Skip to main content
Log in

Optimal electricity generation portfolios

The impact of price spread modelling

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

It is common practice to base investment decisions on price projections which are gained from simulations using price processes. The choice of the underlying process is crucial for the simulation outcome. For power plants the core question is the existence of stable long-term cointegration relations. Therefore we investigate the impacts of different ways to model price movements in a portfolio selection model for the German electricity market. Three different approaches of modelling fuel prices are compared: initially, all prices are modelled as correlated random walks. Thereafter the coal price is modelled as random walk. The gas price follows the coal price through a mean-reversion process. Lastly, all prices are modelled as mean reversion processes with correlated residuals. The prices of electricity base and peak futures are simulated using historical correlations with gas and coal prices. Yearly base and peak prices are transformed into an estimated price duration curve followed by the steps power plant dispatch, operational margin and net present value calculation and finally the portfolio selection. The analysis shows that the chosen price process assumptions have significant impacts on the resulting portfolio structure and the weights of individual technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awerbuch S (1995) Market-based irp: it’s easy!. Electr J 8(3): 50–67

    Article  Google Scholar 

  • Awerbuch S (2000) Investing in photovoltaics: risk, accounting and the value of new technology. Energy Policy (28):1023–1035

  • Awerbuch S (2004) Towards a finance-oriented valuation of conventional and renewable energy sources in ireland. Report, Sustainable Energy Ireland

    Google Scholar 

  • Awerbuch S, Berger M (2003) Applying portfolio theory to EU electricity planning and policy-making. Report number EET/2003/03, IEA

  • Awerbuch S, Stirling A, Jansen J, Beurskens L (2006) Full-spectrum portfolio and diversity analysis of energy technologies. In: Leggio K, Bodde D, Taylor M (eds) Managing enterprise risk, elsevier global energy policy and economics series. Elsevier Science Ltd, Oxford, pp 202–222

    Google Scholar 

  • Bar-Lev D, Katz S (1976) A portfolio approach to fossil fuel procurement in the electric utility industry. J Finance 31(3): 933–947

    Article  Google Scholar 

  • Beltran H (2009) Modern portfolio theory applied to electricity resource planning. Master of sciences dissertation, University of Illinois at Urbana-Champaign

  • Black F, Scholes MS (1973) The pricing of options and corporate liabilities. J Political Econ 81(3): 637–654

    Article  Google Scholar 

  • Blyth W, Bradley R, Bunn D, Clarke C, Wilson T, Yang M (2007) Investment risks under uncertain climate change policy. Energy Policy 35(11): 5766–5773

    Article  Google Scholar 

  • Deng SJ (2005) Valuation of investment and opportunity-to-invest in power generation assets with spikes in electricity price. Manage Finance 31(6): 95–115. doi:10.1108/03074350510769712

    Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, Princeton

    Google Scholar 

  • EEX: Phelix baseload/peakload year future price data (2009). http://www.eex.com/de/Downloads

  • EEX: Eex product brochure power (2011). http://cdn.eex.com/document/89877/20110414_EEX_Produktbrosch%C3%BCre_Strom_englisch.pdf

  • Fleten SE, Näsäkkälä E (2010) Gas-fired power plants: investment timing, operating flexibility and CO2 capture. Energy Econ 32(4): 805–816

    Article  Google Scholar 

  • Geman H, Shih YF (2009) Modeling commodity prices under the cev model. J Altern Invest 11(3): 65–84. doi:10.3905/JAI.2009.11.3.065

    Article  Google Scholar 

  • Haldrup N, Nielsen MØ (2006) A regime switching long memory model for eelectricity prices. J Econom. 135(1–2): 349–376

    Article  Google Scholar 

  • IEA (2008) World energy outlook 2008. International Energy Association (IEA) (2008)

  • Irwin SH, Zulauf CR, Jackson TE (1996) Monte carlo analysis of mean reversion in commodity futures prices. Am J Agric Econom 78(2): 387–399

    Article  Google Scholar 

  • Jansen JC, Beurskens LW, van Tilburg X (2006) Application of portfolio analysis to the Dutch generating mix: reference case and two renewables cases: year 2030, SE and GE scenario

  • Johnson B, Barz G (1999) Selecting stochastic processes for modelling electricity prices. In: Jameson R (ed) Energy modelling and the management of uncertainty. Risk Books, London, pp 3–22

    Google Scholar 

  • Keles D, Hartel R, Möst D, Fichtner W (2012) Caes power plant investments under uncertain electricity prices. J Energy Markets 5(1): 53–84

    Google Scholar 

  • Kholodnyi VA (2005) Modeling power forward prices for power with spikes: a non-markovian approach. Nonlinear Anal Theory Methods Appl 63(5-7): 958–965

    Article  Google Scholar 

  • Konstantin P (2009) Praxisbuch Energiewirtschaft: Energieumwandlung, -transport und -beschaffung im liberalisierten Markt, 2 edn. Springer, Berlin

    Google Scholar 

  • Krey B, Zweifel P (2008) Efficient electricity portfolios for the united states and switzerland: an investor view. http://www.zora.uzh.ch/52399/

  • Lucia JJ, Schwartz ES (2002) Electricity prices and power derivatives : evidence from the nordic power exchange. In: Review of derivatives research

  • Madlener R, Wenk C (2008) Efficient investment portfolios for the swiss electricity supply sector. SSRN eLibrary

  • Markowitz HM (1952) Portfolio selection. J Finance 7(1): 77–91

    Google Scholar 

  • Meade N (2010) Oil prices: brownian motion or mean reversion? a study using a one year ahead density forecast criterion. Energy Econ 32(6): 1485–1498

    Article  Google Scholar 

  • Merton RC (1973) Theory of rational option pricing. Bell J Econ 4(1): 141–183

    Article  Google Scholar 

  • Muche T (2009) A real option-based simulation model to evaluate investments in pump storage plants. Energy Policy 37(11): 4851–4862

    Article  Google Scholar 

  • Roques F, Newbery D, Nuttall W (2008) Fuel mix diversification incentives in liberalized electricity markets: A mean-variance portfolio theory approach. Energy Econ 30(4): 1831–1849

    Article  Google Scholar 

  • Roques F, Nuttall W, Newbery D (2006) Using probabilistic analysis to value power generation investments under uncertainty. Cambridge Working Papers in Economics 0650, Faculty of Economics, University of Cambridge. http://ideas.repec.org/p/cam/camdae/0650.html

  • Rothwell G (2006) A real options approach to evaluating new nuclear power plants. Energy J 27: 37–53

    Google Scholar 

  • Sachverständigenrat: Die finanzkrise meistern—wachstumskräfte stärken. Jahresgutachten, Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung (German Council of Economic Experts (2008) http://www.sachverstaendigenrat-wirtschaft.de/fileadmin/dateiablage/download/gutachten/ga08_ges.pdf

  • Schwartz ES (1997) The stochastic behavior of commodity prices: implications for valuation and hedging. J Finance 52(3): 923–973

    Article  Google Scholar 

  • Seifert J, Uhrig-Homburg M, Wagner M (2008) Dynamic behavior of CO 2 spot prices. J Environ Econ Manag 56(2): 180–194. doi:10.1016/j.jeem.2008.03.003

    Article  Google Scholar 

  • Weber C (2005) Uncertainty in the electric power industry: methods and models for decision support. Springer, Berlin

    Google Scholar 

  • Weber C (2007) Plants as real options: the importance of price models. In: Ostertag K, Llerena P, Richard A (eds) Option valuation for energy issues. ISI Schriftenreihe, Karlsruhe, pp 116–131

    Google Scholar 

  • Westner G, Madlener R (2010) The benefit of regional diversification of cogeneration investments in europe: a mean-variance portfolio analysis. Energy Policy 38(12): 7911–7920. doi:10.1016/j.enpol.2010.09.011

    Article  Google Scholar 

  • Westner G, Madlener R (2011) Development of cogeneration in germany: a mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework. Energy 36(8): 5301–5313. doi:10.1016/j.energy.2011.06.038

    Article  Google Scholar 

  • Westner G, Madlener R (2011) Investment in new power generation under uncertainty: benefits of chp versus condensing plants in a copula-based analysis. Energy Econ 34: 1–380

    Google Scholar 

  • White B (2007) A mean-variance portfolio optimization of california’s generation mix to 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ziegler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, D., Schmitz, K. & Weber, C. Optimal electricity generation portfolios. Comput Manag Sci 9, 381–399 (2012). https://doi.org/10.1007/s10287-012-0150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-012-0150-6

Keywords

Mathematics Subject Classification

Navigation