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Abstract In this paper we analyze the effect of two modelling approaches for
supply planning problems under uncertainty: two-stage stochastic programming
(SP) and robust optimization (RO). The comparison between the two approaches
is performed through a scenario-based framework methodology, which can be ap-
plied to any optimization problem affected by uncertainty. For SP we compute
the minimum expected cost based on the specific probability distribution of the
uncertain parameters related to a set of scenarios. For RO we consider static ap-
proaches where random parameters belong to box or ellipsoidal uncertainty sets
in compliance with the data used to generate SP scenarios. Dynamic approaches
for RO, via the concept of adjustable robust counterpart, are also considered.

The efficiency of the methodology has been illustrated for a supply planning
problem to optimize vehicle-renting and procurement transportation activities in-
volving uncertainty on demands and on buying costs for extra-vehicles. Numerical
experiments through the scenario-based framework allow a fair comparison in real
case instances. Advantages and disadvantages of RO and SP are discussed.
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1 Introduction

In this paper we analyze the effect of two modelling approaches, Stochastic Pro-
gramming (SP) and Robust Optimization (RO), to a supply planning problem
under uncertainty. Stochastic Programming and Robust Optimization are consid-
ered two alternative techniques to deal with uncertain data both in a single period
and in a multi-period decision making process. The main difficulty associated with
the former is the need to provide the probability distribution functions of the un-
derlying stochastic parameters. This requirement creates a heavy burden to the
user because in many real-world situations, such information is unavailable or hard
to obtain (see for example [14] and [41]). On the other side RO addresses the un-
certain nature of the problem without making specific assumptions on probability
distributions: the uncertain parameters are assumed to belong to a deterministic
uncertainty set. The drawback of this approach is the potentially strong depen-
dence of the solution on the rather arbitrarily chosen uncertainty set. RO adopts
a min-max approach that addresses uncertainty by guaranteeing the feasibility
and optimality of the solution against all instances of the parameters within the
uncertainty set [8,21]. A vast literature about the hypotheses that have to be im-
posed on the structure of the uncertainty set in order to have computationally
tractable problems are available, see [6] and [47] for polyhedral uncertainty sets
and [2,3,22,23] for ellipsoidal uncertainty sets. The original RO model deals with
static problems where all the decision variables have to be determined before any
of the uncertain parameters are realized. This is not the typical situation in most
problems that are multi-period in nature, and where a decision at any period
can and should account for data realizations in previous periods. An extension of
robust optimization to a dynamic framework was analyzed in [2,3,5,7,9,13] and
many others via the concept of adjustable robust counterpart (ARC) and affinely
adjustable robust counterpart (AARC), where part of the decision variables, the
so-called adjustable variables, have to be determined after a portion of the un-
certain data is realized. In the case of AARC the dependence of the adjustable
variables on the realized data is represented by an affine function. The introduc-
tion of AARC is motivated by the fact that in most of the cases the ARC approach
is computationally intractable.

Comparing SP and RO methods considering a cost-based approach is some-
how unilateral. The philosophy of the two approaches to deal with uncertainty is
completely different indeed. The RO approach is well-suited to the cases where
the optimizer wants to hedge the result against all imaginable outcomes of the
uncertain events. Such methods can be successfully implemented usually only in
the cases where the hedging against rare events is cheap or at least at low cost with
respect to possible consequences. On the other side, the SP approach includes the
probabilistic information about the events into consideration. As a consequence,
less probable events are counted only with small weights implying less conservative
and, in many cases, cheaper solutions. As drawback, we have a risk of appearance
of rare but expensive events which can result in high actual costs if such an “un-
happy” event is realized.

To make a fair comparison between the above approaches we consider a scenario-

based framework, which does not just compare the different solution approaches in
terms of costs; it compares the costs of implementing the non-adjustable (or first-
stage) solutions obtained using the information available up to now, with SP or
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RO. The adjustable variables are then determined when the uncertainty is re-
vealed by solving a deterministic problem. This heuristic methodology allows also
to overcome the typical problem of computational intractability of ARC and can
be applied to any optimization problem affected by uncertainty.

The efficiency of the methodology has been illustrated on a supply planning
problem to optimize vehicle-renting and procurement transportation activities to
satisfy demand in several destinations out of several origins. Uncertainty on de-
mands and cost of extra vehicles is considered. The problem consists in determining
the number of vehicles to book, at the end of each time period, from each plant of
the set of suppliers, to replenish a certain good at factories in order to minimize
the total cost, given by the sum of the transportation costs from origin to des-
tinations (including the discount for vehicles booked but not used) and the cost
of buying units of product from external sources in case of inventory shortage at
the destinations. We formulate and solve the problem as a two-stage stochastic
programming model and as robust optimization models with different uncertainty
sets where scenarios of demand and buying costs are built on historical data.

Since the demand of goods is in general highly affected by the economic con-
ditions, a reliable forecast and reasonable estimates of probability distributions
are difficult to obtain. Furthermore, the supply-planning company would avoid
to negotiate the quantity of vehicles with the suppliers every time period, being
immunized against every possible demand realization allowing to save a lot of op-
erational activities. This motivates us to consider besides the SP approach, also
RO approaches and to quantify the value (or extra-cost) of RO guarantees. First
we consider static approaches where the uncertain parameters belong to box or
box-ellipsoidal uncertainty sets, and then dynamic approaches, via the concept
of ARC with scenario generated uncertainty set and scenario-based framework
methodology. A robust solution at the tactical level allows to find a feasible solu-
tion for the operational planning problem for each possible realization of demand
in the uncertainty set considered.

Both SP and RO allow to determine the nonadjustable variables, i.e., the num-
ber of vehicles to book at the end of each time period, using the information avail-
able at that time. As new information on demand and buying costs from external
sources become available, the adjustable (or recourse) decision variables have to
be determined. We describe five strategies for updating the adjustable variables
given the values of the already determined values of the nonadjustable variables.
The methodology allows to quantify the cost saving of the SP approach compared
to the RO, as well as the value of a more conservative strategy avoiding a ne-
gotiation of the number of vehicles every period with the suppliers or third-party
service providers (3PL). Numerical experiments through the scenario-based frame-
work allow a fair comparison in real instances inspired by a gypsum replenishment
problem of an Italian cement factory producer.

The paper is organized as follows: Section 2 introduces basic concepts about
stochastic and robust optimization. A scenario-based framework used to compare
the two approaches is presented in Section 3 while Section 4 describes the supply
planning problem. Section 5 discusses the two-stage stochastic programming for-
mulation, robust formulations and the scenario based framework for comparison.
Finally, Section 6 discusses the numerical results. Conclusions follow.
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2 Stochastic versus robust optimization: basic facts and notations

We consider the uncertain linear optimization problem

{
min
x

{
cT x+ o : Ax ≤ h

}}
(c,o,A,h)∈U

, (1)

as a collection of linear optimization problems with data varying in a given un-
certainty set U where x ∈ R

n,+ is the vector of non-negative decision variables,
c ∈ R

n and o ∈ R are the coefficients of the objective function, A ∈ R
m×n is the

constraint matrix, and h ∈ R
m is the right hand side vector.

Let us introduce a scenario based stochastic programming formulation of prob-
lem (1) which includes equality constraints, by rewriting the constraint Ax ≤ h

in (1) as Ax+ δ = h, where δ is a slack variable, or equivalently
[
A I

] [ x
δ

]
= h,

where I ∈ R
m×m is the identity matrix.

Let us consider:

- A finite set ζs, s ∈ S = {1, . . . , S} of realizations (or scenarios) of a random
event ζ which affects the data varying in U . The random process ζ is defined on
a probability space (Ξ,F , P ) with support Ξ and given probability distribution
P on the σ−algebra F .

- A partitioning of the decision variable x = [u; v1; . . . ; vS], where u ∈ R
n1,+

represents the first-stage decision which has to be taken without full informa-
tion on the random event ζ. When full information is received on the realiza-
tion of the random vector, then, second-stage or recourse actions vs ∈ R

n2,+,
s = 1, . . . , S are taken. Throughout this paper, we use “;” for adjoining elements
in a column.

- A partitioning of vector cost c = [p;P 1q1; . . . ;PSqS ], where p ∈ R
n1 is the

first stage cost, qs ∈ R
n2 , s = 1, . . . , S, is the second stage cost and P s is the

probability of scenario s = 1, . . . , S.
- A partitioning of matrix Â = [A|I] as follows:

Â =




Ã 0

T 1 W
...

. . .

TS W


 ,

where Ã ∈ R
m1×n1 is a deterministic matrix, T s ∈ R

m2×n1 , s = 1, . . . , S are
called technology matrices, W ∈ R

m2×n2 is the matrix of fixed recourse, and 0

the null matrix of dimension m1 × Sn2.
- The partitioning of right hand side vector h = [h̃; h1; . . . ; hS ], where h̃ ∈ R

m1 is
a deterministic right hand side vector and hs ∈ R

m2 , s = 1, . . . , S are stochastic
right hand side terms.

Definition 1 The two-stage linear stochastic problem with fixed recourse, is for-
mulated as follows:

min
u,v1,...,vS

pTu+
S∑

s=1

P s
(
qs

T
vs
)
+ o
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s.t. Ãu = h̃ ,

T su+Wvs = hs , s = 1, . . . , S , (2)

u ≥ 0 , vs ≥ 0 , s = 1, . . . , S .

We note that o usually does not appear in SP problems, however it is reported for
the sake of consistency of notation with the RO formulation.

Let us introduce the robust optimization counterpart of problem (1). We as-
sume that the uncertainty set U is parametrized in an affine way by the perturba-
tion vector ζ = [ζ1; . . . ; ζL] in a given perturbation set Z:

U =

{
[c; o;A; h] = [c̄; ō; Ā; h̄] +

L∑

ℓ=1

ζℓ[cℓ; oℓ;Aℓ; hℓ] : ζ ∈ Z ⊂ R
L

}
, (3)

where [cℓ; oℓ;Aℓ; hℓ] represent possible perturbations from the nominal data [c̄; ō; Ā; h̄].

Definition 2 The Robust Counterpart of the uncertain linear optimization prob-
lem (1) is formulated as follows

min
x

{
sup

(c,o,A,h)∈U
cT x+ o : Ax ≤ h, (c, o, A, h) ∈ U

}
, (4)

that is minimizing the worst total cost over all feasible solutions.

Problem (4) can be equivalently formulated as

min
x,w

{
w : cT x− w ≤ −o, Ax ≤ h, ∀(c, o, A, h) ∈ U

}
. (5)

Notice that if x is a feasible solution of (4), then x remains feasible when we
extend the uncertainty set U to its convex hull Conv(U).

We consider tractable formulations of the robust problem (5) with uncertainty
set U computationally tractable, that is solvable in polynomial time with a specific
description of the uncertainty set. There are three well known formulations of RO
problems in literature; these are given by [4,5,6] and [47]. They all share the
advantage that minimal assumptions about the nature of the uncertainties have
to be made and they differ in the ways the uncertainty sets are represented. More
specifically, the formulations by Soyster [47] and by Bertsimas and Sim [6] use
polyhedral uncertainty sets, while the formulation by Ben-Tal and Nemirovski
[2,3,22,23] considers an ellipsoidal uncertainty set, transforming the original LP
problem into a Second Order Cone Programming (SOCP) problem.

Among possible formulations we consider the case of box uncertainty sets and
ellipsoidal uncertainty sets. To show the construction of the uncertainty sets we
focus on a single uncertain linear inequality:

{
aTx ≤ h

}
(a,h)∈U

. (6)

The tractable formulation of U through a box uncertainty set is given by

aTx ≤ h, ∀[a; h]∈
{
[ā; h̄]+

L∑

ℓ=1

ζℓ[a
ℓ; hℓ] : ζ=[ζ1; . . . ; ζL]∈R

L, ‖ζ‖∞ ≤ 1

}
, (7)
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where ‖ · ‖∞ is the infinity norm, while the formulation through an ellipsoidal
uncertainty set is given by

aTx ≤ h, ∀[a; h] ∈
{
[ā; h̄] +

L∑

ℓ=1

ζℓ[a
ℓ; hℓ] : ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖2 ≤ Ω

}
, (8)

where ‖ · ‖2 is the Euclidean norm and Ω the radius.
As shown in [5] (8) can be written as

[
(h̄− āTx)/Ω; h1 − a1

T
x; . . . ; hL − aL

T
x
]
∈ L CL+1, (9)

where L CL+1 =
{
t = [t0; t1; . . . ; tL] ∈ R

L+1 : t0 ≥ ‖t1; . . . ; tL‖2
}

, is the second

order (or Lorentz) cone of RL+1, so that that (8) is equivalent to

Ω

√√√√
L∑

ℓ=1

([aℓ]Tx− hℓ)2 ≤ h̄− āTx . (10)

Let us consider a random vector [a; h] defined by

[a; h] = [ā; h̄] +
L∑

ℓ=1

ζℓ[a
ℓ; hℓ], (11)

where

ζ1,. . . ,ζL : zero mean independent random variables with values in [−1,1] . (12)

The following result holds true (see Corollary 2.3.2. in [5]):

Proposition 1 If [a; h] is the random vector given by (11)-(12) and x is a solution of

(9) then

Prob
{

aTx > h
}
≤ e−

Ω2

2 . (13)

We note that the above result holds for any probability distribution for the ran-
dom vector ζ = [ζ1; . . . ; ζL] that satisfies (12). Let us denote by P the family of
all probability distributions that satisfy (12) and consider the ambiguous chance
constraint where ε ∈ (0; 1) is a prespecified small tolerance:

∀P ∈ P Probζ∼P

{
ζ : āTx+

L∑

ℓ=1

ζℓ[a
ℓ]Tx > h̄+

L∑

ℓ=1

ζℓh
ℓ

}
≤ ε. (14)

We note that the relation between ǫ and Ω is Ω =
√
ln ǫ−2.

The above problem is called an ambiguous chance constraint because we do not
have any knowledge about the probability distribution P except the fact that it
belongs to the class P and we have uncertainty in the particular realization of the
data (given its distribution). From Proposition 1 it follows that any x satisfying
the second order cone constraint (9) is a solution of (14).

All decision variables described above in case of RO approaches represent here

and now decisions, i.e., decisions that are taken before the actual data reveals itself.
This is too restrictive since in reality there may be situations in which the decisions
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must adjust themselves to the actual data. To model adjustability of the variables
we can proceed as follows: ∀ j ≤ n we suppose that xj is dependent on a portion
of the data (c, o, A, h) ∈ U , i.e.

xj = Xj(πj(ζ)), j = 1, . . . , n, (15)

where the uncertain data are denoted by ζ = (c, o, A, h), πj describes a portion of
the uncertain data by a suitable linear mapping on ζ, and Xj are decision rules
to be chosen. We can now replace problem (5) with the usage of the new decision
rules Xj as follows:

min
{Xj(·)}

n
j=1

,w

{
w : c(ζ)TX(ζ)− w ≤ −o(ζ), A(ζ)X(ζ) ≤ h(ζ), ζ ∈ U

}
, (16)

where X(ζ) = [X1(π1(ζ)); . . . ;Xn(πn(ζ))]. The robust optimization problem (16)
is called Adjustable Robust Counterpart (ARC).

We consider:

– the case of fixed recourse, i.e. for every adjustable variable all its coefficients
in the objective function and the left hand side of the constraints are certain;

– a scenario-generated uncertainty set described as a convex hull of finitely many
scenarios ζs, s = 1, . . . , S.

Assuming that x = [u; v(ζ)], where u refers to the here-and-now variables (non-
adjustable) and v refers to the wait-and-see (adjustable) variables, (16) becomes

min
u,v(ζ),w

{
w :p(ζ)Tu+qTv(ζ)−w≤−o(ζ), T (ζ)u+Wv(ζ) ≤h(ζ), ζ∈Conv

{
ζ1, . . . , ζS

}}

(17)
where p(ζ), T (ζ), o(ζ), h(ζ) are affine in ζ.

The following theorem holds (see [5]):

Theorem 1 Under the assumption of fixed recourse and scenario-generated uncer-

tainty set described above, the ARC (17) is equivalent to the computationally tractable

problem

min
u,{vs}S

s=1,w

{
w :p(ζs)Tu+qT vs−w≤−o(ζs),T (ζs)u+Wvs ≤ h(ζs), s = 1,. . ., S

}

(18)

and their optimal values are equal. Moreover, if w̄, ū, {v̄s}Ss=1 is a feasible solution to

(18), then the pair w̄, ū augmented by the decision rule for the adjustable variables

v(ζ) =
S∑

s=1

λs(ζ)v̄
s , (19)

form a feasible solution to the ARC. Here λ(ζ) = [λ1(ζ); . . . ; λS(ζ)] is a nonnegative

vector with the unit sum of entries such that

ζ =
S∑

s=1

λs(ζ)ζ
s. (20)

The assumption of fixed recourse is essential, since without it the ARCmay become
intractable (see [3]). However, from a practical point of view, equation (20) is not
easily satisfied unless the number of scenarios S becomes extremely large.
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3 A scenario based framework for comparison of modelling approaches

under uncertainty

In this section we propose a scenario based framework for comparison of stochastic
programming and robust optimization approaches. The framework can be applied
to any optimization problem affected by uncertainty.

We introduce the following notation:

M1 is the stochastic optimization problem (2);
M2 is the robust optimization problem (5) with box constraints as in (7);
M3 is the robust optimization problem (5) with ellipsoidal constraints as in (8);
M4 is the computationally tractable robust optimization problem (18).

Let

∆̂ =
{
ζ̂1, ζ̂2, . . . , ζ̂S

}
, (21)

be a given set of scenarios of the uncertain parameters ζ eventually obtained by
historical data. We consider a set of indices

S̄ =
{
1, . . . , S̄

}
⊂ S , (22)

with cardinality S̄ < S. For each such τ = S̄, . . . , S − 1 we compute the quantities

ζ̄τ =
1

τ

τ∑

s=1

ζ̂s, and max
s=1,...,τ

∥∥∥ζ̂s − ζ̄τ
∥∥∥
2

, (23)

which represent respectively the nominal and variable terms in (7) and (8).

For each τ = S̄, . . . , S−1 we find the optimal first stage, or nonadjustable deci-
sion variables solutions u∗, of the corresponding optimization problem Mm, m =
1, . . . ,4, using only the information contained in the vectors

ζ̂1, ζ̂2, . . . , ζ̂τ . (24)

Assume now that the vectors ζ̂τ+1 become available. Then we can solve the opti-
mization problem

min
w,v

{
w : p(ζ̂τ+1)

T
u∗+qT v−w≤−o(ζ̂τ+1), T (ζ̂τ+1)u∗+Wv ≤ h(ζ̂τ+1)

}
, (25)

to obtain the adjustable variables v∗ . The optimal value of the objective function
in (25) is denoted by costm,τ . It represents the optimal cost of the problem with
the adjustable strategy considered in this section when using method Mm for
determining the nonadjustable variables. If the optimization problem is infeasible
we set costm,τ = ∞.

We also consider the following adjustable robust optimization problem accord-
ing to Theorem 1:

M5 :
(a) Solve the computationally tractable optimization problem (18) using only

the information (24);
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(b) Solve the optimization problem

min
λ

ϕτ (λ) := min
λ

‖ζ−
τ∑

s=1

λs(ζ)ζ
s‖2,

τ∑

s=1

λs=1, λs ≥ 0, (26)

with ζ = ζ̂τ+1;
(c) For each τ = S̄, . . . , S − 1 define the adjustable variables as in (19).

This method has the advantage that the adjustable variables are obtained by
solving only the very simple optimization problem (26). However, this method

only works if the optimal objective function of the latter problem ϕτ
(
λ
(
ζ̂τ+1

))

is equal to zero. In this case the optimal cost given by this method, cost5,τ , is

equal to the optimal value of the objective function (18). If ϕτ
(
λ
(
ζ̂τ+1

))
> 0 we

set cost5,τ = ∞.

Of course, when ζ̂τ+1 become available we can also solve the optimization
problem

min
u,v,w

{
w : p(ζ)Tu+ qT v − w ≤ −o(ζ), T (ζ)u+Wv ≤ h(ζ)

}
, (27)

with ζ = ζ̂τ+1. However, this optimization problem, corresponding to the well-
known Wait-and-See problem (WS) in SP, determines the optimal values of both
the adjustable and nonadjustable variables, while in our setting the nonadjustable
variables have to be determined before the ζ̂τ+1 become available. We denote by
costτ the optimal value of the objective function (27).

We finally compare methods Mm, m = 1, . . . ,5 by considering the aggregated
costs:

costm :=
S−1∑

τ=S̄

costm,τ , m = 1, . . . ,5 . (28)

The same for the wait-and-see problem, WS (27), cost :=
∑S−1

τ=S̄
costτ .

4 Supply planning under uncertainty

In this section we shortly review the literature of supply planning under uncer-
tainty and we describe the problem considered to illustrate the efficiency of the
scenario based framework methodology.

4.1 Literature review

Freight transportation [18] is one of todays’ most important logistic activities
that influences the performance of many other economic activities. The two most
important factors for having high performance level are the economic efficiency
and the service quality. The former relates to the facts that those firms that make
use of freight transportation service want to move the right amount of goods at
the best cost. The latter highlights the importance of the quality of service, i.e.
being able to satisfy clients demand of a good eventually avoiding inventory costs.
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Bolstering one almost certainly causes the other to suffer: for example, if one lowers
his/her inventory to reduce costs, it will become difficult to meet varying customer
demand. If one increases safety stock to meet peak demands, one could wind up
with a great deal of excess inventory with nowhere to sell it, see [44]. Traditionally,
two prevailing supply chain strategies have dominated the industry: push and pull.
However, new technologies, have enabled the creation of a third strategy, a hybrid
push-pull model that offers the best of both worlds without their corresponding
disadvantages, see [43].

The problem of transporting goods or resources from a set of supply points
(production plants) to a set of demand points (destination factories or customers)
is an important component of the planning activity of a manufacturing firm. A par-
ticular case is given by the so-called single-sink transportation problem, in which
a single retailer is served by a set of suppliers. This problem has been extensively
studied, in particular when the total cost is given by the sum of a variable trans-
portation cost and a fixed charge cost to use the supplier ([1,29,30,36]). Critical
parameters such as customer demands, row material prices and resource capacity
are quite uncertain in real problems. An important issue is then represented by
the decision on quantities to acquire and store at each destination factory before
actual demands reveal themselves. This is involved in the tactical planning [18] of
the firm supply chain operations. In this paper we are dealing with a tactical plan-
ning problem of a firm supply chain operations, where decision on quantities to
acquire and store at each destination factory before actual demands reveal them-
selves have to be chosen. Detailed information on the capacity of transportation
vehicles, capacity of origin plants and destination warehouse are given. See [18]
and [24] for differences among planning levels, strategic, tactical and operational
ones. Example of strategic models are those for designing physical networks and
their evolutions, for location of the main facilities of a plant, for resource acquisi-
tion, for defining tariff policies. They usually involve long-term investment decision
and strategic policies and they deal with planning at international, national and
regional levels. Tactical planning problems modeling works over a medium term
horizon for a rational and efficient allocation of existing resources in order to en-
hance the performance of the whole system. They usually incorporate seasonal
changes in the data and not daily information: vehicle routing models belong to
this class of models. On the other hand, the notion of cost is central to the oper-
ational planning model and it may have different components related to different
events that may happen at the decision time (scarcity of goods at the origin, full
capacity at destinations, delay, risk, etc.) see [24].

The significance of uncertainty has prompted a number of works addressing
random parameters in tactical level supply chain planning involving distribution of
raw material and products (see for example [10,15,16,20,40,45,46,48,49]). Nowa-
days firms are engaged in a continuous procurement process and collaboration with
their supply chain partners. The firm regularly orders products from suppliers in
a given area according to inventory, forecasted demand and inventory policy [19].
Firms may negotiate directly with carriers but very often they deal with a third-
party logistic service provider (3PL) [39]. In the recent past, 3PL, also referred
to as logistics outsourcing (e.g. [26,38,39,42]), has received considerable attention
due to a steadily increasing number of companies across industry sectors using
third-party providers for the management of their logistics operations (e.g. [31,32,
33,35]). The functions performed by the third party can encompass the entire lo-
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gistics process or selected activities within that process [17,34]. The 3PL combines
goods into containers or trucks ensuring shipping usually with a fixed schedule.
The firm needs to book in advance sufficient capacity to satisfy the demand lead-
ing to a negotiation with 3PL to reserve the necessary number of trucks. Usually
the agreement between the firm and 3PL is made under uncertainty without full
information about the demand of goods. Extra vehicles must be then purchased
at a much higher cost than the initial one.

4.2 Problem description

We consider a supply planning problem to optimize vehicle-renting and trans-
portation procurement activities to satisfy demand in several destinations out of
several origins. Uncertainty on the demands and on the costs of extra vehicles is
considered.

The logistic system is organized as follows: a set of suppliers, each of them
composed by a set of plants (origins) has to satisfy the demand of a certain good
from a set of factories (destinations) belonging to the same producer. The demand
at the destination factory is considered stochastic. We assume a uniform fleet
of vehicles with fixed capacity and we allow only full-load shipments. Shipments
are performed by booking a number of capacitated vehicles in advance, before
the demand is revealed. When the demand becomes known, the number of used
vehicles is determined and there is an option to discount vehicles booked but not
actually used. The cancellation fee is given as a proportion of the transportation
costs. If the quantity shipped from the suppliers using the booked vehicles is not
enough to satisfy the demand at destination factory, residual product is purchased
from an external company at a higher price, which is considered stochastic as well.
The problem is to determine the number of vehicles to book from each plant of
the set of suppliers to replenish the good at factory in order to minimize the total
cost for the producer of good, given by the sum of the transportation costs from
origins to destinations.

4.3 Notation

We adopt the following notation.
Sets:

K = {k : k = 1, . . . ,K} , set of suppliers;

Ok = {i : i = 1, . . . , Ok} , set of plant locations of supplier k ∈ K ;

D = {j : j = 1, . . . , D} , set of destination factories;

Deterministic parameters:

tijk , unit transportation cost from supplier i ∈ Ok, k ∈ K to plant j ∈ D ;

q , vehicle capacity;

gj , maximum capacity which can be booked at the customer j ∈ D ;
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vk , maximum requirement capacity of supplier k ∈ K ;

rk , minimum requirement capacity of supplier k ∈ K ;

l0j , initial inventory of product at customer j ∈ D .

α , discount;

Uncertain or Stochastic Parameters:

dj , demand of customer j ∈ D ;

bj , buying cost from external sources for customer j ∈ D .

Variables:

xijk , number of vehicles booked from supplier i ∈ Ok, k ∈ K to plant j ∈ D ,

(nonadjustable or first stage decision variables);

zijk , number of vehicles actually used from supplier i ∈ Ok, k ∈ K to plant j ∈ D ,

(adjustable or second stage decision variables);

yj , volume of product to purchase from an external source normalized by q, for

plant j ∈ D , (adjustable or second stage decision variables).

To simplify the notation it is convenient to introduce the vectors

d = (dj)j∈D
∈ R

D, b = (bj)j∈D
∈ R

D, y = (yj)j∈D
∈ R

D,

x = vec
(
xijk , i ∈ Ok, k ∈ K , j ∈ D

)
, z = vec

(
zijk , i ∈ Ok, k ∈ K , j ∈ D

)
.

It is easily seen that x, z ∈ R
m, with m = D

∑K
k=1 Ok.

4.4 Objective function and constraints

The objective function of our optimization problem is of the form

f(x, y, z; b) = f1(x) + f2(x, y, z; b), (29)

where

f1(x) = q

K∑

k=1

Ok∑

i=1

D∑

j=1

tijkxijk (30)

denotes the booking costs of the vehicles, while

f2(x, y, z; b) =q

D∑

j=1

bj yj−αq

K∑

k=1

Ok∑

i=1

D∑

j=1

tijk
(
xijk−zijk

)
, (31)

represents the cost of recourse actions, consisting of buying good from external
sources (qyj) and canceling unwanted vehicles. We note that f1 involves only de-
terministic parameters and nonadjustable, or first stage decision variables while,
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while f2 also involves uncertain or stochastic parameters as well as adjustable or
second stage decision variables.

We have the following constraints for our optimization problem. Constraint

C1(x) : q

K∑

k=1

Ok∑

i=1

xijk ≤ gj , j ∈ D , (32)

guarantees that for each destination j ∈ D the number of booked vehicles does not
exceed gj/q inducing thus an upper bound on the total number of vehicles. We
impose the constraint

C2(z) : rk ≤ q
∑

i∈Ok

D∑

j=1

zijk ≤ vk , k ∈ K , (33)

to ensures that the number of vehicles serving supplier k does not exceed the
production capacity vk of supplier k ∈ K and satisfies the lowest requirement
capacity rk established in the contract. In order to ensure that the j-customer’s
demand is satisfied we also impose the following constraint

C3(y, z; d) : l0j + q

(
K∑

k=1

Ok∑

i=1

zijk + yj

)
− dj ≥ 0 , j ∈ D . (34)

The inequality constraint

z ≤ x, (35)

guarantees that the number of vehicles actually used is at most equal to the number
booked in advance. We will always impose nonnegativity constraints on the vectors
y, x, z,

y ≥ 0, x ≥ 0, z ≥ 0, (36)

and sometimes integrality constraints on the vectors x and z, i.e.,

x ∈ N
m, z ∈ N

m, (37)

where N is the set of natural numbers.
If the vectors b and d were known the optimization problem presented above

would be a simple linear programming problem. However, in our application b and
d are uncertain. In the next section we will deal with this problem by using a
stochastic programming model and several robust optimization models.

5 Models for the supply planning problem under uncertainty

5.1 A two stage stochastic optimization model

In this section we introduce a two-stage stochastic optimization model for the
problem described above. Our approach is based on a set of scenarios

S = {s : s = 1, . . . , S},
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and the following parameters and variables related to it:

P s , probability of scenario s ∈ S ;

dsj , demand of customer j at scenario s ∈ S ;

bsj , buying cost from external sources for customer j at scenario s ∈ S ;

zsijk , number of vehicles actually used from supplier i ∈ Ok, k ∈ K to plant j ∈ D ,

at scenario s ∈ S (second stage decision variables);

ysj , volume of product to purchase from an external source normalized by q,

for plant j ∈ D , at scenario s ∈ S (second stage decision variables).

As in subsection 4.3 we introduce the vectors

ds =
(
dsj
)
j∈D

, bs =
(
bsj
)
j∈D

, ys = (yj)j∈D
, zs =

(
zsijk

)
i∈Ok,k∈K ,j∈D

.

In the two-stage (one-period) case, we get the following mixed-integer stochastic
programming model with recourse:

SP min
x,{ys,zs}s∈S

f1(x) +
S∑

s=1

P s (f2(x, y
s, zs, bs)) (38)

s.t. C1(x), C2(z
s), C3(y

s, zs; ds), s ∈ S , (39)

x ∈ N
m, zs ∈ N

m, zs ≤ x, ys ≥ 0, s ∈ S . (40)

From now on we will refer to problem (38)-(40) as the two-stage stochastic pro-
gramming problem (SP) for the supply planning problem.

5.2 Robust optimization models

In this section we introduce several robust formulations (RO) for the problem
described above. These formulations are of particular interest in the case it is im-
possible, or not practical, to give reasonable estimates of probability distributions
for the random parameters given by the demand of a certain good at factories and
the cost of buying from external sources. Moreover, some LP-relaxations of RO
formulations can be solved in polynomial time and have theoretical guarantees for
the quality of the solution none of which is true for the SP formulations.

We consider different selections of the uncertainty set for the objective function
and constraints involving the uncertain demands and buying costs. More precisely
we assume that b ∈ Ub and d ∈ Ud for some uncertainty sets Ub ⊂ R

D and
Ud ⊂ R

D. For any such uncertainty sets the robust optimization formulation of
our problem becomes

RO min
w,x,y,z

w (41)

s.t. w ≥ f(x, y, z; b), ∀b ∈ Ub (42)

C1(x),C2(z),C3(y, z; d), ∀d ∈ Ud (43)

x ∈ N
m, z ∈ N

m, z ≤ x, y ≥ 0, (44)

where the auxiliary variable w has been introduced.
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5.2.1 Box uncertainty

We assume that the cost vector b belongs to the uncertainty set

Ub,box,L =

{
b̄+

L∑

ℓ=1

ζℓb
ℓ : ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖∞ ≤ 1

}
, (45)

where b1, . . . , bL are vectors representing possible perturbations of the average
vector cost b̄, which is considered fixed. If we choose L = D and the perturbation
vectors

bℓ = ρ2Fℓe
ℓ, ℓ = 1, . . . , D , (46)

where eℓ is the ℓ−th vector from the standard basis of RD then yT bℓ = ρ2Fℓyℓ,
with the positive number Fℓ representing the uncertainty scale and ρ2 > 0 the
uncertainty level.

With the choice (46) the uncertainty set (45) coincides with the simple box

Ub,box =
{
b ∈ R

D : |bj − b̄j | ≤ ρ2Fj , j ∈ D

}
. (47)

Of course, for other choices of the perturbation vectors we get different results.
Similarly, we assume that the demand vector d belongs to an uncertainty set

of the form

Ud,box,L =

{
d̄+

L∑

ℓ=1

ζℓ d
ℓ : ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖∞ ≤ 1

}
, (48)

for given perturbation vectors d1, . . . , dL. As above, it is easily seen that with the
choice

L = D, dℓ = ρ1Gℓe
ℓ, ℓ = 1, . . . , D , (49)

the uncertainty set Ud,box,L reduces to the simple box

Ud,box =
{
d ∈ R

D : |dj − d̄j | ≤ ρ1Gj , j ∈ D

}
. (50)

We clearly have maxd∈Ud,box
dj = d̄j + ρ1Gj . Using the uncertainty sets (47) and

(50) for the uncertain vectors b and d, and considering the vector G = (Gj)j∈D
,

the robust formulation (41)-(44) of our problem can be written as the following
linear mixed-integer problem:

RO-box min
w,x,y,z

w (51)

s.t. w − f(x, y, z; b̄) ≥
D∑

j=1

qρ2Fjyj (52)

C1(x),C2(z),C3(y, z; d̄+ ρ1G), (53)

x ∈ N
m, z ∈ N

m, z ≤ x, y ≥ 0, (54)

We note that the above model is very conservative. Indeed let us assume that

ζ1, . . . , ζL : zero mean independent random variables in the interval [−1,1], (55)
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and let us consider the random vectors

b = b(ζ) = b̄+
D∑

ℓ=1

ζℓ b
ℓ, d = d(ζ) = d̄+

D∑

ℓ=1

ζℓ d
ℓ , (56)

where the perturbation vectors bℓ and dℓ are given by (46) and (49) respectively.
Consider a feasible solution of the RO problem (51)-(54). Then

Probζ∼P {ζ : w ≥ f(x, y, z, b(ζ))}=1, (57)

and
Probζ∼P {ζ : C3(y, z, d(ζ))} = 1, (58)

for any probability distribution P that is compatible with (55). This certitude of
constraints satisfaction will result in a high cost for the optimal solution of the
RO problem (51)-(54).

5.2.2 Box-Ellipsoidal Uncertainty

In this subsection we study the case were the uncertainty set for the buying costs
is given by

Ub,ell =

{
b̄+

L∑

ℓ=1

ζℓ b
ℓ : ζ = [ζ1; ...; ζL] ∈ R

L, ‖ζ‖2 ≤ Ω

}
, (59)

and the uncertainty set for the demand vector d is the box (50).
Using the Cauchy-Schwarz inequality, we obtain, for a given y

max
b∈Ub,ell

yT b = yT b̄+ max
‖ζ‖2≤Ω

L∑

ℓ=1

ζℓ(y
T bℓ) = yT b̄+Ω

√√√√
L∑

l=1

(yT bℓ)2 . (60)

By choosing the perturbation vectors as in (46) we obtain the following RO model
with box and ellipsoidal uncertainty set:

RO-ell min
w,x,y,z

w (61)

s.t. w − f(x, y, z; b̄) ≥ Ω ·

√√√√
D∑

j=1

(qρ2Fjyj)2 (62)

C1(x),C2(z),C3(y, z; d̄+ ρ1G), (63)

x ∈ N
m, z ∈ N

m, z ≤ x, y ≥ 0. (64)

The nonlinear constraint (62) is a second order cone constraint, so that the above
optimization problems is a SOCP. Notice that if we relax the integrality constraints
on x and z, the SOCP problem can be solved in polynomial time.

Consider again the random vectors b(ζ) and d(ζ) from (56). By virtue of Propo-
sition 1 it follows that for any feasible solution of the RO problem (61)-(64) we
have

Probζ∼P {ζ : w ≥ f(x, y, z; b(ζ))} ≥ 1− e−
Ω2

2 , (65)
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for all probability distributions P that are compatible with (55). Since we are
using the same box uncertainty for the demand, (58) is also satisfied. From the
Cauchy-Schwarz inequality we have

D∑

j=1

qρ2Fjyj ≤
√
D

√√√√
D∑

j=1

(qρ2Fjyj)2. (66)

If follows that if Ω ≥
√
D then for any feasible solution of the RO problem (61)-

(64) we have the stronger probability result (57). This certitude of constraint
satisfaction will result in a high cost for the optimal solution of the RO problem
(61)-(64).

5.2.3 Adjustable robust optimization

In the robust optimization models considered in 5.2.1 and 5.2.2, all the variables
are treated in the same way, while in the two-stage stochastic programming model
the variables xijk are considered first stage decision variables and the variables
yj and zijk are considered second stage (recourse) variables. This means that the
variables xijk are to be determined “here and now”, before the actual data “reveals
itself”. On the other hand, once the uncertain data are known the variables yj,
zijk should be able to adjust themselves by means of some decision rules Yj(·) and
Zijk(·). Therefore the decision variables xijk are called nonadjustable variables
while the decision variables yj and zijk are called adjustable variables. In the
following we relax the integrality in all the decision variables and we assume that
decision rules Yj(·) and Zijk(·) are affine function of their arguments. In the case
with integer adjustable variables more subtle approaches are needed (e.g. [11,12,
28]).

In developing an adjustable robust optimization model for our problem we will
follow the simple model described in [5], where, however, it is assumed that all
the coefficients of the adjustable variables are certain. This is not the case for our
problem where the coefficients bj of the adjustable variables yj are uncertain. We
will circumvent this difficulty by assuming as before that the cost vector b belongs
to the ellipsoidal uncertainty set Ub,ell (59). We have seen that in this case, with
the choice (46), our cost constraint can be written under the form (62). This is no
longer a linear constraint, but a second order cone constraint. On the other hand
we assume that the demand vector d belongs to the scenario-generated uncertainty
set

U
d,∆̂

=

{
S∑

s=1

λsd̂
s : λ ∈ L

}
, (67)

where,

L =

{
λ = [λ1; . . . ; λS] ∈ R

S : λ1 ≥ 0, . . . , λS ≥ 0,
S∑

s=1

λs = 1

}
, (68)

and ∆̂ is a given set of scenarios

∆̂ =
{
d̂1, d̂2, . . . , d̂S

}
. (69)
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In our applications ∆̂ is obtained from historical data.
Let us denote by u = x the vector composed of all “here and now” decision variables
xijk, and by v = [y; z] the vector composed of all adjustable decision variables yj,
zijk. We consider also the vector of decision rules

V (·) =
[
Y1(·); . . . ; YD(·); vec

(
Zijk(·), i ∈ Ok, k ∈ K , j ∈ D

) ]
.

Since decision rules Yj(·) and Zijk(·) are assumed to be affine, so is V (·). The
deterministic constraints of our problem are:

C (u, v) : C1(x), C2(z), z ≤ x, x ≥ 0, y ≥ 0, z ≥ 0, (70)

while our uncertain constraints are given by:

C̃ (u, v, w; b, d) : w ≥ f(x, y, z; b), C3(y, z; d). (71)

With the above notation our uncertain problem can be written as:

R = min
w,u,v

{
w : C (u, v), C̃ (u, v, w; b, d),∀b ∈ Ub,ell,∀d ∈ U

d,∆̂

}
.

For the choice (46) the infinite set of constraints w ≥ f(x, y, z; b),∀b ∈ Ub,ell re-
duces to the deterministic single second-order cone constraint (62). In this case
the uncertain constraints of our problem become

Ĉ (u, v, w; d) : w − f(x, y, z; b̄) ≥ Ω

√√√√
D∑

j=1

(qρ2Fjyj)2, C3(y, z; d). (72)

Therefore, our uncertain problem can be written equivalently, (see (17)) as:

R : min
w,u,v

{
w : C (u, v), Ĉ (u, v, w; d), ∀d ∈ U

d,∆̂

}
. (73)

According to (16) the adjustable version of this problem is

A : min
w,u,V (·)

{
w : C (u, V (d)), Ĉ (u, V (d), w; d),∀d ∈ U

d,∆̂

}
, (74)

where the minimum is taken for all decision rules V (·) that are affine functions
of their arguments. According to Theorem 1 we show below that this adjustable
version is equivalent to the following tractable optimization problem (see (18))

Q : min
w,u,{vs}S

1

{
w : C (u, vs), Ĉ (u, vs, w; d̂s), s = 1, . . . , S

}
. (75)

The equivalence is understood in the sense that the optimal values of A and Q are
equal and that any feasible solution of Q can be augmented to a feasible solution
of A . More specifically let ŵ, û, {v̂s}S1 be a feasible solution of Q and consider a
vector d ∈ U

d,∆̂
. Then there is a vector λ(d) = [λ1(d); . . . ; λS(d)] ∈ L such that

d =
S∑

s=1

λs(d)d̂
s, (76)
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and the adjustable variables are defined by the decision rule

v = V̂ (d) :=
S∑

s=1

λs(d)v̂
s. (77)

The feasibility of ŵ, û, {v̂s}S1 means that the following constraints are satisfied

C (û, v̂s), Ĉ (û, v̂s, ŵ; d̂s), s = 1, . . . , S. (78)

From (32), (33) and (70) it follows that the constraints C (u, v) are linear inquality
constraints, while Ĉ (u, v, w; d) are convex constraints, because the left hand side
of the inequality in (72) is linear while the right-hand-side can be written as ‖Hy‖
where H is the diagonal matrix with entries Ωqρ2Fj . Therefore if (78) is satisfied,

then ŵ, û, V̂ (·) is feasible for A . In particular, this proves that the optimal solution
of A is less than or equal to the optimal solution of Q. To prove the reverse

inequality, we remark that if (w, u, V (·)) is feasible for A , then w, u,
{
V (d̂s)

}S

1
is

clearly feasible for Q.
In conclusion, in order to solve our adjustable robust optimization model we

first find the optimal solution

x∗ =
(
x∗ijk

)
, y∗ s =

(
y∗ s
j

)
, z∗ s =

(
z∗ s
ijk

)
, s ∈ S (79)

of the tractable second order cone optimization problem

trSOCP min
x,{ys,zs}s∈S

w (80)

s.t. w − f(x, ys, zs; b̄) ≥ Ω ·

√√√√
D∑

j=1

(qρ2Fjy
s
j )

2, s ∈ S , (81)

C1(x), C2(z
s), C3(y

s, zs; d̂s), s ∈ S , (82)

0 ≤ zs ≤ x, ys ≥ 0, s ∈ S . (83)

When the uncertain demand d reveals itself we try to find a vector
λ(d) = [λ1(d); . . . ; λS(d)] ∈ L satisfying (76) by solving the following optimization
problem in λ

min
λ∈L

ϕ(λ) := min
λ∈L

D∑

j=1

(
dj −

S∑

s=1

λsd̂
s
j

)2

. (84)

The optimal value of the objective function is equal to zero, i.e., ϕ(λ(d)) = 0, if
and only if d ∈ U

d,∆̂
. In this case the adjustable variables are given by

y∗j =
S∑

s=1

λs(d)y
∗ s
j , z∗ijk =

S∑

s=1

λs(d)z
∗ s
ijk i ∈ Ok, k ∈ K , j ∈ D . (85)

From the above considerations it follows that

x∗ijk , y
∗
j , z

∗
ijk , i ∈ Ok, k ∈ K , j ∈ D , (86)
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is an optimal solution of the robust adjustable optimization problem (74). This
is no longer the case when ϕ(λ(d)) > 0. As noted in Section 3, the scenario-
generated uncertainty set U

d,∆̂
from (67) is usually “too small” to be of much

interest. Nevertheless, as shown in the next section the values

x∗ijk , i ∈ Ok, k ∈ K , j ∈ D , (87)

could be used to find a solution of our supply planning problem even when d /∈
U

d,∆̂
.

5.2.4 Scenario based framework for the supply planning problem under uncertainty

In this subsection we compare the performance of the various methods in the
scenario based framework described in Section 3. For our specific application those
methods become:

M1 is the stochastic optimization problem SP (38)–(40);
M2 is the RO problem with box constraints RO-box (51)–(54);
M3 is the RO problem with ellipsoidal constraints RO-ell (61)–(64);
M4 is the second order cone optimization problem trSOCP (80)–(83).

As in (69), let ∆̂ =
{
d̂1, d̂2, . . . , d̂S

}
be a given set of demand scenarios of dimension

D from historical data. We consider a set of indices (22). For each τ = S̄, . . . , S− 1
we compute the quantities d̄τ = 1

τ

∑τ
s=1 d̂

s, ρτ1G
τ
j = maxs=1,...,τ |d̂sj − d̄τj |, j ∈ D .

If we do not have historical data for the cost vectors, but we know a D-
dimensional vector b̄ of average costs, we can generate a set of vectors B̂ ={
b̂1, b̂2, . . . , b̂S

}
, with components b̂sj obtained by sampling from a uniform dis-

tribution in the interval
[
b̄j − σ · b̄j , b̄j + σ · b̄j

]
with a given deviation level of σ.

For each τ = S̄, . . . , S−1 we compute ρτ2F
τ
j = maxs=1,...,τ |̂bsj− b̄τj |, j ∈ D . For each

τ = S̄, . . . , S − 1 and for each of the methods M1, . . . ,M4 described in Section 3
we find the optimal solution of the corresponding optimization problem using only
the information contained in the vectors

d̂1, d̂2, . . . , d̂τ , b̂1, b̂2, . . . , b̂τ . (88)

From this optimal solution we obtain the nonadjustable decision variables x∗.
They are determined by using only the information contained in (88). Assume now
that the vectors d̂τ+1, b̂τ+1 become available. Then we can solve the optimization
problem

min
y,z

f
(
x∗, y, z; b̂τ+1

)
(89)

s.t. C2(z),C3(y, z; d̂
τ+1), (90)

z ∈ N
m, z ≤ x∗, y ≥ 0. (91)

to obtain the adjustable variables y∗, z∗.
We will also consider method M5 which now consists in the following steps:

M5 :
(a) Solve the optimization problem (80) -(83) using only the information (88);
(b) Solve the optimization problem (84) with S = τ and d = d̂τ+1;
(c) If ϕ(λ(d)) = 0, define the adjustable variables as in (85).
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6 Numerical results

In this section we discuss numerical results for stochastic and robust modelling
approaches applied to the supply planning problem described in Sections 4 and
5. The instance considered comes from a real case of gypsum replenishment in
Italy provided by the primary Italian cement producer. The logistic system is
composed of 24 suppliers with multiple plants and 15 destinations. The models
aim to find, for each plant of the 24 suppliers, the number of vehicles to be booked
for replenishing gypsum in order to minimize the total cost.

Deterministic and stochastic parameters values for the problem are reported
in Tables 11-12-13 in the Annex. Table 11 lists the set of suppliers K and the set
of their plants Ok, k ∈ K . The list of destinations (cement factories) are shown
in Table 12 with relative emergency costs, unloading capacities and variation of
demand ρ1Gj , and buying costs ρ2Fj , j ∈ D .

Table 13 refers to the minimum and maximum requirement capacity of supplier
k ∈ K . We suppose to have an initial inventory level l0j = 0 at all the destinations
j ∈ D and to use vehicles with fixed capacity q = 31 tons. The cancellation fee α

is fixed to the value of 0.7.

Equiprobable scenarios of gypsum demand ∆̂ =
{
d̂1, d̂2, . . . , d̂S

}
are built on

historical data, using all the weekly values in March, April, May and June of the
years 2011, 2012 and 2013 for a total number of S = 48 realizations. Having no

historical data for the buying costs, equiprobable scenarios B̂ =
{
b̂1, b̂2, . . . , b̂S

}

have been generated sampling from a uniform distribution in the interval[
b̄j − σ · b̄j , b̄j + σ · b̄j

]
with a given deviation level of σ = 20%. In order to make

a fair comparison between RO and SP methodologies, the same deviation level is
used also for the RO methodology.

All the models (SP and RO) are modeled in AMPL and solved using the
CPLEX 12.5.1.0. solver or MOSEK 7.1.0.58 solver for RO model with ellipsoidal
constraint. The computations have been performed on a 64-bit machine with 12
GB of RAM and a 2.90 GHz Intel i7 processor. Summary statistics of the adjusted
problems derived for our test-case are reported in Table 1.

SP (S = 48) RO-box RO-ell

MIP simplex iterations 16609 83 -
number of variables 24240 976 976
number of integer variables 23520 960 -
number of linear constraints 24818 521 518
number of non linear constraints - - 1
CPU time (s) 16.19 0.109 0.2028

Table 1 Summary statistics of the solution approaches (SP versus static RO).

First-stage solutions of the stochastic mixed-integer model (SP) are reported in
Table 3. Results show that the demand of all 15 destinations is satisfied by ordering
vehicles from the set of suppliers for a total of 141 vehicles and a total cost of
107 244.67. The SP model forces the company to buy from external sources only
in high demand scenarios as recourse action.

Similar results are obtained also for larger number of scenarios. Figure 1 shows
the in-sample stability of the optimal SP function value for an increasing number
of scenarios [25]. For S ≥ 200 the stability is reached, where the scenarios have
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been generated by a uniform distribution in the range provided by the minimum
and maximum values from historical data.
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Fig. 1 In-sample stability of SP model with all continuous variables.

Before to proceed with the comparison between SP and RO models, we analyze
the advantage of having the information about future demand and buying cost.
This is provided by the well-known Expected Value of Perfect Information EVPI,
[14],[37]:

EV PI = SP −WS = 107 244.67− 84 472.21 = 22 772.46 (92)

given by the difference between the stochastic cost and the wait-and-see cost WS.
Figure 2 shows the objective function values of the deterministic problems solved
separately over each scenario (d̂s, b̂s) ∈ ∆̂× B̂.

Since the gypsum demand is highly affected by the economic conditions of the
public and private medium and large-scale construction sector, a reliable forecast
and reasonable estimates of probability distributions are difficult to obtain. This
is the main reason that leads us to consider also robust optimization approaches.
In the following we consider:

- static approaches with uncertainty parameters belonging respectively to box,
ellipsoidal uncertainty sets or mixture of them;

- dynamic approaches, via the concept of tractable adjustable robust counterpart
and scenario based framework.

We first consider the robust optimization model with box uncertainty, (51)-
(54). Boxes for demand and buying cost are built in compliance with the 48 his-
torical data used to generate SP scenarios. See again Table 12 for variation of
demand ρ1Gj and buying costs ρ2Fj , j ∈ D .

The static RO-box approach is very conservative having a total cost about
365% larger than the SP expected cost. Table 2 (column 2) reports the optimal
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Fig. 2 Optimal objective function values of deterministic programs with mixed-integer vari-
ables with full knowledge of demand and buying cost. The costs refer to the 48 scenarios
obtained from historical data.

solutions of the mixed-integer robust problem with box constraints given by the
normalized volume yj for destination plant j ∈ D , while Table 4 gives number of
booked vehicles xijk from plant i ∈ Ok of supplier k to destination j ∈ D .

Table 2 Optimal normalized volume yj for destination plant j ∈ D for the static robust mixed-
integer optimization model with box constraints (column 2), of the corresponding continuous
version (column 3) and box-ellipsoidal optimization model with Ω = 2.75 (column 4).

mixed-integer RO box model continuous RO box model continuous RO-ell model
Destination yj yj yj
dest1 0.643847 0 4.36
dest2 17.2759 17.1097 9.12
dest3 29.9154 29.9154 12.60
dest4 8.7287 8.5029 8.50
dest5 0 0 2.18
dest6 0.705345 0 6.94
dest7 0.595318 0 5.05
dest8 0.931387 0 1.64
dest9 15.7849 13.2951 11.13
dest10 0.542244 0 0.48
dest11 1.83631 1.80405 9.15
dest12 22.1082 22.1082 22.10
dest13 0 0 0
dest14 6.09235 5.513 9.86
dest15 23.3377 23.3333 11.70

Due to the upper bound constraint on the number of booked vehicles and
largest demand to be satisfied, the model forces the company to buy from external
sources. This happens for almost all the destinations, with exception of dest5 and
dest13 where the demand is fully satisfied by the orders xijk. On the other hand,
the demand of dest3, dest12 and dest15 are satisfied only by external orders yj > 0
with a consequent larger cost.

The choice of the box uncertainty set is preferable only if the feasibility of all
the constraints is highly required which would be the case if the company prefers
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Table 3 Optimal first-stage solutions of the stochastic model SP with mixed-integer variables.
The table shows the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k

to destination j ∈ D.

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk
dest1 suppl1 plant3 9

dest2 suppl1 plant3 22
dest2 suppl3 plant8 1
dest2 suppl4 plant4 2
dest2 suppl6 plant10 4
dest2 suppl12 plant14 3
dest2 suppl16 plant16 3

dest3 suppl1 plant5 8
dest3 suppl3 plant8 2
dest3 suppl6 plant10 8
dest3 suppl15 plant8 3

dest4 suppl1 plant5 1
dest4 suppl3 plant8 1
dest4 suppl13 plant15 3
dest4 suppl20 plant5 1

dest5 suppl20 plant5 1

dest6 suppl10 plant12 2
dest6 suppl14 plant12 3
dest6 suppl24 plant12 2

dest7 suppl1 plant5 4
dest7 suppl3 plant8 1
dest7 suppl20 plant5 1

dest8 suppl5 plant9 1
dest8 suppl9 plant11 3
dest8 suppl18 plant9 1
dest8 suppl22 plant19 3

dest9 suppl2 plant7 6
dest9 suppl5 plant9 3
dest9 suppl9 plant11 1
dest9 suppl10 plant12 1
dest9 suppl23 plant7 1
dest9 suppl24 plant12 1

dest10 suppl1 plant3 6

dest11 suppl11 plant13 7

dest12 suppl1 plant5 4
dest12 suppl11 plant13 2
dest12 suppl17 plant17 3
dest12 suppl20 plant5 1

dest13 suppl5 plant9 3
dest13 suppl9 plant11 3
dest13 suppl18 plant9 2

dest14 suppl1 plant5 3
dest14 suppl19 plant5 3
dest14 suppl20 plant5 1

dest15 suppl8 plant2 3
dest15 suppl10 plant12 1
dest15 suppl21 plant18 3
dest15 suppl24 plant12 1

to keep the same contract with the suppliers (or 3PL) and still being immunized
against every possible realization of random demand in the box.

One can try to use a different uncertainty set in order to get a less conservative
outcome. We show the results obtained by using a box-ellipsoidal uncertainty set
which, as mentioned in Section 5.2.2, requires the solution of a second-order cone
program with integer constraints. The current MOSEK solver version 7.1.0.58 finds
that the robust mixed-integer second-order cone formulation RO-ell described in
Section 5.2.2 is infeasible. Although the problem may be feasible, MOSEK cannot
find it. This is the main reason that made us relax the integrality constraints on
xijk and zijk for all second-order cone formulations. To have a fair comparison we
have then relaxed the integrality constraints in all the other formulations.

Total costs of the static RO-ell model are shown in Figure 3 (dashed line) with
the probability of satisfaction (dotted line) of the second order cone constraint (62)
for increasing values of the parameter 0 ≤ Ω ≤ 3.873 (see Proposition 1). Notice
that the strongest probability satisfaction (57) is verified for Ω ≥

√
15 = 3.873

since in the test-case considered the number of destinations is D = 15. The results
show that for Ω = 0, the total cost of the static RO-ell approach is 343 849.19,
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Table 4 Optimal solution of the RO-box model. The table shows the optimal number of
booked vehicles xijk from plant i ∈ Ok of supplier k to destination j ∈ D.

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk
dest1 suppl1 plant3 13

dest2 suppl1 plant3 29
dest2 suppl4 plant4 2
dest2 suppl6 plant10 12
dest2 suppl12 plant14 3
dest2 suppl16 plant16 3

dest4 suppl13 plant15 3

dest5 suppl3 plant8 2

dest6 suppl7 plant1 3
dest6 suppl10 plant12 3
dest6 suppl14 plant12 3
dest6 suppl24 plant12 3

dest7 suppl3 plant8 4
dest7 suppl15 plant8 3
dest7 suppl20 plant5 2

dest8 suppl5 plant9 5
dest8 suppl9 plant11 4
dest8 suppl22 plant19 3

dest9 suppl8 plant2 3
dest9 suppl21 plant18 1

dest10 suppl1 plant3 6
dest10 suppl17 plant17 3

dest11 suppl11 plant13 9

dest13 suppl2 plant7 6
dest13 suppl5 plant9 1
dest13 suppl18 plant9 3
dest13 suppl23 plant7 1

dest14 suppl19 plant5 3
dest14 suppl20 plant5 1

the same than the static RO-box model with average buying cost b̄j and box
constraint requirement for the demand dj . As Ω increases to 2.75 the total cost
reaches approximately the same value, 381 520.16, for the box model case with a
probability of constraint satisfaction close to one. Notice that the optimal cost of
the RO-ell model is only 114.74 lower than the box model, where the probability
of constraint satisfaction is exactly one. On the other hand, the solution of the
static RO-ell model with Ω =

√
D = 3.873 is guaranteed to satisfy the second

order cone constraint with probability one. This fact has been remarked at the
end of Section 5.2.2. For Ω =

√
D = 3.873 the ellipsoidal uncertainty set Ub,ell,

given by (59) and (46), includes the box uncertainty set Ub,box defined in (47).
Therefore the static RO-ell gives a cost that is 13 575 larger than RO-box. CPU
times are negligible (0.2028 CPU seconds) compared to the SP problem with 200
scenarios (114.13 CPU seconds).

For a comparative analysis, Table 6 and Table 2 (column 4) report the solution
variables xijk and yj in the case of the static box-ellipsoidal robust approach with
Ω = 2.75 whereas Table 5 and Table 2 (column 3) refer to the optimal solutions
of the static box case with continuous variables. While the two approaches have
approximately the same total costs, their solution strategies show some differences:
the box-ellipsoidal solution does not make any order except for dest12, deciding
to satisfy their maximum demand by external sources y12 = 22.10. On the other
side the box solution does not make any order both for dest3 and dest12, and buys
from external sources. The box solution tries to satisfy the demand of dest1, dest5,
dest6, dest7, dest8, dest10, and dest13 only by booking vehicles xijk from the set
of suppliers while the box-ellipsoidal solution requires for all the destinations, with
exception of dest13, to buy from external sources.

In order to make a fair comparison with the SP methodology, we compute total
costs via the scenario based framework proposed in Section 5.2.3. Our methodol-
ogy allows us to understand the cost saving of the SP approach when compared
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Fig. 3 Total cost given by RO-ell with all continuous variables for increasing values of Ω
(dashed line) and probability of satisfaction (dotted line) of constraint (62).

Table 5 Optimal solution given by RO-box with all continuous variables. The table shows
the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination
j ∈ D.

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk
dest1 suppl1 plant3 13.6438

dest2 suppl1 plant3 28.4268
dest2 suppl4 plant4 2.12903
dest2 suppl6 plant10 12.1587
dest2 suppl12 plant14 3.22581
dest2 suppl16 plant16 3.22581

dest4 suppl13 plant15 3.22581

dest5 suppl3 plant8 1.95436

dest6 suppl7 plant1 3.22147
dest6 suppl10 plant12 3.03226
dest6 suppl14 plant12 3.22581
dest6 suppl24 plant12 3.22581

dest7 suppl3 plant8 4.49725
dest7 suppl15 plant8 3.22581
dest7 suppl19 plant5 1.87226

dest8 suppl5 plant9 4.86687
dest8 suppl9 plant11 4.83871
dest8 suppl22 plant19 3.22581

dest9 suppl2 plant7 0.425199
dest9 suppl8 plant2 3.22581
dest9 suppl21 plant18 3.22581
dest9 suppl23 plant7 1.6129

dest10 suppl1 plant3 6.31644
dest10 suppl17 plant17 3.22581

dest11 suppl11 plant13 9.03226

dest13 suppl2 plant7 6.02641
dest13 suppl5 plant9 1.58474
dest13 suppl18 plant9 3.22581

dest14 suppl19 plant5 1.35355
dest14 suppl20 plant5 3.22581

dest15 suppl7 plant1 0.00433257

to RO, and to quantify the value of a more conservative strategy which does not
require a negotiation with third-party providers every week, but keeps the same
solution strategy for longer periods. For this purpose, we consider a subset S̄ =
{1, . . . , 24} ⊂ S of scenarios from the 48 historical data. For each τ = 24, . . . , 47
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Table 6 Optimal solution of RO-ell with Ω = 2.75 and all continuous variables. The table
shows the optimal number of booked vehicles xijk from plant i ∈ Ok of supplier k to destination
j ∈ D.

Destination j ∈ D Supplier k ∈ K Plant i ∈ Ok xijk
dest1 suppl1 plant3 9.27

dest2 suppl1 plant3 38.05
dest2 suppl4 plant4 2.13
dest2 suppl6 plant10 10.52
dest2 suppl12 plant14 3.23
dest2 suppl16 plant16 3.23

dest3 suppl3 plant8 5.88
dest3 suppl6 plant10 1.64
dest3 suppl11 plant13 2.16
dest3 suppl15 plant8 2.72
dest3 suppl17 plant17 3.23
dest3 suppl19 plant5 0.84
dest3 suppl20 plant5 0.84

dest4 suppl13 plant15 3.23

dest5 suppl3 plant8 0.57
dest5 suppl15 plant8 0.5

dest6 suppl10 plant12 1.83
dest6 suppl14 plant12 1.97
dest6 suppl24 plant12 1.96

dest7 suppl19 plant5 2.27
dest7 suppl20 plant5 2.27

dest8 suppl5 plant9 1.96
dest8 suppl18 plant9 1.26
dest8 suppl9 plant11 4.84
dest8 suppl22 plant19 3.23

dest9 suppl2 plant7 2.89
dest9 suppl10 plant12 1.21
dest9 suppl14 plant12 1.26
dest9 suppl21 plant18 3.23
dest9 suppl23 plant7 0.86
dest9 suppl24 plant12 1.26

dest10 suppl1 plant3 1.06

dest11 suppl11 plant13 1.68

dest13 suppl2 plant7 3.56
dest13 suppl5 plant9 4.49
dest13 suppl18 plant9 1.97
dest13 suppl23 plant7 0.82

dest14 suppl19 plant5 0.11
dest14 suppl20 plant5 0.11

dest15 suppl7 plant1 3.23
dest15 suppl8 plant2 3.21
dest15 suppl11 plant13 5.19

Table 7 Optimal value of the objective function (89) with the adjustable strategy where
method M1, . . . ,M5 is used to determine the nonadjustable variables x∗

ijk
. Last column

(costτ ) refers to the cost of problem where a full information on the realization of vectors
b and d is available. The aggregated cost costm, m = 1, . . . , 5, is reported on the last line. All
variables are supposed continuous.

τ cost1,τ cost2,τ cost3,τ cost4,τ cost5,τ costτ

24 106268 149596 131733 139920 ∞ 76464
25 78537 108328 99046 105893 ∞ 53386
26 113678 157730 139411 146097 ∞ 80399
27 101405 138061 130867 140536 ∞ 70792
28 112587 156452 145235 147368 ∞ 83548
29 91334 144716 125087 128931 ∞ 65283
30 96586 151069 139699 137865 ∞ 73541
31 92735 147384 133558 133085 ∞ 70808
32 66738 84055 76295 72009 ∞ 37361
33 61685 69863 68364 66863 ∞ 30987
34 58994 71826 70761 64654 ∞ 29690
35 65425 78257 79132 71442 ∞ 39029
36 59721 75545 73450 66142 ∞ 28702
37 62597 77775 75307 67223 ∞ 30513
38 69873 83871 84397 78665 ∞ 39240
39 60691 72534 73205 68384 ∞ 28646
40 58604 78762 74779 69311 ∞ 26157
41 60879 86342 75022 69542 ∞ 31475
42 107178 127786 114733 110211 ∞ 65190
43 93369 117811 99104 94021 ∞ 54748
44 88607 113692 87892 92033 ∞ 49120
45 84985 113013 97798 98013 ∞ 51223
46 72613 105263 78852 83042 ∞ 40894
47 66353 98546 84675 81543 ∞ 36623

cost1 cost2 cost3 cost4 cost5 cost

1931443 2608276 2358398 2332794 ∞ 1193820
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Fig. 4 Adjustable total costs cost1,τ , . . . , cost4,τ obtained by solving model (89)-(91) with
all continuous variables using the nonadjustable decision variables x∗

ijk
given by methods

M1, . . . ,M4, for an increasing value of τ = 24, . . . , 47. Results are compared with the cost
of the problem where a full information on the realization of vectors b and d is available
(costτ = WSτ ).

and for each method M1, . . . ,M5, we compute nonadjustable decision variables
x∗ijk using only the information contained in d̂1, d̂2, . . . , d̂τ , b̂1, b̂2, . . . , b̂τ . When

vectors d̂τ+1, b̂τ+1 become available, we solve model (89)-(91) fixing the nonad-
justable decision variables x∗ijk just obtained, allowing to determine the adjustable
decision variables y∗j , z

∗
ijk. The adjustable total costs cost1,τ , . . . , cost5,τ and costτ

are shown in Figure 4 and results are listed in Table 7. Last line reports the aggre-
gated cost costm, m = 1, . . . , 5 over 24 weeks. The results provide an important
information to the firm about the cost saving in case of SP or RO solution proce-
dures are implemented in practice over 6 months: SP approach allows a saving of
35.04% compared to RO-box, 22.10% compared to RO-ell (Ω = 2.75) and 20.77%
compared to the computationally tractable problem trSOCP. Nevertheless, RO
solutions are immunized over all realization of uncertain parameters allowing to
the company to keep the same contract for longer periods without the necessity
of a weekly negotiation and an adjustment of the plan when the booked vehicles
are not sufficient. Only in case the observations of demands and costs in τ + 1
are worse than their history up to τ , should the RO solution strategy also be
renegotiated. However this would be not the case when (d̂τ+1, b̂τ+1) corresponds
to an extremely bad scenario: the results are shown in Table 8 where we can see
the better performance of RO approaches with respect to SP allowing a saving of
3.32%.

On the other hand, the adjustable RO approachM5 is no longer implementable
since ϕτ

(
λ
(
d̄τ+1

))
> 0 and consequently cost5,τ = ∞ for τ = 24, . . . , 47.
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As expected the lowest cost is given by the wait-and see WS problem allowing
a saving of 38.19% compared to SP, since a full information on the realization of
vectors b and d is available.

Table 8 Optimal value of the objective function (89) with the adjustable strategy where
method M1, . . . ,M5 is used to determine the nonadjustable variables x∗

ijk
in case of worst

scenario (d̂τ+1, b̂τ+1) = (d̄j + γj · d̄j , b̄j +σ · d̄j), j ∈ D. Last column (costτ ) refers to the cost
of the problem where a full information on the realization of vectors b and d is available.

SP RO WS
cost1 cost2 cost3 cost4 cost5 cost

350430.70 339150.92 346527.34 352759.79 ∞ 198756.53

Total CPU time, in seconds, spent in solving the optimization problems Mm,
m = 1, . . . , 5 and (89)-(91) including the possible infeasibility detection of the
latter, are reported in Table 9. Results show the higher computational complexity
of the SP approachM1 and the adjustable approcahesM4 and M5 as compared to
the robust box constrained problem M2 or the robust box-ellipsoidal constrained
problem M3.

Table 9 Total CPU time, in seconds, spent in solving the optimization problems Mm, m =
1, . . . , 5. Last column (costτ ) refers to the CPU time of problem where a full information on
the realization of vectors b and d is available.

τ CPU1,τ CPU2,τ CPU3,τ CPU4,τ CPU5,τ CPUτ

24 8.8356 0.0312 0.2156 32.0156 32.0156 0.0156
25 9.1856 0.0312 0.1856 29.8856 29.8856 0.0156
26 8.1656 0.0312 0.2156 30.0156 30.0156 0.0156
27 9.8856 0.0312 0.2256 32.9856 32.9856 0.0156
28 10.0156 0.0312 0.2256 77.2756 77.2756 0.0156
29 10.9756 0.0312 0.1956 83.5056 83.5056 0.0156
30 11.8956 0.0312 0.2156 31.1456 31.1456 0.0156
31 11.1456 0.0312 0.1956 59.3956 59.3956 0.0156
32 10.7456 0.0312 0.2156 73.3956 73.3956 0.0156
33 12.1756 0.0312 0.1956 71.2056 71.2056 0.0156
34 11.4256 0.0312 0.2156 76.5256 76.5256 0.0156
35 10.8256 0.0312 0.2156 65.4056 65.4056 0.0156
36 11.5856 0.0312 0.1856 58.2256 58.2256 0.0156
37 12.3156 0.0312 0.1956 91.2756 91.2756 0.0156
38 11.3956 0.0312 0.2256 53.5856 53.5856 0.0156
39 10.7256 0.0312 0.2156 83.5456 83.5456 0.0156
40 11.1056 0.0312 0.2156 39.6156 39.6156 0.0156
41 10.9856 0.0312 0.2026 65.8256 65.8256 0.0156
42 10.9656 0.0312 0.2156 62.3156 62.3156 0.0156
43 11.2756 0.0312 0.2156 89.1056 89.1056 0.0156
44 11.2856 0.0312 0.2026 75.4256 75.4256 0.0156
45 11.6056 0.0312 0.2156 89.4656 89.4656 0.0156
46 11.3356 0.0312 0.2026 73.7656 73.765 0.0156
47 14.0056 0.0312 0.2156 104.4256 104.4256 0.0156

We finally validate the performance of the approaches M1, . . . ,M5 over 2000
simulations randomly generated by a Monte Carlo procedure. Uncertain buying
cost values are obtained by sampling from a uniform distribution in the interval[
b̄j − σ · b̄j , b̄j + σ · b̄j

]
, j ∈ D , with a given deviation level of σ = 20%. Uncertain

demand values are obtained by sampling from a uniform distribution in the interval[
d̄j − γj · d̄j , d̄j + γj · d̄j

]
, j ∈ D with γj = maxs=1,...,48 d̂

s
j − d̄j , j ∈ D (see Table

12). Total costs over 24 weeks over 2000 simulations are reported in Table 10 and
shown in Figure 5. The numerical results show that the SP approach allows a
saving of 19.88% compared to RO-box, 12.69% compared to RO-ell and 11.07%
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Fig. 5 Adjustable total costs cost1,τ , . . . , cost4,τ obtained by solving model (89)-(91) us-
ing the nonadjustable decision variables x∗

ijk
respectively given by methods M1, . . . ,M4, for

an increasing value of τ = 24, . . . , 47. Results are averaged over 2000 simulations randomly
generated by a Monte Carlo procedure.

compared to computationally tractable robust formulation trSOCP. Again, the
adjustable method M5 is not implementable.

Table 10 Total cost of optimization problems Mm, m = 1, . . . ,5 and (89)-(91) over 24 weeks
over 2000 simulations randomly generated by a Monte Carlo procedure.

SP RO
cost1 cost2 cost3 cost4 cost5
3526310.409 4227395.303 3974122.436 3915887.398 ∞

7 Conclusions

In this paper we have analyzed the effect of two modelling approaches, stochastic
programming (SP) and robust optimization (RO) for a supply planning prob-
lem under uncertainty. The problem has been formulated and solved both via a
two-stage stochastic programming and robust optimization models with different
uncertainty sets.

The goal of SP is to compute the minimum expected cost based on the specific
probability distribution of the uncertain parameters based on a set of scenarios.

For RO we have firstly considered static approaches with random parameters
belonging to box or ellipsoidal uncertainty sets in compliance with the data used
to generate scenarios for SP, and secondly dynamic approaches, via the concept of
adjustable robust counterpart ARC.



Supply planning under uncertainty 31

The choice of the box uncertainty set is preferable only if the feasibility of
all the constraints is highly required, but this certainty of constraint satisfaction
results in a higher cost. A less conservative outcome has been obtained with a
box-ellipsoidal uncertainty set that requires the solution of a second-order cone
program SOCP. The main advantage of the considered RO formulations, is that
they can be solved in polynomial time and theoretical guarantees for the quality
of the solution are provided, which is not the case with the aforementioned SP
formulation.

A scenario based framework methodology for a fair comparison between SP
and RO has been proposed, which can be applied to any optimization problem
affected by uncertainty.

The efficiency of the methodology has been illustrated for a supply planning
problem to optimize vehicle-renting and transportation activities involving uncer-
tainty on demands and buying costs for extra-vehicles. The methodology allows
to understand what is the cost saving of the SP approach when compared to the
RO approach and to quantify the value of a more conservative strategy which does
not require a negotiation with suppliers or third-party providers every week.

8 Annex

Table 11 Set of suppliers K and set of their plants Ok, k ∈ K .

Supplier k ∈ K Plant i ∈ Ok
suppl1 plant1

plant2
plant3
plant4
plant5
plant6

suppl2 plant7

suppl3 plant8

suppl4 plant4

suppl5 plant9

suppl6 plant10
plant6

suppl7 plant1

suppl8 plant1
plant2

suppl9 plant11

suppl10 plant12

suppl11 plant13

suppl12 plant14

suppl13 plant15

suppl14 plant12

suppl15 plant8

suppl16 plant16

suppl17 plant17

suppl18 plant9

suppl19 plant5
plant15

suppl20 plant5

suppl21 plant18

suppl22 plant19

suppl23 plant7

suppl24 plant12
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Table 12 List of destinations (cement factories) with relative expected emergency costs b̄j ,
maximum capacities which can be booked gj , j ∈ D and values of deviation for defining the
box constraints for demand (50) and buying cost (47).

Destination j ∈ D Expected emergency cost b̄j maximum booking capacity gj ρ1Gj ρ2Fj
dest1 72.61 422.95 226.28 9.70
dest2 70.58 2054.55 1237.99 11.17
dest3 68.01 1330.67 428.53 10.75
dest4 64.94 453.64 241.69 10.19
dest5 73.52 613.41 92.40 11.28
dest6 58.57 695.24 264.61 10.96
dest7 69.83 443.14 174.08 11.65
dest8 66.32 815.36 312.29 10.32
dest9 62.63 933.33 397.64 10.65
dest10 68.22 319.79 175.75 9.94
dest11 48.92 443.11 181.37 12.39
dest12 50.04 760.11 326.82 10.03
dest13 73.07 381.20 228.38 9.79
dest14 59.93 498.33 191.78 10.97
dest15 55.63 232411.75 564.67 10.94

Table 13 Minimum rk and average maximum vk requirement capacity of supplier k ∈ K .

Supplier k ∈ K rk vk
suppl1 1057.69 1500
suppl2 0 200
suppl3 0 200
suppl4 0 66
suppl5 0 200
suppl6 0 376.92
suppl7 0 100
suppl8 0 100
suppl9 0 150
suppl10 0 94
suppl11 0 280
suppl12 0 100
suppl13 0 100
suppl14 0 100
suppl15 0 100
suppl16 0 100
suppl17 0 100
suppl18 0 100
suppl19 0 100
suppl20 0 100
suppl21 0 100
suppl22 0 100
suppl23 0 50
suppl24 0 100

of the problem and the historical data provided. F. Maggioni and M. Bertocchi
acknowledge the 2014-2015 University of Bergamo grants. The work of Florian
Potra was supported in part by the National Science Foundation under Grant No.
DMS-1311923.
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