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Abstract

To use deep learning with advanced data augmentation to accurately diagnose and classify femoral neck fractures. A retrospec-
tive study of patients with femoral neck fractures was performed. One thousand sixty-three AP hip radiographs were obtained
from 550 patients. Ground truth labels of Garden fracture classification were applied as follows: (1) 127 Garden I and II fracture
radiographs, (2) 610 Garden III and IV fracture radiographs, and (3) 326 normal hip radiographs. After localization by an initial
network, a second CNN classified the images as Garden I/II fracture, Garden III/IV fracture, or no fracture. Advanced data
augmentation techniques expanded the training set: (1) generative adversarial network (GAN); (2) digitally reconstructed radio-
graphs (DRRs) from preoperative hip CT scans. In all, 9063 images, real and generated, were available for training and testing. A
deep neural network was designed and tuned based on a 20% validation group. A holdout test dataset consisted of 105 real
images, 35 in each class. Two class prediction of fracture versus no fracture (AUC 0.92): accuracy 92.3%, sensitivity 0.91,
specificity 0.93, PPV 0.96, NPV 0.86. Three class prediction of Garden I/Il, Garden III/IV, or normal (AUC 0.96): accuracy
86.0%, sensitivity 0.79, specificity 0.90, PPV 0.80, NPV 0.90. Without any advanced augmentation, the AUC for two-class
prediction was 0.80. With DRR as the only advanced augmentation, AUC was 0.91 and with GAN only AUC was 0.87. GANs
and DRRs can be used to improve the accuracy of a tool to diagnose and classify femoral neck fractures.
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Introduction musculoskeletal imaging. An automated tool which would

prioritize positive femoral neck fracture cases on a radiology

Proximal femur fractures, including osteoporotic femoral neck
fractures, are common injuries and a major source of morbid-
ity and mortality in the elderly population [1-3]. Accurate and
timely diagnosis of a femoral neck fracture is essential for
therapeutic decision-making and delay in surgical repair can
lead to increased morbidity and mortality [4, 5]. The
radiograph-based Garden classification system of femoral
neck fractures is well-established and has been used for years
to dictate management [6, 7]. While diagnosing a displaced
Garden III or IV fracture is usually trivial, more subtle type I
and II fractures can be challenging for a trainee, a clinician, or
a radiologist without subspecialized experience in
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worklist and provide a second opinion to the interpreting phy-
sician would be a valuable addition to the emergency radiol-
ogy workflow.

Deep learning, a branch of machine learning, has emerged
in recent years as a powerful statistical tool to address a range
of real-life problems including biometric recognition, natural
language processing, and autonomous driving. A specific
deep learning construct commonly used for image recognition
tasks is the convolutional neural network (CNN). This algo-
rithmic technique allows a system to automatically extract
features useful for a specific domain problem without explicit
human instruction [8]. Insufficient quantity of training data is
a limiting factor in the training of CNNs and novel data aug-
mentation techniques which address this limitation continue to
evolve.

With the rise of deep learning, there has been an under-
standable growing interest to harness its potential in
healthcare, including in radiology, with medical image recog-
nition as one of its many potential applications [9, 10]. The
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ability of an algorithm to iteratively learn meaningful patterns
from the input data gives it the potential to recognize features
of images not apparent to human visual inspection. An appro-
priately trained network could, therefore, augment the work of
the radiologist in rendering certain diagnoses, including subtle
fractures. A fracture-recognition deep learning algorithm
could also be used in the emergency room setting to “triage”
positive femoral neck fracture cases for rapid definitive inter-
pretation, thereby decreasing the time to intervention. While
detection of proximal femur fractures, including
intertrochanteric fractures, using deep learning had recently
been described [11-13], to the best of our knowledge this
study is the first to use deep learning with advanced data
augmentation techniques to diagnose and classify femoral
neck fractures.

Materials and Methods
Data Acquisition

An IRB-approved retrospective case-control study of patients
with femoral neck fractures was performed. A search of
97,128 hip radiographs performed at our institution between
February 2000 and February 2017 was undertaken.
Emergency room adult hip radiographs that mentioned a fem-
oral neck fracture within the “Impression” section of the radi-
ology report yielded a potential 1444 hip radiographs from
1195 patients. The anteroposterior (AP) radiographs of the
hip were extracted as DICOM files from the PACS system.
Ground truth labels where applied by a board-certified, mus-
culoskeletal fellowship-trained radiologist (MJR) who con-
firmed the presence of a femoral neck fracture, while exclud-
ing any images containing hip hardware, fractures not involv-
ing the femoral neck (including intertrochanteric fractures and
subtrochanteric fractures), and equivocal fractures.
Radiographs of various image quality were included, as long
as they were considered diagnostic by the reviewing attending
radiologist (MJR). A normal group was constructed using
images of the contralateral non-fractured hip, when available.
The final dataset contained 1063 unique anteroposterior radio-
graphs of the right or left hip from 550 patients, classified into
3 groups: Garden I/ fracture (n = 127), Garden III/IV fracture
(n=610), and normal (n =326). Contralateral hips were ex-
cluded if they contained orthopedic hardware. A class bal-
anced holdout set consisting of 105 images from 105 unique
patients, 35 images from each group, was set aside as the test
dataset. Of the 550 patients who contributed to the final
dataset, 352 were female (64%) and 198 male. Patient age
range was 23—107 years old with a mean age of 75 and a
standard deviation of 17 years. Patients with a fracture (n =

217) comprised 151 females and 66 males with a mean age of
79 and a standard deviation of 13 years.
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Radiographs used in this study were performed on digital
radiography equipment from General Electric, Siemens, and
Philips. Acquisition parameters were automatically adjusted
based on patient exposure, as per routine.

Data Annotation and Model Development

Annotation of femoral neck regions was performed on each of
the 1063 radiographs in the final dataset to facilitate training.
This was accomplished by using an open-source software tool
(DICOM Web Viewer version 0.25.2) to draw and record a
circular region-of-interest (ROI) centered on the femoral neck
on each deidentified radiograph.

Once data annotation was completed, two networks were
implemented. The first network was trained to localize the
femoral neck on an AP radiograph and generate 850 x 850
pixel crops from each raw image. The second network was
trained to classify the femoral neck into a Garden I/II, Garden
II/IV, or no fracture group based on downscaled 256 x 256
inputs from the localizer. For the localization network, 300 of
the femoral neck location annotations were utilized for train-
ing with the remaining radiographs used to test and fine-tune
performance. For the fracture classification network, data was
split into training, validation, and test datasets. The training set
is the set of images from which the network learns. The val-
idation set is a shuffled subset of the training set used during
the learning process to optimize the neural network parame-
ters. After completion of training and fine-tuning, the network
performance was measured on a test dataset containing se-
questered images that the network had never encountered
before.

Data Augmentation

To provide additional training data for the network, data aug-
mentation techniques were employed. First, by exposing the
network to multiple small variations of each radiograph, the
network develops the ability to marginalize random noise and
detect patterns important for diagnosis rather than focus on
memorizing images. These classic data augmentation tech-
niques, detailed in Appendix A, have the potential to expose
the network to 3.2 x 10® possible variations of each input im-
age. Second, 34 of the 550 patients underwent CT of the
fractured hip prior to surgical repair. These CTs were used
to generate 6000 images utilizing the digitally reconstructed
radiograph technique (DRR) (Fig. 1). The generated images
were used as extra input data to the final classification net-
work. Finally, the deep convolutional generative adver-
sarial network (GAN) used both real and digitally re-
constructed radiographs to generate additional 2000 im-
ages that were saved and used as extra input data to the
final classification network.
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Fig. 1 Augmented DRRs. These radiographic projections were generated from a single CT scan with multiple small rigid warps and various simulated

radiographic acquisitions applied
CNN Architecture and Testing

Classifier network inputs consisted of 256 x 256 pixel
bounding boxes. The CNN was based on a novel 2D neural
network utilizing a customized residual network based archi-
tecture (Appendix Table 2, Fig. 2). Runtime regularization
techniques were used including L2 regularization to limit the
square magnitude of weights, and dropout to limit unit co-
adaptation. A softmax loss function with four classes (normal,
Garden II/III, Garden III/TV, and GAN Fake) was utilized to
generate final network outputs. Raw outputs of the network
were four positive or negative numbers that were interpreted
as the un-normalized logarithmic odds for each class. These
numbers were normalized through the softmax function,
which allowed us to interpret the outputs as class probabilities.
For the test dataset, which did not contain any GAN or DRR
inputs, softmax score indicating the highest class probability
was chosen as the accepted class. In the case of a network
prediction where the GAN Fake class had the highest

Input Conv Layers

GAN Output

Localized CR

DRR

Fig. 2 Training network architecture: Three different inputs are utilized.
Residual convolutions are utilized with two embedded convolutional
operations followed by batch normalization and ReLu nonlinearity.
Downsampling is achieved by strided convolutions. No GAN or DRR

probability, the second-highest predicted class was used as
the network prediction. Network hyperparameters were fine-
tuned based on performance on a validation set comprised of
20% of the training samples. After final hyperparameters were
fine-tuned on the validation set, the network was run once on
the sequestered test dataset and performance was recorded.

The primary performance metric for the network was the
multi-class aggregated area under the receiver operating curve
(AUCQ). In addition, accuracy, aggregate “one versus all” sen-
sitivity and specificity, and aggregate “one versus all” positive
predictive value and negative predictive value were calculat-
ed. Further network testing and implementation details are
provided in Appendix B.

Learning Visualizations

While deep learning has long been considered a “black box”
technique, several methods have been proposed to allow vi-
sualization of the inner workings of a network. We utilized

Linear Layers Output

Class 0: Normal
Class 1: Garden I/Il
Class 2: Garden IlI/IV
Class 3: GAN Fake

inputs were used for analyzing the test dataset. In the case of a network
prediction where the GAN Fake class had the highest probability, the
second highest predicted class was used as the network prediction
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one such method, described by Selvaraju et al. [14], called
gradient-weighted class activation mapping (GRAD-CAM).
By analyzing the gradients flowing into the final
convolutional layer, this method highlights the important re-
gions of the input image that are used by the network in
obtaining final predictions. Additionally, we employed guided
backpropagation, initially described by Springenberg et al.
[15] in order to highlight all contributing features of an input
image which are used by the network to make a final decision.
Figure 3 illustrates these techniques.

Results

When distinguishing between a fracture of any Garden clas-
sification and a normal radiograph in the test dataset, the net-
work accuracy was 92%. Sensitivity (SN) and specificity (SP)
were 0.91 and 0.93 respectively. Positive predictive value
(PPV) and negative predictive value (NPV) were 0.96 and
0.86 respectively and area under the receiver operating curve
(AUC) was 0.92. For three class discrimination between
Garden I + II versus Garden III + IV versus normal radio-
graphs, network accuracy was 86%.

“One versus all” sensitivity and specificity were 0.79 and
0.90 respectively with subsequent PPV and NPV of 0.80 and
0.90 and AUC of 0.96. One versus all statistical testing for
multiple classes involves counting the correct class as the

positive class and any other guess as the negative class.
Class-specific statistics are summarized in Table 1.

For Garden I/II fractures, SN, SP, PPV, and NPV were
0.54, 0.93, 0.79, and 0.80, respectively, with accuracy of
80%. For Garden III/IV fractures, SN, SP, PPV, and NPV
were 0.91, 0.83, 0.73, and 0.95 respectively, with accuracy
of 86%. When comparing network performance for discrimi-
nation between normal radiographs and nondisplaced Garden
I/II fractures, SN, SP, PPV, and NPV were 0.80, 0.94, 0.91,
and 0.94, respectively, with an accuracy of 88%.

Without any advanced augmentation, the network AUC for
distinguishing between a fracture of any kind and a normal
radiograph was 0.80. With DRR outputs as the only advanced
augmentation, AUC was 0.91. With the GAN outputs as the
only advanced augmentation, AUC was 0.87.

The network misclassified 15 of 105 cases. Fourteen in-
volved the network missing a classification by one class (for
example, predicting class 0 instead of class 1 or class 1 instead
of class 2). Of these, eight misses involved failure to distin-
guish normal study and a nondisplaced fracture. Examples of
network misses are shown in Fig. 4.

Discussion

The results of this study support the hypothesis that a series of
convolutional neural networks can be trained to differentiate

Fig. 3 Saliency maps of two different patients represented by the two
rows. a The input images after localization of the femoral neck by the
localization network. b Grad-CAM highlighting the input regions of in-
terest utilized in generating a positive identification for a specific class. ¢
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Guided backpropagation results highlighting every pixel utilized in mak-
ing a decision, positive or negative. d Guided Grad-CAM results which
combine the previous two methods to highlight the pixels the network
uses to make a positive prediction of a specific class
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Table 1  Class specific statistics on the test dataset which contained 105
patients, 35 in each class. “Normal” refers to network performance when
detecting the normal radiograph class versus all other classes. “G I/II”
refers to network performance for detecting a nondisplaced fracture class
(Garden I or II fractures) versus any other class. “G III/IV” refers to
network performance for detecting a displaced fracture (Garden III or
IV) versus any other class. Three class average AUC was 0.96

Accuracy SN SP PPV NPV
Normal 0.92 091 0.93 0.86 0.96
G 0.80 0.54 0.93 0.79 0.80
G VvV 0.86 091 0.83 0.73 0.95

between no femoral neck fracture, Garden I/II fracture, and
Garden I[II/IV fracture on radiographs with good accuracy. We
also show that the femoral neck can be automatically localized
on raw input AP radiographs and this information can be fed
automatically into the classification network. Finally, we dem-
onstrate that two advanced data augmentation techniques, dig-
itally reconstructed radiographs (DRRs) and generative adver-
sarial networks (GANS), can be used for radiography-based
deep learning projects.

The sensitivity of the network for detecting and correctly
classifying nondisplaced Garden I/II fractures was lower than
for Garden III/IV fractures. However, only one-third of the
misses from this group involved incorrectly labeling a hip
fracture as having no fracture. The remaining misses from this
group involved predicting a displaced fracture in the cases
when there was a nondisplaced fracture. The relative difficulty
in differentiating Garden I/II fractures from normal hip radio-
graphs was expected as this diagnosis can be challenging with
subtle cases even for a radiologist. Fourteen of the 15 misses
by the network involved a predicted classification that was
one grouping off from the human annotated label. There was
only one instance where the network misclassified a fracture
by a difference of more than one class, where it predicted a
class 2 displaced fracture when there was no fracture seen by
the human annotator. This miss may have been due to a cal-
cified granuloma partially overlying the femoral neck. The
relatively lower sensitivity of the network to detect
nondisplaced fractures may be addressed in a future

Network%, Human: 0

implementation of the network by training on a larger input
matrix, as downscaling the input images may obscure subtle
fracture lines and cortical irregularities. This would require a
larger training dataset as using large input sizes on small
datasets leads to overfitting of the model.

Our testing dataset contained a class balanced population
with 35 AP hip radiographs each in class 0, 1, and 2. In a real-
world setting, where fractures on hip radiographs are relative-
ly uncommon even in patients in the emergency department
after hip trauma, this would lead to a reduction of actual PPV
for detecting a fracture when compared to that calculated
based on our test dataset. However, real-life negative predic-
tive value would likely be higher. Ground truth labelling of
cases also potentially affects test dataset statistics. We utilized
one human annotator for labelling of the Garden fracture class.
It is possible that this may introduce a bias in borderline,
equivocal cases. This potential pitfall could be mitigated by
using an expert consensus methodology. Finally, the average
age of the patients in our datasets is 75, which could bias the
network to increase its pretest probability of detecting frac-
tures when it recognizes imaging features more common in
elderly patients.

Classical machine learning techniques, such as support
vector machines, have been widely studied in radiologic im-
aging analysis and in other tasks such as segmentation of
lesions and predicting patient outcomes [16—18]. The limita-
tion of these older techniques is the need for operators to pre-
specify the variables to be extracted from the images, when in
fact there may be many other “hidden” variables not apparent
to human operators but superior for the classification task at
hand. With deep learning, convolutional neural networks are
able to classify data through a hierarchical process without
pre-specifying discriminating image variables.

Two major limitations of deep learning are the need for
large datasets to prevent overfitting and the non-
transparency associated with feature selection by the CNN.
The first may be overcome through data augmentation and
generation where data is manipulated to artificially enlarge
the dataset. We chose to assess for femoral neck fractures on
the AP hip radiograph as this view is consistently obtained in
the trauma setting. Including lateral hip radiographs in future

Network: 2, Human: 1

y
Netwo;k': 1, Human: 2

Fig. 4 Example images of network misses. Representative examples of the misclassified fractures from the network. Class 0 represents cases with no
fracture, class 1 represents nondisplaced Garden VI fractures, and class 2 represents displaced Garden III/IV fractures
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iterations of the network would provide more data to train the
network. The non-transparency limitation can be addressed by
utilizing techniques such as (1) guided backpropagation
which display the pixels on the input image that the network
weights the most when making a final classification; and (2)
class activation mapping techniques that highlight regions of
interest in the input pictures which contribute to positive iden-
tifications of a class. This study used both data augmentation
and visualization techniques to mitigate the inherent limita-
tions of deep learning.

Using the guided backpropagation and the gradient-
weighted class activation mapping techniques (Fig. 3), we
can infer that the network found it important to focus most
on the medial aspect of the femoral neck. An additional con-
sistent point of focus was on the lateral aspect of the acetabular
rim. The network may have found the relationship between
the femoral neck and acetabular rim important for positive
identification of a displaced femoral neck fracture.

The decision to use a localizer neural network to hone in on
the femoral neck, rather than using the full AP radiograph,
was made for two reasons. First, there is a theoretical improve-
ment in training time and performance over utilizing full im-
ages. This is because the network does not have to waste
computations deciding that likely extraneous features outside
the femoral neck, such as those in the pelvis, are irrelevant to
the problem of a femoral neck fracture. Additionally, we hy-
pothesize that this would improve regularization accuracy
since Zech et al. [19] showed that spurious details such as
the style of side marker used in specific hospitals can bias
neural network predictions. By automatically cropping to the
femoral neck, we could minimize the effect of these irrelevant
details in the model and focus the CNN on femoral neck
texture and morphology.

In the literature, machine learning techniques have been
previously applied to detect proximal femur fractures [11,
12, 20]. The study from Tian et al. [16] relied on handcrafted
features, in this case, femoral neck-shaft angle, for detection of
hip fracture. Although handcrafted techniques have shown
promise, they suffer from a variety of drawbacks related to
pre-specified feature extraction which are mitigated by deep
learning techniques. Gale et al. [11] applied a system of CNNs
to detect all types of hip fractures, including extracapsular
fractures. Urakawa et al. [20] focused on intertrochanteric
fracture detection and achieved slightly higher accuracy of
fracture detection by a CNN than our study. This may in part
be attributable to a generally larger image region containing
pathology in intertrochanteric fractures which facilitates learn-
ing. Our study focused on detecting and classifying only fem-
oral neck fractures which undergo a specific surgical interven-
tion depending on the type.

The importance of this work is threefold: (1) artificial in-
telligence tools have a potential role in triaging emergency
radiology worklists. Femoral fractures should be urgently
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evaluated and a fracture detection/classification algorithm
can expedite final image interpretation and treatment; (2) deep
learning algorithms can augment the work of the radiologist
and function as a second subspecialist reader. Prior studies
such as the one from Dominguez et al. [21] reported a 4.4%
miss rate of fractures on the initial radiograph. Thus, these
algorithms can help to confirm pathology which may be chal-
lenging to a trainee or to a non-specialty trained radiologist or
suggest the use of advanced imaging in equivocal cases; and
(3) advanced data augmentation techniques demonstrated in
this study, GANs and DRRs, can be employed to mitigate the
limitations of small datasets in medical image recognition.

Conclusion

Deep learning using a CNN is able to predict the presence of
femoral neck fractures on AP radiographs with good accuracy.
Furthermore, a CNN can learn to differentiate nondisplaced
Garden I/II fractures from displaced Garden III/IV fractures.
Several techniques can be employed when faced with small
datasets to improve neural network performance. Future re-
search may focus on expanding the dataset, prospective vali-
dation of the algorithm, and testing on additional neural net-
work architectures.
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Data Augmentation

Data augmentation used in this study entailed several real-
time modifications to the source images at the time of training.
These modifications included (1) random horizontal and ver-
tical flipping of the input image; (2) random rotation of the
input image by —30° to 30°; and (3) random contrast jittering
of the input image and addition of a random Gaussian noise
matrix, performed to simulate different acquisition parameters
for each image. This resulted in roughly an additional 3.2 x
10® variations of each input image.

For further data augmentation, 6000 digitally reconstructed
radiographs (DRRs) were generated. DRR volume rendering,
also called simulated x-ray volume rendering, is a direct vol-
ume rendering technique that consists of simulating x-rays
passing through the reconstructed CT volume based on the
absorption properties of the tissue. DRR generation is a pop-
ular technique in simulating radiation therapy treatments. For
this project, we recreated a cone-beam radiographic acquisi-
tion with a ray-tracing DRR generating algorithm utilizing the
thin slice acquisitions, where available. Forty-five hip CT vol-
umes from 34 patients (11 patients had a pelvic CT scan
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performed which contributed two hips) were obtained that
were performed within 3 days of the hip radiographs but be-
fore surgery. Using 3D input volumes allowed for a far greater
range of augmentation capabilities. We applied rigid affine
transformation and multiple slightly different acquisition pa-
rameters, allowing us to effectively turn one input example
into multiple slightly different radiographs. We were able to
take one patient volume and simulate (1) making the patient
slightly thinner, larger, taller or shorter; (2) varying radio-
graphic KvP, mA, and source to object distance; and (3) sim-
ulating internal/external rotation of the hip and minor varia-
tions in apical angulation of the patient.

Additional training examples were generated utilizing a
generative adversarial network (GAN). GANs are a family
of deep generative models which balance training of a gener-
ative network and a discriminative network in order to gener-
ate realistic examples based on a training set data distributions.
To summarize our design choices in this paper, a deep
convolutional GAN with a residual network generator was
utilized. Earthmover distance based on the paper by
Arjovsky et al. [22] was used as the discriminatory function
with gradient clipping. The GAN was trained for 300 epochs
which took 72 h on the research computer until convergence.
Then, 2000 generated outputs were subsequently used as an
additional input into the network. All artificially generated
images (using DRR and GAN techniques) were utilized as
additional data for training only, and not for testing or valida-
tion.

Neural Network Implementation Details
The overall network architecture is shown in Table 1 and

Fig. 2. The CNN was implemented by a series of 3 x 3
convolutional kernels to maximize computational efficiency

while preserving nonlinearity [23]. After an initial standard
convolutional layer, a series of residual layers are utilized in
the network. Originally described by He et al. [24], residual
neural networks can stabilize gradients during
backpropagation, leading to improved optimization and facil-
itating greater network depth. A spatial transformer module
was inserted after the 11th hidden layer. Initially applied to
convolutional neural networks by Jaderberg et al. [25], spatial
transformer layers allow a network to explicitly learn affine
transformation parameters that regularize global spatial varia-
tions in feature space. This is important for the network to be
robust against significant variations in imaging technique or
positioning commonly seen in practice.

Downsampling of feature map size was implemented by
means of strided convolutions. All nonlinear functions utilize
the rectified linear unit (ReLU) which allows training of deep
neural networks by stabilizing gradients on backpropagation
[26]. Additionally, batch normalization was used between the
convolutional and ReLU layers to prevent covariate shift [27].
Upon downsampling, the number of feature channels is dou-
bled, preventing a representation bottleneck. Dropout with a
keep probability of 75% was applied to the first fully connect-
ed layer to limit over-fitting and add stochasticity to the train-
ing process [28].

In addition to the customized network described above,
several additional network architectures were tested. This in-
cludes (1) ResNet 52 network architecture initialized both
randomly and with pre-trained weights from Imagenet; (2)
custom-built networks, initialized from random weights, and
with varying numbers of convolutional layers based on the
Inception v4 architecture; and (3) 100 layer network based
on a randomly initialized DenseNet architecture.
Performance for the networks was best when initializing
weights randomly across the board. We found that when using

Table 2 Network architecture:

Dimensions of all the Input Layer Input layer dimensions Filter type Filter size Output layer

intermediate layers of the

convolutional neural network. Input 256 x 256 x 1 Convolutional 3x3x16 Hidden layer 1

Residual layers contain two Hidden layer 1 128 x 128 x 16 Residual 3x3x32 Hidden layer 2/3

feature maps per layer Hidden layer 2/3 64 % 64 % 32 Residual 3x3x64  Hidden layer 4/5
Hidden layer 4/5 32x32x64 Residual 3x3x128 Hidden layer 6/7
Hidden layer 6/7 16x16x 128 Residual 3x3x128 Hidden layer 8/9
hidden layer 8/9 16 x 16 x 128 Residual 3x3x256 Hidden layer 10/11
Hidden layer 10/11 8 x 8 x256 Spatial Transform N/A Hidden layer 12
Hidden layer12 8 x 8 x256 Inception %256 Hidden layer 13
Hidden 13 8 x 8 x256 Residual 3x3x512 Hidden layer 14/15
Hidden layer 14/15 4x4x512 Residual 3x3x512 Hidden layer 16/17
Hidden layer 16/17 4x4x512 Residual 3 %3512 Hidden layer 18/19
Hidden layer 18/19 4x4x512 Linear x 16 Hidden layer 20
Hidden layer 20 1x16 Linear 16x8 Hidden layer 21
Hidden layer 21 1x8 Softmax 8§x3 Classification
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greater than 14 hidden layers in two dimensional residual
networks overfitting occurred.

Training was implemented using the parameterized Adam
optimizer, combined with the Nesterov accelerated gradient
described by Dozat [29]. Parameters were initialized to equal-
ize input and output variance utilizing the heuristic described
by Glorot et al. [13]. L2 regularization was implemented to
prevent overfitting of data by limiting the squared magnitude
of the kernel weights. Final hyperparameter settings included
a learning rate set to le-3, keep probability for dropout of
50%, moving average weight decay of 0.999, and L2 regular-
ization weighting of 1e-4.

Software code for this study was written in Python (v3.5)
using the TensorFlow module (v1.5). Experiments and CNN
training were performed on a Linux workstation with
NVIDIA Titan X Pascal GPU with 12 GB on chip memory,
i7 CPU and 32 GB RAM. The classification network was
trained for 200 epochs, taking 5 h. Inference time was 22 s
per image for localization and classification. We gratefully
acknowledge the support of NVIDIA Corporation with the
donation of the Titan X Pascal GPU used for this research.
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