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ABSTRACT

TEXTURE CLASSIFICATION AND RETRIEVAL USING RANDOM NEURAL

NETWORK MODEL

Teke, Alper

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Volkan Atalay

December 2003, 45 pages

Texture is one of the most important characteristics used in computer vision and im-

age processing applications. In this thesis, a new texture classification and retrieval

method is proposed for texture analysis applications. The technique makes use of

the random neural network model and it is supervised. The main aim is to represent

textures with parameters which are the random neural network weights and classify

and retrieve textures using this texture definition. The network has neurons that cor-

respond to each image pixel, and the neurons are connected according to neighboring

relationship between pixels. The method is tested on artificial images produced by

using Brodatz album and texture blocks cut from remotely sensed imagery.

Keywords: Random Neural Network, Texture Classification, Texture Retrieval, Re-

mote Sensing
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ÖZ

RASTGELE SİNİR AĞLARI MODELİ KULLANARAK DOKU SINIFLAMA VE

ERİŞİMİ

Teke, Alper

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Volkan Atalay

Aralık 2003, 45 sayfa

Doku, bilgisayar görüntüsü ve görüntü işleme uygulamalarında kullanılan en önemli

karakteristiklerden biridir. Bu çalışmada, doku çözümlemesi uygulamaları için yeni

bir doku sınıflama ve erişimi yöntemi ileri sürülmektedir. Bu yöntem, rastgele sinir

ağları modelini kullanır. Ana hedef, dokuları, rastgele sinir ağının ağırlıkları olan

parametreler olarak ifade etmek ve bu doku tanımını kullanarak doku sınıflama ve

erişimidir. Ağ, görüntü elemanlarına karşılık gelen nöronlardan oluşur ve bu nöronlar

görüntü elemanlarının komşuluk ilişkilerine göre birbirlerine bağlanır. Bu yöntem

Brodatz albümü kullanılarak üretilen yapay doku görüntülerinde ve uzaktan algılama

görüntülerinde denenmiştir.

Anahtar Kelimeler: Rastgele Sinir Ağları, Doku Sınıflama, Doku Erişimi, Uzaktan

Algılama
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CHAPTER 1

INTRODUCTION

Texture can be defined as the variations of intensities forming certain patterns which

are the result of physical surface properties such as surface roughness or reflectance

differences [1]. In computer vision and image processing applications, “texture” is

one of the most important characteristics for identifying, discriminating and synthe-

sizing objects or regions in an image. Haralick [2] defines texture as one of the three

fundamental pattern elements for interpreting images, whereas the other elements are

the spectral and contextual features. According to Haralick, textural features contain

information about the spatial distribution of the tonal variations creating patterns on

the surface. Analysis of images by using textural properties has a very wide range

of application areas such as medical imaging, remote sensing, industrial quality in-

spection and content based image retrieval. Texture classification and retrieval are

the major topics in the texture analysis. For example, the textural properties of the

images in medicine are characterized and used for efficient diagnosis of several type

of defects in the organ tissues related to serious problems such as cancer [3, 4], while

in remote sensing, the same type of measures are used for the recognition of earth

objects and the classification of terrain types [2, 5, 6]. Another application area

is the automated visual quality inspection in the production line of industrial goods

where the texture on the surface characterizes the quality of the products such as

the ones having painted metallic or lumber surfaces [7, 8]. Besides, textural features

provide valuable tools for segmenting the images by its content with an application

for indexing images in a large image database to query the images by specified types
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such as hair, grass, sky, cloth etc. [9, 10, 11].

In order to analyze images by texture, basically four approaches have been pro-

posed [1]: statistical, geometric, model-based and signal-processing. Statistical ap-

proaches use several statistical measures to define textural properties of an image.

Haralick [2] proposes the co-occurrence matrix by computing the relative frequencies

of gray-level pixels at relative displacements. 14 features are suggested including cor-

relation, entropy, contrast and angular second moment etc. Geometric approaches

have limited practical capability. Since textures confronted in real life are neither

totally deterministic nor stochastic, the tight assumptions on the image are the disad-

vantage of these methods. Jain and Tuceryan [12] use voronoi tessellation features for

texture segmentation. In addition, Petland introduces a fractal-based texture analysis

system using the fractal dimension as the texture description [13]. Signal-processing

approaches use spatial and spatial frequency filters, filter banks and frequency trans-

forms such as fourier transform, wavelet transforms and wavelet models [1, 14, 15].

Lastly, model based methods make an assumption of an image model to describe tex-

ture. Parameters of a model define the perceptual properties of the visual texture.

Especially, random field models such as Gibbs and Markov random fields have been

extensively used to model images [16, 17, 18, 19].

1.1 Motivation

Remote sensing is one of the major areas where texture plays an important role. In

applications of remote sensing such as environmental monitoring of land resources, an-

alyzing and planning of agricultural and/or urban areas, detecting temporal changes

etc. remotely sensed imagery is very widely used for extracting useful information.

Increasing availability of the images, increasing quality of spectral and spatial proper-

ties and sophisticated software systems make remote sensing images more attractive to

spatial analysts. Especially, classification of pixels satisfying a homogeneity property

in terms of a metric are widely used in the remote sensing software systems. Such

functions generally make use of spectral properties of the images and classify the im-

age into several spectral classes with or without supervision of the user. In addition to

these procedures, non-spectral features such as texture may also be used to increase

the efficiency of the segmentation. Especially in urban areas, textural information
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plays a more important role with road network and block building structure.

Haralick has described one of the earliest applications of the use of texture in the

analysis of remote sensing images [2]. Since then, Jensen and Toll [20] continue testing

and improvement of this co-occurrence matrix based texture feature extracting scheme

for remote sensing images. However, the results generally show small improvement

in classification accuracy especially until Shih and Schowengerdt [21] use a high fre-

quency filter measure of texture for classifying geomorphological surfaces in a region.

Meanwhile, different approaches are proposed by Nguyen and Quinqueton [22] using

the measure of irregularity as the texture measure and Blom and Daily [23] using the

variances of square windows of various sizes as measures of texture in analysis of rock

types in radar images.

After the random neural network model (RNN) have introduced by Gelenbe [24,

25], it is used for solving several different problems [26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36]. In their studies, Atalay, Gelenbe and Yalabik [31, 32] propose a texture

generation algorithm using RNN model, and they obtain good results and concluded

that RNN can be used to represent and analyze texture. Furthermore, there are many

areas in remote sensing which textural information extracted from aerial imagery play

an important role and lots of research are done recently on this topic. Therefore, these

facts become supplemental sources of motivation for us to design and verify a texture

classification and retrieval algorithm using random neural network model.

1.2 Purpose

The purpose of this thesis is to develop and examine a texture classication and retrieval

method by random neural network model and verify the performance of the method in

classifying images with multi-textures and retrieving specified texture within remote

sensing images.

The random neural network model proposed by Gelenbe [24, 25] is a connectionist

model, in which signals in the form of impulses which have unit amplitude travel among

the neurons. Positive signals represent excitation, whereas negative signals represent

inhibition to the receiving neuron. RNN used for texture representation consists of

N neurons when n× n window is used and a neuron in the network corresponds to a

pixel in the image. Every neuron is recurrently connected to its 8-neighbors. RNN is
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used as an autoassociative memory.

The texture classification algorithm proposed is a supervised algorithm. Input

image to this algorithm is assumed to be composed of different texture classes. The

aim in this algorithm is to label each pixel with one of these classes. For each texture

class, we construct a recurrent RNN and train each RNN with sample images of the

corresponding texture class. Once RNNs are trained, a pixel of the test image along

with its neighbors is fed to every trained RNN and the label for the current pixel is

determined by the RNN having the minimum error. One of the important parameters

is to determine the number of neurons in the RNN. When the number of neurons

are increased, texture can be represented more accurately, whereas the training time

increased.

Our texture retrieval algorithm very much resembles the classification algorithm.

In this case, we have only one (texture) class so that one recurrent network as autoas-

sociative memory is sufficient. This network is trained with an input texture image

which is to be retrieved. After training, a pixel of the test image along with its neigh-

bors is fed to every trained RNN and if the error of the network is less than a certain

threshold, the texture of this pixel is the same with input texture image, i.e. the pixel

is retrieved.

1.3 Scope

The scope of the thesis is limited to the retrievel of predefined textures such as urban

areas form single-band grayscale remote sensing images. IRS Pan images [37] of 5m

resolution and SPOT images [38] of 10m resolution from several cities of Turkey are

used for the segmentation. In addition, in order to accurately compute and compare

the performance of the method, we use texture mosaics created from popular texture

source; the Brodatz texture album [39] which are used for texture classification exper-

iments. The retrieval performance of the satellite images is computed by comparing

the results of data supplied by Yön Ltd., a professional remote sensing company pro-

ducing land use clutters for cities of Turkey mostly for micro-cell planning purposes.

The data is produced by both visual interpretation and an accompanying field work

providing us enough accuracy for the aimed qualitative and quantitative performance

analysis.

4



1.4 Organization

The organization of the thesis is as follows. In Chapter 2, the random neural network

model is reviewed. The learning in RNN and survey of previous RNN applications are

also presented. In Chapter 3, the texture classification and retrieval algorithms are

explained. The experiments and results are given in Chapter 4. Finally, Chapter 5

concludes the thesis.
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CHAPTER 2

BACKGROUND ON RANDOM NEURAL NETWORK

MODEL

In this chapter, first, background information on random neural network is given.

Then a learning algorithm for RNN is presented. Finally, some of the RNN applica-

tions are explained.

2.1 Random Neural Network

In the random neural network model by Gelenbe [24, 25] signals in the form of impulses

which have unit amplitude travel among the neurons. Positive signals represent ex-

citation, whereas negative signals represent inhibition to the receiving neuron. Thus,

an excitatory impulse is interpreted as a “+1” signal, while an inhibitory impulse is

interpreted as a “-1”. Each neuron i has a state ki(t) which is its potential at time t

represented by a non-negative integer.

When the potential of neuron i is positive, it is referred to as being ’excited’ and

it can transmit impulses (fire). The impulses will be sent out at a Poisson rate ri with

independent, identical exponentially distributed inter-impulse intervals. The impulses

transmitted will arrive at neuron j as excitation signals with probability p+
ij and as

inhibitory signals with probability p−ij . A neuron’s transmitted impulse may also leave

the network with probability di, therefore, di +
∑n

j=1[p
+
ij + p−ij ] = 1. To make these

probabilities easier to work with, let w+
ij = rip

+
ij and w−ij = rip

−
ij ; then firing rate of

neuron i, ri, is
∑n

j=1[w
+
ij + w−ij ]. The w matrices can be viewed as being analogous

6



Figure 2.1: Representation of a neuron in the RNN.

to the synaptic weights in connectionist models. though they specifically represent

rates of excitatory and inhibitory impulse emission. Since the w matrices are formed

through a product of rates and probabilities, they are guaranteed to be non-negative.

Exogenous excitatory and inhibitory signals, meaning those arriving to the neuron

from a source outside of the network, also arrive to neuron i at rates Λi and λi,

respectively. These are analogous to the input received by the input neurons in a

connectionist model; again however, they represent rates.

Figure 2.1 shows the representation of a neuron in the RNN using the model

parameters that have been defined above. In this figure only the transitions to and

from a single neuron i are considered in a recurrent fashion. All the other neurons

can be interpreted as the replicates of neuron i.
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At this point, it is necessary to consider the dynamics of the random neural network

model by analyzing the possible state transitions. Within a time interval of ∆t, several

transitions can occur which change a neuron’s state ki(t):

• The potential ki(t) of a neuron will decrease by one whenever it fires regardless of

the type of the signal emitted (excitation or inhibition). Also, when an exogenous

inhibitory signal arrives from outside the network to neuron i, its potential drops

to ki(t)−1 at time t+∆t. Moreover, neuron i might receive an inhibitory impulse

from another neuron j whose effect will again be to decrement the value of ki

at time t by one.

• Arrival of an exogenous excitatory signal from outside, or an excitatory impulse

from another neuron within the network will result in incrementing the neuron

potential by one, yielding ki(t) + 1

• Needless to say, the value of ith neuron’s state remains unchanged when none

of the events described above occur.

In the case when self-inhibition is allowed, the value of the neuron’s state can drop

by two units in a single time step, however this case will not be considered in the

following expressions.

Also in this model, self-excitation is not of interest because in its presence, the

potential of the neuron may increase without bound which would lead to instability.

There are also some boundary conditions which prevent some of the transitions from

occurring. First of all, a neuron can fire only when it has a positive potential as

explained above. Second, when the neuron has a potential of zero, the arrival of new

inhibitory signals does not decrease its value further. All of these constraints will be

unified in a single expression when the state transitions are expressed in mathematical

form.

Let k(t) = k1(t), . . . , kn(t) be the vector of signal potentials at time t and k =

k1, . . . , kn be a particular value of the vector, and lets define the probability p(k, t) =

Pr[k(t) = k]. The behavior of the probability distribution of the network state can

be derived through the following equations. Since k(t) : t ≥ 0 is a continuous time

Markov chain, it satisfies an infinite system of Chapman-Kolmogorov equations.
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p(k, t + ∆t) =∑
i[p(k+

i , t)r(i)d(i)∆t + p(k−i , t)Λt1[ki(t) > 0]

+p(k+
i , t)λ(i)∆t + p(ki, t)(1− Λ(i)∆t)

×(1− λ(i)∆t)(1− r(i)∆t)1[ki(t) > 0]

+
∑
{p(k+−

ij , t)r(i)p+(i, j)∆t1[kj(t) > 0]

+p(k++
ij , t)r(i)p−(i, j)∆t + p(k+

i , t)r(i)p−(i, j)∆t1[kj(t) = 0]}]

+o(∆t)

where

1[x] =

 1 if x is true

0 otherwise

For steady state analysis, let p(k) denote the stationary probability distribution

which is equal to limt→∞ Pr[ki(t) > 0] if it exists. Thus, in steady state, stationary

probability distribution, p(k), must satisfy the global balance equations:

p(k)
∑

i[Λ(i) + [λ(i) + r(i)]1[ki > 0]] =∑
i[p(k+

i )r(i)d(i) + p(k−i )Λ(i)1[ki > 0]

+p(k+
i )λ(i) +

∑
j{p(k+−

ij )r(i)p+(i, j)1[kj > 0]

+p(k++
ij )r(i)p−(i, j) + p(k+

i )r(i)p−(i, j)1[kj = 0]}]

The stationary probability distribution associated with the model is the value

which will be taken to be the output of the network, and is given by:

qi = lim
t→∞

Pr[ki(t) > 0], i = 1, . . . , n (2.1)

which reduces the form

qi = λ+(i)/[r(i) + λ−(i)] (2.2)

where the λ+(i), λ−(i) for i = 1, . . . , n satisfy the system of nonlinear simultaneous

equations

λ+(i) =
∑

j

qjw
+
ji + Λ(i), λ−(i) =

∑
j

qjw
−
ji + λ(i) (2.3)

To put Equation 2.2 into words, the steady state probability that the neuron i is

excited is simply equal to the ratio of the sum of all the rates of arriving excitatory

signals to the sum of the rates of arriving inhibitory signals together with the firing

rate of that particular neuron.
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2.2 Learning in the Recurrent Random Neural Network

The algorithm chooses the set of network parameters W in order to learn the training

set of K input-output pairs (ι,Y) where the set of successive inputs is denoted ι =

{ι1, . . . , ιK}, and ιk = (Λk, λk) are pairs of excitation and inhibition signal flow rates

entering each neuron from outside of the network:

Λk = [Λk(1), . . . ,Λk(n)], λk = [λk(1), . . . , λk(n)]

The successive desired outputs are the vectors Y = {y1, . . . , yK}, where each vector

yk = (y1k, . . . , ynk), whose elements yik ∈ [0, 1] correspond to the desired output

values for each neuron. The network adjusts its parameters to produce the set of

desired output vectors in a manner that minimizes a cost function Ek:

Ek =
1
2

n∑
i=1

ai(qi − yik)2, ai ≥ 0

In this network, all neurons are generalized to be output neurons, therefore, if it

is desired that a neuron j is to be removed from the network output, and therefore

the error function, it suffices to set aj = 0

Recall that the steady state output rate of all neurons in the network is given by

Equations 2.2 and 2.3.

Both of the n by n weight matrices W+
k = {w+

k (i, j)} and W−
k = {w−k (i, j)} must

be adjusted after each input is presented, by computing for each input ιk = (Λk, λk), a

new value W+
k and W−

k of the weight matrices. Since the weight matrices represent a

rate times a probability, only solutions for which all values in the matrices are positive

are valid.

Let w(u, v) denote any weight term, which would be either w(u, v) ≡ w−(u, v), or

w(u, v) ≡ w+(u, v). The weights will be updated using gradient descent method:

wnew(u, v) = wold(u, v)− η∂E/∂w(u, v)

The partial derivative of the cost function can be computed and substituted to obtain

the update difference equation:

wk(u, v) = wk−1(u, v)− η

n∑
i=1

ai(qik − yik)[∂qi/∂w(u, v)]k (2.4)

where η > 0 is the learning parameter which is constant over each iteration of training,

and
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1. qik is calculated using the input ιk and w(u, v) = wk−1(u, v), in Equations 2.2

and 2.3.

2. [∂qi/∂w(u, v)]k is evaluated at the values qi = qik, w+(u, v) = w+
k−1(u, v) and

w−(u, v) = w−k−1(u, v).

To compute [∂qi/∂w(u, v)]k the following equation is derived from expressions 2.2 and

2.3:

∂qi/∂w(u, v) =
∑

j ∂qj/∂w(u, v)[w+(j, i)− w−(j, i)]/(r(i) + λ−(i))

−1[u = i]qi/(r(i) + λ−(i))

+1[w(u, v) ≡ w+(u, i)]qu/(r(i)/ + λ−(i))

−1[w(u, v) ≡ w−(u, i)]quqi/(r(i) + λ−(i))

Let q = (q1, . . . , qn), and define the n× n matrix

W = {[w+(i, j)− w−(i, j)qj ]/(r(j) + λ−(j))} i, j = 1, . . . , n

The vector equations can now be written as:

∂q/∂w+(u, v) = ∂w+(u, v)W + γ+(u, v)qu

∂q/∂w−(u, v) = ∂w−(u, v)W + γ−(u, v)qu

where the elements of the n-vectors γ+(u, v) = [γ+
1 (u, v), . . . , γ+

n (u, v)] and γ−(u, v) =

[γ−1 (u, v), . . . , γ−n (u, v)] are

γ+
i (u, v) =


−1/(r(i) + λ−(i)) if u = i, v 6= i

+1/(r(i) + λ−(i)) if u 6= i, v = i

0 for all other values of (u, v)

γ−i (u, v) =



−(1 + qi)/(r(i) + λ−(i)) if u = i, v = i

−1/(r(i) + λ−(i)) if u = i, v 6= i

−qi/(r(i) + λ−(i)) if u 6= i, v = i

0 for all other values of (u, v)

Notice that

∂q/∂w+(u, v) = γ+(u, v)qu[I−W]−1

∂q/∂w−(u, v) = γ−(u, v)qu[I−W]−1 (2.5)
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where I denotes the n by n identity matrix. Hence the main computational effort in

this algorithm is to obtain [I −W]−1. This is of time complexity O(n3), or O(mn2)

if an m-step relaxation method is used.

From the above, the complete learning algorithm for the network can be given.

First initialize the matrices W+
0 and W−

0 in some appropriate manner. This initiation

can be made at random if no better method can be determined. Choose a value of η,

and then for each successive value of k starting with k = 1 proceed as follows:

1. Set the input values to ιk = (Λk, λk).

2. Solve the system of nonlinear equations given in 2.2 and 2.3 with these values,

perhaps by using an iterative method such as Gauss-Seidel.

3. Solve the system of linear equations (2.5) with the results of (2).

4. Using Equation 2.4 and the results of (2) and (3), update the matrices W+
k and

W−
k . Since the “best” matrices (in terms of gradient descent of the quadratic

cost function) which satisfy the nonnegativity constraint are sought in any step

k of the algorithm, if the iteration yields a negative value of a term, there are

two alternatives:

(a) Set the term to zero, and stop the iteration for this term in this step k; in

the next step, k + 1 iterate on this term with the same rule starting from

its current zero value;

(b) Go back to the previous value of the term and iterate with a smaller value

of η.

This general scheme can be specialized to feed-forward networks by noting that the

matrix [I−W] will be triangular, yielding a computational complexity of O(n2), rather

than O(n3), for each gradient iteration. Furthermore, in a feed-forward network, the

equations given in 2.2 and 2.3 are simplified in that qi is only dependent upon qj for

j < i. This reduces the computational effort required to solve 2.2 and 2.3.

2.3 Survey of previous RNN Applications

The RNN model has been proven to be successful in a variety of applications when

used either in a feed-forward or a fully recurrent architecture. In most problems, RNN
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yields strong generalization capabilities, even when the training data set is relatively

small compared to the actual testing data. The model also achieves fast learning due

to its computational simplicity for weight updating process. In the following, the past

work related to RNN will be described briefly.

2.3.1 Texture Generation

Generation of artificial textures is a useful function in image synthesis systems. Au-

thors in [31, 32] describe the use of the RNN model to generate various textures having

different characteristics. Since texture generation is closely related to our proposed

work, it is presented in Section 2.4 in details.

2.3.2 Associative memory

In [26], the network’s ability of acting as autoassociative memory is examined and a

technique for reconstructing distorted patterns is developed, which is based on proper-

ties of the network. The performance of the resulting approach has been investigated

through experiments, which yielded promising results. Also, in [27], the author shows

how distributed associative memory can be used to compute membership functions

for decision-making under uncertainty.

2.3.3 Optimization

The traveling salesman problem (TSP) is commonly considered as a benchmark case

for heuristic methods among hard combinatorial optimization problems. It is shown

in [28] that the dynamical RNN yields solutions to the TSP which are close to the

optimal in a majority of instances tested. Yet another application is the vertex cov-

ering problem, which is designated as NP-complete. In [29, 30] authors compare the

performances of the RNN, the conventional Greedy Algorithm, the Hopfield network,

and simulated annealing, when applied to the same problem. Results reveal that the

RNN heuristic is superior to the others in terms of overall optimization.

2.3.4 Magnetic resonance imaging (MRI)

Brain MR images contain massive information requiring lengthy and complex inter-

pretation (as in the identification of significant portions of the image), quantitative
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evaluation (as in the determination of the size of certain significant regions), and so-

phisticated interpretation (as in determining any image portions which indicate signs

of lesions or of disease). In [33], RNNs are used to extract precise morphometric in-

formation from MRI scans of the human brain. A method for classification of gray

matter from MR images is proposed, and the classification performance is shown to

be very similar to those that are known to be obtained by a human expert carrying

out manual volumetric analysis of brain MR images.

2.3.5 Function approximation

In [34], approximation of arbitrary continuous functions on [0, 1]S using the ”Gelenbe”

random neural network (GNN) is studied. It is shown that the clamped GNN and the

bipolar GNN have the universal approximation property, using a constructive method

which exhibits networks constructed from a polynomial approximation of the function

to be approximated. There are no restrictions on the structure of the networks except

for limiting them to being feed-forward. In [35], the design of GNN approximators with

a bounded number of layers is discussed. It is shown that the feed-forward CGNN

and BGNN with s hidden layers (total of s + 2 layers) can uniformly approximate

continuous functions of s variables.

2.3.6 Mine detection

In [36], authors introduce an RNN approach to mine detection which provides a robust

non-parametric method, based on training the network using data from a previously

calibrated portion of the minefield, or from a similar minefield. This approach is

shown to be very effective for detecting mines and rejecting false alarms. Experimental

evidence indicates that the neural network trained for mine detection and false alarm

rejection on a small calibration site, can be effective on geographical locations which

are distinct and far removed from the locations where training of the network takes

place. It is also shown that the RNN trained for a specific EMI instrument can

be effective when it produces decisions based on data from a different EMI sensor

instrument.
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Figure 2.2: RNN for Texture Generation.

2.4 Texture Generation using RNN

The RNN model to generate textures associates a neuron for every pixel in the image.

The topology of the network is chosen according to 8-connectedness among the pixels

so that each neuron has connection with only its 8 neighbors (see Figure 2.2).

For simplicity, a pixel will be represented by a single index x rather than (i, j).

x0 indicates the right immediate pixel (at position (i + 1, j)) of the pixel x. Other

neighbors will be numbered according to the counter-clockwise order. For generation

purposes

r(x) = r

assumed and all connection in the network are symmetric:

w(x, xd) = w(xd, x) = w

Here the generic term w is used to indicate both w+ and w−. But, they will be

differentiated by sign of the weight value. From the symmetry assumption

w0 = w4, w1 = w5, w2 = w6, w3 = w7
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And in this case

r(x) = r =
∑
|wd|

We also assumed that external positive signals arrive with the same constant rate to

all neurons and there is no external negative signal coming to neurons.

Λ(x) = c, λ(x) = 0

Under all these assumptions, the Equation 2.2 can be rewritten as

q(x) =
∑

d w+
d q(xd) + c∑

d w−d q(xd) + r
(2.6)

Figure 2.3: Generated Textures.

Then, texture generation algorithm for gray level is as follows. First choose c

according to the desirable average gray level and determine all weights. Then

1. Generate at random value of 0 or 1 for each pixel x and assign it to variable

q0(x) for each x.

2. Starting with i = 0 up to i = N iterate on Equation 2.6 as:

qi+1(x) =
∑

d w+
d qi(xd) + c∑

d w−d qi(xd) + r

3. Compute the average gray level G of the picture:

G =
∑

x qN (x)
Sizeofpicture
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4. Assign the gray level of each pixel as follows:

f(x) = 1 if qN (x) > G, f(x) = 0 if qN (x) ≤ G

The directional weights wd are the most important parameters for the textures

which will be generated. Two textures for different weights can be seen in Figure 2.3.

First texture is generated with w0 = w4 = w2 = w6 = w1 = w5 = 1, all other weights

are equal to 0, and second one with w0 = w4 = −1, w2 = w6 = w3 = w7 = 1, and all

others equal to 0.

Numerical iterations of the field equations of the model, starting with a randomly

generated gray-level image, are shown to produce textures having different desirable

features such as granularity, inclination, and randomness. The experimental evalu-

ation shows that the RNN provides good results, at a computational cost less than

that of other approaches such as Markov random fields (MRF).
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CHAPTER 3

TEXTURE CLASSIFICATION AND RETRIEVAL

3.1 Introduction

Texture classification and retrieval plays an important role in many tasks such as

remote sensing, medical imaging, robot vision and query by content in large image

databases. Various methods for texture feature extraction have been proposed during

the last decades, however texture analysis problem still remains difficult and subject

to intensive research.

In order to analyze images based on texture, several approaches have been pro-

posed: statistical, geometric, signal processing and model-based. In statistical ap-

proaches several statistical measures to define textural properties of an image are

used. In [40], analysis by cooccurence matrix is described. A cooccurrence matrix

describes two dimensional (joint) probability density functions and it is obtained by

computing the frequencies of gray-levels of pixels at particular relative displacements.

Haralick suggests 14 features, including correlation, entropy, contrast and angular

second moment etc. of the cooccurrence matrix. Geometric approaches are the least

used features because of the limited practical capability. Since textures confronted in

real life are neither totally deterministic nor stochastic, the tight assumptions on the

image are the disadvantage of these methods. In [41], Voronoi tessellation features

are used for texture segmentation. Signal processing approaches use spatial and spa-

tial frequency filters and filter banks frequency transforms such as Fourier transform,

wavelet transforms and wavelet models [42, 14]. Finally, model based methods make
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an assumption of an image model to describe texture. Parameters of a model define

the perceptual properties of the visual texture. Especially, random field models such

as Gibbs and Markov random fields have been extensively used to model images [43].

In this study, a novel texture analysis method for texture classification and retrieval

is described. This method uses the random neural network (RNN) model which is

proposed by Gelenbe [24].

3.2 RNN for Texture Classification and Retrieval

We describe a new texture classification and retrieval method based on the Random

Neural Network model. In this method, for each texture class, a recurrent random

neural network is constructed. This network consists of n × n neurons, and each

neuron is connected recurrently to its immediate 8-neighbors. Figure 2.2 shows such a

configuration for a 3×3 network. In this method, a neuron in the network corresponds

to a pixel in the image. The network is used as an autoassociative memory, i.e. both

input and output of the neurons are the same, which are the gray level values of

the image for the corresponding pixels [26]. An autoassociative memory is a memory

system which associates a particular information to itself and which is able to recognize

and correctly recall this information from partial or corrupted version used as input.

Each recurrent RNN is then trained with image samples from a single texture class

using the learning algorithm presented in Section 2.2, and therefore, the weights of

the network are found. The weights indeed correspond to the textural parameters for

further analysis.

During training, the choice of initial weights is important, since it influences the

convergence of the error minimization procedure. There exist three different kinds of

initialization procedure:

• Random Initialization: The connection weight matrices W+
0 and W−

0 are initial-

ized by small positive random variables, which are uniformly distributed between

0 and Vmax where Vmax is a positive number close to 0.

• Hebbian Rule: Hebbian “reinforcement law” [44] is used for initialization. Heb-
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bian rule for synaptic weight initialization is:

w+(0)

d =
1
N

N∑
x=1

[q(x) NOR q(xd)], w−
(0)

d =
1
N

N∑
x=1

[q(x) XOR q(xd)]

where XOR and NOR are exclusive-or operator and its complement respec-

tively.

• Quadratic Optimization: Third initialization procedure is based on the refor-

mulation of state equations of network as a linear system and try to solve it as

an quadratic optimization problem [45]. Equation 2.6 can be written in a linear

form as follows.

[q̂(x)− q̂(x0)]w+
0 + . . . + [q̂(x)− q̂(x7)]w+

7 +

q̂(x)[1 + q̂(x0)]w−0 + . . . + q̂(x)[1 + q̂(x7)]w−7 = ĉ

Here ĉ represents desired average gray level value and values of w+
d and w−d

for d = 0, . . . , 7 must be determined (16 unknowns). In a texture, there will be

more than 16 pixels (also more than 16 neurons in the network) for which similar

equalities are valid. This is an overdetermined system of linear equalities. For a

fragment of image whose first pixel is i and the last one is j, we have

Aw = c

where

w = (w+
0 , . . . , w+

7 , w−0 , . . . , w−7 )

A =


q̂(i)− q̂(i0) . . . q̂(i)− q̂(i7) q̂(i)(1 + q̂(i0)) . . . q̂(i)(1 + q̂(i7))

...
...

...
...

...
...

q̂(j)− q̂(j0) . . . q̂(j)− q̂(j7) q̂(j)(1 + q̂(j0)) . . . q̂(j)(1 + q̂(j7))


c = (ĉ, . . . , ĉ)T

In this case, we’ll try to minimize the norm of the error Aw − c by a choice of

weights w. Then finding the values for directional weights is transformed to an

optimization problem with constraints.

minimize ˜̃C = (Aw − c)T (Aw − c) with wd ≥ 0
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This is a quadratic programming problem with inequality constraints. After

simple transformations we get;

˜̃C = wT AT Aw − 2wT AT + cT c

Since cT c does not have any effect on the minimization, the problem reduces to

minimize ˜̃C = 2
(

1
2
wT AT Aw −wT AT c

)
with wd ≥ 0

Let H = AT , b = AT c, then the cost becomes

C̃ = 2
(

1
2
wT Hw −wT bT

)
After changing variables:

w+
d = b+

d − z+
d , w+

d ≥ 0⇒ (b+
d − z+

d ) ≥ 0⇒ z+
d ≤ b+

d

and the same for w−d ,

minimize C =
1
2
zT Hb− zT Hb + zT b with z+

d ≤ b+
d , z−d ≤ b−d

Using the Langrangian, the solution is given by Kuhn-Tucker optimality condi-

tions: in our case minimum is reached for

∂C

∂zd
+ yT = 0

yd ≥ 0, zd ≤ bd, yd(zd − bd) = 0 for zd = z+
d or z−d , bd = b+

d or b−d

This gives

Hz + yT = (H − I)b

which implies either yd = 0 or zd = bd. The system will have many solutions.

Among them the one that will minimize the cost will be chosen. After that,

initial weights are found, and used for training.

We use Hebbian Rule for initialization procedure, because it is the best for error

minimization and convergence according to the experiments proven to be [46].
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3.3 Texture Classification Algorithm

Our texture classification algorithm is a supervised algorithm. Input image to this

algorithm is assumed to be composed of different texture classes. The aim in this

algorithm is to label each pixel with one of these classes. The supervised algorithm is

made up of two parts: training and labeling. First, for each texture class, we construct

a recurrent RNN and train each RNN with sample images of the corresponding texture

class. Once RNNs are trained, a pixel of the test image along with its neighbors is fed

to every trained RNN and the label for the current pixel is determined by the RNN

having the minimum error.

In the training part, first, a recurrent network, consisting of N = n×n neurons, is

constructed for each class. Then, using each n× n window in the training image, the

network is trained using the learning algorithm given in Section 2.2. When training

is finished, textural parameters, which are the weights of the network in our case, are

found for each class.

Table 3.1: Algorithm Classify-Texture

Classify-Texture()
1 for each class c in the input image
2 do construct a recurrent RNNc

3 initialize weights of RNNc (using Hebbian Rule in 3.2)
4 for each n× n window train datai(c)
5 do train network(train datai(c)) (using algorithm in Section 3.2)
6
7
8 for each class c in the input image
9 do for j ← 0 to N

10 do distancec(j)←MAX FLOAT
11 for each n× n window input imagei containing data in image data
12 do output imagei ← rnn outputc(input imagei)
13 dist← Euclidean Distance(input imagei, output imagei)
14 distancec(j)← min(dist, distancec(j)) where pixel j ∈ input imagei

15
16
17 for each pixel j in the input image
18 do classification(j)← argc min(distancec(j))
19
20

The classification phase is divided into two main parts. In the first part, the
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distances of each pixel to the every class are found. In order to do this, each n × n

window in the input image is given to the network as input. As an autoassociative

memory, the output of the network shows how close the input window to the texture

that is used for training that network. Therefore, the Euclidean Distance between

input and output of the network is used as a distance measure. A distance matrix is

created with the same size of input image, and the calculated value for the window

is assigned the pixels, which are in the input window. If a distance has already been

assigned to a pixel, which may be the case when the pixel belongs to another window,

the minimum of the distances is assigned. After all the distances are found, class

assignment can be done. Every pixel in the image is assigned to closest class, that

is the class with the minimum distance. Table 3.1 gives the algorithm for texture

classification.

3.4 Texture Retrieval Algorithm

Our texture retrieval algorithm very much resembles the classification algorithm. But

in calculating distances, this time non-overlapping windows are used, because exper-

iments are performed using big remote sensing images and execution time is a main

issue. In this case also, we have only one (texture) class so that one recurrent network

Table 3.2: Algorithm Retrieve-Texture

Retrieve-Texture()
1 construct recurrent RNN for texture to be retrieved
2 initialize weights of the network (using Hebbian Rule in 3.2)
3 for each n× n window train datai(c) containing data in train data(c)
4 do train network(train datai(c)) (using algorithm in Section 3.2)
5 for each non-overlapped n× n window input imagei in image data
6 do output imagei ← rnn output(input imagei)
7 dist← Euclidean Distance(input imagei, output imagei)
8 distance(j)← dist where pixel j ∈ input imagei

9
10 for each pixel i in the input image
11 do if distance(i) ≤ threshold
12 then retrieved(i)← 1;
13 else retrieved = 0;
14

as autoassociative memory is sufficient. This network is trained with an input texture
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image which is to be retrieved.

Again, we can divide the algorithm into two parts; training and retrieval. The

training part is exactly the same as in the classification. In the retrieval phase, first,

the distance of each pixel to the texture to be retrieved is found. To do this, each

non-overlapped n×n window in the input image is given as input into the constructed

network. By using the learned weights and the input image window, we obtain an

output image window. Euclidean Distance between input and output image windows

is then calculated. A distance matrix is created with the same size of input image,

and the calculated value for the window is assigned the pixels in the input window.

After all the distances are found, retrieval can be done. Each pixel having a distance

minimum than a certain threshold is labeled as belonging the same class with the

texture to be retrived. The algorithm for texture retrieval can be seen in Table 3.2.
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CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Implementation and Test Platform

The proposed method is implemented in MATLAB [47]. Random Neural Network

Simulator (RNNSIM) for MATLAB [48, 49] is also used as a toolbox for some RNN

routines.

4.2 Test Images

There are two types of experiments performed. First type of experiments is the clas-

sification of the images by texture using algorithm presented in Section 3.3. In the

experiments, test images are taken from popular texture source; the Brodatz texture

album [39]. Test images are texture mosaics created by cutting and pasting homoge-

nous texture blocks from these sources. All textures are grayscale images with 8-bit

representation per sample, i.e. 256 gray levels. Images are histogram equalized before

processed, therefore they can not be discriminated for local gray mean level or local

variance. Performances measuring the feature extraction quality of the method for all

test images are computed by comparing the classified images with ground truth classi-

fications pixel by pixel. Furthermore, classification error, which is “the most common

measure of performance for a recognition system” [50] is used as the performance

criterion.

In Table 4.1, the images used in texture classification listed with properties such as

size, the texture source and the existing number of texture classes in the images. The

25



Table 4.1: Test Images used in Texture Classification

Name (Fig. No.) Type Width × Height Number of classes
A.1 Brodatz 512× 256 2
A.2 Brodatz 512× 256 2
A.3 Brodatz 512× 256 2
A.4 Brodatz 512× 256 2
A.5 Brodatz 256× 256 4
A.6 Brodatz 256× 256 4
A.7 Brodatz 256× 256 5
A.8 Brodatz 256× 256 5

first 4 images, A.1 through A.4, include two different texture blocks of size 256× 256.

Next images are multi-texture images including more than two texture classes. A.5

and A.6 are created by four 128×128 texture blocks and A.7 and A.8 by five 128×128

texture blocks.

Second type of experiments is retrieval of texture using algorithm presented in

Section 3.4, but using satellite imagery as the input images. The method can be used

effectively for segmentation of urban/non-urban areas, forest/deforested, water/land

etc. in large images. The performance of the method is evaluated by both qualitative

analysis of the achieved segmentation, which is a visual evaluation by expert user and

quantitative analysis by using ground truth segmentation of the satellite images.

Experiments for retrieval is performed using remote sensing images (one IRS [37]

Panchromatic and one SPOT [38] Panchromatic image) from the cities of Turkey

supplied by Yön Ltd. with the ground truth classifications available. Our main aim

is to make a qualitative assessment of the performance visually but also the correct

classifications of the data enable us to make an accurate quantitative comparison in

addition to the visual verification.

Table 4.2: Test Images used in Texture Retrieval

Name Type Width × Height Spatial Res. (m) Num. of Bands
A.9 IRS 1C Pan 1600× 2400 5 1
A.10 SPOT 3 Pan 4000× 2600 10 1

Table 4.2 shows several properties of the images used in the retrieval experiments.

The common property of these images with the ones in Table 4.1 is that they both are

single band, eight bit grayscale images. The spatial resolution shows the width and
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height of the area on the earth which a single pixel in the image represents. Therefore,

this property gives the measure of the minimum size of the objects on earth which

can be discriminated on the images.

All of the test images can be seen in Appendix A.

4.3 Experimental Results

4.3.1 Texture Classification Experiments

In the first type experiments, we use texture mosaics including two or more texture

blocks in one image created from the textures in Brodatz texture album [39]. The

images are in grayscale with samples quantized by 8-bits corresponding to 256 gray

levels.

Since algorithm is supervised for each texture (class) in the input image, a training

image is prepared and used in learning of the RNN for corresponding texture. In

experiments carried out in this section, the test images are classified more than once

with different window sizes, i.e. different number of neurons in RNNs.

Table 4.3: Texture Classification Errors for Different Window Sizes n

Name (Fig. No.) n = 5 n = 7 n = 9 Minimum
A.1 4.5 1.6 1.2 1.2
A.2 17.3 14.7 10.2 10.2
A.3 18.9 16.9 17.6 16.9
A.4 2.6 1.8 1.3 1.3
A.5 27.4 27.3 18.4 18.4
A.6 13.0 9.6 7.3 7.3
A.7 23.9 19.2 15.3 15.3
A.8 25.7 11.1 10.2 10.2

Average 16.7 12.8 10.2 10.1

In Table 4.3 the experimental results are given for the texture classification using

different window sizes n. Also, the window size vs. classification error for test images

graph can be seen in Figure 4.1. Also, in Figure 4.3 and Figure 4.4, classification

results of test images A.4 and A.6 for 9× 9 window size are shown.

The experimental results show that, when window size is increased, classification

error is decreased. Because, with bigger window size, the texture is represented with

RNN more correctly. However, this time, learning stage is took more time. The
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average success of the algorithm is almost %90. This result is comparable with that

of the previous algorithms in the literature.

4.3.2 Texture Retrieval Experiments

The experiments for texture retrieval are carried out for the satellite image whose

properties are given in Table 4.2. In the experiment, texture to be retrieved is urban

area in the image. Hence, a training image in urban-area is used in learning. The

texture retrieval is performed for different window sizes.

Table 4.4: Texture Classification Errors for Different Window Sizes n

Name (Fig. No.) n = 5 n = 7 n = 9 Minimum
A.9 24.4 23.3 21.8 21.8
A.10 23.6 23.0 21.2 21.2

Average 24.0 23.1 21.5 21.5

In Table 4.4 the experimental results are given for the texture retrieval using

different window sizes n. Also, the window size vs. retrieval error for test images

graph can be seen in Figure 4.2. Also, in Figure 4.4, part of the test image A.9, its

classification using 9×9 window and ground truth classification supplied by Yön Ltd.

are shown. The texture part, which is inside the red square in the first image of the

figure, is used for training of the network.

As in texture classification, the experimental results show that, when window

size is increased, classification error is decreased, as RNN can represent texture more

correctly with bigger window size. The average success of the algorithm is almost

%80. This result is acceptable when using remote sensing imagery.
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Figure 4.1: Texture Classification Error.

Figure 4.2: Texture Retrieval Error.
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Figure 4.3: Test image A.4 and classification result for 9× 9 window.
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Figure 4.4: Test image A.6 and classification result for 9× 9 window.
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Figure 4.5: Part of the test image A.9, classification result for 9×9 window and correct
classification.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Texture classification and retrieval algorithms using random neural network model are

presented. The methods are tested and verified by developing two different applica-

tions. The first application includes a supervised texture classification implementa-

tion. Test images used in the experiments are created from texture source; Brodatz

Album which is used in many similar projects of texture analysis and the classification

error is used as the performance measure of the experiments. The following conclu-

sions are drawn about the texture classification capability of our method from results

of the first application experiments.

• Main parameter for texture classification which directly affects the performance

of the classification is the number of neurons N (window size n). N should

be large enough for constructing the image block which displays homogenously

the properties of the texture to be described. On the other hand, larger N

yields greater computational time which is another issue that is to be taken into

account.

• Since the algorithm is supervised, the selected train image (texture) is very

important. It must be good enough to represent texture so that the algorithm

could classify input image correctly

• Results obtain through experiments show that classification error is comparable

to that of previous works on classification which make use of other methods.
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In the second application, texture retrieval scheme is designed specifically for large

remote sensing images where computational time is a crucial issue. RNN is trained

using non-overlapping image windows and a training image is chosen representing the

properties of a texture class to be searched for homogenously. After training, blocks

in the input image is fed into network and if the error is below certain threshold these

block is retrieved. This is like a two-class classification where in the experiments an

urban/nonurban classification is performed. Conclusions which are drawn from the

results achieved in the experiments for this application are as follows.

• Since non-overlapping windows covering the whole image is processed, the com-

putation time required for texture signature computation is dramatically reduced

in this scheme.

• Retrieval of urban area class in remote sensing imagery achieved a significant

performance of about 80 percent. The parameter which directly affects the

retrieval is the threshold value.

• The algorithm described can be used as a top level procedure for a hierarchi-

cal classification system. This way, regions in the image which should not be

considered for time consuming lower procedural are eliminated. Regions where

detailed analysis needed (which is the small part of the whole image),such as

pixel-by-pixel classification, another alternative method can be used.

The following subjects are suggested for further study, which can make use of the

findings of this thesis:

• Proposed algorithms can be implemented in an imperative language. By doing

this, execution time will be decreased. So experiments can be done using large

window sizes and more complex textures.

• After classification or retrieval, some post-processing techniques can be applied

such as clumping, i.e. combining contiguous group of pixels in one class. This

will decrease the error in classification and retrieval results.

• Using texture retrieval in remote sensing images, not only urban/nonurban dis-

crimination but also water/land, forest/openland and object/background dis-

crimination can be performed.
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• In this study, neurons are connected to each other according to 8-connectedness

of pixels in the image. The connection using some lattice structure or layered

architecture may improve the results for some texture types.
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APPENDIX A

TEST IMAGES

Figure A.1: 512×256 test image of two-texture classes (D1, D68) from Brodatz album.

Figure A.2: 512×256 test image of two-texture classes (D1, D4) from Brodatz album.
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Figure A.3: 512 × 256 test image of two-texture classes (D15, D68) from Brodatz
album.

Figure A.4: 512 × 256 test image of two-texture classes (D6, D112) from Brodatz
album.
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Figure A.5: 256 × 256 test image of 4 texture classes (D10, D68, D1, D49) from
Brodatz album.

Figure A.6: 256 × 256 test image of 4 texture classes (D16, D58, D93, D25) from
Brodatz album.
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Figure A.7: 256 × 256 test image of 5 texture classes (D105, D91, D38, D6, D112)
from Brodatz album.

Figure A.8: 256× 256 test image of 5 texture classes (D3, D59, D61, D77, D93) from
Brodatz album.
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Figure A.9: Single band, grayscale Image (IRS 1C Pan) of size (1600x2400) with
spatial resolution 5m
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Figure A.10: Single band, grayscale Image (SPOT Pan) of size (4000x2600) with
spatial resolution 10m
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