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Abstract
To explore the feasibility of a fully automated workflow for whole-body volumetric analyses based on deep 
reinforcement learning (DRL) and to investigate the influence of contrast-phase (CP) and slice thickness (ST) on the 
calculated organ volume. This retrospective study included 431 multiphasic CT datasets—including three CP and two 
ST reconstructions for abdominal organs—totaling 10,508 organ volumes (10,344 abdominal organ volumes: liver, 
spleen, and kidneys, 164 lung volumes). Whole-body organ volumes were determined using multi-scale DRL for 3D 
anatomical landmark detection and 3D organ segmentation. Total processing time for all volumes and mean calculation 
time per case were recorded. Repeated measures analyses of variance (ANOVA) were conducted to test for robustness 
considering CP and ST. The algorithm calculated organ volumes for the liver, spleen, and right and left kidney (mean 
volumes in milliliter (interquartile range), portal venous CP, 5 mm ST: 1868.6 (1426.9, 2157.8), 350.19 (45.46, 
395.26), 186.30 (147.05, 214.99) and 181.91 (143.22, 210.35), respectively), and for the right and left lung (2363.1 
(1746.3, 2851.3) and 1950.9 (1335.2, 2414.2)). We found no statistically significant effects of the variable contrast 
phase or the variable slice thickness on the organ volumes. Mean computational time per case was 10 seconds. The 
evaluated approach, using state-of-the art DRL, enables a fast processing of substantial amounts irrespective of CP 
and ST, allowing building up organ-specific volumetric databases. The thus derived volumes may serve as reference 
for quantitative imaging follow-up.
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Introduction

Accurate whole-body organ volumetric analyses could 
have a substantial impact on clinical practice. Areas 
of application include, but are not limited to, imaging 
of patients with chronic hepatitis [1], nonalcoholic 
fatty liver disease [2], acute liver failure [3], change 
in kidney volume after kidney transplant [4], assessing 
splenomegaly [5] , or assessing lung volumes after 
reduction for emphysema [6] . Another important 
application is the assistance in surgical planning, 
e.g., preoperative analysis of liver volumes before 

transplantation [7] . Organ volumes, however, vary 
with age, sex, weight, and height. Therefore, reference 
datasets of normal organ volumes for patients with 
different physical conditions based on sufficiently large 
cohort of normal patients are needed. The creation of 
such organ-specific databases for whole-body organs is 
a currently an unsolved task; one of the main reasons is 
that manual organ segmentation is a time-consuming task 
that is difficult to incorporate in high-throughput clinical 
routine [8]. Furthermore, it is prone to a relevant amount 
of inter- and intra-reader variability [9].

A potential solution is the use of artificial intelligence, 
more precisely deep reinforcement learning (DRL) using 3D 
landmark detection [10]. With this technology, whole body 
organ volumetric analyses can be derived in a short amount 
of time. Furthermore, applying this to liver volumetric 
analyses has recently been shown to yield an excellent 
agreement with human readers [9].
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We hypothesize that the approach is capable of 
building databases that can assist reporting. Given the 
availability of enough input data, the workflow would 
easily enable to create norm-based values and based on 
that, automated, disease-related outlier detection would 
be possible. In order to illustrate the suggested workflow, 
we performed an analysis of 431 multiphasic computer 
tomography (CT) datasets, including 10,508 organ 
volumes using DRL.

Materials and Methods

The local ethics committee (Northwest and Central Switzer-
land; EKNZ 2019-00634) approved the study.

Case Selection

Using an in-house-developed Radiology Information 
System/Picture Archiving and Communication System 
(RIS/PACS) search engine, we identified all multiphasic 
abdominal CTs in an adult population performed with 
the clinical suspicion for an intestinal bleeding in a time 
range from 11/2012 to 01/2019. We selected this specific 
cohort as the underlying CT protocol at our institution 
remained unchanged during this time period and included 
a multiphasic scan protocol with the following items: 
a non-contrast (nc), arterial (art), and portalvenous 
(pv) contrast phase (CP) with axial reconstruction in 

both 1.5-mm and 5-mm slice thickness (ST), totaling 
six series per patient. Using this protocol allowed us to 
investigate the influence of CP and ST on the outputted 
organ volume.

The initial search resulted in 759 CT scans. During the 
download process, the data was completely anonymized. 
Patients were only included in the evaluation if nc, art, 
and pv phases with both 1.5-mm and 5-mm slice thickness 
reconstructions (for the abdomen) and—if available—
pv series covering the lung in 5-mm slice thickness were 
available, and the parenchyma of all organs of interest 
was covered on all series. After manual identification, 438 
patients fulfilled all criteria. In 165 of those 431 cases, 
the thorax was included in pv phase only, as thoracic 
imaging was only performed in the presence of a potential, 
concomitant supradiaphragmal pathology.

Multiphasic CT Examination

The selected abdominal examinations were performed on 
three different CT scanners: Somatom Definition FLASH 
(Siemens Healthineers, Erlangen, Germany), Somatom 
Definition AS + (Siemens Healthineers, Erlangen, Ger-
many), and Somatom Sensation (Siemens Healthineers, 
Erlangen, Germany) with 2 × 128, 128, and 16 slices, 
respectively. Iterative reconstruction kernels—I30 and 
I70—were applied. All patients received a weight-
adapted (1–1.5 ml/kg body weight) iodine-based contrast 

Fig. 1   Visualization of the deep reinforcement learning workflow 
with the CT image data—here in portal venous phase and 5-mm slice 
thickness—on the left side. The image is then processed by the DRL 
algorithm, involving the volumetric parsing of the organs of interest. 
This subsumes the localization of key anatomical landmark points 

that isolate each organ within the image, followed by the surface seg-
mentation (middle image). In a next step, all masks from all organs 
can be used to provide three dimensional models of the organs or to 
calculate organ volumes in milliliter
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agent injection (Iopromide, generic name: Ultravist 370, 
Bayer HealthCare Pharmaceuticals, Berlin, Germany).

Automated Volumetric Analyses

The abdominal volumetric analyses were calculated with a 
prototype, non-commercially available software (NeuronX, 
Siemens Healthineers, Erlangen, Germany). The first step 
involves the volumetric parsing of the organs of interest. 
This subsumes the localization of key anatomical landmark 
points that isolate each organ within the image, followed by 
the surface segmentation (see Fig. 1).

The multi-scale deep reinforcement learning framework 
[11] is used for the automatic detection of anatomical 
landmarks. Within this framework, the localization 
of an arbitrary anatomical landmark is formulated as a 
navigation problem for an artificial neural agent within the 
scale-space (i.e., the discrete multi-scale representation) 
of the image. Using state-of-the-art convolutional neural 
network architectures and elements of reinforcement 
learning [12], one can learn an effective strategy that 
drives the navigation of the agent from any arbitrary 
position in the image to the position of a landmark of 
interest. In practice, the navigation process across the 
image scale-space is very efficient, enabling a real-time 
detection of the organs of interest on the high-resolution, 
volumetric images. To ensure the robustness of the 
navigation, a robust statistical shape model is estimated 
and used to constrain the navigation of individual 
agents such that the distribution of the detected points is 
consistent with the prior knowledge of the distribution of 
anatomical structures in the human body [13].

Based on the extracted landmarks, the local image 
region around each organ was isolated/cropped and used 
to drive the surface segmentation. Whole-body organ 
segmentations were performed using a deep image-
to-image neural network with adversarial training. 
The approach comprises training a neural network 
with an encoder-decoder architecture with multilevel 
feature concatenation to generate segmentations that 
are spatially accurate and difficult to distinguish from 
manual segmentations  [14] . Based on the extracted 
segmentation for each organ of interest in a volumetric 
mask representation format, organ volumes (in milliliter) 
were automatically calculated and the computational time 
per case was recorded. The algorithm was trained for 
whole-body organ volumetry on an independent sample of 
approximately 5000 whole-body CT datasets. The analyses 
have been performed on a commercially available laptop 
with an Intel ® Core™ CPU i7-8850H at 2.60 GHz with 
integrated Intel ® UHD graphics.

Manual Contour Segmentation for Outlier 
Validation

In order to validate the segmentation results beyond the result 
of previous studies, we analyzed outliers from the automatically 
calculated organ volumes. Here, a radiology resident (PGY-4, 
D.J.W.) performed a manual contour segmentation with shape 
interpolation [8] using a commercially available software solu-
tion (syngo.via VB30A, MM Reading Workflow, Siemens 
Healthineers, Erlangen, Germany) on a single outlier case for 
all organs by random selection of a case in the lowest and highest 
10% of the respective organ volume. In a next step, we used the 
manually derived organ volume for a head-to-head comparison 
with the automatically derived organ volumes from the software 
solution in terms of absolute and relative value comparison.

Fig. 2   Flowchart outlines the selection of the final study population 
with inclusion and exclusion criteria within the defined observation 
period. nc non-contrast, pv portal venous, art arterial
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Statistical Testing

Variations of volumes between the multiphasic series of 
the abdominal organs were assed using a repeated measure 
analysis of variance (ANOVA) with the different contrast-
phases as the between-group factor and the slice thickness 
reconstruction as the within-subject factor. We especially 
controlled for between-participant variation over all our 
within-subjects variables.

All statistical calculations and graphical analyses were 
performed using R (R Version 3.6.0, R Core Team (2019). 
R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. 
URL, https​://www.R-proje​ct.org/). p  <  0.05 were 
considered statistically significant. To adjust for multiple 
testing and to control the type I error in our study, we 
performed a Bonferroni correction of the significance level 
of the individual test with the following formula: p ∗=

�

�
 , 

where α is the critical p value, and η is the number of 
comparisons.

Results

After manual identification, 438 patients fulfilled the 
inclusion criteria. The algorithm failed to process the data 
in seven cases. Therefore, we included the results of 431 
patients. This led to an inclusion of 10,508 organ volumes in 
total for the analysis with (see Fig. 2). A detailed summary 
of the automatically computed whole-body organ volumes 
can be found in Table 1 and Table 2—including detailed 
information on CP and ST—and is illustrated in Fig. 3. A 
detailed summary of the repeated ANOVA statistics can be 
found in Table 3.

Organ Volumes on Non‑Contrast Phase Series

The volumes computed by the algorithm for the abdomi-
nal organs were (mean ± SD, in milliliter, 5  mm ST): 
1864.0 ± 680 for the liver, 361.38 ± 361 for the spleen, 
184.94 ± 58 for the right kidney, and 179.32 ± 55 for the 
left kidney.

Table 1   Abdominal organ volumes. Measurements of organ volumes for abdominal sub-categories depending on contrast phase and slice thick-
ness. Values given represent volumes in milliliter. SD = standard deviation

Contrast phase Slice thickness Mean ± SD Interquartile range (1st 
Qu, 3rd Qu)

Range (min–max)

Abdomen (n = 431 for each 
sub-category)

Liver Non contrast 1.5 1893.5 ± 684 1437.7, 2185.5 753.2, 6203.2
Non contrast 5 1864.0 ± 680 1411.6, 2154.6 733.5, 6200.0
Arterial 1.5 1881.4 ± 661 1443.2, 2182.8 786.2, 5944.6
Arterial 5 1851.3 ± 656 1414.2, 2144.5 778.9, 5881.4
Portal venous 1.5 1875.8 ± 660 1449, 2162 641.6, 6278
Portal venous 5 1868.6 ± 667 1426.9, 2157.8 640.4, 6278.4

Spleen Non contrast 1.5 363.16 ± 363 166.01, 412.90 45.46, 2593.04
Non contrast 5 361.38 ± 361 162.44, 418.48 57.48, 2481.20
Arterial 1.5 343.92 ± 343 160.90, 380.48 54.73, 2557.53
Arterial 5 339.97 ± 339 157.16, 385.34 50.31, 2528.89
Portal venous 1.5 348.1 ± 348 168.8, 397.7 50.5, 2577.4
Portal venous 5 350.19 ± 318 45.46, 395.26 45.46, 2593.04

Right kidney Non contrast 1.5 187.33 ± 59 147.04, 215.65 21.17, 445.51
Non contrast 5 184.94 ± 58 145.25, 212.02 19.27, 450.20
Arterial 1.5 186.97 ± 59 148.88, 213.64 17.07, 397.83
Arterial 5 185.19 ± 58 147.41, 213.30 15.14, 387.60
Portal venous 1.5 187.83 ± 57 147.59, 218.65 13.03, 391.29
Portal venous 5 186.30 ± 58 147.05, 214.99 10.05, 214.99

Left kidney Non contrast 1.5 181.27 ± 56 142.51, 206.81 55.73, 450.78
Non contrast 5 179.32 ± 55 141.52, 205.46 56.93, 442.05
Arterial 1.5 182.78 ± 55 143.31, 212.15 45.43, 412.13
Arterial 5 181.66 ± 54 143.32, 211.09 51.31, 431.29
Portal venous 1.5 184.21 ± 56 145.83, 213.92 50.54, 411.77
Portal venous 5 181.91 ± 55 143.22, 210.35 41.58, 450.78
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Table 2   Lung volumes. 
Measurements of organ volumes 
for thoracic sub-categories 
in portal venous phase only. 
Values given represent volumes 
in milliliter. SD = standard 
deviation

Mean ± SD Interquartile range (1st Qu, 
3rd Qu)

Range (min–max)

Thorax (n = 164 for each sub-
category)

Left lung 1950.9 ± 763 1335.2, 2414.2 711.3, 4787.3
Right lung 2363.1 ± 757 1746.3, 2851.3 982.3, 4760.2
Left superior lung lobe 1089.0 ± 395 799.9, 1346.5 344.7, 2168.0
Left inferior lung lobe 861.9 ± 444 502.1, 1108.1 172.6, 2772.4
Right superior lung lobe 962.9 ± 327 754.3, 1122.4 291.8, 1908.1
Right middle lung lobe 414.27 ± 152 294.95, 507.54 82.52, 896.16
Right inferior lung lobe 985.87 ± 414 631.46, 1271.94 87.42, 2249.81

Fig. 3   Quantitative evaluation 
of the abdominal organs (a) 
including the liver, spleen and 
both kidneys and the lung lobes 
and their respective sub lobes 
(b). For the abdominal organs, 
the x-axis displays the different 
contrast phases, and the y-axis 
represents the organ volume 
in milliliter. Different slice 
thickness measurements are 
color encoded. For the thoracis 
lung lobes, the measurements 
displayed were acquired using 
portal venous images only. The 
anatomical reference of the 
lobes and sub lobes in color 
encoded
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Organ Volumes on Arterial Phase Series

The volumes computed by the algorithm for the abdominal 
organs were (mean ± SD, in milliliter, 5 mm ST): 1851.3 ± 656 
for the liver, 339.97 ± 339 for the spleen, 185.19 ± 58 for the 
right kidney, and 181.66 ± 54 for the left kidney.

Organ Volumes on Portal‑Venous Phase Series

The volumes computed by the algorithm for the abdominal 
organs were (mean ± SD, in milliliter, 5  mm ST): 
1868.6 ± 667 for the liver, 350.19 ± 318 for the spleen, 
186.30 ± 58 for the right kidney, and 181.91 ± 55 for the 
left kidney. The volumes computed by the algorithm for the 
lung lobes and sub lobes were (mean ± SD, in milliliter): 
1950.9 ± 763 for the left lung lobe, 2363.1 ± 757 for the 
right lung lobe, 1089.0 ± 395 for the left superior lung lobe, 
861.9 ± 444 for the left inferior lung lobe, 962.9 ± 327 for 
the right superior lung lobe, 414.27 ± 152 for the right middle 
lung lobe, and 985.87 ± 414 for the right inferior lung lobe.

Results from Repeated Measure ANOVA

We found no significant effects of the between-group vari-
able contrast phase neither of the within-subject variable 

slice thickness nor of the combination of those factors on the 
automatically computed abdominal organ volumes.

Quantitative Outlier Validation

Table 4 summarizes the outlier cases with absolute and rel-
ative differences between the automatically and manually 
derived volumes. Visualizations from the manual contour 
segmentation are shown in Fig. 4a–e.

Processing Time

The total processing time for all 10,508 volumes was 1 h, 
11 min, and 40 s representing a computational time per case 
of 9.94 s and a computational time per volume of 0.9 s.

Discussion

Organ volumetric analyses have the capability to provide 
meaningful information for the referring physician. Areas 
of application range from the assessment of absolute 
organ volumes [5, 15] to treatment monitoring [4, 16]. 
Furthermore, a norm collective considering basic patient 
characteristics (e.g., sex, age) allows a differentiation of 
normal from pathologic organ volumes. As an example, 
Kawel-Böhm et  al. investigated reference values for 
morphologic and function cardiac MRI parameters 
adjusted for sex and age [17]. To date, no such analyses 
exist for other organs.

One reason for the lack of such studies is certainly that 
organ volumetric analyses have been performed in the past 
using manual contour segmentation, partially employing 
techniques to speed up the process, such as semi-
automated contour interpolation [8, 9]. Nevertheless, in 

Table 3   Results of repeated measures ANOVA for abdominal organs. 
Values representing p values

* Bonferroni adjusted

Organ Contrast phase* Slice thickness Combination

Liver 0.893 0.595 0.999
Spleen 0.775 0.951 1.000
Right kidney 0.884 0.621 0.984
Left kidney 0.978 0.731 0.987

Table 4   Internal outlier validation. Cases were randomly selected in the highest and lowest 10% of the respective organ volumes. For paired 
organs (lungs, kidneys), the mean values for both organs are shown

Organ Underlying pathology Volume 
spectrum

Automatically derived 
results (in milliliter)

Manually derived 
results (in milliliter)

Absolute difference 
(in milliliter)

Relative dif-
ference (in 
percent)

Lung Obstructive lung disease High 4773 4629 + 144 3
Volume reduction Low 930 892 + 38 4

Liver Acute viral hepatitis High 4562 4392 + 170 4
Liver resection Low 791 743 + 48 6

Spleen Myeloproliferative disease High 2608 2589 + 19 1
None Low 66 60 + 6 10

Kidney Pyelonephritis High 269 256 + 13 5
Nephrectomy Low 0 0 0 0
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order to create a meaningful reference database for organ 
volumes, the number of cases that needs to be processed 
would exceed manual segmentation capabilities. Here, AI 
systems are potentially useful to extract information from 
large-scale populations with the goal of building databases 
for that in turn can be used in order to assist reporting with 
real-time inference [18]. In order to ultimately reach this 
goal, fully automated quantification pipelines are required 
to collect patient measurements across a large-scale 
population. In particular, the combination of convolutional 
neural networks (CNN) and reinforcement learning (RL), 
known under the term deep reinforcement learning (DRL) 
[19], has proven to be suitable to autonomously support 
clinical decision making.

Using DRL to fill this gap in clinical practice has 
one prerequisite, namely, that the outputted values 
are correct and that outliers on both sides—including 
missing organ—are accurately captured and make sense. 
As we did not perform a dedicated comparison between 
the automatically and manually derived organ volumes, 
serving as a reference standard, we developed two 
strategies in order to review the usefulness and correctness 
of our values: (i) referencing our organ volumes to values 
published in the literature, except for liver volumes, since 
previous work [9], using the same framework, showed an 
excellent agreement between the averaged liver volumes 
of three human readers and the AI approach and (ii) 
internally validating outlier cases from the AI solution by 
comparison with manual contour segmentation.

Concerning splenic organ volumes, normal CT values 
in the literature range from mean volumes of 214.6 cm3 
(range 107.2 to 314.5  cm3) [20] to 127.4  ±  62.9  cm3 
(range: from 22 to 417 cm3) [21]. We computed a mean 
value of 350.19 ± 318 cm3 (range 45.46 to 2593.04 cm3). 
However, some of the patients included in our study 
had underlying diseases, which caused a splenomegaly, 
explaining the wide range in our study. The algorithm, 
nevertheless, was able to capture these “real” high outliers 
(see Fig. 4b) or—alternatively—very low spleen volumes 
(see Fig. 4d). Concerning kidney volumes, normal values 
in the literature, for example evaluated with magnetic 
resonance imaging (MRI) have been reported to range 
from 202 ± 36 cm3 for men to 154 ± 33 cm3 for women 
[22]. Our values, however evaluated with CT, were 
186.30 ± 58 cm3 for the right kidney and 181.91 ± 55 cm3 
for the left kidney and are in concordance with reported 
values. In one case, which was not included in the final 
analysis, one kidney was missing due to a nephrectomy. 
The algorithm was able to capture this anatomical anomaly 
and did not compute any values (see Fig. 4c). Concerning 

normal lung volumes, reported values, evaluated with 
CT, were 2414 ± 480 cm3 for the left lung volume and 
2869 ± 506 cm3 for the right lung volume [23]. The values 
in our cohort were 1950.9 ± 763 cm3 for the left lung 
and 2363.1 ± 757 cm3 for the right lung and apparently 
lie within the reported range. However, some values in 
our lung volume analysis were unexpectedly high and 
low. These values turned out to be due to underlying 
pathologies and therefore “true” outliers, as shown in and 
example case (Fig. 4a).

The deep reinforcement learning framework used in 
this study has been developed in order to enable a robust 
and fast detection of anatomical structures, which are a 
prerequisite for creating such databases in a short amount 
of time with excellent agreement between human readers 
and the algorithm. Furthermore, we demonstrated that all 
tested contrast phases and slice thicknesses can be used 
concurrently, which allows the algorithm to be used on a 
various set of studies. Apart from this study—to our best 
knowledge—no further studies have been conducted using 
DRL for medical image analysis for clinical purposes.

Our study has several limitations. First, we included 
all patients, which fulfilled the inclusion criteria, and 
not only healthy patients. This explains the wide range 
of organ volumes in our analysis. However, using the 
DICOM data as the visual reference, even obvious outli-
ers in our data represented real outliers in the images 
in the sense of organomegaly or the opposite; this dem-
onstrates that the algorithm is capable to process data 
from all patients. Second, we tested the technical feasi-
bility of our approach without investigating if we could 
extract meaningful clinical data from our results. This 
study was supposed to build the technical groundwork 
for future studies on larger cohorts. Third, in seven out 
of 438 cases, the algorithm has not outputted values for 
all pairs of organs and CP and ST. In a detailed investiga-
tion, we identified a missing landmark detection for the 
liver parenchyma as the underlying cause. As outlined in 
the materials and methods section, the DRL framework 
presented is trained to find an object of interest using an 
optimal navigation path in the volumetric space. If this 
path is blocked due to various reasons, e.g., calcifications 
of the right-sided diaphragm or extensive ascites between 
the diaphragm and the liver, the algorithm will not detect 
the object and therefore not output values. Forth, the 
technology has not been implemented in our routine clin-
ical workflow yet. However, we plan to implement the 
algorithm soon in order to build organ-specific databases 
that could prove useful both in the clinical routine and in 
research questions.
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Conclusion

In conclusion, we were able to demonstrate that the DRL 
framework used in this study is robust and capable to 
create organ-specific databases from a large population 
in a short amount of time. Future studies are warranted 
in order to apply this DRL framework on larger patient 

populations with dedicated statistical testing in order to 
evaluate the agreement between human readers and the 
proposed algorithm for all investigated organ. In a next 
step, this approach could be extended to extract organ 
density values, as performed in Graffy et  al. [24] and 
automatically calculated, referenced organ volumes could 
enrich radiology reports.
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