes on pediatric X-ray images. We propose
a simple way of synthesizing catheters on X-ray images to generate a training dataset by exploiting the fact that catheters are
essentially tubular structures with various cross sectional profiles. Further, we develop a UNet-style segmentation network
with a recurrent module that can process inputs at multiple scales and iteratively refine the detection result. By training on
adult chest X-rays, the proposed network exhibits promising detection results on pediatric chest/abdomen X-rays in terms
of both precision and recall, with Fβ = 0.8. The approach described in this work may contribute to the development of
clinical systems to detect and assess the placement of catheters on X-ray images. This may provide a solution to triage
and prioritize X-ray images with potentially malpositioned catheters for a radiologist’s urgent review and help automate
radiology reporting.
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Introduction

Catheters and tubes, including endotracheal tubes (ETTs),
umbilical arterial catheters (UACs), umbilical venous
catheters (UVCs), and nasogastric tubes (NGTs), are
commonly used in the management of critically ill or very
low birth weight neonates [8]. For example, ETTs assist
in ventilation of the lungs and may prevent aspiration,
umbilical catheters may be used for administration of
fluids or medications and for blood sampling, and NGTs
may be used for nutritional support, aspiration of gastric
contents, or decompression of the gastrointestinal tract
in critically ill neonates [3]. Because catheters and tubes
(all referred as catheters in the following for simplicity)
are typically placed without real-time image guidance,
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they are frequently malpositioned [12, 15], and serious
complications can arise as a result [3]. Thus, the position
of a catheter is usually assessed using X-ray imaging
immediately following placement [3].

Paediatric radiologists are trained to accurately accom-
plish the task of detecting catheters on X-ray images and
assessing placement with a low diagnostic error rate [10].
However, availability of expertise may be limited or delayed
due to high image volumes. An automatic approach is
desired to flag X-rays which may have a malpositioned
catheter so that they can be immediately reviewed by a clin-
ician or radiologist, thus promoting safer use of catheters.
Since the location of a catheter impacts clinical decision
making, we believe detection of catheters is a critical first
step towards a fully automatic catheter placement evaluation
system.

Automated catheter detection on pediatric X-ray is
a challenging task. Although most catheters have a
radiopaque strip to facilitate detection, the strip may become
less apparent depending on the projection angle. Catheters
maybe confused by other similar linear structures like ECG
leads and anatomy including ribs. Additionally, portions of
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Fig. 1 Detection of catheters is challenging on pediatric X-ray images.
The number of catheters is not known prior to interpretation and
they can be partially occluded by the body. ECG electrode leads and
other unidentified catheters also serve as sources of confusion. (a1),

(a2), and (a3) show the original pediatric X-rays, with the potential
catheters, wires and lines (including ECG wires and other unidentified
catheters) highlighted in different colors. (b1), (b2), and (b3) show the
detected catheters by our proposed method

catheters can be occluded by anatomical structures given
that radiographs are a 2D projection of a 3D structure. For
example, when a NGT is placed within the oesophagus, the
catheter itself becomes less apparent due to the high density
of the adjacent vertebrae. Finally, the number and type of
catheters that could possibly appear in pediatric X-rays are
unknown a priori. The catheters may be intertwined with
each other thus making simple line tracing methods fail.
Figure 1 provides three sample pediatric X-ray images with
some common catheters highlighted in different colors.

Previous methods have heavily relied on primitive low
level cues and made superficial assumptions of catheter
appearance and position. They all focused on catheters in
chest X-rays without considering the presence of umbilical
catheters. The template matching based region growing
method would fail in our case due to the higher geometric
complexity of the catheter.

Machine learning, especially deep learning, has recently
received significant attention in the medical imaging
community due to its demonstrated potential to complement
image interpretation and augment image representation and
classification. For example, super human performance has
been achieved in organ segmentation in adult chest X-rays
[5] and an algorithm is able to denoise low dose computed
tomography with improved overall sharpness [29]. Here,
we formulated catheter detection as a binary supervised
segmentation task where the catheters are the foreground
class and the remainder of the image is the background
class. However, a large pixel level accurate annotation
dataset is required for current supervised segmentation
methods to work properly.

To alleviate this annotation problem, we proposed to
use X-ray images with simulated catheters by exploiting
the fact that catheters are essentially tubular objects with

various cross sectional profiles. To be more specific, a
synthetic 2D projection of a catheter is generated by first
simulating a horizontal catheter profile and then using it as
a brush tip to draw along a B-spline path. This generated
catheter is then composited with an X-ray image serving
as the training data. Another contribution of this work
is a segmentation network that can inherently take into
account multi-scale information. This network adopts a
UNet-style form and contains a recurrent module that can
process inputs iteratively in increasing scales.1 This setup
draws the network’s attention to line structures and we have
empirically shown that by iterating through the scale space
of the input image, higher recall is achieved at a fixed
precision level as compared to using a single scale. As far
as we know, this is the first work that tried to detect all
commonly seen catheters on pediatric X-ray images. Details
about the methods are discussed in “Methodology”. Three
sample detection results are shown in Fig. 1.

RelatedWorks

There have been limited prior publications regarding
automated catheter detection on X-ray images in general. In
this section, we not only review catheter detection methods
but also provide a brief overview of elongated structure
detection as a broader concept.

Catheter detection Kao et al. [13] proposed a rule-based
system to detect ETTs on pediatric chest X-rays. It
was based on the presumption that ETTs usually have

1Our code is available at https://github.com/xinario/catheter detection.git.
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the highest intensity and are continuous in the cervical
region. This system is sensitive to the positioning of the
neonates and it is possible to confuse an ETT with a
NGT when the assumptions no longer hold. Sheng et al.
[22] proposed a method for identification of ETTs, NGTs
and feeding tubes together in adult chest X-rays. The
detection was based on the Hough transform assuming
that catheters in small rectangular areas are straight. Their
algorithm has high computation complexity and would
fail if the catheter forms a loop or there are other sources
of confusion present, e.g. ECG electrode leads or, ribs.
Keller et al. [14] proposed a semi-automated system to
detect catheters in chest X-rays with users supplying
initial points for catheter tracking. Line tracing was
accomplished by template matching of catheter profiles.
Follow-up works have been conducted in [20, 21] where
the initial seed for line tracing was automatically selected
in the cervical region by detecting parallel lines. This
approach is not suitable for umbilical catheters since
their starting points are not well determined. Mercan
et al. [19] proposed a patch-based neural network to
detect chest tubes and a curve fitting approach to connect
discontinued detected line segments. A very recent work
used a fully convolutional neural network for detection of
peripherally inserted central catheter (PICC) tip position
on adult chest X-ray images [16]. A similar approach
was taken by Ambrosini et al. [2] to detect catheters on
X-ray fluoroscopy but using a UNet-style [18] network.
All the supervised segmentation methods require humans
to manually annotate catheter locations for supervised
training.

Elongated structure detection One of the most common
elongated structures in medical imaging is a blood vessel.
Its detection has been researched in many imaging
modalities, such as in retinal fundus imaging [17] and
angiography [9]. The methods used in the literature
have evolved from hard coded rule based methods
into machine learning based methods. In the early
days, researchers tried to devise metrics to measure the
“vesselness” directly from feature sources like Hessian
matrix [9] and co-occurrence matrix [26]. Later on,
rather than relying on a single feature, researchers started
to aggregate features from multiple sources, such as
ridge based [24], wavelets [23] and then employed
a supervised learning method on top to delineate the
decision boundary between the vessel and non-vessel.
Most recent progress was achieved by supervised deep
learning where features were directly learnt from images
without the intervention of domain expertise [17]. Since
blood vessels are of various diameters by nature, multi-
scale approaches have also been explored in the literature
[30].

Methodology

The whole catheter detection system consists of five
steps, i.e., data collection, preprocessing, synthetic catheter
generation, training and testing. A schematic overview can
be found in Fig. 2.

Data Collection

The training dataset comes from the Open-i dataset [7]
from the National Institutes of Health (NIH) which contains
7,471 adult chest X-rays. We randomly selected 2,515
frontal view images and generated synthetic catheters on
them.

The test dataset is collected locally and only contains
frontal chest-abdominal X-rays from patients < 4 weeks
old. This is the most common radiograph obtained to
confirm placement of catheters such as UACs and UVCs in
neonates. Currently, the test set has 35 fully labeled images
with different catheter types with sample images previously
shown in Fig. 1. The annotation was carried out by a medical
student with GIMP image processing software supervised
by a pediatric radiologist. All the annotated catheters (lines
excluding ECG leads) are treated as the same class in the
detection.

Preprocessing

The X-ray images are of various contrast due to different
acquisition protocols. Rather than making the network learn
a contrast invariant feature, we normalized the contrast of
the input X-rays before sending them for training by using
contrast limited adaptive histogram equalization [31] as was
done in other works. Moreover, zero-padding is used to
account for the size variance of the patient in the X-ray
image, therefore we cropped the body part of the locally
collected image as shown in Fig. 2.

Synthetic Catheter Generation

Catheters are essentially tubular objects, a portion of which
is made of radiopaque material with a higher attenuation
component designed for ease of detection. Figure 3a shows
a simplified cross sectional profile. This profile would
work for both NGTs and ETTs, as the only difference
lies in the catheter width. Using a parallel beam geometry,
the projected sinogram is obtained and shown in Fig. 3b.
Figure 3c and d are the sampled projection profile at
0◦, 30◦, 60◦, 90◦ and the synthetic catheters drawn with the
corresponding profile. Note that the profile used to draw
has to be resampled to accommodate the input image size.
There are five parameters that are used to parameterize the
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Fig. 2 An overview of the catheter detection pipeline (better viewed in color, best viewed in digital version)

simulated catheter: inner and outer catheter widths, d1 and
d2; attenuation coefficients of the catheter and radioopaque
material, c1 and c2; and the thickness of the strip, t . A
similar approach is used for UVCs and UACs but with
a profile of dual edges. The tracing of the catheter was
simulated using a B-spline with control points randomly
generated on the image. De Boor’s algorithm [6] was
employed for the generation and the generated line was
then rasterized with Xiaolin Wu’s antialiasing line drawing
algorithm [27]. Implementation details can be found in
“Implementation Details”.

Text Mask Generation

Our initial experiments showed that training with just
synthetic lines would cause confusion for radiopaque
markers (letters) which may occasionally be noted on
radiographs and also share line like structures. Therefore,
we explicitly created another class for text so that its
misclassification can be penalized independently. For the
sake of simplicity, we cropped the common text from the
pediatric X-rays and randomly scaled and merged with the
adult chest X-ray.
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Fig. 3 Simulation of catheters in 2D. a Simulated cross section profile. b Projection profile from 0◦ to 180◦. c: Projection profile sampled at
0◦, 30◦, 60◦, 90◦. d Simulated catheter trace in 2D with the corresponding profile in (c)

The generated catheter and text are then added to the
adult chest X-ray with a weight sampled in the range of
0.15 to 0.35. Figure 4 shows two samples from our synthetic
dataset.

Network Architecture

Given an input image, the network has to learn to assign
each pixel to one of three classes: background (cbg), catheter
(ccatheter ), and text (ctext ). A scale recurrent neural network
[25] was employed for this task. It is comprised of an
encoder-decoder architecture with shuttle connections and
recurrent modules. The encoder progressively increases the
number of feature channels and decreases the spatial size
(height, width) of the feature map to achieve a certain
degree of translation invariance and save memory. The
decoder in turn performs an inverse operation to gradually
recover the size of the input. During the encoding and
decoding process, every single pixel in the final output
feature map contains information computed from a large
portion of the image hence encodes the global information.
The shuttle connection directly communicates lower level
features to the higher level so that the network can make
final predictions based on a fusion of both local and global
cues. The network is fully convolutional thus can accept
images of different scales. Input of increasing scale was sent

to the network at different time steps. The recurrent module
takes the form of convolutional long-short term memory
(convLSTM) [28]. It takes concatenated inputs from the
current and previous scale. To maintain size compatibility,
we upscaled the feature maps from the previous scale with
strided convolution.

Figure 5 provides a general overview of this architecture.
Residual block was used to facilitate the training process.
Both the skip connection and the residual block [11]
benefits training by making the gradient propagate more
easily through the network.

Training Objective

The output of the network is a multi-channel feature map
with the number of channels equal to the number of
predicted classes. We normalized the feature maps with a
softmax function so that each channel of the map can be
interpreted as the likelihood of belonging to each class.
Cross entropy (CE) loss was used to measure the difference
between the output and the groundtruth. Loss at each scale
was aggregated together as the final optimization objective,
which can be expressed mathematically as:

L =
m∑

i=1

CE(Oi, Gi, ; w), (1)

Fig. 4 Exemplar training image pairs for the proposed catheter detection network. (a1) and (a2) An adult chest X-ray with synthetic catheters
overlaid on the image. (b1) and (b2) The annotation mask used for supervised training (best viewed in digital version)
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Fig. 5 Overview of the network architecture. Note that for the last deconv block, bn and relu were replaced with a softmax layer to get a
multi-channel likelihood map

where Oi is the output of the network at scale i and Gi is the
corresponding groundtruth label map. m is the number of
the scale and was chosen as 3 in this work. w is the weights
to balance the unequal distribution of {cbg, ccatheter , ctext }
and was chosen as 1, 40, and 80 respectively.

Experiment Setup

Implementation Details

The images from the Open-i dataset all have a width of 512.
This size was found to be sufficiently large to discriminate
different catheters. For NGTs and ETTs, d1 and d2 were
selected as 160 and 80 while c1 and c2 were set as 0.1 and
1, and t was set to be 30 pixels. Note that in the current
implementation, the size of d2 was not varied to cope with

the width difference of NGTs and ETTs. For UACs and
UVCs, only one projection profile at 0◦ was selected. The
generated catheter width is 9, 9, and 6 pixels for NGTs,
ETTs, UACs, and UVCs respectively, to accommodate
image size. During training, the training image pairs were
augmented with rotation (in the range of [− 60◦, 60◦]),
horizontal flipping, and scale changes (in the range of [0.5,
1.1]) to generate random training image on the fly. Due to
the scale change, the augmented images were cropped or
padded to the size of 512×512. The testing images collected
locally were all resized to a width of 480 and denoised using
BM3D [4] with σ = 0.1.

The segmentation network was trained on the Cedar
cluster of Compute Canada with a P100 GPU. Adam
optimizer [35] with β1 = 0.9 and β2 = 0.999 was used for
the optimization with a initial learning rate of 0.0001. The
learning rate decayed by 0.1 every 10 epochs. The network
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was trained to convergence after 50 epochs. All training
parameters were initialized with numbers drawn from a
Gaussian distribution N (0, 0.02). Batch size was chosen
to be 2 due to the constraint of the GPU memory size.
Since we have fixed the size of the network, the complexity
of the network can be also regarded as O(N) where N
is the number of pixels in the input X-ray image. In our
experiment, the testing of each image can be accomplished
in less than 1s when deployed on a single GPU.

EvaluationMetrics

In the evaluation, pixels of background and text were treated
as the negative class and pixels of catheter were treated
as the positive class. Since the class is highly imbalanced,
precision and recall were computed with each expressed
mathematically as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
(2)

where TP, TN, FP,and FN represents the number of true
positives, true negatives, false positives, and false negatives
respectively. The threshold for computing the precision and
recall curve was sampled within the range of 0 to 255 at an
interval of 30.

Another measure we used for the evaluation is the
weighted harmonic mean of precision and recall (or Fβ -
measure) which is defined as:

Fβ = (1 + β2) × Precision × Recall

β2 × Precision + Recall
(3)

where β2 is a weighting term and was set as 0.3 to weight
precision more than recall as in [1]. The threshold in
calculating the corresponding precision and recall was an
image dependent value defined as:

Tseg = 2

W × H

W∑

x=1

H∑

y=1

Ok(x, y) (4)

where, W, H are the width and height of the obtained
catheter likelihood map Ok (assuming at the k-th channel of
the network output).

Experiments

No prior method is applicable to detect all the catheters
of interest, therefore we only compared our method with
another deep learning approach which used fcn8s [18] for
PICC line tip detection [16]. Further, in order to demonstrate
the effectiveness of the recurrent module, we trained another
network termed w/oR with the recurrent module removed

under the exact same settings. This network resembles the
typical UNet-style network used in [2] .

Results and Discussion

Qualitative visual examples of the raw catheter likelihood
maps obtained directly from the network without any
postprocessing are shown in Fig. 6. It can be seen that the
proposed network at the highest scale (scale 3) achieves the
best visual appearance as compared to the other methods.
The maps from the proposed network at scale 2 and scale 3
look much cleaner than w/oR and fcn8s. We would attribute
this to the iterative refinement of the detection results by
using the recurrent module. When comparing results from
the proposed network at different scales, we can see that
the likelihood map from the smallest scale contains almost
all line-like structures, including not only catheters but also
ribs and ECG leads. This is because catheters, ribs, and
ECG leads look similar at a smaller scale. These irrelevant
line-like structures are gradually filtered out in higher scales
because catheters, especially UVCs and UACs, begin to
appear as two parallel edges whereas ribs and ECG leads
continue to appear as a single solid line. One way of
interpreting the immediate outputs at the two lower scales is
by treating them as attention maps. The network draws its
attention sequentially to the candidate line regions so that
better feature representations can be learnt.

Precision and recall curves are shown in Fig. 7a
and Fβ -measures computed from adaptive threshold are
shown in Fig. 7b. Note that before computing these
quantitative measures, the obtained binary map underwent
morphological operations to filter out small irregular
regions. It can be seen that the proposed method achieves
higher precision and recall than fcn8s [16] (previously used
for PICC line tip detection [16]) and w/oR (which resembles
the typical UNet-style network used in [18]). The results
at lowest scale have the highest recall but lowest precision.
The results at the two higher scales achieve approximately
the same performance. The reason we believe is that even
though there are some improvements in the raw likelihood
map, the middle scale has already detected all major parts
of the catheter. The local refinement is too small to be
manifested in the quantitative measures. Nonetheless, the
Fβ -measure for the proposed method at the highest scale
ranks the first among the comparators.

Limitations

Catheters are represented as thin lines of just a few pixels
wide on X-ray images. Due to a certain degree of error
inherent to manually annotating catheters on the images,
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Fig. 6 Raw catheter likelihood maps for different networks on test images: proposed, w/oR, and fcn8s (best viewed in digital version). The outputs
at scale 1 and 2 can be treated as soft attention maps that the network has gradually learnt in detecting the interested catheter

a slight pixel shift in the groundtruth annotation could
adversely impact the quantitative results. In the future, we
believe our method could provide assistance to annotators
by providing initial annotations of potential lines for
subsequent manual review.

There are certain situations where our proposed method
would fail. Figure 8a and b show a partially detected NGT.

This mostly likely resulted from the decreased visibility of
the radiopaque strip. Figure 8a also shows another failure
situation where the inferior portion of the UVC is occluded
by the abdomen. Figure 8c shows the case of a falsely
detected unidentified line and Fig. 8d shows part of the
lateral aspect of the rib cage falsely identified as a catheter.
All the failure cases can be partially explained by the

Fig. 7 Quantitative results for
different methods on the
pediatric X-ray test set. a
Precision and recall curves. b
Fβ -measures (methods ordered
according to the value of the
Fβ -measure)
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Fig. 8 Typical failure cases. a and b partially detected NGT possibly due to its similarity to ECG leads. Occlusion of UVC. c Confusion with
other lines on the X-ray image. d Confusion with the lateral aspect of the rib cage (best viewed in digital version)

domain variance of the training and testing data. All the
training images are on the adult chest X-ray images; thus,
the network does not know how to handle the case where
a catheter is projected over the abdomen. False positives
on case (c) are all objects extraneous to the patient that
cannot be found on the adult training images. There are not
enough negative samples to train the segmentation network
to differentiate these objects with the catheters of interest .
A possible solution to mitigate this is to directly synthesize
catheters on pediatric X-rays to avoid the domain shift. This
is an area where further work remains.

Conclusion

In this work, we have proposed the first deep learning
system for catheter detection on pediatric chest/abdomen X-
rays. The system is capable of detecting umbilical catheters,
NGTs and ETTs in less than 1s when deployed on a single
GPU. The system was trained on a dataset with synthetic
catheters and has achieved promising detection results with
Fβ = 0.8. The proposed scale recurrent network is able
to utilize multi-scale information and learn to gradually
draw its attention from general line structures to the
catheters of interest. Further, our approach of synthesizing
catheters on X-ray images by exploiting the fact that
catheters are essentially tubular structures with various cross
sectional profiles can lead to the efficient development of
training datasets. Although we have experimented with only
pediatric X-rays, we believe the methodology should be also
applicable to adult X-rays provided the profile is carefully
designed with consideration given to the large variation of
catheter and wire types. The approach described in this work
may contribute to the development of a system to detect
and assess the placement of catheters on X-ray images,

thus providing a solution to triage and prioritize X-ray
images which have potentially malpositioned catheters for
a radiologist’s urgent review. In the future, an automated
catheter placement evaluation system may also be used to
prepopulate draft radiology reports with text describing the
catheters and tubes present on an X-ray image. This may
increase the efficiency of radiology reporting. Computer-
aided catheter placement evaluation, as an emerging area
of research, is still in its infancy. It is our hope that this
study can be beneficial towards building a general catheter
placement evaluation system.
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