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Abstract In this paper, we will discuss an approximation of the characteristic function of

the first passage time for a Lévy process using the martingale approach. The characteristic

function of the first passage time of the tempered stable process is provided explicitly or

by an indirect numerical method. This will be applied to the perpetual American option

pricing and the barrier option pricing. Numerical illustrations are provided for the calibrated

parameters using the market call and put prices.
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1 Introduction

Since Black and Scholes [1973] have introduced the no-arbitrage option pricing model

and formula, the Black-Scholes (BS) model became the most popular model in finance.

Moreover, pricing path dependent exotic options, including American perpetual option and

barrier options, is an important topic in finance. After the Black-Monday stock market crash

in 1987, the volatility smile effect in option market have been observed and many scientists

have introduced many advanced models to describe the smile effect. The Lévy process op-

tion pricing models (or simply Lévy models), based on tempered stable (TS) processes, in-

cluding normal tempered stable (NTS) and CGMY processes, are popular models to explain

the volatility smile effect in European call and put prices (See Barndorff-Nielsen and Levendorskii

[2001], Barndorff-Nielsen and Shephard [2001], Carr et al. [2002], Boyarchenko and Levendorskiĭ

[2000], Koponen [1995], and Rachev et al. [2011]).

The distribution of the first passage time for the arithmetic Brownian motion is an es-

sential topic to calculate those path dependent option prices. We have the distribution of

the first passage time of Brownian motion in literature including Barndorff-Nielsen [1977].

Sequentially the distribution of first passage time on Lévy process has been studied by

Hurd and Kuznetsov [2009], Rogers [2000] and others.
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2 Young Shin Kim

The perpetual American option and barrier option pricing also not only studied on

BS model but also studied on Lévy models. Gerber and Shiu [1994] discussed the per-

petual American option pricing formula on the BS model with the martingale approach,

and Boyarchenko and Levendorskiĭ [2002b] found perpetual American option pricing for-

mula using the WienerHopf factorization on the Lévy model. The barrier option price for-

mula under the BS model is provided in literature including Hull [2015]. Additionally,

Boyarchenko and Levendorskiĭ [2002c] presented the barrier option pricing method on Lévy model.

The partial integro-differential equation method has been very popularly used for barrier op-

tion pricing (See Chandra and Mukherjee [2016] and Cont and Tankov [2004]) on Lévy model.

Recently, Boguslavskaya [2014] discussed barrier option pricing method using A transform.

In this paper, we will discuss the characteristic function of the first passage time of a

subclass of Lévy process containing Brownian Motion and TS processes (NTS or CGMY

process) using the martingale approach. Since the martingale approach does not works for

the process with jumps, we will use a continuous approximation of the Lévy process. After

then we find an approximation form of the characteristic function for the first passage time of

Lévy process. In some special cases, we will see the closed form of characteristic function. If

the closed form solution is not allowed then the numerical method can be used to find it. The

characteristic function of the first passage time will be applied to find perpetual American

option prices and barrier option prices. The numerical methods and performance for pricing

perpetual American option and barrier option will be discussed with empirical market data.

The remainder of this paper is organized as follows. The characteristic function of the

first passage time for some Lévy process using the martingale method is deduced in Section

2. The approximation case for the Lévy process with jumps also discussed in the section.

The perpetual American option pricing and the barrier option pricing is discussed in Section

3, together with numerical illustrations. Section 3 summarizes the main findings. In the

appendix, we explain how pricing formulas of perpetual American option and barrier call

and put options are obtained.

2 Characteristic function of the first passage time

LetX = (X(t))t≥0 be a Lévy process. Suppose that φX(t) is the characteristic function

(ch.F) of X(t) and ψX is the Lévy symbol of X that is given by ψX(u) = logφX(1)(u) so

that φX(t)(u) = etψX(u) (see Applebaum [2004]). Let l ∈ R be a level. We define a first

passage time τ(l) for the Lévy process X to touch the level l as follows:

τ(l) =

{
inf{t ≥ 0|X(t) ≤ l} if l < 0

inf{t ≥ 0|X(t) ≥ l} if l > 0
. (1)

Lemma 1 Suppose X is a continuous Lévy process. For all u ∈ R, if there exist a complex

function η(u) such that ℜ (−lη(u)) < 0, φX(1)(−iη(u)) is well defined, and

iu+ ψX(−iη(u)) = 0 (2)

then the ch.F of τ(l) equals to

φτ(l)(u) = E
[
eiuτ(l)

]
= e−lη(u). (3)
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Proof For given u ∈ R, if there exist η(u) satisfying (2), then we have

1 = et(iu+ψX(−iη(u))) = E
[
eiut+η(u)X(t)

]
, (4)

since logE[eixX(t)] = tψX(x). We have

1 = E
[
eiuτ(l)+η(u)X(τ(l))

]
= E

[
eiuτ(l)elη(u)

]
= elη(u)E

[
eiuτ(l)

]
,

and we obtain ch.F of τ(l) as E
[
eiuτ(l)

]
= e−lη(u). Since we have

|e−lη(u)| = |E[eiuτ(l)]| ≤ E[|eiuτ(l)|] = 1,

and

e−lη(u) = eℜ(−lη(u))eiℑ(−lη(u)),

we obtain the condition ℜ(−lη(u)) ≤ 0. Moreover, since we have

E
[
eη(u)X(t)

]
= exp (tψX(−iη(u))) ,

the equation (4) holds if and only if iu+ ψX(−iη(u)) = 0.

Remark 21 Applying Lemma 1, we can obtain the probability density function (pdf) of τ(l)
by the inverse Fourier transform as follows:

fτ(l)(x) =
1

2π

∫ ∞

−∞

e−iuxφτ(l)(u)du =
1

2π

∫ ∞

−∞

e−iux−lη(u)du. (5)

Example 1 (Brownian Motion) LetX = (X(t))t≥0 = (µt+σB(t))t≥0 where (B(t))t≥0

is Brownian motion, µ ∈ R, and σ > 0. Since the ch.F of X(t) is

φX(t)(u) = exp

(
µiut− t

σ2u2

2

)

The equation (2) is equal to

iu+ µη(u) +
σ2η(u)2

2
= 0,

and η(u) satisfying the equation is

η(u) =
−µ±

√
µ2 − 2σ2ui

σ2
.

For the condition ℜ (−lη(u)) < 0, we have

η(u) =





−µ+
√
µ2−2σ2ui

σ2 , if l > 0
−µ−

√
µ2−2σ2ui

σ2 , if l < 0
.

Hence the ch.F of the first passage time τ(l) for X is

φτ(l)(u) =





exp

(
lµ−l

√
µ2−2σ2ui

σ2

)
if l > 0

exp

(
lµ+l

√
µ2−2σ2ui

σ2

)
if l < 0

,

which is well known ch.F of inverse Gaussian distribution.
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We cannot use Lemma 1 for the Lévy process with jumps, since X(τ(l)) = l is not

true in general. To escape the problem, we define continuous approximation process Xc =
(Xc(t))t≥0 for the Lévy process X as

Xc(t) =




X(t) if t ∈ P
(t− ti)X(ti+1) + (ti+1 − t)X(ti)

ti+1 − ti
if ti < t < ti+1 for ti ∈ P

where P is a partition of a real interval [0, T ] as

P = {xi|0 = x1 < x2 < · · · < xn < · · · }.

We refer toXc as the continuously approximated process ofX .We have characteristic func-

tion of Xc(t) as follows:

φXc(t)(u) = exp (tiψX(u) + (ti+1 − ti)ψX(∆u)) for t ∈ [ti, ti+1),

where

∆ =
t− ti

ti+1 − ti
.

We use numerical approximation of ψX(∆u) ≈ ∆ψX(u), then we have

φXc(t)(u) ≈ exp (tiψX(u) + (ti+1 − ti)∆ψX(u)) = φX(t)(u)

After then we use Lemma 1 for Xc with approximated ch.F of Xc. That is if η(u) satisfy

(2), then the first passage time τ(l) ofXc has an approximation of the characteristic function

as

φτ(l)(u) ≈ e−lη(u).

2.1 Cases of NTS Process and Normal Inverse Gaussian Process

Let α ∈ (0, 2), θ > 0, β ∈ R, γ > 0 and mu ∈ R. Consider a pure jump Lévy process

X = (X(t))t≥0 whose ch.F φX(t) is equal to

φX(t)(u) = exp

(
(µ− β)iut− 2θ1−

α

2

α
t

((
θ − iβu+

γ2u2

2

)α

2

− θ
α

2

))
.

The process X is referred to as the the NTS process with parameters (α, θ, β, γ, µ) and

denoted by X ∼ NTS(α, θ, β, γ, µ). The NTS process has finite exponential moments for

a closed interval, That is, E[eaX(t)] <∞ if

a ∈
[
1

γ2

(
−β −

√
β2 + 2γ2θ

)
,
1

γ2

(
−β +

√
β2 + 2γ2θ

)]
.

If X ∼ NTS(α, θ, β, γ, µ) with α = 1, then the process X is referred to as the

the normal inverse Gaussian (NIG) process with parameters (θ, β, γ, µ) and denoted by

X ∼ NIG(θ, β, γ, µ). The ch.F of the NIG process X is equal to

φX(t)(u) = exp

(
(µ− β)iut+ 2tθ − 2tθ

1
2

(
θ − iβu+

γ2u2

2

) 1
2

)
.
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If X ∼ NTS(α, θ, β, γ, µ) where µ = 0 and γ =
√

1− β2
(
2−α
2θ

)
with −

√
2θ

2−α <

β <
√

2θ
2−α then E[X(t)] = 0 and var(X(t)) = t for all t > 0. In this case, the process

X is referred to as the standard NTS process with parameters (α, θ, β) and denoted by

X ∼ stdNTS(α, θ, β). With the same argument, X ∼ NIG(θ, β, γ, µ) where µ = 0 and

γ =
√
1− β2

2θ with −
√
2θ < β <

√
2θ, then E[X(t)] = 0 and var(X(t)) = t for all

t > 0. In this case, the process X is referred to as the standard NIG process with parameters

(θ, β) and denoted by X ∼ stdNIG(θ, β).
By applying Lemma 1 to the process X ∼ NIG(θ, β, γ, µ), we find η(u) satisfying (2)

that is

0 = (2θ + iu) + (µ− β)η(u)− 2θ
1
2

(
θ − βη(u)− γ2η(u)2

2

) 1
2

or (
(µ− β)2 + 2θγ2

)
η(u)2 + 2 (2µθ + (µ− β)iu) η(u)− u2 + 4θiu = 0.

Finally, we obtain the solution

η(u) =
− (2µθ + (µ− β)iu)±

√
(2µθ + (µ− β)iu)2 + ((µ− β)2 + 2θγ2) (u2 − 4θiu)

(µ− β)2 + 2θγ2
.

Since NIG process is a pure jump Lévy process, we cannot use Lemma 1 directly. In-

stead, we use a continuously approximated process Xc of the process X for a partition P .

Satisfying the condition ℜ (−lη(u)) < 0 for all u, we have the ch.F of the first passage time

τ(l) for process Xc as

φτ(l)(u) ≈
{
exp

(
−lη+(u)

)
if l > 0

exp
(
−lη−(u)

)
if l < 0

where

η+(u) =
− (2µθ + (µ− β)iu) +

√
(2µθ + (µ− β)iu)2 + ((µ− β)2 + 2θγ2) (u2 − 4θiu)

(µ− β)2 + 2θγ2
,

and

η−(u) =
− (2µθ + (µ− β)iu)−

√
(2µθ + (µ− β)iu)2 + ((µ− β)2 + 2θγ2) (u2 − 4θiu)

(µ− β)2 + 2θγ2
.

For the numerical illustration, we present the pdf’s of the standard NIG distributions and

the first passage time of the standard NIG process in Figure 1. To draw figure, we use the

fast Fourier transform method for the equation (5) with the ch.F of the first passage time.

Let X = (X(t))t≥0 ∼ stdNIG(θ,−β), and Y = (Y (t))t≥0 ∼ stdNIG(θ, β) with

parameter θ = 1 and β = 1/2, and let B = (B(t))t≥0 be the standard Brownian motion.

We consider continuously approximated processes Xc and Y c for X and Y , respectively.

In the both left and right plates, the solid curve is for X , the dashed curve is for Y and the

dash-dot curve is for B. The left plate, we show that the pdf’s of X(1) = Xc(1)(solid)

and Y (1) = Y c(dashed), that are skewed left, and skewed right, respectively. The pdf

of B(1) (dash-dot) is a standard normal pdf, which is symmetric. Let τXc(l), τY c(l) and

τB(l) be the first passage time of Xc, Y c, and B, respectively, for the level l = 3. In the
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right plate, we presented the pdf’s of τXc(l) (solid), τY c(l)(dashed) and τB(l)(dash-dot).

Since the distribution of X(1) (Y (1)) is skewed left (right) while the distribution of B(1)
is symmetric, the mod of τXc(l)(τY c(l)) is located a little right (left) of the mod of τB(l).

By applying Lemma 1 to the process X ∼ NTS(α, θ, β, γ, µ), we find η(u) satisfying

(2) that is

0 = iu+ (µ− β)η(u)− 2θ1−
α

2

α

((
θ − βη(u)− γ2η(u)2

2

)α

2

− θ
α

2

)
, (6)

which has no explicit solution, but we can find the solution numerically. Moreover, the NTS

process is also a pure jump Lévy process, we find the ch.F of the first passage time using the

continuously approximated process of the NTS process.

For the numerical illustration, we present the function η(u), ch.F’s, and pdf’s of the

standard NTS distributions and the pdf of the first passage time of the standard NTS pro-

cess in Figure 2. We consider two standard NTS processes X ∼ stdNTS(α, θ,−β) and

Y ∼ stdNTS(α, θ, β) with parameters α = 1.25, θ = 1 and β = 0.3, and the level

l = 3. The upper left and right plates are η(u)’s for X and Y , respectively, which sat-

isfy (6). The middle left and right plates are the e−lη(u) for the stdNTS(1.25,1,−0.3) and

stdNTS(1.25,1, 0.3), respectively. Pdf’s of X(1) and Y (1) are the dashed and solid curves,

respectively, on the bottom left plate.

Let Xc and Y c be continuously approximated process with respect to X and Y . Pdf’s

of the first passage time of Xc and Y c are numerically approximated as the dashed and

solid curves, respectively, on the bottom right plate. Dash-dot curves of bottom left and

right plates are pdf of standard normal distribution and pdf of the first passage time of the

standard Brownian motion, respectively. For the same arguments as standard NIG case, we

have mode of the dashed and solid curves are located left and right of the dash-dot curve,

respectively in the bottom right plate.

Finally, the pdf obtained by the characteristic function is compared with the first passage

time distribution of simulated sample paths. We denote the pdf’s of τXc(1) and τY c(1) as

fτXc and fτY c , respectively. We generate 20,000 sample paths of stdNTS(1.25,1,−0.3),
using inverse transform method explained in Rachev et al. [2011]. That is {Xj(n∆t)|n =
1, 2, · · · , 1, 440} with time step ∆t = 1/48 year fraction for j = 1, 2, · · · , 20, 000. Then

we obtain 30 years sample path. Setting l = 3 as above example, We find the set of the first

hitting time as

T = {nj∆t|nj = min{n such that Xj(n∆t) > l|n = 1, · · · , 1, 440}, j = 1, · · · , 20, 000}.

We present the relative histogram for T and fτXc on the left plate of Figure 3. We do the

same test for stdNTS(1.25,1, 0.3), and present the relative histogram for the simulation

based first passage time of stdNTS(1.25,1, 0.3) and fτY c on the right plate of Figure 3.

2.2 Case of CGMY Process

Let α ∈ (0, 2),C, λ+, λ− > 0, and µ ∈ R. The pure jump Lévy process X whose ch.F

is equal to

φX(t)(u) = exp
(
(µ− CΓ (1− α)(λα−1

+ − λα−1
− ))iut

− tCΓ (−α) ((λ+ − iu)α − λα+ + (λ− + iu)α − λα−)
)
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is referred to as CGMY tempered stable process (See Carr et al. [2002]) or CGMY process

with parameters (α, C , λ+, λ−, µ),and denoted by X ∼ CGMY(α, C , λ+, λ−, µ). The

CGMY process has finite exponential moments for a closed interval, That is, E[eaX(t)] <
∞ if a ∈ [−λ−, λ+]. If X ∼ CGMY(α, C , λ+, λ−, µ) where µ = 0 and C =(
Γ (2− α)(λα−2

+ + λα−2
− )

)−1
then E[X(t)] = 0 and var(X(t)) = t for all t > 0. In

this case, the process X is referred to as the standard CGMY process with parameters (α,

λ+, λ−) and denoted by X ∼ stdCGMY(α, λ+, λ−).
For given u, we find η(u) satisfying (2) that is

0 =iu+ (µ− CΓ (1− α)(λα−1
+ − λα−1

− ))η(u) (7)

− CΓ (−α) ((λ+ − η(u))α − λα+ + (λ− + η(u))α − λα−)

which has no explicit solution. As the NTS process case in (6), we are also able to find the

solution of (7) numerically, and ch.F is as the equation in Lemma 1.

For the numerical illustration, we consider two standard CGMY processes X ∼ std-

CGMY( 0.75, 3, 1) and Y ∼stdCGMY(0.75, 1, 3), and the level l = 3. Also we take Xc

and Y c which are continuously approximated process of X and Y , respectively. We present

the function η(u), ch.F’s, and pdf’s of the standard CGMY distributions and the pdf of the

first passage time of the standard CGMY process in Figure 4. The upper left and right plates

are the η(u) for stdCGMY(0.75, 3, 1) and stdCGMY(0.75, 1, 3), respectively. The mid-

dle left and right plates are the chF’s for stdCGMY(0.75, 3, 1) and stdCGMY(0.75, 1, 3),

respectively. Pdf’s of stdCGMY(0.75, 3, 1) and stdCGMY(0.75, 1, 3) are the dashed and

solid curves, respectively, on the bottom left plate. Pdf’s of the first passage times of Xc

and Y c are the dashed and solid curves, respectively, on the bottom right plate. Dash-dot

curves of bottom left and right plates are pdf of standard normal distribution and pdf of the

first passage time of the standard Brownian motion, respectively. For the same arguments as

standard NIG case, we have mode of the dashed and solid curves are located left and right

of the dash-dot curve, respectively in the bottom right plate.

We can do the same simulation experiment for the stdCGMY(0.75, 1, 3) and stdCGMY(

0.75, 3, 1) as the standard NTS case in the previous section. We omit to show the result since

the result of CGMY simulation cases are very similar as of the NTS simulation cases.

3 Application to Exotic Option Pricing and Numerical Illustration

Let X = (X(t))t≥0 and Xc = (Xc(t))t≥0 be a Lévy process and its continuously

approximated process, respectively, and suppose that there is an closed interval I containing

0 such that E[eaX(t)] < ∞ for any a ∈ I. We assume that there exist η satisfying the

condition of Lemma 1 for X , and τ(l) is the first hitting time given by (1).

Let r and d be the risk free rate of return and the continuous dividend rate of a given

underlying asset, respectively. The underlying asset price process (S(t))t≥0 is assumed as

S(t) = S(0)eX(t).

All of the market models in this paper are based on the risk-neutral world which has no-

arbitrage. So we assume that the discount price process (S̃(t))t≥0 with S̃(t) = e−(r−d)tS(t)
is martingale. In this case, we referred to the risk-neutral price model as Lévy market model.

The class of TS process is a subclass of Lévy process including NTS and CGMY

process. The Lévy process option pricing models (i.e. Lévymodel) with TS processes are
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often used for the option pricing theory. The model can capture the volatility smile ef-

fect of option market by describing fattails and skewness of risk-neutral measure (See

Boyarchenko and Levendorskiĭ [2002a], Cont and Tankov [2004], Schoutens [2003], and

Rachev et al. [2011]).

NTS Market model

In the Lévy market model, suppose (X(t))t≥0 is the NTS process with parameters (α, β,

θ, γ, µ), where

µ = r − d+ β +
2θ1−

α

2

α

((
θ − β − γ2

2

)α

2

− θ
α

2

)
,

then the discount process (S̃(t))t≥0 is martingale, since

E[S̃(t)] = e−(r−d)tS(0)E[exp(X(t))] = S(0).

In this case, we say that the underlying asset price process follows the NTS market model.

In particular, if α = 1 we say that it follows NIG market model.

CGMY Market model

In the Lévy market model, suppose (X(t))t≥0 is the CGMY process with parameters

(α,C, λ+, λ−, µ), where

µ = r−d+CΓ (1−α)(λα−1
+ −λα−1

− )+CΓ (−α) ((λ+ − 1)α − λα+ + (λ− + 1)α − λα−) ,

then the discount process (S̃(t))t≥0 is martingale for the same argument of the NTS market

model case. In this case, we say that the underlying asset price process follows the CGMY

market model.

Model calibration

We calibrate parameters of the three TS (NIG, NTS and CGMY) market models by using

the S&P 500 index call and put options. We obtain the S&P 500 index call and put price

from OptionMetricsTM provided by Wharton Research Data Services. The parameters are

calibrated by the least square curve fit and the call and put option prices of NTS, NIG,

and CGMY models are calculated by Fast Fourier Transform method by Lewis [2001] and

Carr and Madan [1999]. For the benchmark, we calibrate the BS model (Black and Scholes

[1973]) parameter σ which is referred to as volatility.

In this calibration, we use the option prices of October 8, 2014 on which underlying S&P

500 index was S(0) = 1968.89, risk-neutral interest rate was r = 0.12%, and dividend rate

for S&P 500 index was d = 1.94%. We select calls and puts with moneyness (= (strike price)

/ (current underlying price)) in between 0.9 and 1.1, and having time to maturities, 7 days,

32 days or 52 days. We calibrate parameters for call prices and put prices separately. The

calibrated parameters are presented in Table 1. In the table, we provide three error estimators

together: the average absolute error (AAE), the average absolute error as a percentage of the

mean price (APE), and the root-mean-square error (RMSE),1 defined as follows:

AAE =

N∑

j=1

|Pj − P̂j |
N

, APE =

∑N
j=1

|Pj−P̂i|
N∑N

j=1
Pj

N

, RMSE =

√√√√
N∑

j=1

(Pj − P̂j)2

N
,

1 See Schoutens [2003] for additional details.
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where P̂n and Pn are model prices and observed market prices of options, n ∈ {1, . . . , N},

and N is the number of observed call option prices. As reported many literature including

Carr et al. [2002], Schoutens [2003], and Rachev et al. [2011], the NIG, NTS, and CGMY

market models have better calibration performance than the BS model, that is, the three error

estimators for those three Lévy market models are remarkably smaller than the three error

estimator for the BS model.

Approximation for Characteristic function of τ(l)
As we discussed in Section 2, the characteristic function of τ(l) is numerically approxi-

mated as φτ(l)(u) ≈ e−lη(u) for NTS and CGMY market model. With this approximation

we discuss pricing Perpetual American Call and Put, and pricing Barrier Option in the fol-

lowing subsections. In the following market, we assume that priving process X of stock

price process S is the continuously approximated process for NTS (including NIG) and

CGMY processes.

3.1 Application to Perpetual American Call and Put

We consider a perpetual American call and put options with strike price K . The perpet-

ual call price is equal to

Cperpetual =





K

η+(ir)− 1

(
S(0)(η+(ir)− 1)

Kη+(ir)

)η+(ir)

if S(0) ≤ L+

S(0)−K if S(0) > L+

,

where

L+ =
η+(ir)K

η+(ir)− 1
,

and η−(ir) is the value satisfying (2) and (3) for l > 0 and u = ir. The perpetual put price

is equal to

Pperpetual =





K

1− η−(ir)

(
S(0)(η−(ir)− 1)

Kη−(ir)

)η−(ir)

if S(0) ≥ L−

K − S(0) if S(0) < L−

,

where

L− =
η−(ir)K

η−(ir)− 1
,

and η−(ir) is the value satisfying (2) and (3) for l < 0 and u = ir. More details for the

perpetual American call and put prices are presented in Appendix.

Using the perpetual call/put formula above, we calculate prices of the perpetual Ameri-

can call and put options for the NIG, NTS and CGMY market models using the calibrated

parameters on October 8, 2014 presented in Table 1. We also use the underlying price, risk-

neutral rate of return, and dividend rate from the data on October 8, 2014. Since perpetual

call and put prices for NIG, NTS and CGMY market models are very similar, we present

only prices (solid curves) under the CGMY market model in Figure 5. for the benchmark,

we calculate perpetual American option prices (dash-dot curves) using BS model. In this

context, the left plate of the figure is perpetual call prices and tie right plate is the perpetual

put prices for moneyness from 0.8 to 1.2. We find that BS prices are more or less smaller

than CGMY prices.
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3.2 Application to Barrier Option Pricing

The barrier option is one of the most popular exotic option. Barrier options are classified

by the knock-in barrier option, and the knock-out barrier option. The knock-in barrier option

is activated when the underlying asset price hit a given barrier level. The knock-out barrier

option is alive until the underlying price hit the barrier level, but once the underlying price

hit the barrier level, the price of the option becomes zero. The knock-in barrier option is

divided by the up-and-in barrier option and the down-and-in barrier option. If the barrier

level is upper (lower) than the current underlying prices, then the knock-in barrier option

is referred to as the up-and-in (down-and-in) barrier option. The knock-out barrier option

is also divided by the up-and-out barrier option and the down-and-out barrier option. If the

barrier level is upper (lower) than the current underlying prices, then the knock-out barrier

option is referred to as the up-and-out (down-and-out) barrier option2.

In this section, we discuss pricing of European style barrier call and put options. Let B
be the barrier level, K be the strike price of call and put, and T be the time to maturity.

Suppose that the current underlying asset price is S(0), and let l = log(B/S(0)). Then we

have the down-and-in and down-and-out options if l < 0 and the up-and-in and up-and-out

options if l > 0. Let r and d be the risk free rate of return and the continuous dividend rate

of a given underlying asset, respectively.

The down-and-in call (cdi), up-and-in put (pui) are priced by

cdi =
e−rTK1+ρ

(2π)2Bρ

∫ ∞

−∞

(
B

K

)iu(
H(u)

(ρ− iu)(1 + ρ− iu)

)
du, ρ < −1

and

pui =
e−rTK1+ρ

(2π)2Bρ

∫ ∞

−∞

(
B

K

)iu(
H(u)

(ρ− iu)(1 + ρ− iu)

)
du, ρ > 0,

and the up-and-in call (cui) and down-and-in put (pdi) are priced by

cui =





e−rTK1+ρ

(2π)2Bρ

∫∞
−∞

(
B
K

)iu ( H(u)
(ρ−iu)(1+ρ−iu)

)
du if K ≤ B

e−rTK1+ρ

2πS(0)ρ

∫∞

−∞

(
S(0)
K

)iu ( φX(T−t)(u+iρ)

(ρ−iu)(1+ρ−iu)

)
du if K > B

, ρ < −1,

and

pdi =





e−rTK1+ρ

(2π)2Bρ

∫∞

−∞

(
B
K

)iu ( H(u)
(ρ−iu)(1+ρ−iu)

)
du if K ≥ B

e−rTK1+ρ

2πS(0)ρ

∫∞
−∞

(
S(0)
K

)iu ( φX(T−t)(u+iρ)

(ρ−iu)(1+ρ−iu)

)
du if K < B

, ρ > 0,

where

H(u) =

∫ ∞

−∞

eTψX (u+iρ) − e−ivT

ψX(u+ iρ) + iv
φτ(l)(v)dv.

Since knock-out call(put) option price can be calculated by the vanilla call(put) price mi-

nus knock-in call(put) price, we do not consider the knock-out call and put options in this

section. More Details and proofs for the barrier option pricing are explained in Appendix.

Notably, we calculate those four knock-in option prices numerically. We use the esti-

mated parameters in Table 1 for call and put prices of October 8, 2014, on which under-

lying S&P 500 index was S(0) = 1968.89, risk-neutral interest rate was r = 0.12%,

2 See Hull [2015] for more details.
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and dividend rate for S&P 500 index was d = 1.94%. We assume that the time to ma-

turity is T = 1 year and we select strike prices between 1600 and 2300, that is, K ∈
{1600,1625, · · · , 2300}. Since the barrier option prices under NIG and NTS market mod-

els are not remarkably different from the prices under the CGMY market models, we just

show the barrier option prices under CGMY market model. For the benchmark, we compare

the CGMY prices to the barrier option prices based on BS model.

In Figure 6, the down-and-in call and put option prices are presented in the left and right

plates, respectively, for the barrier level B is 1750. The barrier option on the CGMY model

is typically greater than the price on BS model, since the CGMY distribution is skewed

left and the CGMY distribution has fatter tails than Gaussian distribution. because of the

left skewness of the CGMY distribution, the probability that the knock-in option be alive is

larger than the case of BS model. In Figure 7, the up-and-in call and put option prices are

presented in the left and right plates, respectively, for the barrier level B is 2200. That being

the case, the BS barrier option prices are different from CGMY barrier option prices.

In addition, we implement the four barrier option pricing formula using the fast Fourier

transform algorithm. To accomplish this numerical calculation, we use MatlabTM 2015a on

a PC equipped with Intel CORE i7TM processor (3.00GHz Dual core) and MS WindowsTM

10 operating system. It took 59.9 seconds to obtain the down-and-in call option prices, and

took 67.6 seconds to obtain down-and-in put option prices. It took 69.3 seconds to obtain

down-and-in call option prices, and took 61.4 seconds to obtain down-and-in put option

prices.

4 Conclusion

In this paper, we found an approximation of the characteristic function of the first pas-

sage time for a Lévy process using the martingale approach and the continuously approx-

imated process. More precisely, we found approximations of ch.F’s and pdf’s of the first

passage time of three TS processes (NIG, NTS, and CGMY processes), explicitly or nu-

merically. It was applied to price the perpetual American option and the barrier option.

Numerical illustrations were provided together, for the calibrated parameters using the mar-

ket call and put prices. We obtained one tractable method to find those exotic options under

the TS market model. The result can be used for analyzing default probability in credit risk

management also.

Acknowledgment I am grateful to Professor Kyuong Jin Choi, in Haskayne School of Busi-

ness, University of Calgary, who gave the motivation to complete of this research. Also, all

remaining errors are entirely my own.
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via A-transform. ArXiv e-prints, March 2014.
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Table 1: Model Calibration

Call/Put Model Parameters AAE APE RMSE

Call BS σ = 0.1267 3.3619 0.1042 4.1806

NIG θ = 5.1045 , β = −0.3356 , 2.4056 0.0746 2.8746

γ = 0.1042
NTS α = 1.0808 , θ = 5.2150 , 2.3939 0.0742 2.8637

β = −0.3647 , γ = 0.1010
CGMY α = 0.7250 , C = 0.5019 , 2.4107 0.0747 2.8810

λ+ = 73.5549 , λ− = 11.5265

Put BS σ = 0.1396 3.5132 0.1507 4.3561

NIG θ = 4.2571 , β = −0.3466 , 1.3995 0.0600 1.6910

γ = 0.0984
NTS α = 1.0980 , θ = 4.4348 , 1.3920 0.0597 1.6846

β = −0.3864 , γ = 0.0930
CGMY α = 0.7066 , C = 0.4743 , 1.4006 0.0601 1.6957

λ+ = 81.2931 , λ− = 9.7529
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Fig. 1: Pdf’s of standard NIG distributions (left) and the first passage time of standard NIG

processes (right).
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Fig. 2: Function η(u)’s, ch.F’s and pdf’s for first passage time of standard NTS processes for

the level l = 3. The upper left is the function η(u) for stdNTS(1.25,1, 0.3) and the upper

right is for stdNTS(1.25,1,−0.3). The middle left is the characteristic function for the

stdNTS(1.25,1, 0.3) and the middle right is for stdNTS(1.25,1,−0.3). Pdf’s of standard

NTS distributions are on the bottom left. The pdfs of the first passage time of standard NTS

processes are on the bottom right.
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sample path (left) and stdNTS(1.25,1, 0.3) simulated sample path (right).
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Fig. 4: Function η(u)’s and ch.F’s for first passage time of standard CGMY pro-

cesses. The upper left is the function η(u) for stdCGMY(0.75,3, 1) and the upper

right is for stdCGMY(0.75,1, 3). The middle left is the characteristic function for the

stdCGMY(0.75,3, 1) and the middle right is for stdCGMY(0.75,1, 3). Pdf’s of standard

CGMY distributions are on the bottom left. The pdfs of the first passage time of standard

CGMY processes are on the bottom right.
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Curve) and BS model (Dash-dot Curve).
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Fig. 6: Down-and-in call (left) and put (right) with barrier level 1750 prices, where current

underlying index price S(0) = 1968.89, and time to maturity is T = 1 year. The solid curves

are call/put prices of CGMY model, and the dashed curves are of BS model.
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Fig. 7: Up-and-in call (left) and put (right) prices where the barrier level is B = 2200,

current underlying index price S(0) = 1968.89, and time to maturity is T = 1 year. The

solid curves are call/put prices of CGMY model, and the dashed curves are of BS model.
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Appendix

As appendix, we discuss perpetual American option pricing and barrier option pricing

under the Lévy market model.

Perpetual American Option

The perpetual call and put option price on Lévy model can be obtained by the martingale

method introduced in Gerber and Shiu [1994]. In this section, we just follow the martingale

method for the Lévy market price model. We consider a perpetual American call option

with strike price K . If the option holder exercise the call at a time T , then the holder obtain

(S(T ) −K)+ where x+ = max{0, x}. Let L be a real number with L ≥ K . The holder

will exercise the call when the asset price first become greater than or equal to the level L.

We define the first passage time

τ(l) = inf{t ≥ 0|S(t) ≥ L} = inf{t ≥ 0|X(t) ≥ l},

where l = log(L/S(0)) > 0. Then the current value of the perpetual American call is

Cperpetual = max
L≥K

E[e−rτ(l)(S(τ(l))−K)+].

Let

C(L) = E[e−rτ(l)(S(τ(l))−K)+] = (L−K)E[e−rτ(l)]

which is the Laplace transform of τ(l). Applying Lemma 1, we can obtain the Laplace

transform as

E
[
e−rτ(l)

]
= φτ(l)(ir) = e−lη

+(ir),

where η+(ir) is the value satisfying (2) and (3) for l > 0 and u = ir. Hence we have

C(L) = (L−K)e−lη
+(ir) = (L−K)

(
S(0)

L

)η+(ir)

.

By solving
∂C

∂L
(L+) = 0,

we find the optimal value L+

L+ =
η+(ir)K

η+(ir)− 1
.

Hence, we obtain the maximum value

C(L+) =
K

η+(ir)− 1

(
S(0)(η+(ir)− 1)

Kη+(ir)

)η+(ir)

.

If L+ < S(0) then the call is immediately exercised so we have price S(0)−K . Therefore

the perpetual call price is equal to

Cperpetual =





K

η+(ir)− 1

(
S(0)(η+(ir)− 1)

Kη+(ir)

)η+(ir)

if S(0) ≤ L+

S(0)−K if S(0) > L+

.
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We consider a perpetual American put option with strike price K . If the option holder

exercise the put at a time T , then the holder obtain (K − S(T ))+. Let L be a real number

with 0 < L ≤ K . The holder will exercise the put when the asset price first become less

than or equal to the level L. We define the first passage time

τ(l) = inf{t ≥ 0|S(t) ≤ L} = inf{t ≥ 0|X(t) ≤ l}

where l = log(L/S(0)) < 0. Then the current value of the put is

Pperpetual = max
0<L≤K

E[e−rτ(l)(K − S(τ(l)))+]

which is the Laplace transform of τ(l). For the same arguments as the call option case, we

find the optimal value L−

L− =
η−(ir)K

η−(ir)− 1
,

where η−(ir) is the value satisfying (2) and (3) for l < 0 and u = ir. Hence the perpetual

put price is equal to

Pperpetual =





K

1− η−(ir)

(
S(0)(η−(ir)− 1)

Kη−(ir)

)η−(ir)

if S(0) ≥ L−

K − S(0) if S(0) < L−

.

Barrier Option

Let Pi be the payoff function of European options. For example, the European call and

put options with strike price K are given by Π(S(T )) = (S(T ) −K)+ and Π(S(T )) =
(K − S(T ))+, respectively. The knock-in barrier option with the barrier level B, time to

maturity T is priced by the following equation

Vi = e−rTE
[
Π(S(T ))1τ(l)<T

]

where l = log(B/S(0)). Note that l < 0 for the down-and-in barrier option and l > 0 for

the up-and-in barrier option. Since we have

Π(S(T )) = Π(S(T ))1τ(l)<T +Π(S(T ))1τ(l)≥T ,

the knock-out barrier option price can be obtained by the following equation

Vo = e−rTE
[
Π(S(T ))1τ(l)≥T

]
= e−rT

(
E [Π(S(T ))]− E

[
Π(S(T ))1τ(l)<T

])
= V−Vi,

where V = e−rTE [Π(S(T ))]. Note that l < 0 for the down-and-out barrier option and

l > 0 for the up-and-out barrier option.

Case 1: Π(S(T )) = Π(S(T ))1τ(l)<T
If Π(S(T )) = Π(S(T ))1τ(l)<T then the barrier option price is the same as option prices

without the barrier:

Vi = e−rTE
[
Π(S(T ))1τ(l)<T

]
= e−rTE [Π(S(T ))] .

For example (1) up-and-in call option with K > B, we have (S(T ) − K)+ = (S(T ) −
K)+1τ(l)<T , and (2) down-and-in put option with K < B, we have (K − S(T ))+ =

(K − S(T ))+1τ(l)<T .
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Case 2: Π(S(T )) 6= Π(S(T ))1τ(l)<T
If Π(S(T )) 6= Π(S(T ))1τ(l)<T , we have

Vi = e−rTE
[
Π(S(T ))1τ(l)<T

]

= e−rTE
[
E
[
Π(S(0)eX(T )−X(τ(l))+X(τ(l)))1τ(l)<T |τ(l)

]]

= e−rTE
[
E
[
Π(S(0)eleX(T−τ(l)))1τ(l)<T |τ(l)

]]

= e−rT
∫ T

0

E
[
Π(S(0)eleX(T−t))1t<T

]
fτ(l)(t)dt

where fτ(l) is the pdf of τ(l). Since we have S(0)el = B and

fτ(l)(t) =
1

2π

∫ ∞

−∞

e−ivtφτ(l)(v)dv,

the ci becomes

Vi =
e−rT

2π

∫ T

0

E
[
Π(BeX(T−t))

] ∫ ∞

−∞

e−ivtφτ(l)(v)dv dt

=
e−rT

2π

∫ ∞

−∞

∫ T

0

E
[
Π(BeX(T−t))

]
e−ivtdtφτ(l)(v)dv. (8)

By European option pricing formula using Fourier transform (See Carr and Madan [1999],

Lewis [2001] and Rachev et al. [2011]), we have

E
[
Π(BeX(T−t))

]
=

1

2π

∫ ∞

−∞

Bi(u+iρ)e(T−t)ψX(u+iρ)Π̂(u+ iρ)du,

where Π̂(z) =
∫∞

−∞
e−izxΠ(ex)dx for complex number z and ρ is a real constant such

that ψX(u+ iρ) and Π̂(u+ iρ) are well defined for all u ∈ R. Hence we have

Vi =
e−rT

2π

∫ ∞

−∞

∫ T

0

1

2π

∫ ∞

−∞

Bi(u+iρ)e(T−t)ψX(u+iρ)Π̂(u+ iρ)du e−ivtdt φτ(l)(v)dv

=
e−rT

(2π)2

∫ ∞

−∞

∫ ∞

−∞

Bi(u+iρ)Π̂(u+ iρ)

∫ T

0

e(T−t)ψX(u+iρ)e−ivtdt du φτ(l)(v)dv

=
e−rT

(2π)2

∫ ∞

−∞

Bi(u+iρ)Π̂(u+ iρ)

∫ ∞

−∞

eTψX(u+iρ) − e−ivT

ψX(u+ iρ) + iv
φτ(l)(v)dv du

Let

H(u) =

∫ ∞

−∞

eTψX(u+iρ) − e−ivT

ψX(u+ iρ) + iv
φτ(l)(v)dv

then

Vi =
e−rT

(2π)2

∫ ∞

−∞

Bi(u+iρ)Π̂(u+ iρ)H(u)du.
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For the call option payoff Π(S(T )) = (S(T )−K)+, we have

Π̂(u+ iρ) =

∫ ∞

logK

e−i(u+iρ)x(ex −K)dx =
Kρ+1−iu

(ρ− iu)(ρ+ 1− iu)
, ρ < −1

and for the put option payoff Π(S(T )) = (K − S(T ))+, we have

Π̂(u+ iρ) =

∫ logK

−∞

e−i(u+iρ)x(K − ex)dx =
Kρ+1−iu

(ρ− iu)(ρ+ 1− iu)
, ρ > 0.

The down-and-in call option price (cdi) and up-and-in put option price (pui) are always

in Case 2. Therefore, we have their prices as

cdi =
e−rTK1+ρ

(2π)2Bρ

∫ ∞

−∞

(
B

K

)iu(
H(u)

(ρ− iu)(1 + ρ− iu)

)
du, ρ < −1

and

pui =
e−rTK1+ρ

(2π)2Bρ

∫ ∞

−∞

(
B

K

)iu(
H(u)

(ρ− iu)(1 + ρ− iu)

)
du, ρ > 0

For the up-and-in call option price (cui) and the down-and-in put option price (pdi), we

consider Case 1, and finally obtain

cui =





e−rTK1+ρ

(2π)2Bρ

∫∞
−∞

(
B
K

)iu ( H(u)
(ρ−iu)(1+ρ−iu)

)
du if K ≤ B

e−rTK1+ρ

2πS(0)ρ

∫∞

−∞

(
S(0)
K

)iu ( φX(T−t)(u+iρ)

(ρ−iu)(1+ρ−iu)

)
du if K > B

, ρ < −1.

and

pdi =





e−rTK1+ρ

(2π)2Bρ

∫∞

−∞

(
B
K

)iu ( H(u)
(ρ−iu)(1+ρ−iu)

)
du if K ≥ B

e−rTK1+ρ

2πS(0)ρ

∫∞

−∞

(
S(0)
K

)iu ( φX(T−t)(u+iρ)

(ρ−iu)(1+ρ−iu)

)
du if K < B

, ρ > 0.

The up-and-out and down-and-out calls corresponding to the up-and-in and down-and-

in calls above are priced by cuo = c − cui, and cdo = c − cdi, respectively, where c is the

vanilla call option price with strike price K , and time to maturity T . The up-and-out and

down-and-out puts corresponding to the up-and-in and down-and-in puts above are priced

by puo = p − pui, and pdo = p− pdi, respectively, where p is the vanilla put option price

with strike price K , and time to maturity T .
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