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Abstract

We investigate methods to solve the maximum-reliability stochastic network interdiction problem
(SNIP). In this problem, a defender interdicts arcs on a directed graph to minimize an attacker’s proba-
bility of undetected traversal through the network. The attacker’s origin and destination are unknown to
the defender and assumed to be random. SNIP can be formulated as a stochastic mixed-integer program
via a deterministic equivalent formulation (DEF). As the size of this DEF makes it impractical for solving
large instances, current approaches to solving SNIP rely on modifications of Benders decomposition. We
present two new approaches to solve SNIP. First, we introduce a new DEF that is significantly more com-
pact than the standard DEF. Second, we propose a new path-based formulation of SNIP. The number
of constraints required to define this formulation grows exponentially with the size of the network, but
the model can be solved via delayed constraint generation. We present valid inequalities for this path-
based formulation which are dependent on the structure of the interdicted arc probabilities. We propose
a branch-and-cut (BC) algorithm to solve this new SNIP formulation. Computational results demon-
strate that directly solving the more compact SNIP formulation and this BC algorithm both provide an
improvement over a state-of-the-art implementation of Benders decomposition for this problem.
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1 Introduction

Network interdiction problems feature a defender and an attacker with opposing goals. The defender first
modifies a network using a finite budget in an attempt to diminish the attacker’s ability to perform a task.
These modifications could include increasing arc traversal costs, reducing arc capacities, or removing arcs
altogether. The attacker then optimizes his or her objective with respect to the newly modified network.
Network interdiction problems have been studied in the context of nuclear weapons interdiction [17, 20],
disruption of nuclear weapons projects [6], interdiction of drug smuggling routes [24], and general critical
infrastructure defense [5].

In the maximum-reliability stochastic network interdiction problem (SNIP), formulated by Pan et al.
[20], an attacker seeks to maximize the probability of avoiding detection while traveling through a directed
network from an origin to a destination. There is a chance the attacker will be detected when traversing each
arc. A defender may expend resources to place sensors on certain arcs, thereby increasing the probability of
detecting an attacker on those arcs. The origin and destination of the attacker are unknown to the defender,
and are assumed to be random. The defender’s goal is to minimize the expected value of the attacker’s
maximum-reliability path through the network over all origin–destination scenarios. This can be interpreted
as minimizing the overall probability of the attacker successfully attacking a critical infrastructure target or
smuggling contraband to a target location undetected.
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Morton et al. [17] present a deterministic equivalent formulation (DEF) of SNIP derived from the dual
of the attacker’s optimization problem. Pan and Morton [21] improve the DEF by incorporating the values
of uninterdicted maximum-reliability paths into the model constraints. They also derive valid inequalities
to strengthen the linear programming (LP) relaxation of the Benders master problem before initiating the
Benders algorithm. Bodur et al. [4] investigate the strength of integrality-based cuts in conjunction with
Benders cuts for stochastic integer programs with continuous recourse, and use test instances of the SNIP
problem to demonstrate the value of integrality-based cuts within Benders decomposition.

We propose two new approaches to solve SNIP. First, we present a more compact DEF. This formula-
tion combines constraints of the DEF for scenarios ending at the same destination, significantly reducing
the number of constraints and variables in the DEF. Second, we present a new formulation of SNIP that
includes constraints for every origin–destination path. Although the formulation size grows exponentially
with the number of arcs in the network, the model can be solved with delayed constrained generation. A
path’s reliability function is a supermodular set function representable with a strictly convex and decreasing
function. We propose a branch-and-cut algorithm that exploits this structure for each path through the
network to derive valid inequalities. We consider three cases for the probabilities of traversing interdicted
arcs. Two of these cases use inequalities derived by Ahmed and Atamtürk [1] for the problem of maximizing
a submodular utility function having similar structure.

We conduct a computational study of the two proposed solution methods: directly solving the compact
DEF, and solving the path-based formulation with a branch-and-cut algorithm. We find the new methods
have comparable performance, and in particular they both outperform directly solving the existing DEF and
solving the existing DEF with a state-of-the art Benders branch-and-cut method. Although the compact
DEF is much easier to implement than the path-based branch-and-cut algorithm, it cannot be extended
to cases where the arc evasion probabilities depend on the origin/destination scenario. In contrast, the
path-based decomposition can be extended to this case.

The maximum-reliability network interdiction problem is closely related to the shortest-path variant, in
which the network defender attempts to maximize the length of the attacker’s shortest path from origin
to destination. When the probabilities of traversing interdicted arcs in a maximum-reliability problem are
all strictly positive and the attacker’s origin–destination pair is known, the problem is equivalent, via a
logarithmic transformation, to a shortest-path network interdiction problem [2, 16]. This transformation,
however, is not valid when there exists an arc that reduces the attacker’s probability of successful traversal to
zero when it is interdicted by the defender. A deterministic version of the shortest-path network interdiction
problem was initially explored by Fulkerson and Harding [10], and later by Golden [11].

An alternative interdiction problem mostly unrelated to our work is the maximum-flow network inter-
diction problem, introduced by Wollmer [23]. In this problem, a defender changes arc capacities in order
to minimize the attacker’s maximum flow. Deterministic and stochastic versions of this problem have been
studied by many authors, e.g., [7, 12, 13, 24].

In Section 2, we review relevant existing approaches to solving SNIP. We propose a compact DEF of SNIP
in Section 3. In Section 4, we propose a path-based formulation for SNIP and describe valid inequalities for
the relevant mixed-integer set. We describe our computational experiments and results in Section 5.

2 Problem statement and existing results

Let N and A denote the set of nodes and the set of arcs of a directed network. Let D ⊆ A denote the set
of arcs available for interdiction. In the first stage of SNIP, the defender may choose to install sensors on
a subset of the interdictable arcs. The cost to install a sensor on arc a ∈ D is ca > 0. The defender is
constrained by installation budget b > 0. The probability of the attacker’s undetected traversal through arc
a ∈ A without a sensor installed is ra ∈ (0, 1]. When a sensor is installed on arc a ∈ D, this probability
reduces to qa ∈ [0, ra). The events of the attacker successfully traversing arcs are mutually independent.
The attacker’s origin and destination are unknown to the defender and assumed to be random. Let Ω be the
finite set of the attacker’s possible origin–destination pairs, where ω = (s, t) ∈ Ω is an origin–destination pair
that occurs with probability pω > 0 (

∑

ω∈Ω pω = 1). We assume a path exists from s to t for all (s, t) ∈ Ω. If
not, the defender can discard that scenario from consideration. In the second stage of SNIP, the attacker’s
origin and destination are realized. The attacker traverses the network from the origin to the corresponding
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destination via the maximum-reliability path given the defender’s set of interdicted arcs.
For s, t ∈ N , a simple s-t path P is a set of arcs, say {(i0, i1), (i1, i2), . . . , (i|P |−1, i|P |)}, where i0 = s,

i|P | = t, and the nodes i0, i1, i2, . . . , i|P | ∈ N are all distinct. Let Pst be the set of all simple paths from
s ∈ N to t ∈ N . Let S ⊆ D be the set of interdicted arcs, as chosen by the defender. The function

hP (S) :=

(

∏

a∈P

ra

)(

∏

a∈P∩S

qa
ra

)

calculates the probability of the attacker traversing the set of arcs P undetected given the interdicted arcs
S.

In the stochastic network interdiction problem (SNIP), the defender selects arcs to interdict to minimize
the expected value of the attacker’s maximum-reliability path, subject to the budget restriction on the
selected arcs. SNIP can be formulated as

min
S

∑

ω=(s,t)∈Ω

pω max{hP (S) : P ∈ Pst}

s.t.
∑

a∈S

ca ≤ b.
(1)

2.1 Deterministic equivalent formulation

A DEF of SNIP can be obtained by using first-stage binary variables xa to represent whether the defender
installs a sensor on arc a ∈ D. That is, xa = 1 if the defender elects to install a sensor on arc a ∈ D, and
xa = 0 if no sensor is installed on that arc. Second-stage continuous variables πω

i represent the maximum
probability of the attacker traveling undetected from i ∈ N to t in scenario ω = (s, t) ∈ Ω.

The formulation uses second-stage constraints to calculate the π variables for each scenario ω ∈ Ω. The
π variables are calculated using an LP formulation of the dynamic programming (DP) optimality conditions
for calculating a maximum-reliability path. Using the convention qa := ra and xa := 0 for all a ∈ A \ D,
each πω

i is calculated as

πω
i = max

a=(i,j)∈A

{

πω
j [ra + (qa − ra)xa]

}

, i ∈ N, ω ∈ Ω. (2)

The maximum probability of the attacker reaching t undetected from node i ∈ N is the maximum over all
forward adjacent nodes j ∈ N of πω

j , multiplied by ra if the arc is not interdicted, or qa if it is interdicted.
The optimality conditions (2) imply the set of inequalities

πω
i ≥ π

ω
j [ra + (qa − ra)xa] , a = (i, j) ∈ A, ω ∈ Ω. (3)

The inequalities (3) are nonlinear. Pan and Morton [21] derive the following DEF of SNIP that uses a linear
reformulation of these inequalities:

min
x,π

∑

ω=(s,t)∈Ω

pωπ
ω
s (4a)

s.t.
∑

a∈D

caxa ≤ b (4b)

πω
i − raπ

ω
j ≥ 0, a = (i, j) ∈ A \D, ω ∈ Ω (4c)

πω
i − raπ

ω
j ≥ −(ra − qa)u

ω
j xa, a = (i, j) ∈ D, ω ∈ Ω (4d)

πω
i − qaπ

ω
j ≥ 0, a = (i, j) ∈ D, ω ∈ Ω (4e)

πω
t = 1, ω = (s, t) ∈ Ω (4f)

xa ∈ {0, 1}, a ∈ D. (4g)

The objective function (4a) minimizes the expected value of the attacker’s maximum-reliability path.
For each scenario ω = (s, t) ∈ Ω, the parameter uωj represents the value of the maximum-reliability path
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from j ∈ N to t when no sensors are installed, and hence is an upper bound on πω
j . These parameters

are calculated in a model preprocessing step. The linear constraints (4c)–(4e) formulate the nonlinear DP
inequalities (3). Constraints (4c) enforce πω

i ≥ raπ
ω
j for all a = (i, j) ∈ A \ D, ω ∈ Ω. For ω ∈ Ω and

a = (i, j) ∈ D, if xa = 0, then (4d) becomes πω
i ≥ raπ

ω
j , which dominates (4e). On the other hand, if

xa = 1, then (4e) implies πω
i − raπ

ω
j ≥ −(ra − qa)u

ω
j , (4e) dominates (4d). Thus, in either case (4c)–(4e)

are equivalent to (3). Since the variables πω
s , ω = (s, t) ∈ Ω, have positive coefficients in the objective, the

equations (2) will be satisfied at an extreme-point optimal solution.

2.2 Benders decomposition

Directly solving the DEF (4) with a mixed-integer programming solver may be too time-consuming due to
its large size. Benders decomposition can be used to decompose large problems like SNIP. After introducing
the SNIP formulation, Pan and Morton [21] outline a Benders decomposition algorithm for the SNIP DEF
(4). For a fixed vector x ∈ [0, 1]|D| satisfying

∑

a∈D caxa ≤ b, the πω
j variables in (4) can be obtained by

solving

Est(x) := min
π

πs (5a)

s.t. πi − raπj ≥ 0, a = (i, j) ∈ A \D (5b)

πi − raπj ≥ −(ra − qa)u
ω
j xa, a = (i, j) ∈ D (5c)

πi − qaπj ≥ 0, a = (i, j) ∈ D (5d)

πt = 1 (5e)

for each scenario ω = (s, t) ∈ Ω. The dual of (5) is

max
y,z

yt −
∑

a=(i,j)∈D

(ra − qa)u
ω
j yijxa

s.t.
∑

(s,j)∈A

(ysj + zsj) = 1

∑

(i,j)∈A

(yij + zij)−
∑

a=(j,i)∈A

(rayji + qazji) = 0, i ∈ N \ {s, t}

yt −
∑

a=(j,t)∈A

(rayjt + qazjt) = 0

yij , zij ≥ 0, (i, j) ∈ A

yt ≥ 0.

(6)

Dual variables yij correspond to DEF constraints (5b) and (5c), zij is the dual variable for constraints (5d),
and yt is the dual variable for constraint (5e). We fix zij := 0 for all (i, j) ∈ A \D, as constraint (5d) only
applies to arcs D.

The Benders master problem is as follows:

min
x,θ

∑

ω∈Ω

pωθ
ω (7a)

s.t.
∑

a∈D

caxa ≤ b (7b)

θω ≥ ȳωt −
∑

a=(i,j)∈D

(ra − qa)u
ω
j ȳ

ω
ijxa, (ȳω, z̄ω) ∈ Kω, ω = (s, t) ∈ Ω (7c)

θω ≥ 0, ω ∈ Ω (7d)

xa ∈ {0, 1}, a ∈ D. (7e)

The Benders algorithm begins by solving the master problem with no constraints of the form (7c) to obtain
a candidate solution (x̄, θ̄). At iteration k of the Benders cutting plane algorithm, a dual subproblem (6)
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is solved for each scenario using the candidate solution (x̄, θ̄) to find a dual-feasible extreme point (ȳω, z̄ω).
If a cut in the form of constraint (7c) cuts off the candidate solution θ̄ω , this cut is added to the Benders
master problem by including the point in the set Kω. The updated master problem is solved to generate
a new candidate solution (x̄, θ̄). This process is repeated until none of the scenario cuts constructed at
an iteration of the algorithm cut off the candidate solution obtained by solving the master problem at the
previous iteration.

Benders decomposition can also be used in a branch-and-cut algorithm. The integrality constraint (7e)
is relaxed and enforced within the branch-and-bound tree. At each integer-feasible solution (x̄, θ̄) obtained
at a node in the master problem branch-and-bound tree, a dual subproblem (6) is solved for each scenario.
Violated cuts are added to the LP formulation of that node and it is re-solved. When no violated inequalities
are found for an integer-feasible solution, the upper bound may be updated and the node pruned.

Pan and Morton [21] enhance the Benders branch-and-cut algorithm by using optimal solutions to scenario
subproblems from previous iterations to create step inequalities for the relaxed Benders master problem.
These additional inequalities are added to the formulation as cuts to tighten the LP relaxation of the master
problem. This leads to a smaller branch-and-bound tree, which in turn reduces the time spent solving
mixed-integer programs.

The general-purpose Benders approach tested by Bodur et al. [4] is very effective in solving SNIP. A
key implementation detail of this approach is to first solve the relaxed Benders master problem, obtained
by removing the integrality restriction on x. Once no more Benders inequalities can be added to the LP
relaxation of the master problem, the integrality restriction on x is restored, and the model, including the
identified Benders cuts, is passed to a mixed-integer programming solver to begin the Benders branch-and-
cut algorithm. The solver adds its own general-purpose integrality-based cuts to the formulation using the
initial set of Benders cuts. This results in a stronger LP relaxation bound, and reduces the size of the
branch-and-bound tree.

Bodur et al. [4] employed a smaller gap tolerance as a stopping criterion (10−3) for their Benders branch-
and-cut implementation than Pan and Morton [21] used in their experiments (10−2). We implemented the
Benders branch-and-cut algorithm as in [4], and tested it with a relative optimality gap tolerance of 10−2

to compare the results to those published in [21]. With these matching tolerances, the Benders algorithm
ran 3–4 times faster than Pan and Morton’s algorithm. Although the difference in hardware used in these
experiments makes it impossible to directly compare the performance of these methods, we conclude that
the implementation of Benders branch-and-cut described in [4] is currently among the most efficient ways
to solve instances of SNIP, and hence we compare against this approach in our numerical experiments.

3 Compact deterministic equivalent formulation

For scenarios sharing a destination node, the DP optimality conditions (2) for SNIP are identical. Hence, the
DEF (4) contains redundancies by repeating the LP formulation of these optimality conditions, constraints
(4c)–(4f), for each destination node. Motivated by this observation, we present a compact DEF of SNIP
that groups together second-stage constraints for scenarios with a common destination. Let T be the set of
unique destination nodes: T = {t ∈ N : (s, t) ∈ Ω for some s ∈ N}. Second-stage variables πt

j now represent
the probability of the attacker successfully traveling from node j ∈ N to destination t ∈ T in any scenario
having destination t. We obtain the following new DEF for SNIP:

min
x,π

∑

ω=(s,t)∈Ω

pωπ
t
s (8a)

s.t.
∑

a∈D

caxa ≤ b (8b)

πt
i − raπ

t
j ≥ 0, a = (i, j) ∈ A \D, t ∈ T (8c)

πt
i − raπ

t
j ≥ −(ra − qa)u

t
jxa, a = (i, j) ∈ D, t ∈ T (8d)

πt
i − qaπ

t
j ≥ 0, a = (i, j) ∈ D, t ∈ T (8e)

πt
t = 1, t ∈ T (8f)

xa ∈ {0, 1}, a ∈ D. (8g)
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Parameter utj is the value of the attacker’s maximum-reliability path from j ∈ N to t ∈ T when no sensors
are installed. By definition, utj = uωj for all ω = (s, t) ∈ Ω and j ∈ N . The objective function (8a) weights
each πt

s variable by its respective scenario probability. The summation of these terms represents the overall
probability of a successful attack, which the defender seeks to minimize.

In some SNIP formulations (e.g., [8]), the evasion probabilities ra and qa depend on the scenario. If these
probabilities depend on both s and t for each (s, t) ∈ Ω, the compact DEF (8) is not valid. However, if ra
and qa depend only on t, (8) remains valid. If the evasion probabilities depend only on s, we can derive
a compact formulation of (4) by considering a network with all arc directions and origin–destination pairs
reversed.

Proposition 1. For any feasible solution of the LP relaxation of (4), there exists a feasible solution of the

LP relaxation of (8) of equal or lesser objective value, and vice versa.

Proof. Let (x̄, π̄) be a solution to the LP relaxation of (4). For t ∈ T , let S(t) := {s ∈ N : (s, t) ∈ Ω}. By
(4c)–(4f), it holds that

min
s∈S(t)

π̄st
i ≥ min

s∈S(t)
raπ̄

st
j , a = (i, j) ∈ A \D, t ∈ T

min
s∈S(t)

π̄st
i ≥ min

s∈S(t)
[raπ̄

st
j − (ra − qa)u

t
j x̄a], a = (i, j) ∈ D, t ∈ T

min
s∈S(t)

π̄st
i ≥ min

s∈S(t)
qaπ̄

st
j , a = (i, j) ∈ D, t ∈ T

min
s∈S(t)

π̄st
t = 1, t ∈ T.

Let π̂t
i := mins∈S(t) π̄

st
i for all t ∈ T, i ∈ N . Then, because mins∈S(t) raπ̄

st
j = ra mins∈S(t) π̄

st
j , mins∈S(t) qaπ̄

st
j =

qa mins∈S(t) π̄
st
j , and

min
s∈S(t)

[raπ̄
st
j − (ra − qa)u

t
j x̄a] = ra min

s∈S(t)
π̄st
j − (ra − qa)u

t
j x̄a,

(x̄, π̂) is feasible to the LP relaxation of (8). (x̄, π̂) has objective value

∑

ω=(s,t)∈Ω

pωπ̂
t
s =

∑

ω=(s,t)∈Ω

pω min
s′∈S(t)

π̄s′t
s ≤

∑

ω=(s,t)∈Ω

pωπ̄
st
s .

Now, let (x̂, π̂) be a solution to the LP relaxation of (8). Let π̄ω
i := π̂t

i for all i ∈ N and ω = (s, t) ∈ Ω.
(x̂, π̄) is a solution to (4) with objective value

∑

ω=(s,t)∈Ω pωπ̄
ω
s =

∑

ω=(s,t)∈Ω pωπ̂
t
s.

It follows from Proposition 1 that the optimal objective values of the LP relaxations of (4) and (8) are
equal, and also the optimal objective values of the original problems (4) and (8) are equal.

A Benders algorithm can be applied to the compact formulation by introducing variables θt to represent
the probability-weighted sum of maximum-reliability path values for scenarios ending at node t ∈ T . We
experimented with a Benders decomposition on the DEF (8) using the Benders algorithm of Bodur et al.
[4]. We found that the Benders algorithm performed much worse on this formulation than on the DEF
(4). The reason for this poor performance is that the root relaxation obtained after the mixed-integer
programming solver added its general-purpose cuts was much weaker when using a Benders reformulation
of (8), as compared to the Benders reformulation (7). This is consistent with the results of [4], which
indicates that the integrality-based cuts derived in the formulation (7) can be stronger than those derived
in a “projected” Benders master problem that only uses θt variables.

We also observed the Benders decomposition on the compact DEF (8) performed worse than directly
solving (8). Overall, there does not appear to be any advantage to implementing a Benders decomposition
for the compact DEF.

4 Path-based formulation and cuts

We now derive a new mixed-integer linear programming formulation of SNIP based on the path-based
formulation (1). With the introduction of binary variables xa to denote whether network arc a ∈ D is
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interdicted, we map the set function hP to a vector function h̄P . In particular, for S ⊆ D we let χS ∈ {0, 1}|D|

be the characteristic vector of the set S: χS
a = 1 if a ∈ S, and 0 otherwise. Then we define h̄P : {0, 1}|D| → R+

as

h̄P (x) :=

[

∏

a∈P

ra

][

∏

a∈P∩D

(

qa
ra

)xa

]

so that hP (S) = h̄P (χ
S) for S ⊆ D.

Then model (1) can be formulated as

min
x,π

∑

ω=(s,t)∈Ω

pωπ
t
s

s.t.
∑

a∈D

caxa ≤ b

πt
s ≥ max{h̄P (x) : P ∈ Pst}, (s, t) ∈ Ω

xa ∈ {0, 1}, a ∈ D.

(9)

In contrast to the compact DEF (8), formulation (9) can be extended to the case where ra and qa depend
on the scenario.

We use the special structure of hP for each P ∈ Pst to build a linear formulation of model (9).

Definition 1 (E.g., [22]). h : 2N → R is a supermodular set function over a ground set N if h(S1 ∪ {a})−
h(S1) ≤ h(S2 ∪ {a})− h(S2) for all S1 ⊆ S2 ⊆ N and a ∈ N \ S2.

Proposition 2. hP (·) is a supermodular set function.

Proof. Let S1, S2 ⊆ D with S1 ⊆ S2. Let a
′ ∈ D \ S2. The result is immediate if a′ /∈ P . Therefore, assume

a′ ∈ P to obtain

hP (S1 ∪ {a
′})− hP (S1) =

(

∏

a∈P

ra

)(

∏

a∈P∩S1

qa
ra

)

(

qa′

ra′

− 1

)

≤

(

∏

a∈P

ra

)(

∏

a∈P∩S2

qa
ra

)

(

qa′

ra′

− 1

)

= hP (S2 ∪ {a
′})− hP (S2).

The maximum of a set of supermodular functions is not in general a supermodular function, so maxP∈Pst
hP (S)

is not necessarily supermodular. To exploit the supermodular structure for each individual path, we consider
an equivalent formulation of (9) that contains an inequality for every scenario (s, t) ∈ Ω and every path from
s to t:

min
x,π

∑

ω=(s,t)∈Ω

pωπ
t
s (10a)

s.t.
∑

a∈D

caxa ≤ b (10b)

πt
s ≥ h̄P (x), P ∈ Pst, (s, t) ∈ Ω (10c)

xa ∈ {0, 1}, a ∈ D. (10d)

Each second-stage constraint includes a supermodular function on the right-hand side.
Consider the mixed-integer feasible region of (10) for a fixed scenario (s, t) ∈ Ω and path P ∈ Pst,

without constraint (10b):

HP :=
{

(x, π) ∈ {0, 1}|D| × R : π ≥ h̄P (x)
}

. (11)
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We are interested in a linear formulation of HP . Let ρ
a
P (S) := hP (S∪{a})−hP (S) be the marginal difference

function of the set function hP with respect to arc a ∈ D. Nemhauser et al. [19] provide an exponential
family of linear inequalities that can be used to define HP . Applied to HP , these inequalities are

π ≥ hP (S)−
∑

a∈S

ρaP (D \ {a})(1− xa) +
∑

a∈D\S

ρaP (S)xa, S ⊆ D (12)

π ≥ hP (S)−
∑

a∈S

ρaP (S \ {a})(1− xa) +
∑

a∈D\S

ρaP (∅)xa, S ⊆ D. (13)

Only one of the sets of inequalities (12) and (13) is required to define HP [18]. Using these inequalities, the
feasible region of HP can be formulated as

HP :=
{

(x, π) ∈ {0, 1}|D| × R : (12) or (13)
}

.

The number of inequalities required to define model (10) in this manner grows exponentially with the
number of arcs in a path, and the number of s–t paths grows exponentially with the size of the network.
Enumerating all s–t paths for scenario (s, t) ∈ Ω is impractical. Nevertheless, (10) lends itself to a delayed
constraint generation algorithm. Instead of adding inequalities for all possible paths, we add violated valid
inequalities as needed (see Section 4.4).

To demonstrate the potential of this formulation, we next show that if we could obtain the convex hull of
each set HP , we would have a relaxation that is at least as strong as the LP relaxation of the DEF (4) (and
(8)). Although we may not be able to explicitly represent conv(HP ), this result implies that the path-based
formulation has the potential to yield a better LP relaxation if we can identify strong valid inequalities for
conv(HP ).

Theorem 1. Consider the following LP relaxation of (10):

min
x,π

∑

ω=(s,t)∈Ω

pωπ
t
s

s.t.
∑

a∈D

caxa ≤ b

(x, πt
s) ∈ conv(HP ), P ∈ Pst, ω = (s, t) ∈ Ω

xa ∈ [0, 1], a ∈ D.

(14)

For all (x̄, π̄) feasible to (14), there exists π̂ such that (x̄, π̂) is feasible to (4) and has objective value in (4)
not greater than the objective value of (x̄, π̄) in (14).

The above theorem is a consequence of Lemma 1. For a fixed (s, t) ∈ Ω and x ∈ [0, 1]|D| satisfying
∑

a∈D caxa ≤ b, define

Ost(x) := min
πs

πs

s.t. (x, πs) ∈ conv(HP ), P ∈ Pst.

Recall that Est(x) is defined in (5).

Lemma 1. Let ω = (s, t) ∈ Ω and x̄ ∈ [0, 1]|D| satisfy
∑

a∈D cax̄a ≤ b. Then,

Est(x̄) ≤ Ost(x̄).

Proof. The vector of all ones in R
|N | is feasible to (5). A feasible solution to (6) can be constructed as

follows. Let P = {(i0, i1), (i1, i2), . . . , (i|P |−1, i|P |)} ∈ Pst be a simple s–t path, where i0 = s and i|P | = t.
Let ȳi0,i1 = 1. For k = 1, . . . , |P |−1, let ȳik,ik+1

= rik−1,ik ȳik−1,ik . Let ȳij = 0 for all (i, j) ∈ A\P , and z̄ij = 0
for all (i, j) ∈ A. Then (ȳ, z̄) is feasible to (6). Because the feasible regions of (5) and (6) are nonempty ,
both problems have an optimal solution. Let π∗ be an optimal solution to (5), with corresponding optimal
dual solution (y∗, z∗).
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Assume first there exists an s–t path P ∗ such that one of the constraints (5b)–(5d) is satisfied at equality
for all a ∈ P ∗. Thus,

π∗
i = max

{

raπ
∗
j − (ra − qa)u

ω
j x̄a, qaπ

∗
j

}

for all a = (i, j) ∈ P ∗. For a fixed path P ∈ Pst, let

GLP (P ) :=











































(x, π) ∈ [0, 1]|D| × R
|N | :

πi − raπj ≥ 0, a = (i, j) ∈ P \D

πi − raπj ≥ −(ra − qa)u
ω
j xa, a = (i, j) ∈ P ∩D

πi − qaπj ≥ 0, a = (i, j) ∈ P ∩D

πt = 1











































.

Let GIP (P ) := {(x, π) ∈ GLP (P ) : x ∈ {0, 1}|D|}. Removing constraints for arcs a ∈ A\P ∗ from the feasible
region of (5) does not change the problem’s optimal solution. Thus,

Est(x̄) = min
π
{πs : (x̄, π) ∈ G

LP (P ∗)}

= min
πs

{πs : (x̄, πs) ∈ proj(x,πs)

(

GLP (P ∗)
)

}.

For any P ∈ Pst, G
IP (P ) is a formulation of {(x, πs) : πs ≥ h̄P (x)}. That is, πs ≥ h̄P (x) for any (x, π) ∈

GIP (P ), and conversely, for any x ∈ {0, 1}|D| and θ satisfying θ ≥ h̄P (x), there exists some π ∈ R
|N | such

that πs = θ and (x, π) ∈ GIP (P ). Thus,

proj(x,πs)G
IP (P ∗) = HP∗

=⇒ proj(x,πs)G
LP (P ∗) ⊇ conv(HP∗)

=⇒ Est(x̄) ≤ min{πs : (x̄, πs) ∈ conv(HP∗)} ≤ Ost(x̄).

Finally, assume there is no s–t path P ∗ ∈ Pst such that one of the constraints (5b)–(5d) is satisfied at
equality for all a ∈ P ∗. Consider any s–t path P ∈ Pst. By assumption, there exists an arc (i, j) ∈ P such
that constraints (5b)–(5d) are not binding. By complementary slackness, the corresponding dual optimal y∗ij
and z∗ij are 0. Then the flow of any path through the dual network of (6) is 0, and it must be the case that
Est(x̄) = 0. Because Ost(x) ≥ 0, we have Est(x̄) ≤ Ost(x̄).

Proof of Theorem 1. From Lemma 1, we have

∑

ω=(s,t)∈Ω

pωπ̄
ω
s ≥

∑

ω=(s,t)∈Ω

pωO
st(x̄) ≥

∑

ω=(s,t)∈Ω

pωE
st(x̄).

This implies there exists π̂ ∈ R
|N |×|Ω| such that (x̄, π̂) is feasible to (4) with objective value

∑

ω=(s,t)∈Ω pωπ̂
ω
s ≤

∑

ω=(s,t)∈Ω pωπ̄
ω
s .

Computational experiments by Ahmed and Atamtürk [1] show that the inequalities (12) and (13) may
provide a poor approximation of the set conv(HP ). Thus, in the following sections, we describe additional
inequalities that can used to approximate conv(HP ) for all P ∈ Pst. We consider three different classes of
inequalities, based on the traversal probabilities of interdicted arcs.

4.1 Inequalities for the q > 0 case

In this section, we assume qa > 0 for all a ∈ D. For a ground set N , Ahmed and Atamtürk [1] study valid
inequalities for the mixed-integer set

F =
{

(x,w) ∈ {0, 1}|N | × R : w ≤ f(
∑

i∈N αixi + β)
}

, (15)

9



where α ∈ R
|N |
+ , β ∈ R, and f is a strictly concave, increasing, differentiable function. They derive valid

inequalities for the set F and prove that they dominate the submodular inequality equivalents of (12) and
(13) applied to F . These improved inequalities are shown empirically to yield significantly better relaxations
than (12) and (13).

We translate the set HP to match the structure of F . Let N := D, w := −π, f(u) := − exp(−u),
β := −

∑

a∈P log(ra). For a ∈ D, let

αa :=

{

log(ra)− log(qa) if a ∈ P ∩D,

0 otherwise.

Because log(ra) > log(qa) for all a ∈ D, we have α ∈ R
|D|
+ . With these definitions, HP is expressed in the

form of F .
We now describe how to calculate valid inequalities for HP using the results of Ahmed and Atamtürk

[1]. Consider a set of interdicted arcs S ⊆ D. Without loss of generality, let D \ S := {1, 2, . . . ,m} be

indexed such that α1 ≥ α2 ≥ . . . ≥ αm, and let Ak =
∑k

a=1 αa for k ∈ D \ S, with A0 = 0. Also define
α(S) =

∑

a∈S αa. The subadditive lifting inequality

π ≥ hP (S)−
∑

a∈S

φ(−αa)(1 − xa) +
∑

a∈D\S

ρaP (S)xa (16)

is valid for HP for any set of interdicted arcs S ⊆ D, where φ is calculated as follows [1]. Consider the
function ζ : R− → R, calculated according to Algorithm 1. For a provided value of η, Algorithm 1 also

Algorithm 1: Computing ζ(η) and k given η

1 k← 0;
2 while k < m and Ak + η < 0 do

3 k ← k + 1;
4 end

5 ζ(η)← − exp(−α(S)−Ak − β − η) +
∑k

a=1 ρ
a
P (S) + exp(−α(S)− β);

returns a specific k. With this k, let φ : R− → R be defined as

φ(η) :=

{

ζ(µk −Ak−1) + ρkP (S)
bk(η)
αk

if µk −Ak ≤ η ≤ µk −Ak−1,

ζ(η) otherwise,

where µk = − log(−ρkP (S)/αk)−α(S)−β and bk(η) = µk−Ak−1− η. Inequality (16) dominates the general
supermodular inequality (12) [1].

We now construct Ahmed and Atamtürk’s inequalities that dominate the supermodular inequalities (13).

Let S = {1, 2, . . . , n} be indexed such that α1 ≥ α2 ≥ . . . ≥ αn. Also, let Ak =
∑k

a=1 αa for k ∈ S, with
A0 = 0. We define the function ξ : R+ → R to be calculated according to Algorithm 2.

Algorithm 2: Computing ξ(η) and k given η

1 k← 0;
2 while k < n and Ak < η do

3 k ← k + 1;
4 end

5 ξ(η)← − exp(−α(S) +Ak − β − η)−
∑k

a=1 ρ
a
P (S \ {a}) + exp(−α(S)− β);

Algorithm 2 also calculates a k from the given η. With this k, let

ψ(η) :=

{

ξ(Ak − νk) + ρkP (S \ {k})
bk(η)
αk

if Ak−1 − νk ≤ η ≤ Ak − νk,

ξ(η) otherwise,
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where νk = α(S) + log(−ρkP (S \ {k})/αk) − β and bk(η) = Ak − νk − η for every k ∈ {1, 2, . . . , r}. For any
S ⊆ D, the inequality

π ≥ hP (S)−
∑

a∈S

ρaP (S \ {a})(1− xa)−
∑

a∈D\S

ψ(αa)xa (17)

is valid for HP . For all a ∈ D \ P , the coefficients in inequalities (16) and (17) are 0.
We next discuss separation of the inequalities (16) and (17) for use in a delayed constraint generation

framework. Given a point (x̄, π̄) ∈ [0, 1]|D| × R, we want to determine if there is a set S such that (x̄, π̄)
violates either (16) or (17). For an integral vector x̄, we construct the set S = {a ∈ D : x̄a = 1}. If
π̄ < hP (S), then inequalities (16) and (17) are violated and can be added to the formulation of HP to cut
off (x̄, π̄).

If x̄ is not integral, we use Ahmed and Atamtürk’s scheme to heuristically construct a set S using x̄. This
set is used in inequalities (16) and (17) to cut off (x̄, π̄), if possible. We first consider constructing a set S
to apply inequality (16). We first solve the following nonlinear program:

max
z∈[0,1]|D|

−π̄ + 1

− exp(−
∑

a∈D αaza − β) + 1
+
∑

a∈D

ρaP (∅)

hP (∅) + 1
x̄a(1− za). (18)

Given a solution z̄, we greedily round the fractional components in z̄ that result in the least reduction in
objective value when rounded to either 0 or 1. Given the rounded solution, say z̄′, we set S = {a ∈ D : z̄′a =
1}. If π < hP (S) −

∑

a∈S φ(−αa)(1 − x̄a) +
∑

a∈D\S ρ
a
P (S)x̄a, valid inequality (16) can be added to the

relaxation to cut off (x̄, π̄).
We solve a related nonlinear program to find a set S to apply inequality (17):

max
z∈[0,1]|D|

−π̄ + 1

− exp(−
∑

a∈D αaza − β) + 1
−
∑

a∈D

ρaP (∅)

hP ({a}) + 1
(1− x̄a)za. (19)

We again greedily round the solution of (18) to obtain the characteristic vector of S. If π < hP (S) −
∑

a∈S ρ
a
P (S \ {a})(1− x̄a)−

∑

a∈D\S ψ(αa)x̄a, inequality (17) cuts off (x̄, π̄).

Yu and Ahmed [25] consider deriving stronger valid inequalities by imposing a knapsack constraint on
the set F given in equation (15). In particular,

F =
{

(x,w) ∈ {0, 1}|N | × R : w ≤ f(
∑

i∈N αixi + β),
∑

i∈N xi ≤ k
}

,

where k > 0. Although our test instances include this structure, we do not explore applying their results
here. In particular, when interdicting arcs along an individual path, the knapsack constraint is only relevant
if the number of arcs in the path under consideration is larger than the defender’s budget.

4.2 Inequalities for q = 0 case

When qa = 0 for all a ∈ D, log(qa) is no longer defined, and the results of Section 4.1 do not apply. We
consider a different class of inequalities for this special case of q.

If all interdicted arc probabilities are 0, h̄P (x) simply reduces to

h̄P (x) =

[

∏

a∈P

ra

][

∏

a∈P∩D

(1 − xa)

]

.

If any arc a ∈ P ∩D is interdicted, h̄P (x) equals 0. By setting π̂ := π/
∏

a∈P ra, our relevant mixed-integer
linear set is

HP =
{

(x, π̂) ∈ {0, 1}|D| × R : π̂ ≥
∏

a∈P∩D(1− xa)
}

.

We are again interested in valid inequalities for HP . The inequalities

π̂ ≥ 1−
∑

a∈P∩D

xa (20)

and π̂ ≥ 0 are valid for HP [9] and define its convex hull [3].
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4.3 Inequalities for the mixed case

We now consider the case where qa > 0 for some, but not all, a ∈ D. Let P+ := {a ∈ P ∩D : qa > 0} and
P0 := {a ∈ P ∩D : qa = 0}. For any U ⊆ A, let r(U) :=

∏

a∈U ra. We write h̄P (x) as

h̄P (x) = r(P \D)h̄P+
(x)h̄P0

(x). (21)

We introduce two new variables, π+ ∈ [0, r(P+)] and π0 ∈ [0, r(P0)] to represent h̄P+
(x) and h̄P0

(x), respec-
tively, and arrive at the formulation:

π ≥ r(P \D)π+π0 (22)

π+ ≥ h̄P+
(x) (23)

π0 ≥ h̄P0
(x). (24)

Our approach is to use results from Sections 4.1 and 4.2 to derive valid inequalities for (23) and (24),
respectively, and relax the nonconvex constraint (22) using the McCormick inequalities [15], which in this
case reduce to

π ≥ r(P \D) [r(P0)π+ − r(P+)(r(P0)− π0)] (25)

and π ≥ 0.
Let γS ∈ R

|P+| and constant δS ∈ R be coefficients from one inequality of the form (16) (with P+ taking
the place of P ) for some S ⊆ D. An inequality of the form (17) may also be used. We relax (23) to the
constraint

π+ ≥
∑

a∈P+

γSa xa + δS . (26)

Inequality (24) is relaxed as π0 ≥ 0, and, applying (20),

π0 ≥ r(P0)

(

1−
∑

a∈P0

xa

)

. (27)

Finally, we project variables π+ and π0 out of inequality (25) using Fourier-Motzkin elimination with con-
straints (26)–(27) and π0 ≥ 0. This results in the two inequalities

π ≥ r(P \D)r(P0)





∑

a∈P+

γSa xa + δS − r(P+)
∑

a∈P0

xa



 (28)

π ≥ r(P \D)r(P0)





∑

a∈P+

γSa xa + δS − r(P+)



 . (29)

Inequality (29) is dominated by π ≥ 0, because
∑

a∈P+
γSa xa + δS ≤ π+ ≤ r(P+). Therefore, inequality (28)

is the only inequality we obtain from this procedure for the given inequality (16) defined by S.
We next argue that for any integer solution (x̄, π̄) ∈ {0, 1}|D|×R+, if it is not feasible (i.e., (x̄, π̄) /∈ HP ),

then we can efficiently find an inequality of the form (28) that this solution violates. Indeed, first observe
that if x̄a = 1 for any a ∈ P0 then h̄P (x̄) = 0 ≤ π̄, by assumption, and hence the solution is feasible. So,
we may assume x̄a = 0 for all a ∈ P0. We set S = {a ∈ P+ : x̄a = 1}, which yields

∑

a∈P+
γSa x̄a + δS =

hP+
(S) = h̄P+

(x̄). Inequality (28) thus yields

π ≥ r(P \D)r(P0)
[

h̄P+
(x̄)− 0

]

= h̄P (x̄)

by (21) since h̄P0
(x̄) = r(P0).
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4.4 Path-based branch-and-cut algorithm

We next describe how the inequalities derived in Sections 4.1–4.3 can be used within a branch-and-cut
algorithm to solve the path-based formulation (10). Similar to the use of Benders decomposition in a
branch-and-cut algorithm described in Section 2.2, the algorithm is based on solving a master problem via
branch-and-cut in which the constraints (10c) are relaxed and approximated with cuts.

Let (x̄, π̄) be a solution obtained in the branch-and-cut algorithm with integral x̄. Since (10c) are relaxed,
we must check if this solution satisfies these constraints, and if not, finding a cut that this solution violates.
We assign arc traversal probabilities σa for a ∈ D according to the formula

σa = r1−x̄a

a qx̄a

a . (30)

For each ω = (s, t) ∈ Ω, we find a maximum-reliability path P̄ ∈ Pst. If π̄t
s ≥ h̄P̄ (x̄) then this solution is

feasible to (10c) for this ω, since, by construction, h̄P̄ (x̄) = maxP∈Pst
h̄P (x̄). Otherwise, depending on if

qa = 0 for any or all a ∈ P̄ , we derive a cut from one of Sections 4.1–4.3, using this path P̄ and scenario
ω. By construction, for the solution x̄, this cut enforces that πt

s ≥ h̄P̄ (x̄), and hence (i) cuts off the current
infeasible solution (x̄, π̄), and (ii) implies that any solution (x, π) of the updated master problem with x = x̄
will satisfy (10c) for this ω. This ensures that the branch-and-cut algorithm is finite (since at most finitely
many such cuts are needed at finitely many integer solutions) and correct (since any infeasible solution
obtained in the algorithm will be cut off).

One may also attempt to generate cuts at solutions (x̄, π̄) in which x̄ is not necessarily integer, in order
to improve the LP relaxation. To find a path for a scenario ω = (s, t) in this case, we again use formula
(30) to define arc reliabilities, and then find the most reliable s-t path. With this path, we again apply the
methods in Sections 4.1–4.3 to attempt to derive a violated cut. When x̄ is not integral, this approach is
not guaranteed to find a violated cut, even if one exists. Thus, to increase the chances a cut is found, we
may also consider identifying another path by assigning arc costs as follows:

σa = (1− x̄a)ra + x̄aqa,

and then finding a maximum-reliability path using these arc reliabilities. Our preliminary tests did not
reveal any obvious benefit of using one particular arc-reliability calculation method.

In our implementation, before starting the branch-and-cut algorithm we solve a relaxation of the master
problem (10) in which constraints (10c) are dropped, and the integrality constraints are relaxed. After
solving this LP relaxation, we attempt to identify violated cuts for the relaxation solution, and if found,
we add them to the master relaxation and repeat this process until no more violated cuts are found. We
then begin the branch-and-cut process with all cuts found when solving the LP relaxation included in the
mixed-integer programming formulation. This allows the solver to use these cuts to generate new cuts in
the master problem relaxation. At any point in the branch-and-bound process where a solution (x̄, π̄) with
x̄ integral is obtained, we identify if there is any violated cut (as discussed above) and if so add it to the
formulation via the lazy constraint callback function.

5 Computational experiments

We test the different solution methods on SNIP instances from Pan and Morton [21], which consist of
a network of 783 nodes and 2586 arcs, 320 of which can be interdicted by the defender. Each instance
considers the same 456 scenarios. We consider three cases for the q vector outlined by Pan and Morton [21].
In particular, we consider instances with q := 0.5r, q := 0.1r, and q := 0. Pan and Morton also considered
qa values independently sampled from a U(0, 0.5) distribution. Since the DEF for most of these instances
could be solved within 30 seconds with little or no branching, we exclude these in our experiments. The cost
of interdiction is ca = 1 for all a ∈ D. Seven different budget levels were tested for each network and q level,
and there are five test instances for each budget level and q level.

All of these instances satisfy q > 0 or q = 0. Although in Section 4.3 we derive valid inequalities for
instances with a mix of positive and zero q values, we do not test instances with this structure. We speculate
that the path-based decomposition may perform relatively worse on instances with this structure, as the
valid inequalities from Section 4.3 include an additional relaxation of the nonconvex constraint (22).

We consider the following algorithms in our tests.
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Average solve time in seconds (# unsolved)

q b DEF C-DEF BEN PATH

0.5r 30 (2)1652.1 23.9 298.5 54.1
40 (2)2678.1 35.6 337.7 32.9
50 (2)2242.4 31.7 355.8 42.8
60 (2)1891.7 34.0 454.1 70.4
70 (1)1730.0 27.4 487.4 63.9
80 826.0 14.4 386.7 27.0
90 460.3 6.9 385.0 26.8

0.1r 30 (5) 117.5 438.7 55.3
40 (5) 466.0 812.3 301.2
50 (5) 327.9 787.2 265.3
60 (5) 638.6 793.7 194.1
70 (5) 851.6 983.0 335.0
80 (5) (1)1257.4 (1)1106.3 (1)891.1
90 (5) (2)2329.4 (3)1269.4 (2)1497.5

0 30 (5) 96.1 487.0 61.7
40 (5) 196.4 556.8 177.0
50 (5) 332.3 663.6 250.8
60 (5) 369.0 1141.8 374.8
70 (5) 341.0 739.5 354.4
80 (5) 262.9 535.1 151.5
90 (5) 540.0 765.7 635.2

Table 1: Computational results

• DEF: Solve DEF (4) with a MIP solver

• C-DEF: Solve compact DEF (8) with a MIP solver

• BEN: Benders branch-and-cut algorithm on DEF (4); refer to (7)

• PATH: Branch-and-cut algorithm on path-based decomposition (1)

DEF and C-DEF are solved using the commercial MIP solver IBM ILOG CPLEX 12.6.3. BEN is the Benders
branch-and-cut algorithm as implemented in Bodur et al. [4, Section 4]. The branch-and-cut algorithms,
BEN and PATH, were implemented within the CPLEX solver using lazy constraint callbacks. Ipopt 3.12.1
was used to solve nonlinear models (18) and (19) in PATH. The computational tests were run on a 12-core
machine with two 2.66GHz Intel Xeon X5650 processors and 128GB RAM, and a one-hour time limit was
imposed. We allowed four threads for DEF, while all other algorithms were limited to one thread. We
used the CPLEX default relative gap tolerance of 10−4 to terminate the branch-and-bound process. The
algorithms were written in Julia 0.4.5 using the Julia for Mathematical Optimization framework [14].

In our implementation of the BEN and PATH algorithms, when generating cuts at the root LP relaxation,
we used the following procedure to focus the computational effort on scenarios that yield cuts. After each
iteration, we make a list of scenarios for which violated cuts were found in that iteration. Then, in the next
iteration, we first only attempt to identify cuts for scenarios in this list. If successful, the list is further
reduced to the subset of scenarios that yielded a violated cut. If we fail to find any violated cuts in the
current list, we re-initialize the list with all scenarios and attempt to identify violated cuts for each scenario.

Table 1 reports the average computational time, in seconds, over the five instances for each combination
of the vector q and budget level b. The average times include only instances solved within the time limit – the
number of unsolved instances are enclosed in parentheses. We find that PATH and C-DEF are consistently
faster than both DEF and BEN. PATH and C-DEF have comparable performance, with C-DEF being
somewhat faster on the q = 0.5r instances (the easiest set) and PATH being somewhat faster on the q = 0.1r
instances (the hardest set).
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LP relaxation LP relaxation after CPLEX cuts

q b BEN PATH C-DEF BEN PATH

0.5r 30 10.64% 10.64% 2.38% 6.11% 6.03%
40 11.34% 11.35% 2.80% 6.28% 6.20%
50 11.22% 11.23% 2.40% 5.60% 5.62%
60 10.54% 10.55% 2.07% 4.76% 4.80%
70 8.88% 8.89% 1.83% 4.14% 4.34%
80 6.25% 6.25% 0.97% 3.13% 3.19%
90 3.92% 3.91% 0.43% 1.92% 2.02%

0.1r 30 22.47% 22.49% 6.72% 6.11% 6.67%
40 26.22% 26.18% 9.35% 8.73% 8.21%
50 27.54% 27.48% 9.38% 9.01% 9.28%
60 28.16% 28.08% 9.93% 8.75% 9.35%
70 28.92% 28.83% 9.67% 9.30% 9.70%
80 30.88% 30.90% 10.85% 11.57% 11.96%
90 33.07% 32.98% 12.45% 15.18% 15.46%

0 30 25.15% 25.30% 7.07% 6.72% 6.50%
40 28.45% 28.55% 9.62% 8.07% 9.25%
50 30.54% 30.78% 11.02% 10.03% 11.51%
60 32.07% 32.45% 12.37% 12.48% 14.20%
70 32.60% 33.30% 11.21% 11.82% 14.92%
80 33.28% 33.99% 10.43% 11.44% 15.87%
90 36.17% 36.97% 12.89% 15.45% 20.94%

Table 2: Average root gaps before and after CPLEX cuts. The LP relaxation of BEN is the same as DEF
and C-DEF.

Branch-and-bound nodes Cut gen. time (sec.)

q b DEF C-DEF BEN PATH BEN PATH

0.5r 30 (2)1080.7 1406.6 39800.8 51512.2 266.5 18.9
40 (2)1982.7 2470.2 21909.8 7697.8 313.6 21.2
50 (2)1996.3 2516.4 24112 17161 324.8 21.1
60 (2)1723.7 3270.6 35094.2 35860.2 404.5 22
70 (1)1464 2242.4 24387.2 34456.2 456.9 22.1
80 727 1235.4 5989.4 3509.4 378.7 21.2
90 556 372 4930.2 7512.2 379.1 17.3

0.1r 30 (5) 3870.8 6576.2 10156.8 417.2 26.2
40 (5) 17798.2 87973.4 108169.6 583.9 29.9
50 (5) 8950.4 89062.4 70182 507.6 29.7
60 (5) 22457.8 95993.8 53885.8 528.7 30.9
70 (5) 28358.4 176635.4 83490.6 448.8 32.4
80 (5) (1)45951.8 (1)163500.3 (1)242734 (1)497.9 (1)33.9
90 (5) (2)101616.7 (3)170902.5 (2)327946.3 (3)474.8 (2)37.5

0 30 (5) 2205 5613.4 9114.8 462 27.2
40 (5) 3821.6 13803.4 29569.6 488.2 28.1
50 (5) 6037.8 30095.8 47806.4 511.4 28.2
60 (5) 5144.6 127214 65936 546.7 27.9
70 (5) 5379 45454 50358.6 477.9 28
80 (5) 2667 18581.6 11890.6 406.7 28.1
90 (5) 7289.4 52156.2 64416.2 424.5 29.5

Table 3: Average branch-and-bound nodes and cut generation time
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Table 2 reports the root gap after adding LP cuts for the decomposition algorithms BEN and PATH,
relative to the optimal solution value, before and after the addition of cuts from CPLEX. The root gap
is calculated as (z∗ − zLP )/z∗, where z∗ is the instance’s optimal value and zLP is the objective value
obtained after running the initial cutting plane loop on the relaxed master problem. The reported value is
the arithmetic mean over the five instances for each combination of interdicted traversal probabilities q and
budget level b. DEF, C-DEF, and BEN all have the same LP relaxation value, so we show this gap only for
BEN. The columns under the heading “LP relaxation after CPLEX cuts” refer to the gap that is obtained at
the root node, after CPLEX finishes its process of adding general-purpose cuts. We exclude DEF from these
results since in many instances the root node has not completed processing in the time limit. These results
show that the initial LP relaxation value obtained using the cuts in the PATH method is very similar to that
obtained using the BEN (or the DEF or C-DEF formulations). We also find that the general purpose cuts
in CPLEX significantly improve the relaxation value for all formulations, with the greatest improvement
coming in the C-DEF formulation. The gaps obtained after the addition of CPLEX cuts are quite similar
between PATH and BEN, with the exception of the q = 0 instances, where the CPLEX cuts seem to be more
effective for the BEN formulation.

Table 3 displays the average number of branch-and-bound nodes of each algorithm and the time spent
generating cuts in BEN and PATH. This includes time spent generating cuts during the initial cutting plane
loop as well as within the branch-and-cut process. The mean is over instances that solved within the time
limit. Consistent with the results on root relaxation gaps, we find that C-DEF requires the fewest number of
branch-and-bound nodes, and that PATH and BEN methods require a similar number of branch-and-bound
nodes. On the other hand, significantly less time is spent generating cuts in the PATH method than in
the BEN method, which explains the better performance of PATH. In particular, generating cuts in PATH
requires solving a maximum-reliability path problem for each destination node, as opposed to the Benders
approach which requires solving a linear program for each scenario.

6 Conclusion

We have proposed two new methods for solving maximum-reliability SNIP. The first method is to solve a
more compact DEF, and the second is based on a reformulation derived from considering the reliability
for each path separately. Both of these methods outperform state-of-the-art methods on a class of SNIP
instances from the literature. An interesting direction for future research is to investigate whether ideas
similar to the path-based formulation might be useful for solving different variants of SNIP, such as the
maximum-flow network interdiction problem.
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