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Abstract
We describe the curation, annotation methodology, and characteristics of the dataset used in an artificial intelligence chal-
lenge for detection and localization of COVID-19 on chest radiographs. The chest radiographs were annotated by an inter-
national group of radiologists into four mutually exclusive categories, including “typical,” “indeterminate,” and “atypical 
appearance” for COVID-19, or “negative for pneumonia,” adapted from previously published guidelines, and bounding 
boxes were placed on airspace opacities. This dataset and respective annotations are available to researchers for academic 
and noncommercial use.

Keywords  Machine Learning · Artificial Intelligence · COVID-19 · Pneumonia · Radiography · Thorax

Introduction

COVID-19 is a respiratory disease caused by a novel coro-
navirus (severe acute respiratory syndrome coronavirus-2, or 
SARS-CoV-2) [1]. Since its discovery in December of 2019, 
COVID-19 has become an ongoing global pandemic. It is 
known to be highly infectious [2], more deadly than influ-
enza in adults [3], and has taken a tremendous toll on those 
affected, having caused over 4.6 million deaths worldwide 
currently and rising [4].

COVID-19 is diagnosed by detection of genetic viral 
material, commonly using real-time polymerase chain reac-
tion (RT-PCR) [5]. Imaging studies including chest radiog-
raphy (CXR) have long been used as part of a standard work-
up for patients presenting with respiratory distress [6, 7] and 
suspected pulmonary infection [8]. Regarding COVID-19, 
CXR is indicated in patients with moderate to severe fea-
tures of COVID-19, those with worsening respiratory status 
or at risk for disease progression [9]. Additionally, CXR 
may be useful to evaluate other diagnoses in patients with 
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pulmonary symptoms, such as bacterial pneumonia, pulmo-
nary edema, pleural effusion, and pneumothorax [9].

Artificial intelligence (AI) has been used to facilitate 
diagnosis of thoracic diseases. In chest radiography, AI has 
shown promise in detection of pulmonary tuberculosis [10], 
pneumonia [11], pneumothorax [12], lung cancer [13], and 
recently COVID-19 [14]. Additionally, AI and quantitative 
grading of CXRs have been proposed for predicting patient 
prognosis and assessing treatment response in COVID-19 
[15–17], as studies have shown that the degree of parenchy-
mal involvement on CXRs in patients with COVID-19 cor-
relates with outcomes [18–20]. AI approaches for automated 
CXR severity grading have shown to be precise [21] and can 
be obtained rapidly.

Since the onset of the COVID-19 pandemic, interna-
tional groups have been curating and releasing public medi-
cal imaging datasets, which may prove useful in creation 
of AI algorithms, and for teaching and education. This 
has included the Valencian Region Medical ImageBank 
(BIMCV) COVID-19 and Medical Imaging Data Resource 
Center (MIDRC)-RSNA International COVID-19 Open 
Radiology Database (RICORD) [22, 23]. Many prior medi-
cal imaging datasets have been released that have been asso-
ciated with public AI challenges [24–27]. Such competitions 
have been important to help advance the state of the art and 
create a community regarding AI in medical imaging [28].

Our goal was to add value to the existing public BIMCV 
and MIDRC-RICORD COVID-19 datasets by annotating 
their respective chest radiographs in a standard fashion for 
AI models to categorize CXR findings as negative for pneu-
monia, or typical, indeterminate, or atypical for COVID-19, 
adapted from previously published guidelines [29]. Addi-
tionally, bounding boxes were drawn over the opacities to aid 
localization and assess disease extent by size of the boxes. 
The latter may help facilitate development of future mod-
els aimed at prognosticating patient outcomes. The anno-
tated dataset is available for public use as part of a machine 
learning COVID-19 challenge (https://​www.​kaggle.​com/c/​
siim-​covid​19-​detec​tion) hosted by the Society for Imag-
ing Informatics in Medicine (SIIM), the Foundation for the 
Promotion of Health and Biomedical Research of Valencia 
Region (FISABIO), and the Radiological Society of North 
America (RSNA). The annotation effort is from an interna-
tional group of radiologists. This paper describes the dataset 
characteristics, annotation methodology, and rationale.

Materials and Methods

A total of 10,178 CXRs were used in this annotation effort 
and challenge, which were obtained from two public sources, 
MIDRC-RICORD and BIMCV [22, 23]. This included 1000 
CXRs from RICORD with only COVID-19 positive patients. 

The remainder were extracted from the BIMCV database, 
obtained in December 2020 (22,709 CXRs), consisting 
of COVID + (16,840 CXRs) and COVID − (5869 CXRs) 
exams. The BIMCV data then underwent processing includ-
ing removal of lateral view radiographs and images without 
associated Digital Imaging and Communications in Medi-
cine (DICOM) tags, which left 16,214 CXRs, which com-
prised COVID + (12,363 CXRs) and COVID − (3851 CXRs) 
exams. From this, 9178 random CXRs were extracted and 
combined with the RICORD data (Fig. 1).

In the final combined dataset of 10,178 images, there are 
8042 (79%) COVID-19 positive and 2136 (21%) COVID-19 
negative CXRs (Fig. 1). The controls (COVID-19 negative) 
from the BIMCV dataset include normal chest radiographs, 
and various pulmonary pathologies other than COVID-19, 
including imaging findings of bacterial pneumonia, car-
diogenic pulmonary edema, pleural effusion, atelectasis,  
nodule/mass, interstitial lung disease, and pneumothorax. 
Each of these pathologies was noted among the control 
cases by the annotating radiologists, but the number of cases 
exhibiting each pathology was not determined.

The CXRs in this dataset consist of both PA and AP fron-
tal views, obtained from both computed radiography (CR) 
and digital radiography (DX) devices. All medical imaging 
data and metadata in the MIDRC-RICORD and BIMCV 
databases had already been de-identified prior to being 
reviewed by the radiology annotators.

Annotation Process

Annotators consisted of non-thoracic radiologists (13/22) 
and thoracic subspecialty radiologists (9/22) and were from 
a mix of institutions in North America, South America, and 
Europe. Nineteen out of the twenty-two annotators were staff 
practicing radiologists and had fully completed their train-
ing; 3/22 were senior radiology residents in training. Radi-
ology annotators were recruited via membership outreach 
from SIIM and FISABIO.

The annotators were given access to an online web plat-
form (MD.ai, New York, New York) and instructions for its 
use via a live teleconference. Additionally, the radiologists 
were provided written annotation instructions, reference 
materials, and multiple example cases for each category. 
Twenty-five practice cases were selected from the dataset, 
and then annotated by a practicing cardiothoracic radiologist 
(PL; 15 years’ experience in radiology, 10 years’ experience 
in thoracic radiology), which constituted the “ground truth.” 
The annotators were then required to independently label 
these 25 practice cases and their annotations were compared 
with the “ground truth” label. A minimum threshold of 60% 
agreement with the “ground truth” labels was required to 
participate in labeling the full dataset; all 22 annotators met 
this requirement.

https://www.kaggle.com/c/siim-covid19-detection
https://www.kaggle.com/c/siim-covid19-detection
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The annotators were required to score the radiographs at 
an exam-level into one of four categories (Table 1), which 
was adapted from previously published reporting guidelines 
[29].

Bounding boxes were placed on pulmonary airspace 
opacities, whether the exam was scored as typical, indetermi-
nate, or atypical pattern for COVID-19. However, bounding  
boxes were not placed on pleural effusions, masses/nodules, 
or pneumothoraces. No bounding boxes were placed for the 
“negative for pneumonia” category.

In cases where the opacities were in proximity or near-
confluent, the annotators were instructed to place one 
encompassing box rather than multiple separate boxes 
(Fig. 2), which was intended to improve the standardization 
of the annotations and decrease variability.

Representative examples of the annotated CXRs that were 
classified as typical, indeterminate, atypical, and negative for 
pneumonia are provided on Figs. 3, 4 and 5.

Inter‑rater Reliability

For the 25 practice cases, the median percent agreement 
and interquartile range (IQR) among the 22 radiologists was 
calculated. In addition, the intraclass correlation coefficient 
(ICC) and 95% confidence intervals (CI) were computed 
using the “irr” package in R (irr package 0.84.1, R version 
3.6.2, R Core Team (2020)) [30] to assess for inter-rater 
reliability, because this was treated as ordinal data; for exam-
ple, “typical appearance” was considered closer to “inde-
terminate appearance” than “negative for pneumonia.” For 
this, “negative for pneumonia” was assigned a value of 0, 
“atypical for pneumonia” a value of 1, “indeterminate for 
pneumonia” a value of 2, and “typical for pneumonia” a 
value of 3. The ICC was calculated using a two-way mixed-
effects model with absolute agreement. Regarding the ICC 
values, less than 0.40 was considered poor, 0.40–0.59 as fair, 
0.60–0.74 as good, and greater than 0.75 as excellent, per 
guidelines by Cicchetti [31].

Results

The distribution of CXR categories (negative for pneumo-
nia, and typical, indeterminate, and atypical appearances of 
COVID-19) for the entire dataset, and for COVID-19 + and 
COVID-19 − CXRs are provided on Table 2.

For COVID + patients, most CXRs (5835/8038, 73%) had 
typical or indeterminate appearances (Table 2). Additionally, 
1757/8038 (22%) of COVID + patients had no lung opacities 
and were “negative for pneumonia.” On the other hand, for 
the COVID-19 − patients, only 359/2140 (17%) of the CXRs 
had a “typical appearance” of COVID-19, and 1029/2140 
(48%) of the COVID − patients were graded as a “negative 
for pneumonia” (Table 2).

For the 25 practice cases, the median percent agreement 
among the radiologists was 86% (IQR: 64%, 91%), and the 
ICC was 0.70 (95% CI: 0.57, 0.83).

RICORD
1000 CXRs
All COVID+

BIMCV*
22,709 CXRs

16,840 COVID+ 
5,869 COVID-

BIMCV 
(removed lateral
radiographs and 

non-DICOM images)
16,214 CXRs

12,363 COVID+ 
3,851 COVID-

BIMCV 
(random extract)
9,178 CXRs

7,042 COVID+ 
2,136 COVID-

Final 
Combined 

Dataset
10,178 CXRs

8,042 COVID+ 
2,136 COVID-

Fig. 1   The distribution of cases obtained from the Valencian Region 
Medical ImageBank (BIMCV) and RSNA International COVID-
19 Open Radiology Database (RICORD). *The BIMCV data was 
obtained on 12/2020, and the current dataset is larger
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Discussion

We describe the curation and annotation process of a multi-
institutional international COVID-19 CXR dataset for the 
purposes of a SIIM-FISABIO-RSNA COVID-19 Kaggle AI 

challenge (https://​www.​kaggle.​com/c/​siim-​covid​19-​detec​tion). 
The labels are adapted from previously published guidelines 
for reporting COVID-19, in which CXRs are categorized 
into mutually exclusive categories of negative for pneumo-
nia, or either typical, indeterminate, or atypical appearances 
of COVID-19 [29]. The rationale for using these guidelines 
is to improve the consistency in radiology reporting and is 
based on prior knowledge of radiographic manifestations 
of COVID-19 [29]. The reporting system should be used in 
context with the prevalence of COVID-19, as other infectious 
and non-infectious thoracic diseases can manifest with typical 
and indeterminate appearances of COVID-19 as outlined in 
this reporting system [28]. That being said, in areas of high 
prevalence, typical and indeterminate appearances are more 
likely to correspond to COVID-19 infection and would warrant 
communication with the referring clinician as to next steps in 
patient management.

In annotating this dataset, our goal was to have no signifi-
cant imbalance in the categories “atypical,” “indeterminate,” 
and “typical” appearances for COVID-19, and “negative 
for pneumonia.” Prior to annotating the dataset, we decided 
not to include negative chest radiographs from other public 
sources that could have balanced the COVID-19 negative 
and positive studies, as this would have resulted in a higher 
percentage of “negative for pneumonia” cases. In the end, 
“atypical” had the lowest representation, followed by “inde-
terminate,” “negative for PNA,” and “typical” (Table 2).

While CXRs are not recommended for routine COVID-
19 screening [32], they are often obtained in the emergency 
department, urgent care, and hospital setting in the work-
up and management of patients with respiratory complaints 
including those with suspected or possible COVID-19 [29]. 
Often, the CXR results are available sooner than PCR, which 
can take up to 2–3 h. As such, CXR has the potential to influ-
ence decision making prior to a PCR result.

Table 1   COVID-19 exam label categories and corresponding CXR findings

CXR COVID-19 classification CXR findings

Typical appearance    • Bilateral, peripheral, multifocal predominant opacities
   • Diffuse bilateral opacities including both central and peripheral (e.g., “ARDS pattern”)
   • Diffuse bilateral opacities with fibrosis/reduced lung volumes (long standing ARDS/COVID-19 

patients)
Indeterminate appearance Absence of typical findings and:

   • Upper lung zone predominant opacities (e.g., mycobacterial infection, sarcoid, radiation therapy)
   • Unilateral opacities, even if multifocal
   • Central opacities with relative peripheral sparing (“batwing appearance”, unlike diffuse ARDS) – e.g. 

cardiogenic edema, PCP pneumonia
Atypical appearance Absence of Typical or Indeterminate findings and:

   • Pneumothorax without features of pneumonia
   • Pleural effusion without features of pneumonia
   • Mass(es) or nodule(s)
   • Lobar Pneumonia (e.g., community acquired pneumonia)
   • Scarring/fibrosis

Negative for pneumonia    • No lung opacities

Fig. 2   For near-confluent opacities, annotators were instructed to 
draw one larger more encompassing bounding box (b), rather than 
multiple smaller boxes (a) to improve standardization and decrease 
variability in the annotations. The radiographs above demonstrate 
bilateral airspace opacities in a COVID-19 positive patient

https://www.kaggle.com/c/siim-covid19-detection
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In one prior multi-reader study, AI had comparable per-
formance to that of radiologists for detecting COVID-19 on 
chest radiographs [13] using PCR as the reference standard.

However, another study indicated that COVID-19 AI 
algorithms trained in this fashion can learn irrelevant fea-
tures or “shortcuts” and may not generalize well when pre-
sented with external datasets [33]. As such, one of the moti-
vations in this challenge was to add specific annotations, in 
which radiologists placed bounding boxes over opacities of 

interest and provided exam-level labels, which may result in 
models that can better generalize. Additionally, the localiza-
tion of pulmonary opacities via bounding boxes may prove 
useful to frontline clinicians, ensure that the algorithm is 
evaluating the appropriate parts of the image, and provide 
a visual guide to the distribution of opacities. That said, it 
would be worthwhile to further evaluate the performance 
of CXR models trained to simply predict COVID-19 status 
versus the annotation method used in this challenge, which 

Fig. 3   Panel a shows an indeterminate appearance of COVID-19. 
There are bilateral central opacities, which are outlined by the blue 
bounding boxes. This pattern is compatible with cardiogenic pulmo-
nary edema. The image also depicts the web-based annotation plat-

form (MD.ai) used by the radiologists, and the exam-level annotation 
options. Panel b shows an indeterminate appearance of COVID-19. 
There are unilateral opacities outlined by the blue bounding box

a b c

d e

Fig. 4   Typical appearances of COVID-19. Sample images (Panels a, 
b, c, d) of four CXRs demonstrating typical appearances of COVID-
19, manifested by peripheral bilateral airspace opacities, which are 
outlined by blue bounding boxes. Panel e shows diffuse bilateral air-

space opacities, both central and peripheral, as outlined by the blue 
bounding boxes. There is also mild reduction in lung volumes. These 
findings are commonly seen in severe COVID-19 in hospitalized 
patients with acute respiratory distress syndrome (ARDS)
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predicts the imaging pattern and location of the opacities on 
CXR. It should be noted that various external data sources 
make up the data cohort, potentially leading to better model 
performance and generalization.

Another rationale for using bounding boxes, in addition 
to localizing the opacities, is that they could also be used to 
assess disease extent, as larger bounding boxes indicate a 
greater disease burden. Polygonal or freehand segmentations 
of the pulmonary opacities would provide greater accuracy 
of the disease extent, as boxes may overestimate such in 
some cases; however, we opted for bounding boxes for effi-
ciency and inter-reader consistency. Secondly, the density 
of the opacities (e.g., mild, moderate, or severe) could have 
been annotated, as studies have shown that both extent and 
density of opacities correlate to disease severity and patient 
outcomes [16, 19, 20]. These proposed improvements in the 
annotations would be worthwhile efforts to pursue in the 
future.

In our data, 22% of CXRs in COVID-19 + patients had 
no lung opacities and were “negative for pneumonia,” 
which is concordant with prior publications that have 
shown that CXRs may be normal in a significant number 
of COVID-19 + patients [9, 34], up to 58% in one study 
[35]. Similarly, typical appearances were most common in 
COVID-19 + patients, and negative for pneumonia were 
most common in COVID-19 − patients. However, it should 
be noted that the association of these CXR categories with 
COVID-19 status is dependent on the construct of the 
dataset, and disease prevalence at the time of imaging.

Regarding COVID-19 and other causes of ARDS, CXR 
may play a role in predicting patient outcomes, quanti-
fying disease extent, and monitoring disease progres-
sion and response to therapy [15]. It should be noted that 

COVID-19-based AI algorithms that can quantify disease 
extent on CXR may be repurposed for other pulmonary 
infectious diseases. While human-based semi-quantitative 
scoring systems for CXR have been developed in COVID-
19 [18–20], AI approaches can be more precise, and are 
significantly faster [21].

Another limitation of this annotation effort is that only 
one radiologist annotated each image, which may result 
in greater variability of the annotations. That being said, 
all annotators were required to undergo an initial training 
process, as well as score a minimum threshold to be able 
to participate in the annotation of the full dataset. For the 
25 practice cases, the inter-rater reliability among the radi-
ologists was considered good, with an ICC of 0.70 and a 
median percent agreement of 86%.

We hope that the annotations from this multi-institutional  
dataset will aid in the creation of AI CXR models that may 
help to facilitate diagnosis or predict outcomes in those 
with suspected COVID-19. This dataset and respective 
annotations are available to researchers for academic and 
noncommercial use.
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