Skip to main content
Log in

Robust portfolio optimization with a hybrid heuristic algorithm

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

Estimation errors in both the expected returns and the covariance matrix hamper the construction of reliable portfolios within the Markowitz framework. Robust techniques that incorporate the uncertainty about the unknown parameters are suggested in the literature. We propose a modification as well as an extension of such a technique and compare both with another robust approach. In order to eliminate oversimplifications of Markowitz’ portfolio theory, we generalize the optimization framework to better emulate a more realistic investment environment. Because the adjusted optimization problem is no longer solvable with standard algorithms, we employ a hybrid heuristic to tackle this problem. Our empirical analysis is conducted with a moving time window for returns of the German stock index DAX100. The results of all three robust approaches yield more stable portfolio compositions than those of the original Markowitz framework. Moreover, the out-of-sample risk of the robust approaches is lower and less volatile while their returns are not necessarily smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertsimas D, Pachamanova D (2008) Robust multiperiod portfolio management in the presence of transaction costs. Comput Oper Res 35(1): 3–17

    Article  Google Scholar 

  • Black F, Litterman R (1991) Asset allocation: combining investor views with market equilibrium. J Fixed Income 1(2): 7–18

    Article  Google Scholar 

  • Ceria S, Stubbs R (2006) Incorporating estimation errors into portfolio selection: robust portfolio construction. J Asset Manage 7(2): 109–127

    Article  Google Scholar 

  • Chang TJ, Meade N, Beasly J, Sharaiha Y (2000) Heuristics for cardinality constrained portfolio optimisation. Comput Oper Res 27(13): 1271–1302

    Article  Google Scholar 

  • Chopra V, Ziemba W (1993) The effect of errors in means, variances, and covariances on optimal portfolio choice. J Portfolio Manage 19(2): 6–11

    Article  Google Scholar 

  • DeMiguel V, Nogales F (2009) Portfolio selection with robust estimation. Oper Res 57(3): 560–577

    Article  Google Scholar 

  • Dueck G, Scheuer T (1990) Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J Comput Phys 90(1): 161–175

    Article  Google Scholar 

  • Dueck G, Winker P (1992) New concepts and algorithms for portfolio choice. Appl Stochas Models Data Anal 8(3): 159–178

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap, no. 57 in monographs on statistics & applied probability. Chapman & Hall, New York, NY

    Google Scholar 

  • Fabozzi F, Kolm P, Pachamanova D, Focardi S (2007) Robust portfolio optimization and management, The Frank J Fabozzi Series. Wiley Finance, Hoboken, NJ

    Google Scholar 

  • Fang K, Kotz S, Ng K (1990) Symmetric multivariate and related distributions, no. 36 in monographs on statistics & applied probability. Chapman & Hall, London, NY

    Google Scholar 

  • Fang KT, Winker P (1997) Application of threshold accepting to the evaluation of the discrepancy of a set of points. SIAM J Numer Anal 34(5): 2028–2042

    Article  Google Scholar 

  • Frost P, Savarino J (1988) For better performance: constrain portfolio weights. J Portfolio Manage 15(1): 29–34

    Article  Google Scholar 

  • Genton M, Ronchetti E (2008) Robust prediction of beta, computational methods in financial engineering. Springer, Berlin, pp 147–161

    Book  Google Scholar 

  • Gilli M, Këllezi E (2002) Portfolio optimization with VaR and expected shortfall. In: Kontoghiorghes E, Rustem B, Siokos S (eds) Computational methods in decision-making, economics and finance no. 74 in applied optimization. Kluwer Academic Publishers, Dordrecht, pp 165–181

    Google Scholar 

  • Gilli M, Schumann E (2010) Optimal enough? J Heuristics forthcoming. http://dx.doi.org/10.1007/s10732-010-9138-y

  • Gilli M, Winker P (2009) Heuristic optimization methods in econometrics. In: Beasley D, Kontoghiorghes E (eds) Handbook of computational econometircs. Wiley, Chichester, pp 81–120

    Chapter  Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1): 1–38

    Article  Google Scholar 

  • Guastaroba G, Mansini R, MG S (2009) Models and simulations for portfolio rebalancing. Comput Econ 33(3): 237–262

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598): 671–680

    Article  Google Scholar 

  • Konno H, Wijayanayake A (2001) Minimal cost index tracking under nonlinear transaction costs and minimal transaction unit constraints. Int J Theor Appl Finan 4(6): 939–958

    Article  Google Scholar 

  • Lauprete G, Samarov A, Welsch R (2002) Robust portfolio optimization. Metrika 55(2): 139–149

    Article  Google Scholar 

  • Maringer D (2005) Portfolio management with heuristic optimization, no. 8 in advances in computational management science. Springer, Dordrecht

    Google Scholar 

  • Maringer D, Kellerer H (2003) Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum 25(4): 481–495

    Article  Google Scholar 

  • Maringer D, Winker P (2007) The threshold accepting optimization algorithm in economics and statistics. In: Kontoghiorghes E, Gatu C (eds) Optimisation, econometric and financial analysis. Springer, Berlin, pp 107–125

    Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finan 7(1): 77–91

    Article  Google Scholar 

  • Maronna R, Martin D, Yohai V (2006) Robust statistics: theory and methods, probability and statistics. Wiley, New York, NY

    Book  Google Scholar 

  • Michaud R (1989) The Markowitz optimization enigma: is optimized optmial?. Finan Anal J 45(1): 31–45

    Article  Google Scholar 

  • Michaud R (1998) Efficient asset management. Havard Business School Press, Boston, MA

    Google Scholar 

  • Perret-Gentil C, Victoria-Feser MP (2004) Robust mean-variance portfolio selection. Working paper 173, National Centre of Competence in Research NCCR FINRISK

  • Roko I, Gilli M (2008) Using economic and financial information for stock selection. Comput Manage Sci 5(4): 317–335

    Article  Google Scholar 

  • Stubbs R, Vance P (2005) Computing return estimation error matrices for robust optimization. Research report 001, Axioma, Inc.

  • Tütüncü R, Koenig M (2004) Robust asset allocation. Ann Oper Res 132(1–4): 157–187

    Article  Google Scholar 

  • Welsch R, Zhou X (2007) Application of robust statistics to asset allocation models. REVSTAT Stat J 5(1): 97–114

    Google Scholar 

  • Winker P, Lyra M, Sharpe C (2011) Least median of squares estimation by optimization heuristics with an application to the CAPM and multi factor models. Comput Manage Sci. doi:10.1007/sc287-009-0103-x

  • Zymler S, Rustem B, Kuhn D (2009) Robust portfolio optimization with derivative insurance guarantees. COMISEF working paper 018. http://comisef.eu/?q=working_papers

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Winker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fastrich, B., Winker, P. Robust portfolio optimization with a hybrid heuristic algorithm. Comput Manag Sci 9, 63–88 (2012). https://doi.org/10.1007/s10287-010-0127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-010-0127-2

Keywords

Navigation