

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

https://doi.org/10.1007/s10287-009-0119-2

http://hdl.handle.net/10251/100790

Springer-Verlag

A Metaheuristic for the Min-Max Windy Rural

Postman Problem with K vehicles

Enrique Benavent1, Ángel Corberán1∗and José M. Sanchis2

1 D.E.I.O., Universitat de València (Spain)
2 D.M.A., Universidad Politécnica de Valencia (Spain)

Abstract

In this paper we deal with the Min-Max version of the Windy Rural Postman
Problem with K vehicles. For this problem, in which the objective is to minimize the
length of the longest tour in order to find a set of balanced tours for the vehicles, we
present here a metaheuristic that produces very good feasible solutions in reasonable
computing times. It is based on the combination of a multi-start procedure with an
Iterated Local Search. Extensive computational results on a large set of instances with
up to 50 vertices, 184 edges and 5 vehicles are presented. The results are very good, the
average gaps with respect to a known lower bound are less than 0.40% for instances with
2 or 3 vehicles and up to 1.60% when 4 or 5 vehicles are considered.

Keywords: Rural Postman Problem, Windy Rural Postman Problem, metaheuristics,
multivehicles.

1 Introduction

Given an undirected and connected graph, the problem of finding a minimum cost closed
walk traversing each edge at least once is the well known Chinese Postman Problem (CPP).
The CPP is solvable in polynomial time. However, as in some real world applications, if
the cost of traversing an edge (i, j) from i to j is different to the one of traversing it from
j to i, we have an NP-hard problem known as the Windy Postman Problem (WPP). The
WPP was proposed by Minieka [21], and generalizes the Chinese Postman problems defined
on undirected, directed and mixed graphs.

The Windy Rural Postman Problem (WRPP) is a generalization of the WPP in which
not all the edges in the graph have to be traversed but only those in a given subset of required
edges. Consider an undirected graph G = (V,E) with two costs cij , cji associated with each
edge e = (i, j), which will be called a windy graph in what follows, and let ER ⊆ E be the
set of required edges. Then, the WRPP is defined as the problem of finding a minimum
cost closed walk (tour) traversing every edge in ER at least once. If, in addition, a subset
of vertices VR ⊆ V has to be visited by the solution, we have the Windy General Routing
Problem (WGRP).

∗corresponding author: angel.corberan@uv.es

1

Several papers in the literature have been devoted to the WRPP and the WGRP. Benavent
et al. ([8] and [9]) propose an integer linear programming formulation and different heuristics
and lower bounds for the WRPP. The WRPP and WGRP polyhedra have been studied in
Corberán, Plana and Sanchis [14] and, based on those polyhedral descriptions, a branch-and-
cut capable of solving large size WRPP and WGRP instances is described in Corberán, Plana
and Sanchis [15].

In some real world applications the goal is not to design a single tour for one vehicle but
a set of several tours that jointly service the required edges. In this paper we deal with such
an extension of the WRPP, the Min-Max K-vehicles Windy Rural Postman Problem (MM
K-WRPP), that is defined as follows. Given a windy graph G = (V,E), a distinguished
vertex, 1∈V , representing the depot, a subset of required edges ER ⊆ E, and a fixed number
K of vehicles, the MM K-WRPP consists of finding a set of K tours for the vehicles in such a
way that each tour starts and ends at the depot and each required edge is serviced by exactly
one vehicle. The objective is to minimize the length of the longest tour in order to find a
set of balanced routes for the vehicles. Some real-life applications of routing problems with
min-max objectives are school bus routing ([16]), the delivery of newspapers to customers
([4]) and waste collection ([19]).

The MM K-WRPP has been study in Benavent et al. [10], where an integer linear formu-
lation is proposed and its associated polyhedron is defined and partially described. Moreover,
a branch-and-cut producing promising computational results is presented. However, the pro-
posed branch-and-cut was not able to solve even medium size instances because good feasible
solutions were hard to find during the branching process. The knowledge of a good feasible
solution would reduce the size of the enumeration tree of the branch-and-cut algorithm. The
aim of this work is the design and implementation of an algorithm capable of providing good
MM K-WRPP feasible solutions and tight upper bounds.

Other related papers on Arc Routing Problems concerning a fleet of vehicles of unlimited
capacity are those by Assad, Pearn and Golden [5] and Pearn [24]. These two papers deal
with the the K-CPP, in which we look for K routes starting and ending at the depot such
that all the edges of the graph are serviced by exactly one vehicle and the total distance is
minimized. In the first paper it is shown that the undirected and directed cases can be solvable
in polynomial time, while in the second Pearn proved that the K-CPP is NP -hard when it is
defined on a mixed or windy graph. The Min-Max K-CPP was introduced in Frederickson,
Hecht and Kim [18]. Authors proved that the Min-Max K-CPP is NP -hard and proposed
a (2− 1

K)-approximation algorithm. More recently, Ahr and Reinelt present several lower
bounds and heuristics for this problem ([2]) and a Tabu Search procedure that produces very
good solutions ([3]). In Ahr [1] some more results on the Min-Max K-CPP, including an
exact solution method based on a branch-and-cut approach, are presented. Finally, let us
mention that Lacomme et al. [19] also tackled a min-max objective on the Capacitated Arc
Routing Problem.

This paper is organized as follows. In Section 2 the definition and the formulation of
the problem proposed in Benavent et al. [10] is presented. Also the notation used and
the main known results for the MM K-WRPP are there summarized. Section 3 describes
the metaheuristic we propose for the MM K-WRPP resolution. Finally, the computational
results obtained on a large set of instances are shown in Section 4.

2

2 Min-Max K-vehicles Windy RPP

As said in the Introduction, the MM K-WRPP consists of finding a tour (closed walk starting
and ending at the depot) for each vehicle such that each required edge is traversed at least
once by at least one vehicle. Such a set of tours is called a K-WRPP solution. The objective is
to find a K-WRPP solution such that the cost of the maximum cost vehicle tour is minimum.
The maximum cost vehicle tour will also be called the longest tour throughout the paper.

In what follows, and for the sake of simplicity, we assume that each vertex in V is incident
with at least one required edge. This is not a restriction as there exists a simple way to
transform an instance not satisfying this assumption into an equivalent one which does (see,
e.g., Christofides et al. [13] or Eiselt et al. [17]). Given S, S′ ⊆ V , (S : S′) denotes the
edge set with one end-point in S and the other in S′, while for a node subset, S ⊆ V ,
δ(S) = (S : V \S) and E(S) = {(i, j) ∈ E : i, j ∈ S}. δR(S), ER(S) and (S : S′)R denote the
previous sets restricted to the required edges.

To formulate the problem, Benavent et al. ([10]) define 2K variables xk
ij and xk

ji, associated
with each edge e = (i, j) ∈ E, representing the number of times edge e is traversed by vehicle
k from i to j or from j to i, respectively. If edge e is required, K more variables yk

ij which take
the value 1 if edge e is serviced by the vehicle k and 0 otherwise, are also defined. Finally,
an artificial variable z is used to minimize the maximum tour cost.

For any subset F ⊆ E, xk(F) denotes
∑

(i,j)∈F

(xk
ij + xk

ji). The proposed MM K-WRPP

formulation is:

Minimize z

s.t.:
∑

(i,j)∈E

(
cijx

k
ij + cjix

k
ji

) ≤ z k=1, . . . , K (1)

K∑

k=1

yk
e = 1, ∀e∈ER (2)

xk
ij + xk

ji ≥ yk
e ∀e = (i, j)∈ER , k=1, . . . ,K (3)

∑

(i,j)∈δ(i)

(xk
ij − xk

ji) = 0, ∀i∈V , k=1, . . . , K (4)

xk(δ(S)) ≥ 2yk
e , ∀S⊂V \{1} with |ER(S)| ≥ 1, ∀e∈ER(S), k=1, . . . ,K (5)

xk
ij , x

k
ji ≥ 0 and integer ∀(i, j) ∈ E , k=1, . . . , K (6)

yk
e ∈ {0, 1} ∀e∈ER , k=1, . . . , K (7)

Inequalities (1) imply that the maximum cost vehicle route is minimized. Equations (2)
assure that each required edge is serviced by exactly one vehicle and inequalities (3), called
traversing inequalities, force a vehicle to traverse the edges it services. Symmetry equations
(4) force each vehicle tour to be symmetric, while connectivity inequalities (5) ensure that
each tour connects the edges it services and the depot.

3

A solution for the MM K-WRPP on G is a vector (x1, y1, x2, y2, . . . , xK , yK) with (2|E|+
|ER|)K components satisfying (2) to (7). Given a vehicle k, the pair (xk, yk) and the vector
xk are called route and tour, respectively. As noted in [10], this formulation allows solutions in
which a vehicle tour xk is formed by several disconnected subtours, one of them connecting all
the edges it services to the depot and the others traversing edges not serviced by this vehicle.
Note also that solutions where a given vehicle neither traverses nor services any edges are
also allowed (xk = yk = 0).

Given a K-WRPP solution (x1, y1, x2, y2, . . . , xK , yK), it is easy to see that the sum of
all the vehicle tours xk produces a WRPP tour x =

∑
xk. Then, as it is pointed out in [10],

from every known family of valid inequalities for the WRPP (see [14]), valid inequalities for
the MM K-WRPP are obtained. These are called aggregate inequalities. For instance, the
aggregate R-odd cut inequalities are:

K∑

k=1

xk(δ(S)) ≥ |δR(S)|+ 1, ∀S ⊂ V such that |δR(S)| is odd (8)

and are based on the fact that any MM K-WRPP solution must cross any given edge cutset
an even number of times. On the other hand, when a single vehicle k is considered, all the
edges e ∈ ER are not necessarily ‘required’ for vehicle k because it could either not service nor
traverse e. The actual required edges for a given vehicle k are those determined by the vector
yk. This is the idea behind the disaggregate inequalities. For example, the disaggregate
version of the R-odd inequalities involving variables yk is as follows. Let δ(S) be an edge
cutset on G and let F ⊂ δR(S) be a subset of required edges with |F | odd. For each vehicle
k, the following inequality

xk(δ(S)) ≥ 2yk(F)− |F |+ 1, (9)

is called parity or cocircuit inequality ([6]) and is valid for the MM K-WRPP.

Above inequalities can be generalized from a single vehicle to several ones. If all the edges
in F ⊂ δR(S) are serviced by a subset of vehicles then these vehicles have to jointly traverse
the cutset at least |F | + 1 times. Again, let F ⊂ δR(S) be a subset of required edges with
|F | odd. For each subset {k1, k2, . . . , kP } with P < K vehicles, the inequality

xk1(δ(S)) + · · ·+ xkP (δ(S)) ≥ 2yk1(F) + · · ·+ 2ykP (F)− |F |+ 1, (10)

is valid for the MM K-WRPP and is called P -aggregate parity inequality.

The above ideas about obtaining disaggregate and P -aggregate inequalities from valid
inequalities for the (1 vehicle) WRPP have been also applied to K-C, Honeycomb, Path-
Bridge and other inequalities ([11]). Moreover, in [10] and [11] it is shown that, under mild
conditions, trivial, traversing (3), connectivity (5) and all the above commented inequalities
for the MM K-WRPP also define facets of its associated polyhedron.

On the other hand, let us suppose that we know an upper bound ub for the MM M -
WRPP. Let e1, e2, . . . , ep be a set of required edges and let z(WGRP) be the optimal cost
of the Windy General Routing Problem defined on the graph induced by these edges plus
the depot. If z(WGRP) > ub holds, then, in any optimal MM M -WRPP solution, a single
vehicle cannot service all the edges e1, e2, . . . , ep, and the inequalities

yk
e1

+ yk
e2

+ · · ·+ yk
ep
≤ p− 1, ∀ vehicle k (11)

4

have to be satisfied by any optimal solution. Moreover, let S be the set of vertices incident
with edges e1, e2, . . . , ep. Then, since at least two vehicles have to enter into S, any optimal
solution satisfies the following inequality:

M∑

k=1

xk(δ(S)) ≥ 4. (12)

Inequalities (12) can be generalized to
∑M

k=1 xk(δ(S)) ≥ 2dz(WGRP)/ube. Their useful-
ness strongly depends on the quality of the upper bound ub.

3 A metaheuristic for the MM K-WRPP

In this section we describe a metaheuristic for the MM K-WRPP resolution whose main
components are a Multi-Start (MS) algorithm, a Variable Neighborhood Descent (VND) and
an Iterated Local Search (ILS) procedure. It is based on the Multi-Start Iterated Local Search
algorithm proposed by Belenguer et al. [7] for the Split Delivery Capacitated Arc Routing
Problem and can be summarized as follows.

Overall the algorithm works as follows, the multi-start algorithm described in Benavent et
al. [9] produces, at each iteration, a single route traversing all the required edges (a feasible
solution for the WRPP on graph G), which is then split into K small routes, one for each
vehicle, to obtain a MM K-WRPP solution. Then, two different VNDs are applied to this
solution. The first VND uses moves that try to improve each route independently (WRPP
moves), while the second one uses inter route moves. The improved solution is used as the
starting solution of the ILS procedure. At any iteration of the ILS, the MM K-WRPP solution
is perturbed in two steps: the K routes are merged to form a giant tour, which is randomly
perturbed and then split again into K routes. The resulting MM K-WRPP solution is then
improved using similar procedures to those described above. The best solution found during
the ILS is used as the starting solution for the next iteration. The best solution found in the
whole MS procedure is the output of the algorithm. All these procedures are described in
detail in the following sections.

3.1 Initial WRPP solutions

In the first step of the algorithm, a number nsol of WRPP solutions are generated. The
first five initial solutions are obtained with the constructive heuristics WRPP1, WRPP2 and
WRPP3 presented in [8] and with its variants WRPP4 and WRPP5 proposed in [9]. The
remaining nsol -5 WRPP solutions are generated with the multi-start algorithm presented
in [9]. All these WRPP heuristics are briefly described below.

Algorithm WRPP1

This algorithm consists of three phases. First, some edges are added to the graph in-
duced by the required edges, GR, to obtain a new connected graph G′

R. The edges added
are those corresponding to a minimum cost tree spanning the connected components of GR.
Second, a minimum cost matching problem on the odd degree nodes of graph G′

R is solved.

5

Edges in the matching solution are also added to G′
R to obtain an even and connected graph

G′′
R. Third, Win’s exact algorithm ([26]) for the WPP defined on Eulerian graphs is then

applied on G′′
R to obtain a feasible solution to the WRPP on G.

Algorithm WRPP2

Basically, this algorithm executes the same phases of WRPP1 but in a different or-
der. It begins by assigning to each edge in GR the direction associated with its minimal
traversing cost to obtain a directed graph, Gd

R. From Gd
R a new balanced mixed graph, G1,

is obtained by solving a minimum cost flow problem with demands d(i), for each node i,
computed as the difference between the arcs in Gd

R entering at and leaving from i. Then, a
minimum cost matching on the odd degree nodes of G1 is solved. Edges in the matching so-
lution are added to G1 to obtain an even mixed graph G2. Again, edges in G2 are oriented in
the direction of their minimal traversing cost, and a new minimum cost flow problem is solved
to obtain a symmetric digraph G3. Finally, as graph G3 may be disconnected, a last phase
consisting of the resolution of a shortest spanning tree connecting its components is executed.

Algorithm WRPP3

This is a simple heuristic that, first, computes a shortest spanning tree connecting all
the components of graph GR. The edges in the SST solution are added to GR to obtain
an undirected and connected graph G′. Second, the edges in G′ are oriented according to
the minimum traversal cost, and demands d(i) for each node i are computed as in heuristic
WRPP2. A Transportation Problem is then solved and copies of the corresponding arcs are
added to G′ to obtain a connected and symmetric directed graph, which is a feasible WRPP
solution.

Algorithm WRPP4

This constructive heuristic is a modification of algorithm WRPP1. As in the Modified
Mixed Algorithm for the MCPP ([25]), the idea of algorithm WRPP4 is to try to anticipate
during the first steps what will happen in the last phases of the algorithm.

First, the algorithm connects the components of GR by adding the edges of a shortest
spanning tree computed as in the first phase of algorithm WRPP1. Again, G′

R = (V, E′
R)

represents the resulting graph. Now, before solving a minimum cost matching problem to
make G′

R even, the edge costs are changed in such a way the solution to the matching problem
includes, at least partially, the solution to the flow problem of the last phase.

In order to do this, first, the average cost Ca of the edges in E′
R is computed as Ca =

1
|E′R|

∑
ij∈E′R

cij+cji

2 . Now, the sets E1 = {(i, j) ∈ E′
R : |cji − cij | > s ∗ Ca} and E2 = E \ E1

are defined, where s is a positive parameter that has been fixed to 0.2. Then, a directed
graph Gd

R is constructed with set of nodes V and an arc (i, j) for each edge (i, j) ∈ E1 (it is
assumed that cij ≤ cji). Note that the set of arcs in Gd

R is associated with the edges in G′
R

whose traversal is quite more expensive in one direction than in its opposite one. The guess
is that, in the final solution, these edges will be traversed in the direction of their minimal
cost.

A minimum cost flow problem, with demands d(i) computed in graph Gd
R, is now solved

6

on an auxiliary digraph Gaux = (V, Aaux). Aaux contains two arcs (i, j) and (j, i), with
costs cij and cji, respectively, and infinite capacity, for each edge of the original graph G.
Furthermore, for the edges (i, j) ∈ E1, another arc (j, i) with cost cji−cij

2 and capacity 2 is
added to Aaux. Those edges (i, j) ∈ E1 that are traversed by at least one unit flow in one of
its two possible directions are added to a list L. This list also contains the edges (i, j) ∈ E2

such that the flow through them is at least of two units in one of its two possible directions.
Edges belonging to this list are the ones that seem to be good candidates to appear in the
solution and whose costs will be modified in the next phase of the algorithm.

The heuristic now proceeds to make graph G′
R even. To do this, a minimum cost

matching problem is solved in which edges in L have zero cost and the other edges have
original costs. Edges in the resulting graph are finally oriented by solving a minimum cost
flow problem with the original costs for all the edges.

Algorithm WRPP5

This other constructive heuristic is a modification of algorithm WRPP2. Again, the
idea is to guess which arcs will be added to the solution in the last phase of the procedure
in order to introduce them in the solution during the previous steps.

Algorithm WRPP5 starts computing a SST connecting the components of graph GR.
However, the edges in the shortest path in G associated with each edge in the spanning tree
are not added here to GR, but listed in L and their average cost is computed. For each edge
(i, j) ∈ E (it is assumed that cij ≤ cji), new costs c′ij and c′ji are now defined as follows:

• c′ij = cij −αCa and c′ji = cji−αCa, if i and j are in different connected components of
GR and cij ≥ αCa.

• c′ij = 0 and c′ji = cji − cij , if i and j are in different connected components of GR and
cij < αCa.

• c′ij = cij and c′ji = cji, otherwise,

where α is a parameter that has been fixed to 0.8.

Algorithm WRPP2 is then executed with these new costs. Only the computation of the
shortest spanning tree during the last phase of the algorithm, if needed (when G3 is not a
connected graph), is performed with the original costs cij .

WRPP Multi-Start algorithm

In [9] several multi-start (MS) heuristics designed from the constructive algorithms
described above are presented. Basically, multi-start algorithms consist of the execution of a
number of global iterations until some stopping criterium is satisfied. Each global iteration
generates a solution with a constructive algorithm and then improves it with a local search
method.

Since each one of the constructive heuristics described above produces only one solution,
Benavent et al. introduce several random elements to obtain a set of different feasible solutions
with each algorithm. To get solutions as different from each other as possible, the random
elements are introduced in the first phases of the algorithms. As the best results were reported
([9]) with the MS heuristic based on algorithm WRPP2, this is the one we have used here as
WRPP multi-start algorithm.

7

The randomization strategy consists of modifying the cost of the shortest paths. This
cost modification should be large enough to get different solutions, but not as large as to
produce bad solutions. In this case, the cost ĉij of the shortest path between every pair of
nodes i, j is substituted by a new cost randomly chosen in the interval [0.6ĉij , 1.4ĉij], i.e.
with a maximum deviation of 40% from the original cost. With this strategy, other nsol - 5
WRPP solutions are generated.

Variable Neighborhood Descent for the WRPP

Several improvement methods were applied in [9] to each WRPP solution. We have
used here these improvement methods to build a variable neighborhood descent procedure
that is applied to WRPP solutions and to each route of the MM K-WRPP solutions.

Variable Neighborhood Descent (VND) [22] is an enhanced local improvement strategy
based on a sequence (N1, . . . , NT) of T neighborhoods with growing cardinals. Starting from
k = 1, each VND iteration searches the neighborhood Nk. If one improving move is detected,
it is executed and k is reset to 1, otherwise k is incremented. The method stops when k = T
and the exploration of NT brings no improvement. In our algorithm, T = 3 neighborhoods,
associated with the 3 procedures described below, are used.

A WRPP solution is encoded as a sequence of the required edges, each one traversed
in a given direction, and it is assumed that the route follows the shortest path from the
final vertex of any required edge in the sequence to the initial vertex of the next one. The
first improvement procedure, called 2-interchange, is a steepest-descent algorithm in which a
simple move consisting of interchanging the positions of two required edges in the sequence
they are serviced is performed at each iteration. The second procedure is also a steepest-
descent algorithm in which each move is an Or-interchange (Or [23]). In this move, a section
consisting of at most L consecutive required edges in the sequence is inserted elsewhere
between two consecutive required edges, the first one of which must be among the M edges
closest to the first edge of the section. This insertion is performed in such a way that the
direction of traversal remains unchanged. As in [9], the chosen values for L and M are 4 and
11, respectively. The third improvement procedure finds the optimal direction in which each
required edge has to be traversed for a given order of traversal of the required edges. It is
called the reversal procedure and has been proposed in Lacomme, Prins & Ramdane-Chérif
(2002) and in Ramdane-Chérif (2002). See [9] for details.

In our VND the first searched neighborhood is defined by the Or-interchange move. The
second one corresponds to the reversal procedure, and the last one is defined by the 2-
interchange move.

3.2 Split procedure

Remember that a WRPP solution is encoded as a sequence of the required edges, each one
traversed in a given direction. This sequence can be split into K routes applying the procedure
described in [19] to obtain a MM K-WRPP solution.

Given a sequence of the required edges (S1, S2, . . . , Sm), where m = |ER|, the algorithm
starts by building an auxiliary directed graph H with m + 1 vertices indexed from 0 to m.
An arc (i − 1, j) in H corresponds to a route starting at the depot, traversing the required

8

edges in the subsequence (Si, . . . , Sj) in this order and coming back to the depot. The arc
weight is given by the route cost. Now, the path between vertices 0 and m, which minimizes
the cost of the largest arc weight and contains at most K arcs, is computed. The algorithm
proposed by Lacomme et al. ([19]) finds this path in O(min(m,K) ·m2).

3.3 Improvement procedures for the MM K-WRPP

We describe here two improvement procedures that are used on MM K-WRPP solutions.
The first one is a simplification method that is executed on an expanded representation of
the whole MM K-WRPP solution; the second one is a VND procedure based on several moves
among the routes.

Simplification procedure

The simplification procedure starts by substituting each shortest path between any two
consecutive required edges in the routes of the MM K-WRPP solution by the corresponding
sequence of edges. Then, each route is built as a closed walk, i.e., a sequence of required
and non required edges traversed in a given direction that starts and ends at the depot. We
call expanded representation this way of representing a route in contrast with the compact
representation consisting of a sequence of required edges only. Note that such a closed walk
can be represented by a directed graph that contains as many copies of a given arc as the
number of times it is traversed by the closed walk. It is well known that this graph is
connected and symmetric, and, viceversa, given a connected and symmetric graph there is a
closed walk traversing each arc exactly once (also called Eulerian walk).

Let us assume, for instance, that a route traverses a given edge (i, j) twice from i to j
and three times from j to i. Then, we can remove two arcs (i, j) and two arcs (j, i) from
the corresponding graph, and the resulting graph is still connected and symmetric, so there
is a route with cost no greater than the original one covering the same set of edges. The
simplification procedure uses this idea to remove any extra traversal of the edges and works
as follows.

For each route and each edge e = (i, j), we compute the number of times the route
traverses the edge e in each direction, say xij and xji, and let

δ =
{

min{xij , xji} if xij 6= xji,
xij − 1 if xij = xji.

If δ > 0, we remove δ arcs from i to j and from j to i. After these simplifications the
resulting graph is connected and symmetric, and an Eulerian walk is built thus obtaining an
improved route.

Once all the routes are simplified in this way, the longest route is determined and the
service of required edges is assigned to the other routes, as long they are traversed by them.
Then, the service of the remaining required edges is assigned to the longest route and it is
then improved by computing the shortest paths between any two consecutive required edges
whose service has been assigned to it. These operations may result in a decrease of its cost,
thus making it possible that this route is no longer the longest one. In this case, the procedure
is applied again to the new longest route and repeated until no improvement is achieved.

9

VND using moves among the routes

We now describe three moves that involve two routes in any MM K-WRPP solution
represented in compact form. The first two moves consist of moving one or two consecutive
required edges from the longest route to another route, while in the third move one required
edge of the longest route and another one of another route are interchanged. These moves
are applied in the procedures change1to0, change2to0 and change1to1, respectively. All of
them use the following strategy: all the possible moves are searched but once an improving
move is found, it is executed and the procedure stops.

A Variable Neighborhood Descent has been implemented using the above procedures in
the following order: change2to0, change1to0 and change1to1.

3.4 The Iterated Local Search Algorithm

ILS (see Lourenço et al. [20]) is a metaheuristic that uses an initial solution, a local search
and a perturbation procedure. Its structure is as follows. Given an initial solution, it is
improved by local search. Then, the main loop of the algorithm performs niterILS iterations.
At each iteration, a copy of the current best solution, called BestSol, is randomly modified
using a perturbation procedure. The resulting solution is also improved by local search and
the best solution is updated.

The perturbation procedure works as follows. From the K routes in the MM K-WRPP
solution, a global tour for the WRPP is built just joining the sequences of required edges in the
compact representation of the routes. Then, the WRPP tour is perturbed by interchanging
two randomly selected required edges. The new WRPP tour is split into K routes to get a
different MM K-WRPP solution by using the splitting procedure described above.

The local search we use in the ILS has the following components. First, the VND pro-
cedure for the WRPP (called VND1 for short) is applied to every route of the solution.
Then, the simplification procedure described in Section 3.3 is executed and is followed by the
application of the VND that uses moves among the routes (denoted by VND2).

3.5 The metaheuristic

The metaheuristic we propose for the MM K-WRPP uses all the procedures described above
combined in the following way.

At each iteration of the multi-start algorithm, a WRPP solution is generated using the
algorithms described in Section 3.1. VND1 is applied to each WRPP solution and the re-
sulting tour is split to get a MM K-WRPP solution. VND1 is applied to every route and
then the improvement procedures simplification and VND2 are executed. The resulting MM
K-WRPP solution, if it is different to the ones already generated, is used as the starting
solution of the ILS procedure.

Algorithm 1 summarizes our multi-start ILS metaheuristic, in which
UpdateBestSolution(A,B) means that solution B is updated with solution A if the
latter is better in terms of the objective function.

10

Algorithm 1 – Pseudo-code of the multi-start ILS metaheuristic
for iterMS := 1 to nsol do

generate(WRPPsol)
VND1(WRPPsol)
split(WRPPsol,K-WRPPsol)
for i := 1 to K do

VND1(K-WRPPsol(i))
end for
Simplification(K-WRPPsol)
VND2(K-WRPPsol)
BestSol := K-WRPPsol
UpdateBestSolution(BestSol,GlobalBestSol)
for iterILS := 1 to niterILS do

SolILS := perturb(BestSol)
for i := 1 to K do

VND1(SolILS(i))
end for
Simplification(SolILS)
VND2(SolILS)
UpdateBestSolution(SolILS,BestSol)

end for
UpdateBestSolution(BestSol,GlobalBestSol)

end for
Return(GlobalBestSol)

4 Computational results

We present here the computational results obtained with our metaheuristic on a large set of
instances in the Literature. The algorithm has been coded in C/C++ and all the tests were
run on an Intel Core 2 CPU 2.40GHz and 2GB RAM.

The tested MM K-WRPP instances are those used in [10], that were obtained from the
WRPP instances presented in Benavent et al. [8], considering vertex 1 as the depot and
different numbers of vehicles, from 2 to 5. The 144 WRPP instances were built by randomly
generating 6 instances from each of the 24 undirected RPP instances proposed in [12]. They
have up to 50 vertices, 184 edges, 78 required edges and 8 R-sets (vertex sets of the connected
components induced by the required edges). The whole set of MM K-WRPP instances can
be found in http://www.uv.es/corberan, as well as the optimal value (if known) or a lower
bound obtained with the algorithm presented in [10] for each instance and each number of
vehicles.

Table 1 shows the characteristics of the instances. First column shows the name of the set
of 6 WRPP instances corresponding to the original RPP instance generated by Christofides
et al. [12]. Columns 3, 4, 5 and 6 present the number of vertices, edges, required edges and
R-sets for all the instances in each set, respectively.

The metaheuristic has been tested with four different settings for parameters nsol and
niterILS. The first setting, denoted by H1, corresponds to the values (200, 200) for parameters

11

of # of
instances |V | |E| |ER| R-sets

C01 6 11 13 7 4
C02 6 14 33 12 4
C03 6 28 57 26 4
C04 6 17 35 22 3
C05 6 20 35 16 5
C06 6 24 46 20 7
C07 6 23 47 24 3
C08 6 17 40 24 2
C09 6 14 26 14 3
C10 6 12 20 10 4
C11 6 9 14 7 3
C12 6 7 18 5 3
C13 6 7 10 4 3
C14 6 28 79 31 6
C15 6 26 37 19 8
C16 6 31 94 34 7
C17 6 19 44 17 5
C18 6 23 37 16 8
C19 6 33 54 29 7
C20 6 50 98 63 7
C21 6 49 110 67 6
C22 6 50 184 74 6
C23 6 50 158 78 6
C24 6 41 125 55 7

Average 25.1 59.0 28.1 5.0

Table 1: Characteristics of the 144 MM K-WRPP instances

12

(H1) (H2) (H3) (H4)
opt. gap best sec. gap best sec. gap best sec. gap best sec.

C01 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C02 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C03 6 0.0 6 5.8 0.0 6 1.9 0.0 6 1.9 0.1 5 2.2
C04 6 0.1 6 4.0 0.1 6 1.2 0.2 4 0.8 0.2 4 1.0
C05 6 0.0 6 0.3 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C06 6 0.0 6 2.3 0.0 6 0.8 0.2 5 0.6 0.2 5 0.8
C07 6 0.0 6 5.1 0.0 6 1.7 0.0 6 1.2 0.0 6 1.4
C08 6 0.0 6 6.6 0.2 5 2.2 0.2 5 1.5 0.4 5 1.7
C09 6 0.0 6 0.4 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C10 6 0.0 6 0.1 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C11 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C12 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C13 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C14 6 0.0 6 18.3 0.0 6 5.4 0.1 4 4.0 0.2 4 4.5
C15 6 0.0 6 1.6 0.0 6 0.6 0.0 6 0.4 0.0 6 0.5
C16 6 0.1 5 17.8 0.0 5 5.5 0.1 4 4.5 0.1 4 5.4
C17 6 0.0 5 1.0 0.0 6 0.3 0.0 6 0.3 0.0 6 0.4
C18 6 0.0 6 1.2 0.0 6 0.4 0.0 6 0.3 0.0 6 0.4
C19 6 0.0 6 11.2 0.0 6 3.4 0.0 6 2.7 0.0 6 3.0
C20 6 0.3 5 175.0 0.4 4 49.1 0.5 3 61.5 0.5 3 90.2
C21 6 0.9 5 214.8 2.1 0 60.7 1.1 3 77.0 1.0 4 122.2
C22 6 0.3 3 351.6 0.7 0 95.9 0.7 0 135.0 0.5 3 231.4
C23 6 0.5 5 404.0 1.2 1 110.5 0.9 3 153.8 0.7 3 293.9
C24 6 0.2 6 128.0 0.6 1 35.6 0.3 3 40.7 0.3 3 52.2

Av.1 0.1 5.7 56.2 0.2 4.9 15.6 0.2 4.9 20.3 0.2 5.0 33.8
Av.2 0.4 4.8 254.7 1.0 1.2 70.4 0.7 2.4 93.6 0.6 3.2 158.0

Table 2: Computational results on the MM 2-WRPP instances

nsol and niterILS, respectively. Settings H2 and H3 are associated with values (100, 100)
and (100, 200), respectively. Finally, in H4, the values for parameters nsol and niterILS are
set to 2 · |ER|, but never less than 20 nor more than 200.

Tables 2 to 5 show the results obtained with the different settings of the algorithm param-
eters on the instances with 2, 3, 4 and 5 vehicles, respectively. Only one run was performed
for each instance. Each table presents, for each setting H1 to H4, three columns showing
the average percentage gap among the cost of the solution provided by the algorithm and
the optimum value (if known) or a lower bound, the number of times the heuristic gives the
best solution among the four settings and the average computing time in seconds. Each row
corresponds to a group of 6 instances associated with the same RPP original instance and
share the same underlying graph. Moreover, the last but one row shows the average results
on all the instances, while the last one presents the average results for the largest ones, i.e.
those instances with more than 50 required edges, which corresponds to groups C20 to C24.
Finally, column opt. gives the number of optimal solutions known for each group of instances.

In our opinion, the obtained results are very good. Table 2 shows that, in all the instances

13

(H1) (H2) (H3) (H4)
opt. gap best sec. gap best sec. gap best sec. gap best sec.

C01 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C02 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.1
C03 6 0.0 6 4.0 0.0 6 1.3 0.0 6 1.2 0.0 6 1.5
C04 6 0.0 6 2.7 0.2 4 0.8 0.2 4 0.8 0.2 3 0.9
C05 6 0.0 6 0.3 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C06 6 0.0 6 1.9 0.0 6 0.6 0.4 5 0.6 0.4 5 0.8
C07 6 0.0 6 3.1 0.2 5 1.0 0.1 5 1.1 0.1 5 1.2
C08 6 0.0 6 5.0 0.1 5 1.6 0.0 6 1.4 0.0 6 1.6
C09 6 0.0 6 0.3 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C10 6 0.0 6 0.1 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C11 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C12 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C13 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C14 6 0.0 6 10.5 0.1 5 3.1 0.5 4 3.1 0.5 4 3.3
C15 6 0.0 6 1.2 0.0 6 0.4 0.0 6 0.4 0.0 6 0.4
C16 6 0.1 6 10.2 0.3 4 3.4 0.3 4 3.7 0.3 4 4.0
C17 6 0.0 6 0.8 0.0 6 0.2 0.0 6 0.3 0.0 6 0.4
C18 6 0.0 6 1.1 0.0 6 0.3 0.0 6 0.3 0.0 6 0.4
C19 6 0.0 6 6.3 0.2 5 1.9 0.2 5 2.1 0.2 5 2.3
C20 4 0.8 5 79.4 0.9 3 24.7 0.9 4 37.1 0.6 6 50.1
C21 2 1.6 4 97.5 2.0 2 29.6 2.0 2 44.1 1.5 4 67.2
C22 0 1.5 4 147.1 1.8 2 44.7 1.8 1 72.2 1.7 2 117.9
C23 1 2.1 5 162.5 2.6 2 49.7 2.3 3 76.0 2.5 2 142.3
C24 3 0.7 5 59.9 1.0 3 18.1 1.2 2 24.8 1.0 2 30.1

Av.1 0.3 5.7 24.7 0.4 4.9 7.6 0.4 4.9 11.2 0.4 5.0 17.7
Av.2 1.3 4.6 109.3 1.7 2.4 33.3 1.6 2.4 50.9 1.5 3.2 81.5

Table 3: Computational results on the MM 3-WRPP instances

14

(H1) (H2) (H3) (H4)
opt. gap best sec. gap best sec. gap best sec. gap best sec.

C01 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C02 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.1
C03 6 0.0 6 3.5 0.0 6 1.1 0.1 5 1.3 0.1 5 1.5
C04 6 0.0 6 2.6 0.0 6 0.8 0.0 6 0.8 0.0 6 0.9
C05 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C06 6 0.0 6 1.7 0.0 6 0.5 0.0 6 0.6 0.0 6 0.8
C07 6 0.0 6 2.7 0.0 5 0.9 0.0 5 1.1 0.0 5 1.2
C08 5 0.0 6 4.7 0.0 6 1.5 0.1 5 1.5 0.1 5 1.6
C09 6 0.0 6 0.3 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C10 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C11 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C12 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C13 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C14 5 0.1 6 9.0 0.2 5 2.7 0.3 5 2.9 0.3 5 3.1
C15 6 0.0 6 1.2 0.0 6 0.4 0.0 6 0.4 0.0 6 0.4
C16 3 2.1 6 8.8 2.4 3 2.9 2.8 2 3.6 2.4 4 3.8
C17 6 0.0 6 0.8 0.0 6 0.2 0.0 6 0.3 0.0 6 0.4
C18 6 0.0 6 1.0 0.0 6 0.3 0.0 6 0.3 0.0 6 0.4
C19 6 0.0 6 5.2 0.3 5 1.6 0.3 4 1.9 0.3 4 2.1
C20 1 1.3 6 56.7 2.3 2 19.0 1.8 2 31.2 1.8 2 41.3
C21 0 2.4 6 68.7 3.8 0 22.9 2.9 3 37.4 2.9 3 54.6
C22 0 3.9 6 95.4 4.8 0 32.1 4.5 1 56.7 4.3 2 88.6
C23 0 4.9 4 105.9 5.5 1 36.1 5.1 2 61.4 4.8 4 108.8
C24 0 3.7 5 43.8 4.6 1 14.0 4.4 1 21.1 4.2 2 24.8

Av.1 0.8 5.9 17.2 1.0 4.7 5.7 0.9 4.7 9.3 0.9 5.0 13.9
Av.2 3.3 5.4 74.1 4.2 0.8 24.8 3.8 1.8 41.6 3.6 2.6 63.6

Table 4: Computational results on the MM 4-WRPP instances

with 2 vehicles and for all the settings, the gaps are very small. However, note that in what
refers to the most difficult instances (those in groups C20 to C24) there are significative
differences among the behavior of the different settings. For instance, the average gap reached
by H2 is 1%, more than twice the one obtained with H1, although H2 is considerably faster.
Similar comments can be done for the results shown in Tables 3 to 5 for instances with 3,
4 and 5 vehicles. In all the cases, the best results have been obtained with H1, followed by
H4, while H3 and H2 produce slightly worse results although they are less time consuming.
However, the differences among the respective average gaps are now not so evident. Maybe
this is because the gaps in the instances with 3, 4 and 5 vehicles are larger. This could be due
to the fact that, since the optimal value is not known for all these instances, a lower bound
has been used to compute the gap.

The average results for all the instances are also depicted in Figures 1 to 3. Figure 1 shows
the average gaps for the four settings of the algorithm on all the instances grouped according
to the number of vehicles. We can see that the gaps for the instances with 2 or 3 vehicles
are very small, less than 0.40% on average. Instances with 4 and 5 vehicles present average

15

(H1) (H2) (H3) (H4)
opt. gap best sec. gap best sec. gap best sec. gap best sec.

C01 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C02 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.1
C03 6 0.0 6 3.4 0.0 6 1.1 0.0 6 1.2 0.0 6 1.4
C04 5 0.3 6 2.6 0.3 6 0.8 0.6 5 0.8 0.6 5 0.9
C05 6 0.0 6 0.2 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C06 5 1.2 6 1.7 1.2 6 0.5 1.2 6 0.6 1.2 6 0.8
C07 5 0.1 6 2.9 0.1 6 1.0 0.2 5 1.1 0.2 5 1.2
C08 4 1.5 6 4.5 1.5 6 1.5 1.5 6 1.5 1.5 6 1.6
C09 6 0.0 6 0.3 0.0 6 0.1 0.0 6 0.1 0.0 6 0.2
C10 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C11 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C12 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C13 6 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0 0.0 6 0.0
C14 4 0.9 5 8.4 0.9 5 2.6 1.1 3 2.9 1.1 3 3.0
C15 6 0.0 6 1.2 0.0 6 0.4 0.0 6 0.4 0.0 6 0.5
C16 1 4.0 5 8.4 3.9 5 2.8 4.3 4 3.6 4.3 4 3.9
C17 6 0.0 6 0.8 0.0 6 0.2 0.0 6 0.3 0.0 6 0.3
C18 6 0.0 6 1.0 0.0 6 0.3 0.0 6 0.3 0.0 6 0.4
C19 4 0.4 6 4.8 0.4 6 1.6 0.4 6 1.9 0.4 6 2.1
C20 0 3.2 6 48.9 3.8 4 17.3 3.7 2 29.0 3.4 4 38.2
C21 0 5.4 6 58.2 6.1 3 20.6 6.0 3 34.5 6.0 3 50.2
C22 0 7.3 2 77.7 7.7 1 28.1 7.3 3 51.0 7.1 4 78.8
C23 0 7.3 5 85.8 8.0 2 31.7 7.6 3 57.6 7.6 4 97.4
C24 0 3.8 5 38.2 4.5 2 12.7 4.4 2 20.0 4.2 3 23.2

Av.1 1.5 5.7 14.6 1.6 5.2 5.1 1.6 5.0 8.6 1.6 5.2 12.7
Av.2 5.4 4.8 61.7 6.0 2.4 22.1 5.80 2.6 38.4 5.6 3.6 57.6

Table 5: Computational results on the MM 5-WRPP instances

16

gaps that are typically about 1.00% and 1.60 %, respectively. As it has been said before, it
is clear that H1 produces the lowest average gaps, followed by H4. Both settings are also
those with higher computing times, as can be observed in Figure 2. Nevertheless, CPU times
are very reasonable: the maximum average time, 56.2 seconds, is reached by H1 on the 2-
vehicle instances, with a maximum of 404.0 seconds. Figure 2 shows a curious fact: instances
with more vehicles are less time consuming. We do not have a definitive explanation for it,
but it could be due to the larger computing times needed by the improvement algorithms
2-interchange, Or-interchange, reversal procedure, change2to0, change1to0 and change1to1,
embedded in the VND procedures, when are applied to longest routes.

0,000,200,400,600,801,001,201,401,601,80
2 veh. 3 veh. 4 veh. 5 veh.

H1H2H3H4
Figure 1: Gap values

0,0010,0020,0030,0040,0050,0060,00
2 veh. 3 veh. 4 veh. 5 veh.

H1H2H3H4
Figure 2: Average computing times

Figure 3 depicts the number of times that each heuristic setting reaches the best known
solution. The results are consistent with those presented in Figure 1: the largest number of
best solutions is achieved by setting H1, followed by H4.

Finally, on the instances not solved to optimality with the branch-and-cut algorithm
presented in [10], we have compared the solutions obtained with version H1 of our algorithm
with the best solutions found within 30 minutes of computation of the branch-and-cut. Table
6 shows the obtained results. Given an instance I of the MM K-WRPP, zH1(I) and zBC(I)
represent the values of the solutions found by heuristic H1 and the B&C, respectively, for that
instance. For each instance, the percentage ratio (zBC(I)−zH1(I))/min(zH1(I), zBC(I))∗100
has been computed. The average values of these ratios are shown in the last row of the table.
Note that all these numbers are positive, what means that the solutions obtained with H1
are up to 16.22% better on average that the best solutions found by the B&C.

17

0,001,002,003,004,005,006,007,00
2 veh. 3 veh. 4 veh. 5 veh.

H1H2H3H4
Figure 3: Number of best solutions

2 vehicles 3 vehicles 4 vehicles 5 vehicles
number of instances 5 24 39 44
average ratio (%) 1.73 2.61 9.17 16.22

Table 6: H1 vs B&C

Acknowledgments: Enrique Benavent and Ángel Corberán thank Nicos Christofides for
his help and generosity. He is a reference for many of us. Authors also wish to thank two
anonymous referees for their careful reading of the manuscript and valuable suggestions,
and the Ministerio de Educación y Ciencia of Spain (projects MTM2006-14961-C05-02 and
MTM2009-14039-C06-02) for its support.

References

[1] D. Ahr, Contributions to Multiple Postmen Problems, PhD Thesis, University of Heidel-
berg (Germany), September 2004.

[2] D. Ahr and G. Reinelt, New heuristics and lower bounds for the min-max k-Chinese
Postman Problem. In: R. Möring, R. Raman, editors. Algorithms-ESA 2002, 10th An-
nual European Symposium, Rome, Italy, September 2002. Proceedings, Lecture Notes in
Computer Science, vol. 2461. Berlin: Springer 2002, 64-74.

[3] D. Ahr and G. Reinelt, A Tabu search Algorithm for the Min-Max k-Chinese Postman
Problem, Computers & Operations Research 33 (2006), 3403-3422.

[4] D. Applegate, W. Cook, S. Dash and A. Rohe, Solution of a min-max vehicle routing
problem, INFORMS Journal on Computing 14 (2002), 132-143.

[5] A. Assad, W.L. Pearn and B. Golden, The Capacitated Chinese Postman Problem: Lower
Bounds and Solvable Cases, American Journal of Mathematics and Management Science
7(1987), 63-88.

18

[6] F. Barahona and M. Grötschel, On the cycle polytope of a binary matroid, Journal of
Combinatorial Theory 40 (1986), 40-62.

[7] J.M. Belenguer, E. Benavent, N. Labadi, C. Prins and M. Reghioui, Split Delivery Ca-
pacitated Arc Routing Problem: Lower Bound and Metaheuristic. Submitted to Trans-
portation Science.

[8] E. Benavent, A. Carrotta, A. Corberán, J.M. Sanchis and D. Vigo, Lower Bounds and
Heuristics for the Windy Rural Postman Problem, European Journal of Operational Re-
search 176 (2007), 855-869.

[9] E. Benavent, A. Corberán, E. Piñana, I. Plana and J.M. Sanchis, New Heuristic Algo-
rithms for the Windy Rural Postman Problem, Computers & Operations Research 32
(2005) 3111-3128.

[10] E. Benavent, A. Corberán, I. Plana and J.M. Sanchis, Min-Max K-vehicles Windy Rural
Postman Problem, Networks. DOI: 10.1002/net.20334.

[11] E. Benavent, A. Corberán, I. Plana and J.M. Sanchis, New Facets and an enhanced
Branch-and-Cut for the Min-Max K-vehicles Windy Rural Postman Problem. Submitted.

[12] N. Christofides, V. Campos, A. Corberán and E. Mota, An algorithm for the Rural
Postman Problem, Report IC.O.R.81.5, Imperial College, London, 1981.

[13] N. Christofides, V. Campos, A. Corberán and E. Mota, An algorithm for the Rural
Postman Problem on a directed graph, Mathematical Programming Study 26 (1986),
155-166.

[14] A. Corberán, I. Plana and J.M. Sanchis, The Windy General Routing Polyhedron: A
global view of many known Arc Routing Polyhedra, SIAM J. Discrete Mathematics 22
(2008), 606-628.

[15] A. Corberán, I. Plana and J. M. Sanchis, A Branch & Cut Algorithm for the Windy
General Routing Problem and special cases, Networks 49 (2007), 245-257.

[16] C. Delgado and J. Pacheco, Minmax vehicle routing problems: Application to school
transport in the Province of Burgos, Lecture Notes in Economics and Mathematical Sys-
tems 505 (2001), 297-317.

[17] H.A. Eiselt, M. Gendreau and G. Laporte, Arc-Routing Problems, Part 2: the Rural
Postman Problem, Operations Research 43 (1995), 399-414.

[18] G. Frederickson, M. Hecht and C. Kim, Approximation algorithms for some routing
problems, SIAM Journal on Computing 7 (1978), 178-193.

[19] P. Lacomme, C. Prins and W. Ramdane-Chérif, Competitive Memetic Algorithms for
Arc Routing Problems, Annals of OR 131 (2004) 159-185.

[20] H.R. Lourenço, O. Martin and T. Stützle, Iterated Local Search. In: F. Glover and G.
Kochenberger, editors. Handbook of metaheuristics, 321-353, 2002.

[21] E. Minieka, The Chinese Postman Problem for Mixed Networks, Management Science,
25, 643-648, 1979.

19

[22] N. Mladenovic and P. Hansen, Variable neighborhood search, Computers & Operations
Research 24 (1997), 1097-1100.

[23] I. Or, Traveling Salesman-Type Combinatorial Problems and their relation to the Logis-
tics of Regional Blood Banking. PhD Dissertation, Northwestern University, Evanston,
USA, 1976.

[24] W.L. Pearn, Solvable cases of the k-person Chinese postman problem, Operations Re-
search Letters 16 (1994), 241-244.

[25] B. Raghavachari & J. Veerasamy, Approximation Algorithms for the Mixed Postman
Problem. In: Bixby RE, Boyd EA and Rı́os-Mercado RZ (Eds.) Proceedings of 6th Integer
Programming and Combinatorial Optimization, Vol. 1412 of LNCS, Springer-Verlag, 169-
179, 1998.

[26] Z. Win, On the Windy Postman Problem on Eulerian Graphs, Mathematical Program-
ming 44 (1989) 97-112.

20

