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Abstract
Automated protocoling for MRI examinations is an amendable target for workflow automation with artificial intelligence. 
However, there are still challenges to overcome for a successful and robust approach. These challenges are outlined and 
analyzed in this work. Through a literature review, we analyzed limitations of currently published approaches for automated 
protocoling. Then, we assessed these limitations quantitatively based on data from a private radiology practice. For this, 
we assessed the information content provided by the clinical indication by computing the overlap coefficients for the sets of 
ICD-10-coded admitting diagnoses of different MRI protocols. Additionally, we assessed the heterogeneity of protocol trees 
from three different MRI scanners based on the overlap coefficient, on MRI protocol and sequence level. Additionally, we 
applied sequence name standardization to demonstrate its effect on the heterogeneity assessment, i.e., the overlap coefficient, 
of different protocol trees. The overlap coefficient for the set of ICD-10-coded admitting diagnoses for different protocols 
ranges from 0.14 to 0.56 for brain/head MRI exams and 0.04 to 0.57 for spine exams. The overlap coefficient across the 
set of sequences used at two different scanners increases when applying sequence name standardization (from 0.81/0.86 to 
0.93). Automated protocoling for MRI examinations has the potential to reduce the workload for radiologists. However, an 
automated protocoling approach cannot be solely based on admitting diagnosis as it does not provide sufficient information. 
Moreover, sequence name standardization increases the overlap coefficient across the set of sequences used at different scan-
ners and therefore facilitates transfer learning.
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Introduction

Although the growth of medical imaging utilization has 
slowed down in comparison with other medical services, radi-
ology services remain crucial for the diagnosis and treatment 
of many diseases [1, 2]. Claims of overutilization of medi-
cal imaging and a high contribution of radiology services to 
overall healthcare expenditures have led to medical imaging’s 
growth slowdown [3]. However, the contribution of medical 
imaging to overall healthcare expenditures remains significant. 

Consequently, recent discussions have focused on increasing 
the efficiency and value of medical imaging in general [2] and 
of specific imaging modalities, such as magnetic resonance 
imaging (MRI) in particular [4]. Approaches to increase the 
value of MRI include the development of abbreviated MRI pro-
tocols [5, 6], as well as new imaging techniques to accelerate 
imaging acquisition and increase the diagnostic value. Moreo-
ver, artificial intelligence (AI) plays a vital role in developing 
enhanced imaging techniques and diagnosis support for the 
radiologist. AI has shown potential to accelerate imaging [7], 
supports the radiologists during imaging interpretation [8], and 
is subject to ongoing research to increase efficiency further [9].

Furthermore, the potential of AI applications beyond 
imaging acquisition and interpretation has already been 
recognized [10]. It includes, but is not limited to, creat-
ing and selecting study protocols, optimizing MR scanner 
utilization, scheduling, and automated billing [11]. These 
applications constitute promising approaches to optimize the 
clinical workflow, reduce the workload for clinical staff and 
radiologists, and lower costs. It enables radiologists to focus 
on image interpretation, patient care, and communication.
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However, some of these methods have not reached accepta-
ble performance yet to automate sub-tasks of the clinical work-
flow fully, which can limit the benefit for the clinical practice.

This is also true for study protocol selection for MRI 
exams (protocoling). Protocoling describes the process of 
selecting an adequate imaging protocol under consideration 
of the ordered procedure, clinical indication, and medical 
history. A set of pre-defined, institution-specific protocols for 
each imaging modality is in general available for selection 
that is listed in the protocol tree of the scanner. Each protocol 
typically consists of multiple MR pulse sequences, which 
are parameterized through sequence parameters that deter-
mine image contrast, resolution, signal-to-noise ratio, and/
or scan time. The parameterized pulse sequences are iden-
tified through a user-defined sequence name that describes 
the resulting contrast and additional information (imaging 
orientation, pre-/post-contrast, slice thickness, etc.).

Pulse sequences are often used for imaging of multiple 
body parts and use cases (e.g., turbo/fast spin echo sequences 
[12] ) or can be used almost exclusively for a single body 
region (e.g., cine sequences used for cardiac MRI [13] or 
diffusion tensor imaging used for brain MRI [14] ). This 
increases the amount and variability of MR sequences at a 
scanner and protocoling complexity.

Although protocoling is recognized as an amendable 
target for workflow automation through the application of 
AI [15], and efforts are undertaken to automate protocoling 
(see Section “Literature Review”), published results have 
several limitations that diminish workflow benefits. These 
limitations are outlined, analyzed, and quantified in this 
work.

First, we describe the clinical MRI workflow, including 
critical workflow steps and potential pitfalls for protocol selec-
tion. Then, we review current literature on automated proto-
coling for MRI exams and perform a data-driven analysis to 
describe challenges for an AI-based automated protocoling 
approach for MRI and propose solutions for these challenges.

Our contributions are as follows:

•	 We provide in-depth analysis of the latest research on 
automated protocoling for MRI exams and describe com-
mon obstacles (information availability, MRI protocol 
comparability) that restrict its integration into the clinical 
workflow.

•	 We analyze the patient’s admitting diagnosis mapped to 
the assigned MRI protocol and assess the consistency of 
the mapping.

•	 We assess the heterogeneity of protocol trees on proto-
col and sequence level and outline associated problems 
complicating a robust automated protocoling approach.

•	 We describe potential solutions to these challenges for 
successful automated protocoling for MRI exams.

Background

MRI Workflow Description

First, we want to provide a general overview of the clinical 
workflow for an MRI exam and describe the critical deci-
sion steps that impact correct protocoling. The first step for 
any MRI exam is the referring physician’s procedure order 
through the transmission of an ordered procedure and the 
reason for the MRI exam (i.e., clinical indication). The pro-
cedure order may require the consultation of a clinical deci-
sion support (CDS) system to determine the necessity and 
appropriateness of the ordering [16].

An insufficient clinical indication or the wrong ordered 
procedure can be the first source of errors for protocoling. 
If different MRI systems are available (e.g., 1.5 T and 3 T 
systems), the schedulers allocate a time slot at the appro-
priate system for the patient exam. This may be subject to 
the radiology practice/department’s site conditions as some 
procedures may only be performed at a specific system, e.g., 
dedicated systems for a certain body region. The responsible 
radiologist selects the appropriate protocol depending on 
the clinical indication, the ordered procedure, prior imag-
ing exams and radiology reports, medical history in the 
electronic medical record (EMR), and relevant lab results 
[17]. The technologist performing the exam must select the 
correct protocol on the MRI host computer as specified by 
the radiologist. Following exam completion, the radiolo-
gist interprets the images and makes a diagnosis. Then, the 
administrative staff completes documentation and the results 
are communicated to the referring clinician and the patient.

Protocoling is a time-consuming task and prone to errors [18, 
19]. However, it is a crucial workflow step as incorrect protocol-
ing can diminish the clinical value of the subsequent MRI exam. 
In a workflow observation study, Schemmel et al. measured radi-
ologists’ activities in an academic neuroradiology practice [18]. 
Within non-image-interpretative tasks (procedures, phone calls, 
in-room consultation, protocoling, teaching) of radiologists, 17% 
of their time is spent on protocoling, therefore constituting a 
significant share of their daily workload (see Fig. 1).

Moreover, Ginat et al. analyzed MRI protocoling errors 
in the neuroradiology department of a hospital-based 
academic medical center for 4,244 MRI exams within a 
6-month period [19]. In total, 140 protocoling-related issues 
occurred. They categorized these issues into scheduling 
errors (1.5 T vs. 3 T), ordering clinician errors (e.g., wrong 
body region), trainee errors (omitting a crucial sequence), 
technologist errors (missed pre-processing), and inherent 
protocol problems (e.g., insufficient field-of-view). 37.1% 
of the reported errors (scheduling, ordering clinician, 
trainee errors) are amendable through protocoling automa-
tion and workflow improvements.
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In a former study [20], the impact of missing informa-
tion within the clinical indication was assessed by evaluating 
the concordance and completeness of clinical indications in 
order requisitions compared to provider notes, which offer 
a more comprehensive picture of the patient’s condition. 
Indications were incomplete in 81% and discordant in 42% 
within 315 assessed MRI and CT exams. This has a poten-
tial impact on correct protocol selection in 8% and on exam 
interpretation in 43% of the cases.

Protocoling forms the basis for the patient’s diagnosis and 
further examinations [20]. With an improper protocol, the radi-
ologist might not interpret the MR images accurately, which 
could lead to patient harm in the worst case. Less severe con-
sequences of incorrect protocoling include patient recalls [21] 
and therefore additional, avoidable costs for the healthcare sys-
tem. Consequently, every protocoling error must be avoided.

Besides the benefit of avoiding protocoling errors with their 
associated consequences, automating protocoling can result 
in a significant reduction of the workload for radiologists that 
can be spent on image interpretation, patient care, and com-
munication. Consequently, automated protocoling is antici-
pated to enhance the clinical MRI workflow considerably.

Literature Review

Different machine learning approaches for automated pro-
tocoling of MRI exams have been developed recently, with 

differences in the underlying machine learning task, input 
data, and achieved performance, presented in the following 
(see Table 1).

Brown and Marotta [22] developed three natural language 
processing (NLP) models that were trained on free-text clini-
cal indications transformed into a term-document matrix, 
patient and referral demographics to predict the selection 
of the correct brain MRI protocol (task 1), to evaluate the 
need for contrast administration (task 2), and to determine 
priority (task 3) and achieved an accuracy of 82.9%, 83.0%, 
and 88.2% for tasks 1, 2, and 3.

In another study [23], the authors extended their former 
study by training a machine learning model to select MRI 
sequences for the MRI exam based on the input given by 
patient age and gender, study type, and the study’s clinical 
indication. They used data from a single academic hospital 
site, where radiologists could choose from 41 different MRI 
sequences. They reached an accuracy of 95.1% using a gra-
dient boosting machine and state that performing predictions 
at sequence level allows a more robust clinical application.

IBM Watson was used to predict abdomen/pelvis MRI 
protocols based on free-text clinical indications [24] and to 
predict the need for intravenous contrast for musculoskeletal 
MRI protocols based on free-text clinical indications [25]. 
They reported an overall accuracy of 83.2% on their test set 
of 280 cases. However, with respect to a second reader’s 
contrast assignment, who only had access to the clinical 
indication (without any further information, such as the 
requested study type), the classifier based on IBM Watson 
achieved 88.6%. This performance discrepancy shows that 
the clinical indication alone is sometimes insufficient for 
determining the need for contrast agent for MRI exams.

A neural network was trained with the word embedding 
of the clinical indication obtained with Word2vec combined 
with the requested exam type to predict MRI and CT studies 
[32, 33]. The network correctly predicted the most likely pro-
tocol from over 400 different protocols in 72% and the “top 3” 
protocol in 90% of the test cases. The error analysis revealed 
that a large subset of prediction errors was due to data points 
with minimal clinical, i.e., insufficient information.

The published approaches all use the clinical indica-
tion as input as it is the most discriminative feature for 
protocol selection. In addition to the clinical indication, 
multiple studies extend the input data by patient demo-
graphics, requested procedure, or additional free-text com-
ments. Moreover, different machine learning algorithms 
have been applied, whereas no specific machine learning 
model or approach has prevailed and showed superior 
performance.

Although the presented studies vary in their algorithmic 
approach, used input data, and achieved performance, they 
share limitations restricting their use in the daily clinical 

Fig. 1   Timeshare spent by radiologists on different non-image-inter-
pretive tasks [18]
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workflow. In the following, we outline and analyze these 
limitations.

Materials and Methods

In the first part of our work, we assess the information 
content the clinical indication offers for the protocol selec-
tion. Therefore, we analyzed the mapping of ICD-10-coded 

admitting diagnosis to MRI protocol and computed the over-
lap of admitting diagnoses across MRI protocols.

Another challenge for automated protocoling is the hetero-
geneity of different protocol trees that complicate applying one 
trained model to a new scanner/protocol tree. We demonstrate 
that by assessing the protocol and sequence similarity between 
different protocol trees in the second part of our work.

Little research has been published on the heterogeneity/
similarity of MRI protocol trees with respect to the set of 

Table 1   Publication overview on automated protocoling for MRI exams

Legend: Method: aTDM, term-document matrix; bCNN, convolutional neural network; cTF-IDF, term frequency–inverse document frequency; 
dSVM, support vector machine. Classification type: eBinary: assignment of a binary label (0/1) to a single target variable, e.g., administer con-
trast medium or not; fMulti-class: classification of an instance into one of more than two categories, e.g., select one protocol out of n (n > 2); 
gMulti-label: classification of an instance of n different binary labels, e.g., select n MRI sequences for a certain MRI protocol
1 Referring to the top 1 accuracy. Multiple works also evaluated the top 5 accuracy scores
2 fastText: library for learning of word embeddings (https://​fastt​ext.​cc/, accessed 7th November 2021)
3 XGBoost: library for gradient boosting (https://​github.​com/​dmlc/​xgboo​st, accessed 7th November 2021)
4 The accuracy scores refer to multiple evaluated protocol subsets

Ref Task Classification type Method Input data Dataset size (training/
test)

Accuracy1

 [22] (1) Protocol selection 
from 13 MRI brain 
protocols

(2) Contrast administra-
tion assignment

(3) Priority determina-
tion

(1) Multi-class
(2) Binary
(3) Binary

TDM + random forest Clinical indication 11,185/2,797 (1) 82.9%
(2) 83.0%
(3) 88.2%

 [23] Sequence selec-
tion from 41 MRI 
sequences

Multi-label TDM + gradient boost-
ing machine

Clinical indication, 
patient age, gender, 
study type

5,240/2,246 95.1%

 [24] Protocol selection from 
14 abdomen/pelvis 
MRI protocols

Multi-class IBM Watson Clinical indication 253/82 93%

 [25] Contrast administration 
assignment for MSK 
MRI protocols

Binary IBM Watson Clinical indication 1,240/280 83.2%

 [26] Protocol selection from 
17 MSK routine and 
tumor MRI protocols

Multi-class CNN Referring department, 
body region, contrast 
administration, 
patient age, gender

5,258/1,018 94.2%

 [27] Protocol selection from 
400 CT and MRI 
protocols

Multi-class Word2Vec + neural 
network

Clinical indication
Free-text comments
Requested procedure

263,700/29,300 72%

 [28] Protocol selection from 
108 CT and MRI 
protocols

Multi-class Bag of words + neural 
network

Clinical indication and 
history

14,519/3,673 84%

 [29] Protocol selection from 
88 CT and 293 MRI 
protocols

Multi-class TF-IDF + SVM Requested procedure, 
department, anatomy, 
patient history

166,534/41,634 (CT)
392,771/ 98,193 (MRI)

92.2%
(CT)
86.9%
(MRI)

 [30] Protocol selection from 
8 MRI spine and 9 
brain protocols

Multi-class fastText2 + XGBoost3 Clinical indication 990/151 (spine)
6,067/1,071
(brain)

83.4% (spine)
85.4%
(brain)

 [31] Protocol selection 
from 200/93/48 MRI 
protocols

Multi-class One-hot-encod-
ing + neural network

Clinical indication 81,356/34,868 82.8%,
73.8%,
69.3%4
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used protocols and sequences [11, 34]. In general, it is dif-
ficult to qualitatively compare protocol trees from different 
scanner types and sites due to the various considerations that 
must be taken into account for protocol tree configuration. 
Furthermore, an optimal MRI protocol tree setup can hardly 
be defined, since external and internal guidelines, types of 
exams, and application availability (e.g., sequences) vary 
significantly and change frequently.

However, the similarity of protocol trees can be assessed 
quantitively to measure protocol and sequence overlap as a 
proxy for standardization and harmonization. The degree of 
similarity of different protocol trees directly impacts whether 
an automated protocoling approach is transferable, without 
retraining or fine-tuning, to a new scanner or site.

The methods and used data are described in the following 
in more detail.

Set Similarity Metrics

For the similarity assessment between the set of admitting 
diagnoses for different protocols (“Admitting Diagnosis Pro-
tocol Overlap”) and the set of protocols and sequences used 
across scanners (“Protocol Tree Assessment”), a suitable 
similarity metric must be employed. Widely used similarity 
metrics for two finite sample sets A and B are the Jaccard 
similarity coefficient (also known as Jaccard index) and the 
overlap coefficient. The Jaccard index is defined as follows:

The overlap coefficient ( oc ) is related to the Jaccard simi-
larity coefficient and defined as follows:

However, while both coefficients measure the overlap 
between two sets, only the overlap coefficient is sensitive to 
the sizes of the sets. If A is a subset of B (or vice versa), the 
overlap coefficient is 1.

The overlap coefficient has to be proven to be better suited 
for small datasets and in particular for different sized sets 
than the Jaccard index [35].

Admitting Diagnosis Protocol Overlap

We evaluated how consistently the same MRI protocols 
are assigned to patients with the same clinical indication 
by computing the overlap coefficient for different protocols 
with respect to the set of admitting diagnosis ICD-10 codes. 
This allows us to assess the information share provided by 
the admitting diagnosis (i.e., clinical indication) for the 

J(A,B) =
|A ∩ B|

|A ∪ B|

oc(A,B) =
|A ∩ B|

min(|A|, |B|)

protocol decision. We used the admitting diagnosis ICD-
10 codes since, unlike the free-text clinical indication, the 
ICD-10-coded admitting diagnosis constitutes a data basis 
that enables categorization and comparison of clinical indi-
cations. The admitting diagnosis is usually coded during 
the documentation workflow step and can comprise one or 
more ICD-10 codes. It corresponds to the referring physi-
cian’s free-text clinical indication. Studies evaluating medi-
cal coding accuracy show that medical coding data serves 
as a reliable database for this research [36].

We computed the overlap coefficient with respect to the 
admitting diagnosis ICD-10 codes for all protocols within 
a certain body region and the complement overlap coeffi-
cient for each protocol. The complement overlap coefficient 
describes the set of admitting diagnosis ICD-10 codes for 
a single protocol (denoted by A ) with respect to any other 
protocol in the dataset. More formally, the complement 
overlap coefficient is denoted by oc(A,Ac) , where Ac is the 
complement of A : Ac = {x ∈ U|x ∉ A} , with U containing 
all elements within the (filtered) dataset.

We have compiled a dataset that comprises 2,106 MRI exams 
across all body regions from three MRI scanners of a single radi-
ology practice (Zwanger-Pesiri Radiology, New York, USA). It 
contains the ICD-10-coded admitting diagnoses extracted from 
the institution’s radiology information system and MRI scan-
ner log data [11] that contain information about the MRI exam 
(performed sequences, acquisition parameters, protocol name). 
The evaluated data comprise all MRI exams performed with 
the three scanners within January and June 2019. The data were 
stripped of any patient-identifiable information.

Protocol Tree Assessment

We also analyzed challenges associated with the hetero-
geneity of protocols (protocol trees) and assessed the 
similarity between different protocol trees on protocol 
and sequence level. Therefore, we computed the overlap 
coefficient for different protocol trees (for all body regions) 
and the sequences used within the protocols. However, 
since the sequence name can be adapted individually, it is 
not suitable for the objective characterization of a proto-
col step, i.e., the parameterized MRI sequence. Therefore, 
different strategies were recently developed to categorize 
and standardize MRI sequence descriptions, which can be 
used as a meaningful, standardized feature for machine 
learning applications [11, 37, 38]. We used a heuristic 
rule–based approach [11] that generates a standardized 
sequence name based on the MR acquisition parameters 
of a sequence (e.g., TR, TE, imaging technique, imaging 
orientation). We show the effect and benefit of sequence 
name standardization on assessing sequence heterogeneity 
across different protocol trees.

1297Journal of Digital Imaging (2022) 35:1293–1302
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We evaluated the protocols from three different MRI 
scanners of the same radiology practice. Two scanners 
(scanner 1 and 2) are located at the same site, and one 
scanner (scanner 3) is located at a different site. All MRI 
scanners are 3 T MAGNETOM Skyra systems (Siemens 
Healthcare, Erlangen, Germany) with the same software 
baseline.

Results

Admitting Diagnosis Protocol Overlap

We analyzed the overlap of admitting diagnosis ICD-10 
codes within MRI exams of two selected body regions, brain/
head and spine, as MRI is frequently used for various use 

cases for these body regions. We only incorporated protocols 
that were performed more than five times within our dataset.

The average number of admitting diagnosis ICD-10 codes 
per exam is low for both spine (1.1) and brain/head (1.2), 
and single code occurrence ranges from 1 to 182 for spine 
and to 42 for brain/head exams, respectively (Table 2).

Since the frequency of the protocols varies widely within 
the dataset (ranging from 6 to 341), we computed the overlap 
coefficient to assess the similarity of admitting diagnosis and 
protocol mapping.

Figures 2 and 3 visualize the overlap coefficients for the 
set of admitting diagnosis codes associated with the differ-
ent brain/head and spine MRI protocols, respectively. As the 
overlap coefficient is symmetric, i.e., oc(A,B) = oc(B,A) , 
so is the heatmap. Note that A and B comprise here the set 
of admitting diagnosis code combinations for two different 
MRI protocols. Thus, an element within these sets can con-
sist of single or multiple ICD-10 codes.

The overlap coefficient with respect to the complement 
ranges from 0.14 to 0.56 for brain/head MRI protocols and 
0.04 to 0.57 for spine protocols. When comparing single 
protocols, the oc ranges from 0 to 0.56 and 0 to 0.5 for brain/
head and spine exams, respectively.

The decision between two protocols can solely be based 
on the admitting diagnosis only if the overlap coefficient is 
0; i.e., no overlap of the associated admitting diagnoses with 
other protocols exists. Consequently, the lower the overlap 
coefficient, the better for an automated protocol decision 
based on the admitting diagnosis.

Table 2   Data properties of the evaluated MRI exams for the selected 
body regions

Legend: Label cardinality: average number of admitting diagnosis 
ICD-10 codes per exam; Label density: cardinality divided by the 
number of unique codes; Label diversity: number of distinct code sets

Body region Spine Brain/head

Number of exams 727 249
Number of unique ICD-10 codes 127 98
Label cardinality 1.1 1.2
Label density 0.01 0.01
Label diversity (code sets) 177 118

Fig. 2   Heat map visualization 
of the overlap coefficient of 
admitting diagnosis ICD-10 
codes between MRI head pro-
tocols. The annotated decimal 
values describe the overlap 
coefficient for the protocol 
specified on the y-axis and the 
protocol specified on the x-axis. 
The last column denotes the 
complement overlap coefficient 
for the protocol specified on the 
y-axis. Abbreviations:—WITH-
OUT: no contrast medium is 
administered. WITH means 
images were acquired after 
the administration of contrast 
medium only. W&WO stands 
for “with and without” contrast 
medium. IAC stands for internal 
auditory canal and TMJ for 
temporomandibular joint
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Protocol Tree Assessment

We have assessed protocol trees from three scanners of the 
same model (MAGNETOM Skyra) with the same software 
baseline, from the same radiology practice, but from two 
different sites. This allows a valid quantitative comparison 
of protocol and sequence content and overlap.

On average, 103 protocols are used on each scanner, com-
piled from 209 different sequence names (across all body 
regions). MRI sequence categorization and standardization 
have the advantage that they reduce the variability of sequence 
descriptions significantly ( P < 0.05 ; chi-square test), and 
sequences become comparable across scanners and sites. 
When applying sequence name standardization to determine 
the sequence name solely based on the sequence parameter 
values, the number of unique sequence names is reduced to 
97 on average. In Table 3, the differences in sequence content 
and protocol naming between the scanners are summarized.

A different set of sequence and protocol names are used on 
each scanner, with a decreased overlap coefficient for scan-
ners at different sites compared to scanners at the same site. 
Applying sequence name standardization increases [13] the  
overlap for the set of sequence names is significantly ( P < 0.05 ).  
Thus, sequence name standardization demonstrates that the 
difference does not only arise from different sequence content 
but also from different or inconsistent sequence naming.

The common, i.e., overlapping, set of sequence and pro-
tocol names decreases significantly between scanners of 
the same and different sites. Consequently, an automated 

protocoling approach on data from one scanner/site will not 
be directly applicable to another scanner’s protocol tree, as a 
different set of sequences requires retraining or fine-tuning.

Discussion

Admitting Diagnosis Protocol Overlap

Through the analysis of the ICD-10-coded admitting diag-
nosis and the assigned MRI protocol, we showed that MRI 
protocol selection could not be done reliably on the admit-
ting diagnosis only.

Fig. 3   Heat map visualization 
of the overlap coefficient of 
admitting diagnosis ICD-10 
codes between MRI spine proto-
cols. The annotated decimal 
values describe the overlap 
coefficient for the protocol 
specified on the y-axis and the 
protocol specified on the x-axis. 
The last column denotes the 
complement overlap coefficient 
for the protocol specified on the 
y-axis

Table 3   Quantitative assessment of the number of different proto-
cols and sequences within the complete protocol trees used at three 
scanners of the same radiology practice. The overlap coefficient for 
(standardized) sequence and protocol names is computed with respect 
to scanner 1

Scanner 
1 (site 
A)

Scanner 
2 (site 
A)

Scanner 
3 (site 
B)

# Unique sequence names 231 200 196
Unique standardized sequence 

names
104 98 89

Unique protocol names 107 103 100
oc Sequence names - 0.86 0.81

Standardized sequence names - 0.93 0.93
Protocol names - 0.83 0.79
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For example, the oc for the spine protocols “CERVICAL/
WITHOUT” and “CERVICAL/POST OP METAL” is 0.5; 
i.e., 50% of the admitting diagnoses associated with “CER-
VICAL/WITHOUT” were also associated with the “CER-
VICAL/POST OP METAL” protocol. In this case, crucial 
information missing is whether metal implants are present 
in the spine that is not included in the admitting diagnosis. 
On the other hand, the oc for the spine protocols “LUM-
BAR/WITHOUT” and “LUMBAR/LUMBAR METAL” is 
significantly lower (0.17). Inconsistencies in protocoling, 
additional clinical information, or the fact that the protocol 
name does not reflect the complete application range can 
lead to these differences.

The presented examples show that multiple protocols 
for the same admitting diagnosis may be a suitable protocol 
choice, and more information than only the admitting diag-
nosis (and consequently also the clinical indication) needs to 
be assessed to be able to make an informed protocol decision 
[25]. Selecting the protocol from the clinical indication only 
could lead to patient harm as contraindications for MRI (e.g., 
allergies, metal implants, pregnancies) [39] may be overseen, 
or with less severe consequences, a suboptimal protocol may 
be selected, and image interpretation may be impeded.

Similar results were obtained for the determination of 
contrast medium administration [25], as a radiologist assess-
ing the need for contrast medium solely based on the clinical 
indication achieved only 89.6% accuracy (251/280 cases). 
Another study identified a significant impact of incomplete 
exam indications on correct protocoling by analyzing pro-
vider notes and clinical indications [20].

However, limitations within our study exist. Although 
the ICD-10-coded admitting diagnosis does not necessarily 
reflect the complete clinical indication as information can 
be lost through coding, it is a useful indicator to assess the 
information content provided by the clinical indication for 
the protocol decision. Moreover, it may serve as a system-
atic approach for protocol configuration by minimizing the 
overlap with respect to the admitting diagnosis or simply 
identifying redundant, i.e., overlapping, protocols.

Although our analysis is based on data (2,106 cases) from 
multiple scanners and sites, it is limited to data from a single 
radiology practice. Validation of our results with data from 
additional radiology departments or practices is subject to 
future work.

Protocol Tree Assessment

In the second part of our work, we computed the overlap 
coefficient for the set of protocols and sequences used at 
different MRI scanners. Moreover, we showed that standard-
ized sequence representations lead to a significant reduction 

in feature dimensionality across scanners of the same and 
different sites.

As MRI protocols are usually adapted regularly to reduce 
protocol creep [34], to be aligned with updated guidelines or 
after a scanner software update, a comprehensive automated 
protocoling approach has to cope with protocol changes. How-
ever, an automated protocoling approach that has learned to 
assign the correct protocol name [22, 25, 26] must be retrained 
whenever new protocols are added or existing protocols are 
adapted. Therefore, developing a machine learning system to 
predict required MRI sequences rather than the textual repre-
sentation of an MRI protocol (i.e., the site-specific protocol 
name) is crucial to cope with protocol variation and changes 
and is anticipated to lead to a more robust application. Further-
more, the robustness of an automated protocoling model can be 
improved with sequence name standardization, which leads to a 
reduced feature space and makes the approach independent of 
the user-given sequence name. Despite the protocol heterogene-
ity of different protocol trees, the aggregation of a large data-
set may help to learn different protocoling setups for a certain 
clinical question and may increase the performance of machine 
learning models for automated protocoling in future works.

Conclusion

Automated protocoling for MRI exams has the potential to 
reduce the workload for radiologists and prevent protocol-
ing errors that may diminish the diagnostic value of an MRI 
exam and lead to re-scans. Unfortunately, recently published 
approaches have not reached an acceptable performance yet 
to automate protocol assignment for MRI exams fully and 
rely only on the clinical indication for the prediction. How-
ever, an automated protocoling approach cannot be solely 
based on the admitting diagnosis as it often does not provide 
sufficient information for the distinction between two suit-
able protocols. Moreover, the heterogeneity between protocol 
trees hinders the deployment of a trained machine learning 
model to the protocol tree of a new scanner. Sequence name 
standardization increases the overlap coefficient across the set 
of sequences used at different scanners and can be crucial to 
increase the robustness of automated protocoling approaches.
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