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Abstract

The objective of the cover location models is covering demand by facilities within a given
distance. The gradual (or partial) cover replaces abrupt drop from full cover to no cover by
defining gradual decline in cover. In this paper we use a recently proposed rule for calculating the
joint cover of a demand point by several facilities termed “directional gradual cover”. Contrary
to all gradual cover models, the joint cover depends on the facilities’ directions. In order to
calculate the joint cover, existing models apply the partial cover by each facility disregarding
their direction. We develop a genetic algorithm to solve the facilities location problem and
also solve the problem for facilities that can be located anywhere in the plane. The proposed
modifications were extensively tested on a case study of covering Orange County, California.

Keywords: Location; Genetic algorithm; Cover location models; Partial cover; Gradual cover.

1 Introduction

Cover location models constitute a main branch of location analysis. A demand point is covered

by a facility within a certain distance (Church and ReVelle, 1974; ReVelle et al., 1976). A given

number of facilities need to be located in an area so as to provide as much cover as possible. Such

models are used for modeling cover provided by emergency facilities such as ambulances, police

cars, or fire trucks. They are also used to model cover by transmission towers for cell-phone, TV,

radio, radar among others.

In gradual cover models (also referred to as partial cover) it is assumed that up to a certain

distance r the demand point is fully covered and beyond a greater distance R it is not covered at

all. Between these two extreme distances the demand point is partially covered. There exist several

formulations of the partial cover. Berman and Krass (2002) suggested a declining step function

between r and R. Drezner et al. (2004) suggested a linear decline in cover between r and R, and

Drezner et al. (2010) suggested a linear decline between random values of r and R. Drezner et al.
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(2019) proposed that the demand point is represented by a circle of diameter R− r and the cover

is the intersection area of the circle centered at the demand point and the circle centered at the

facility with radius R+r
2 . The original cover models are a special case of gradual cover models.

When R = r, cover drops abruptly from full cover to no cover. All the applications listed above for

standard cover models are modeled more realistically by gradual cover. In reality, cover does not

drop abruptly at a certain distance.

Church and Roberts (1984) were the first to propose a discrete gradual cover model. The

network version with a step-wise cover function is discussed in Berman and Krass (2002). The

network and discrete models with a general non-increasing cover function were analyzed in Berman

et al. (2003). The single-facility planar model with a linearly decreasing cover function between

the distance of full coverage and the distance of no coverage was optimally solved in Drezner

et al. (2004). The stochastic version was analyzed and optimally solved in Drezner et al. (2010).

Additional references include Berman et al. (2010b, 2019); Drezner and Drezner (2014); Eiselt and

Marianov (2009); Karasakal and Karasakal (2004). For a review of cover models see Berman et al.

(2010b); Drezner et al. (2019); Garćıa and Maŕın (2015); Plastria (2002); Snyder (2011).

A main issue when k facilities partially cover a demand point is estimating the total cover, also

referred to as joint cover. One approach is to interpret partial cover as the probability pj of cover

for j = 1, . . . , k. If the probabilities are independent of each other, the joint cover is 1−
k∏
j=1

(1−pj).

For a discussion of ways to estimate the joint cover see Berman et al. (2019); Drezner and Drezner

(2014); Eiselt and Marianov (2009); Karasakal and Karasakal (2004). Existing models just apply

the partial cover by each facility disregarding their direction. Two facilities located north of the

demand point (which is actually an area and not a point) at distances of 1 and 2 miles provide the

same joint cover as two facilities located one mile north and 2 miles south of the demand point.

However, when both facilities are north of the demand point there is considerable overlap in cover

while if one is to the north and one to the south, the possible overlap is smaller. Therefore, the

joint cover when both facilities are at the same direction is lower than the cover if they are located

in opposite directions.

To address this issue of direction, Drezner et al. (2019) introduced a directional approach to

gradual cover. Customers at demand points reside in areas represented by circular discs rather

than mathematical points and the facility covers points within a given distance. To find a demand
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point’s partial cover by one facility, the intersection area of two discs (the demand point’s disc and

the facility’s coverage disc) is calculated. The partial cover of the demand point is the intersection

area divided by the demand point’s disc area.

If several facilities exist in an area, the joint cover of a demand point is the union of the

individual areas covered by the facilities. This joint cover depends on the distances to the facilities

and on their directions. See Figure 1 for an example of joint cover. Six facilities are located in the

area. Their coordinates and cover radii Dj are depicted in Table 1. The demand point is located at

(0, 0). The disc defined by the “demand point” of radius 1 is marked by dots. The discs centered

at the facilities are marked with thick circular circumferences.

Table 1: Parameters of Six Facilities

j xj yj Dj

1 2 0 1.8
2 0 2 1.5
3 -3 0 2.7
4 0 -2.5 2.4
5 2 2 2.6
6 0 -1.5 1.2

1
3

5

4

6

c Demand point s Facility

2

Figure 1: An Illustration of Directional Cover

Each of the six facilities covers part of the demand point’s disc. The joint cover of the demand

3



point is the union of the intersection areas between the facilities’ discs and the disc surrounding

the demand point.

The joint cover of several facilities depends on the direction of the facilities. To illustrate the

effect of direction, consider the example in Figure 1 of cover by two facilities excluding the other

four facilities in the area. Facility 2 is to the north of the demand point and facilities 4 and 6 are

south of the demand point. The total area covered by facilities 2 and 4 is the sum of the cover

areas. Facility 2 covers part of the northern region of the neighborhood while facility 4 covers part

of the southern region. The covered areas do not intersect. The same is true for facilities 2 and 6

and also for facilities 1 and 3. However, facilities 4 and 6 are both south of the demand point and

cover the southern part of the neighborhood. Because of the overlap of the cover areas the total

cover is the area covered by facility 4 while no additional cover is provided by facility 6. The total

cover of facilities 1 and 4 is less than the sum of the areas but more than the larger area. There

is an intersection area of the two cover areas which is counted only once. Contrary to all gradual

cover models, the joint cover depends on the direction. In order to calculate the joint cover, it is

not sufficient to only have the value of its partial cover for each facility.

The main contribution of the paper is solving the model when facilities can be located anywhere

in the plane and not on a given set of locations. As can be expected, such a solution provides a better

cover. In order to evaluate the value of the objective function anywhere in the plane for standard

non-linear non-convex solvers (we applied SNOPT), we applied the hexagonal pattern numerical

integration approach also used in Drezner et al. (2018). We also solve the discrete directional cover

model by a genetic algorithm getting better results than those obtained in Drezner et al. (2019) by

other heuristic approaches (Ascent, Tabu search, and Simulated annealing).

The paper is organized as follows. In the next section we detail two approaches to estimate

joint cover by numerical integration. In Section 3 we propose a genetic algorithm for solving the

discrete problem where a set of potential locations for the facilities is given. In Section 4 we solve the

continuous problem where the facilities are located anywhere in the plane. Two solution approaches

are suggested: (i) applying general purpose solvers and (ii) a Nelder Mead (Dennis and Woods,

1987; Nelder and Mead, 1965) approach. Extensive computational experiments are performed on

a case study of covering Orange County, California and presented in Section 5. We conclude the

paper in Section 6.
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2 Calculating the Joint Cover Numerically

Evaluating the union of the individual cover areas is complex. The area can be calculated by two-

dimensional integration. Two numerical integration methods for approximating the cover area are

used. Gaussian quadrature is used in Drezner et al. (2019) and the calculations details are available

there. The hexagonal pattern is also used in Drezner et al. (2018) and details are summarized in

the appendix.

Gaussian Quadrature: The percent of coverage of a circle can be accurately calculated by finding

the covered arcs on the circumference of that circle. Drezner et al. (2019) used this obser-

vation to estimate the union’s area by Gaussian quadrature based on Legendre polynomials

(Abramowitz and Stegun, 1972). The exact integral over a circle is found and each cover by

a circle is multiplied by the appropriate weight given in Table 2.

Hexagonal Pattern: The union’s area is estimated by evaluating the cover at points in an hexag-

onal pattern. This hexagonal pattern is easily generated as detailed in Drezner et al. (2018)

and in the appendix.

Table 2: Adjusted Legendre-Gaussian Quadrature Parameters

j uj wj
1 0.1142223084 0.0333356722
2 0.2597466394 0.0747256746
3 0.4003688498 0.1095431813
4 0.5322614986 0.1346333597
5 0.6523517690 0.1477621124
6 0.7579163341 0.1477621124
7 0.8465800004 0.1346333597
8 0.9163540714 0.1095431813
9 0.9656768007 0.0747256746
10 0.9934552150 0.0333356722

The hexagonal pattern for N = 805 points is depicted on the left panel of Figure 2. The

largest distance between the points and the center of the circle is 0.99342. The ten points (which

are circles) Gaussian quadrature are depicted on the right panel of Figure 2. The largest circle

has a radius of 0.99346 which is not distinguishable to the naked eye from the circle of radius 1

surrounding the demand point.
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Hexagonal Pattern, 805 Points Gaussian Quadrature, 10 Concentric Circles
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Figure 2: Comparing Numerical Integration Methods

We calculated the total cover by the demand point in an example problem (Table 1, Figure 1)

with demand point’s radius between 1.0 and 2.0 by a simulation of a billion points randomly

generated in the circle. Each instance required less than a minute of computer time. The standard

error of the results is about 1.4 × 10−5. The results by the simulation, the Gaussian quadrature,

and hexagonal patterns for various number of points, are depicted in Table 3.

It should be noted that the results in Table 3 are for only one demand point. In our computa-

tional experiments we implemented a case study of 577 demand points. Therefore, the estimation

of the total area covered is much more accurate (its standard error is about 1√
577

of the standard

deviation of an individual demand point.) Moreover, when the number of facilities is small, many

of the demand points are not covered at all and their estimation is also zero which is accurate.

When p is large, many demand points are fully covered and their estimation is also accurate with

a value of 1.

3 The Proposed Genetic Algorithm for the Discrete Problem

Drezner et al. (2019) proposed and tested the ascent algorithm, tabu search (Glover and Laguna,
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Table 3: Cover Estimations by Demand Point Radius

R Sim. Gauss N = 199 N = 397 N = 805

1.0 0.920 0.923 0.925 0.917 0.924
1.1 0.934 0.933 0.935 0.932 0.934
1.2 0.945 0.947 0.950 0.937 0.945
1.3 0.953 0.954 0.955 0.960 0.954
1.4 0.959 0.960 0.955 0.962 0.958
1.5 0.965 0.965 0.965 0.965 0.964
1.6 0.969 0.968 0.975 0.970 0.968
1.7 0.972 0.970 0.975 0.975 0.969
1.8 0.975 0.973 0.980 0.975 0.976
1.9 0.978 0.976 0.980 0.977 0.980
2.0 0.980 0.978 0.980 0.977 0.981

Average∗ 0.0016 0.0029 0.0028 0.0016
∗ Average absolute deviation from the simulation.

1997), and simulated annealing (Kirkpatrick et al., 1983) for the solution of this problem. Simulated

annealing performed best. We construct and test the following genetic algorithm that performed

much better than simulated annealing and tabu search. We experimented with many variants and

parameters of the genetic algorithm and the following one performed the best in our experiments.

We borrowed ideas used in Alp et al. (2003); Drezner (2003); Drezner and Marcoulides (2003). The

value of the objective function can be calculated by the two methods detailed in Section 2. We

opted to apply the Gaussian quadrature procedure that was used in Drezner et al. (2019).

Consider a problem with n demand points and m potential facilities’ locations. Co-location is

not beneficial for cover. When two facilities are located at the same point, the intersection area for

the facility with a smaller or equal cover radius is included in the intersection area of the facility

with the larger radius. The union is the intersection area of the facility with a larger cover radius.

Therefore, the objective is to select the best p of the m potential locations for locating facilities

without repetition. Once the cover by selecting p potential locations can be calculated, the problem

reduces to selecting the best set of p out of m potential locations. If p and m are relatively small,

total enumeration or a branch and bound algorithm can be used. Otherwise, a heuristic approach

is necessary.

A list of selected locations is given. We define:

An Ascent Algorithm: Each iteration the value of the objective function is evaluated by replac-
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ing a selected location with a non-selected location. The best exchange is performed if it is

an improving one. The procedure is stopped with a final solution when no improving solution

is found.

Reverse Greedy Process: There are more than p selected locations. Each iteration the location

whose removal decreases the objective function the least is removed until the number of

selected locations is reduced to p.

Restricted Ascent: An ascent algorithm where the list of non-selected locations is restricted to

a given set and does not necessarily include all non-selected locations.

Outline of the Genetic Algorithm

Every population member is a list of p locations where facilities are located. The algorithm is run

for a pre-specified number of generations, g.

1. A population of size pop (we used pop = 100) is randomly generated. Set iter = 0.

2. 20% of the population members are randomly selected and are possibly improved by an ascent
algorithm.

3. Two population members are selected by the parents selection rule detailed below.

4. An offspring is produced by the merging process detailed below.

5. If the offspring is worse than the worst population member or is identical to an existing
population member, go to Step 7.

6. The offspring replaces the worst population member.

7. Set iter = iter + 1. If iter ≤ g go to Step 3.

8. The best population member is the result of the genetic algorithm.

The following parents selection rule was proposed in Drezner and Marcoulides (2003). It is based

on the biological concepts of inbreeding and outbreeding depression (Edmands, 2007; Fenster and

Galloway, 2000). A successful offspring is formed when the parents are not too close genetically

(inbreeding depression) or too dissimilar (outbreeding depression).

The Parents Selection Rule

Define:

P Number of potential second parents (a parameter).
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c Similarity count. The number of common locations between two specific population members.

The process:

1. One population member is randomly selected as the first parent.

2. P ≥ 1 potential second parents are randomly selected from the remaining pop− 1 population
members.

3. For each potential second parent, the similarity count with the first parent, c, is found.

4. The potential second parent with the smallest value of c is selected.

An important part of a genetic algorithm is the merging process of two parents producing an

offspring. The following merging process was found to be superior to many others that were tested.

The Merging Process

1. Two lists of locations are formed. The first list consists of all locations common to the two
parents. The second list consists of all locations which exist only in one parent. The first list
has 0 ≤ c ≤ p members and the second list has 2p− 2c members.

2. p− c members are randomly selected from the second list and added to the first list creating
a solution with p locations. There are p− c remaining locations in the second list.

3. An ascent algorithm is applied on the created solution considering only exchanges between
locations in the solution with locations in the second list. Each iteration of this ascent
algorithm requires p(p− c) evaluations of the objective function. If the solution is improved,
the solution and the second list are updated and another iteration is performed until no
improvement is found.

4. Once the result of the ascent algorithm is obtained, bp2c potential locations are randomly
selected from the remaining m− p potential locations creating a new second list.

5. The ascent algorithm is repeated with the newly formed second list yielding the offspring.

Note that as the number of potential second parents, P , increases, the similarity measure c

tends to decrease. Therefore, the number of objective function evaluations, p(p − c), in Step 3 of

the merging process is expected to increase leading to some increase in run times.

3.1 Variants Tested

The following describes successive improvements in the genetic algorithm that were tested.

1. Step 2 of the genetic algorithm was added later.

2. We started with the merging process suggested in Alp et al. (2003). The two lists are created
as in Step 1 of the merging process. The two lists are combined into one. The locations
in the first list stay in the solution and locations from the second list are removed from the
combined list by a reverse greedy process.

9



3. We then tried performing an ascent algorithm on each offspring but this took too much
computer time and necessitated a significant reduction in the number of generations.

4. We then tried Step 2 of the genetic algorithm on 100% of the initial population members but
it did not do well because there were many identical population members.

5. We then changed the 100% to 20% as is described in Step 2 of the genetic algorithm.

6. We then tried the restricted ascent as detailed in Step 3 of the merging process getting
relatively good results.

7. Steps 4-5 were added to the merging process to prevent a situation where some locations
are not present in any population member. Without these steps, such locations will not be
present in any offspring. Consequently, they will not be in the final solution even if some of
them are present in a better one. These two steps can be viewed as creating a mutation of
some offspring (Ahmed, 2016; Freeman et al., 2014; Srinivas and Patnaik, 1994).

4 Finding a Solution Anywhere on the Plane

We first show that the facilities in an optimal solution anywhere in the plane are located within

the convex hull of the demand points.

Lemma 1: An optimal location of one facility exists in the convex hull of the demand points.

Proof: Let Y be a location outside the convex hull. We show that there is a location Z in the

convex hull such that the cover by a facility located at Z is at least the cover by a facility located

at Y . Wendell and Hurter (1973) showed that there is a point Z in the convex hull (or any convex

set) which is closer than point Y to every point X in the convex hull. Therefore, the partial cover

of point X by a facility located at Z is at least the cover by a facility located at Y . 2

Theorem 1: There exists an optimal solution to the multiple facility location problem where all

facilities are located in the convex hull of the demand points.

Proof: Similar to the arguments in Hansen et al. (1980), suppose that a facility Y is located outside

the convex hull. By Lemma 1 there is a location Z in the convex hull for that facility, while holding

the other facilities in their locations, which cover at least the cover by a facility located at Y . The

theorem follows by mathematical induction. 2
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4.1 Heuristic Algorithms

Heuristic algorithms are designed for the location of facilities anywhere in the plane. The value of

the objective function for any set of p facilities can be calculated by numerical integration. Once

a starting solution is selected, the solution is improved either by applying all purpose non-linear

solvers or by a specially designed Nelder-Mead algorithm detailed below. Note that by Theorem 1

there is no need for constraints.

We suggest two approaches for generating starting solutions. One approach is to randomly

select p demand points, and another is to find a solution to the discrete cover problem and use it as

a starting solution. Finding the discrete solution requires extensive run time and does not provide

a fair comparison with random starting solutions. Results with the discrete starting solution are

reported because in many cases they provide the best known solution.

We propose to move the facilities to nearby locations that provide greater total cover. A facility

located at a demand point completely covers that demand point. However this particular demand

point is still fully covered if the facility is moved up to a distance D −R from that demand point.

The gradient of the coverage of the particular demand point is zero within the disc of radius D−R.

However, a gradient search in the neighborhood of that demand point may increase total coverage

of other demand points.

There is no analytical expression for the total cover and thus applying non-linear solvers for

finding a good solution may be complex unless an hexagonal pattern is used. Multipurpose non-

linear solvers are applied by providing a code for the evaluation of the objective function. For the

Nelder-Mead algorithm we propose, similarly to Cooper (1963, 1964), to iteratively find a better

location for one facility at a time (in random order) while holding the other p− 1 facilities in their

place, until convergence. Demand points that are fully covered by the p− 1 fixed facilities can be

removed from the optimization problem of locating a single facility. Global optimization techniques

such as “Big Square Small Square” (BSSS) (Hansen et al., 1981) or “Big Triangle Small Triangle”

(BTST) (Drezner and Suzuki, 2004) can be used for solving the single facility location problem.

Since the algorithm is a heuristic, it is unnecessary to find the location of one facility optimally.

We used the Nelder-Mead (Dennis and Woods, 1987; Nelder and Mead, 1965) for relocating one

facility because it is faster than optimal approaches.
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4.2 Nelder-Mead (for Maximization)

Suppose that there are k variables in a function to be maximized. In the original Nelder-Mead

algorithm, a starting set of K = k + 1 solutions forming a “simplex” is generated. We solve

relocation of one facility while holding the other p− 1 facilities fixed in their locations. Therefore,

we have k = 2 variables leading to a simplex of K = 3 vertices. We select the present location

as one of the vertices and randomly generate two additional vertices in a square centered at the

present location. We also experimented with a simplex of K = 4 solutions. The simplex is moved

by replacing the worst solution by a better one.

The Nelder-Mead algorithm is based on three parameters α, β and γ. The recommended values

are: for the reflection α = 1, for the contraction: β = 0.5, and for the expansion γ = 2. The

reduction parameter that was 0.5 in the original Nelder-Mead algorithm can also be modified.

4.2.1 Definitions

Pi for i = 1, . . . ,K are the solution points (the vertices of the simplex).

Fi for i = 1, . . . ,K are the corresponding values of the objective function.

P` is the worst solution point (` for low).

Ph is the best solution point (h for high).

P is the average of all solution points excluding P`.

Fs is the value of the objective function of the second highest solution point.

4.2.2 The Nelder-Mead Algorithm

1. Determine the solutions at the vertices P`, Ph, P .

2. Determine the values F`, Fs, Fh.

3. If Fh − F` < ε, stop with Ph as the solution.

4. Reflection: Calculate P r = (1 + α)P − αP` and its objective function value F r.

5. If Fs ≤ F r ≤ Fh, replace P` by P r and return to Step 1.

6. If F r < Fs then define P t: If F r > F`, P
t = P r; else P t = P`.

7. Contraction: Calculate P c = βP t + (1− β)P and its objective value F c.

(a) If F c ≥ Fs, replace P` by P c and go to Step 1.

(b) Reduction: If F c < Fs, replace all points Pi = (Pi + Ph)/2 and go to Step 1.

8. Expansion: If F r > Fh, calculate P e = (1 + γ)P − γP` and its objective F e.

12



(a) If F e ≥ Fh, replace P` by P e and go to Step 1.

(b) Else, replace P` by P r and go to Step 1.

5 Case Study: Transmission Towers in Orange County, California

We investigate covering Orange County, California with transmission towers of cell phone, TV or

radio. The data from the 2000 census for Orange County, California is given in Drezner (2004) and

was also used in Berman et al. (2010a, 2019); Drezner and Drezner (2007, 2014); Drezner et al.

(2019, 2006). There are 577 census tracts and their population counts are given. The total Orange

County population is 2,846,289.

Experiments using SNOPT (Gill et al., 2005) were run on a virtual server with 16 vCPUs and

128 GB of vRAM implemented in Matlab R2016b. An analytical gradient for the objective function

is not available. The derivatives of the objective function are discontinuous. Therefore, the SNOPT

non-linear all purpose solver is not effective.

For the Nelder-Mead approach, computer programs were coded in Fortran using double precision

arithmetic and were compiled by an Intel 11.1 Fortran Compiler using one thread with no parallel

processing. They were run on a desktop with the Intel i7-6700 3.4GHz CPU processor and 16GB

RAM.

Full cover within 2 miles and no cover beyond 4 miles were applied in Berman et al. (2019);

Drezner and Drezner (2014); Drezner et al. (2019). To have comparable results we assign a radius

of Ri = 1 mile for each demand point and a cover radius of Dj = 3 miles for each tower. For

each community with population wi, the proportion cover 0 ≤ pi ≤ 1 is estimated by numerical

integration. The proportion cover of all n communities 0 ≤ p̂ ≤ 1 is

p̂ =

n∑
i=1

wipi

n∑
i=1

wi

5.1 Testing the Genetic Algorithm

The best performing heuristic reported in Drezner et al. (2019) was simulated annealing (Kirk-

patrick et al., 1983). By comparing the results with simulated annealing we implicitly also compare

it with Tabu search and the ascent algorithm. We compare the proposed genetic algorithm to these
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Table 4: Comparing the Genetic Algorithm with Simulated Annealing (p ≤ 22)

Best Gen (P = 1) Gen (P = 2) Gen (P = 3) S.A.
p Known † ‡ † ‡ † ‡ † ‡
2 0.22578 10 0.60 10 0.64 10 0.67 10 3.38
3 0.30676 10 1.97 10 2.09 10 2.23 10 7.85
4 0.37251 10 4.38 10 4.84 10 5.17 10 13.63
5 0.43555 10 8.05 10 9.58 10 9.93 10 20.92
6 0.48991 10 13.89 8 15.60 9 16.15 4 28.96
7 0.54401 10 19.65 10 21.27 10 21.91 9 38.21
8 0.59197 9 27.82 8 31.59 10 34.34 8 49.26
9 0.63683 10 40.28 10 46.26 10 46.70 9 60.31
10 0.67897 10 52.37 10 55.28 10 59.14 10 73.48
11 0.71825 10 66.43 10 75.42 9 75.94 9 87.35
12 0.75464 10 80.79 10 91.16 10 96.64 10 100.59
13 0.78744 10 99.78 10 109.03 9 108.89 10 113.50
14 0.81377 3 117.91 5 148.88 4 136.75 2 125.12
15 0.84165 7 153.45 8 189.01 7 201.09 4 136.95
16 0.86468 10 176.79 10 189.31 9 188.24 7 145.95
17 0.88340 9 221.08 8 251.86 6 267.77 4 169.86
18 0.90121 4 231.24 9 239.83 6 294.76 6 195.90
19 0.91541 6 250.30 7 308.55 2 328.84 5 222.73
20 0.92791 0 297.46 0 378.29 0 449.72 1 251.16
21 0.94052 6 311.91 4 331.91 2 405.54 3 280.05
22 0.95303 3 356.73 6 423.16 4 438.65 4 312.48

Total 167 2532.86 173 2923.56 157 3189.05 145 2437.64

Average: 7.95 120.61 8.24 139.22 7.48 151.86 6.90 116.08

Percent∗ 0.0313% 0.0251% 0.0423% 0.0857%

† The number of times that the best known solution was found.
‡ Total time in minutes for all ten runs.
∗ Average of 210 runs (10 runs each: 2 ≤ p ≤ 22) below the best known solution.

results. We tested the genetic algorithm for P = 1, 2, 3 second parents in the parents selection

rule and g = 10, 000 iterations so that run times are similar to those reported in Drezner et al.

(2019). We divided the 43 values of p into two similar sized groups: 2 ≤ p ≤ 22 (21 problems) and

23 ≤ p ≤ 44 (22 problems).

In Table 4 we report for the smaller values of p the results for P = 1, 2, 3 parents in the parents

selection rule as well as the results by simulated annealing. For each method we also report: the

number of times that the best known solution was found; the total time in minutes for all ten runs;

and the percent of the average of 210 runs below the average of best known solutions. All three

variants of the genetic algorithm performed better than the simulated annealing. Using P = 2
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Table 5: Comparing the Genetic Algorithm with Simulated Annealing (p ≥ 23)

Best Gen (P = 1) Gen (P = 2) Gen (P = 3) S.A.
p Known † ‡ † ‡ † ‡ † ‡
23 0.96196 0 386.37 2 423.57 0 559.93 3 345.42
24 0.96925 3 415.35 7 466.89 5 500.73 4 380.03
25 0.97566 6 434.33 3 497.53 5 514.06 3 414.29
26 0.98078 7 433.50 7 533.18 6 570.72 3 447.90
27 0.98564 2 465.74 5 571.04 2 592.73 3 487.40
28 0.98852 4 493.45 5 675.23 2 694.79 2 524.36
29 0.99085 1 606.85 1 812.38 1 732.71 3 566.03
30 0.99261 5 657.98 2 735.25 1 805.24 5 604.02
31 0.99430 4 641.96 4 740.49 2 746.25 1 647.49
32 0.99537 2 666.92 3 705.93 1 797.02 2 692.48
33 0.99633 0 717.12 0 708.82 1 851.62 0 738.90
34 0.99721 0 645.29 0 829.53 0 888.11 0 788.46
35 0.99803∗ 0 736.39 0 964.07 0 1020.54 0 841.77
36 0.99859 0 895.57 0 927.78 0 1391.82 0 892.83
37 0.99903 0 809.22 0 963.26 0 1521.67 1 945.97
38 0.99945∗ 0 985.48 2 1063.38 1 1456.93 0 1000.55
39 0.99969 0 890.23 0 1023.01 0 1502.61 0 1054.54
40 0.99987 0 865.48 0 969.62 0 1333.65 1 1109.00
41 0.99993 2 827.42 3 930.79 0 1301.92 0 1163.53
42 0.99997 0 834.28 1 903.33 1 1235.90 1 1221.55
43 1.00000 0 817.42 1 922.30 0 1360.36 0 1281.10
44 1.00000 9 867.73 10 1019.97 9 1500.68 0 1344.23

Total 45 15094.08 56 17387.35 37 21880.00 32 17491.84

Grand Total 212 17626.94 229 20310.91 194 25069.06 177 19929.48

Grand Average: 4.93 409.93 5.33 472.35 4.51 583.00 4.12 463.48

% of 220 runs+ 0.0251% 0.0228% 0.0218% 0.0264%

% of 430 runs+ 0.0276% 0.0238% 0.0300% 0.0501%

† The number of times that the best known solution was found.
‡ Total time in minutes for all ten runs.
∗ A new best known solution.
+ % of average below the best known solution (10 runs each: 23 ≤ p ≤ 44; 2 ≤ p ≤ 44).

parents in the parents selection rule provided the best results but run time was a bit longer than

the time using P = 1.

In Table 5 we report the same results for the larger values of p and also the grand total and

average for all 43 problems. These results also indicate that the P = 2 variant performed best.
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Table 6: Continuous solutions with 100 starting solutions

SNOPT N-M Random Starting Solutions N-M Discrete Starting Solution
Best K = 3 K = 4 K = 3 K = 4

p Known † ‡ † ‡ † ‡ † ‡ † ‡
2 0.22680 6.13% 0.68 0.00% 0.04 0.00% 0.05 0.00% 0.03 0.00% 0.04
3 0.30888 13.97% 1.12 0.01% 0.12 0.02% 0.17 0.00% 0.08 0.00% 0.10
4 0.37597 18.68% 1.83 0.01% 0.26 0.01% 0.34 0.00% 0.17 0.00% 0.23
5 0.44094 15.99% 2.44 0.01% 0.40 0.00% 0.63 0.00% 0.28 0.00% 0.34
6 0.49555 15.37% 2.94 0.02% 0.67 0.00% 0.88 0.28% 0.50 0.29% 0.68
7 0.54924 14.49% 4.19 0.08% 1.05 0.02% 1.25 0.07% 0.69 0.08% 0.87
8 0.59883 19.62% 4.69 0.03% 1.37 0.04% 1.81 0.00% 0.90 0.00% 1.15
9 0.64359 17.11% 5.01 0.06% 1.92 0.06% 2.56 0.02% 1.28 0.01% 1.87
10 0.68718 18.06% 5.92 0.04% 2.50 0.06% 3.48 0.00% 1.67 0.00% 2.33
11 0.72856 21.74% 7.30 0.02% 3.18 0.01% 4.19 0.00% 1.96 0.00% 2.62
12 0.76548 21.02% 7.43 0.17% 3.84 0.18% 4.94 0.00% 2.30 0.00% 3.09
13 0.79850 18.35% 10.32 0.03% 4.28 0.10% 5.74 0.00% 2.76 0.00% 3.70
14 0.82320 19.06% 10.05 0.07% 5.22 0.06% 7.24 0.05% 2.82 0.05% 3.59
15 0.84941 14.98% 10.74 0.26% 5.66 0.12% 7.71 0.00% 2.86 0.01% 3.91
16 0.87492 22.27% 12.01 0.22% 6.53 0.02% 8.70 0.00% 3.64 0.00% 5.23
17 0.89310 21.96% 13.43 0.12% 7.07 0.06% 9.79 0.02% 3.67 0.02% 5.32
18 0.91138 17.74% 13.44 0.04% 8.16 0.23% 10.70 0.02% 4.01 0.01% 5.56
19 0.92767 20.02% 14.85 0.52% 8.80 0.53% 11.70 0.01% 4.48 0.01% 5.78
20 0.93940 17.45% 14.48 0.23% 9.66 0.76% 12.33 0.02% 4.80 0.01% 6.55
21 0.95053 15.75% 17.09 0.35% 9.20 0.10% 13.45 0.17% 5.97 0.17% 8.92
22 0.96060 16.68% 17.23 0.06% 10.71 0.20% 14.65 0.00% 6.35 0.00% 8.83
23 0.96917 14.86% 18.47 0.23% 10.41 0.10% 14.65 0.03% 7.60 0.03% 10.94
24 0.97711 14.06% 19.11 0.71% 10.42 0.29% 15.24 0.01% 6.66 0.02% 9.30
25 0.98309 15.69% 19.74 0.19% 11.87 0.14% 16.10 0.03% 7.78 0.02% 10.34
26 0.98770 13.78% 22.55 0.22% 11.57 0.21% 15.14 0.04% 8.33 0.04% 10.81
27 0.99210 14.98% 22.84 0.36% 11.36 0.37% 16.41 0.02% 8.26 0.02% 11.90
28 0.99377 8.67% 25.02 0.08% 11.45 0.19% 16.77 0.01% 6.82 0.00% 9.08
29 0.99604 12.29% 25.82 0.16% 11.70 0.21% 16.22 0.01% 7.02 0.01% 9.99
30 0.99704 13.53% 23.36 0.12% 11.48 0.01% 15.17 0.00% 7.12 0.00% 10.34
31 0.99811 10.05% 25.37 0.03% 10.87 0.09% 16.43 0.00% 5.83 0.00% 8.60
32 0.99857 12.11% 28.51 0.08% 11.40 0.11% 15.67 0.01% 5.51 0.00% 7.51
33 0.99947 10.93% 26.53 0.08% 10.84 0.10% 14.99 0.02% 5.37 0.02% 7.71
34 0.99963 8.64% 28.57 0.07% 9.59 0.13% 14.07 0.02% 4.45 0.02% 6.11
35 0.99998 10.14% 29.58 0.09% 10.91 0.10% 13.14 0.00% 4.78 0.00% 6.82
36 1.00000 9.44% 29.33 0.04% 9.24 0.06% 13.45 0.00% 3.65 0.00% 5.47
37 1.00000 7.26% 30.80 0.01% 10.17 0.02% 12.29 0.00% 2.54 0.00% 3.32
38 1.00000 7.55% 31.97 0.10% 8.91 0.00% 12.33 0.00% 1.96 0.00% 2.69
39 1.00000 8.48% 32.32 0.03% 9.71 0.01% 13.75 0.00% 1.45 0.00% 1.85
40 1.00000 6.09% 33.75 0.00% 9.30 0.01% 11.88 0.00% 1.31 0.00% 1.91
Average: 14.49% 16.69 0.126% 7.23 0.121% 9.90 0.022% 3.79 0.022% 5.27
† Percent cover below best known solution.
‡ Total time in minutes for all runs.
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Table 7: Continuous solutions with 1000 starting solutions

SNOPT N-M Random Starting Solutions N-M Discrete Starting Solution
Best K = 3 K = 4 K = 3 K = 4

p Known † ‡ † ‡ † ‡ † ‡ † ‡
2 0.22680 2.09% 7.16 0.00% 0.42 0.00% 0.56 0.00% 0.29 0.00% 0.38
3 0.30888 5.42% 11.38 0.00% 1.24 0.00% 1.65 0.00% 0.83 0.00% 1.06
4 0.37597 11.41% 17.25 0.00% 2.62 0.00% 3.47 0.00% 1.75 0.00% 2.27
5 0.44094 10.24% 24.29 0.00% 4.49 0.00% 5.85 0.00% 2.69 0.00% 3.49
6 0.49555 12.67% 31.18 0.00% 7.14 0.00% 9.31 0.23% 4.96 0.26% 6.58
7 0.54924 12.98% 38.51 0.00% 10.10 0.02% 13.19 0.07% 6.63 0.02% 9.03
8 0.59883 15.65% 46.07 0.01% 13.89 0.01% 18.82 0.00% 9.09 0.00% 12.02
9 0.64359 13.98% 54.89 0.05% 18.55 0.05% 25.43 0.00% 13.35 0.01% 18.46
10 0.68718 15.49% 63.75 0.02% 24.58 0.01% 33.37 0.00% 16.82 0.00% 22.39
11 0.72856 17.13% 76.92 0.00% 30.66 0.01% 41.60 0.00% 19.78 0.00% 26.65
12 0.76548 15.26% 85.26 0.01% 37.64 0.01% 49.27 0.00% 22.55 0.00% 30.54
13 0.79850 15.79% 89.34 0.03% 43.01 0.01% 57.50 0.00% 27.28 0.00% 37.46
14 0.82320 15.52% 103.02 0.00% 51.20 0.01% 69.08 0.05% 28.15 0.05% 36.79
15 0.84941 18.88% 109.40 0.00% 56.78 0.00% 76.83 0.00% 29.18 0.00% 39.17
16 0.87492 16.02% 123.56 0.00% 64.34 0.02% 87.75 0.00% 37.02 0.00% 51.28
17 0.89310 14.53% 135.86 0.02% 72.16 0.00% 99.00 0.02% 37.75 0.02% 52.11
18 0.91138 18.53% 139.27 0.00% 80.44 0.02% 109.25 0.01% 39.90 0.01% 54.68
19 0.92767 12.90% 151.05 0.25% 85.98 0.07% 119.69 0.00% 43.45 0.00% 58.93
20 0.93940 15.99% 166.43 0.00% 95.51 0.07% 128.35 0.01% 47.59 0.01% 66.72
21 0.95053 15.96% 173.13 0.19% 98.13 0.00% 136.20 0.17% 60.85 0.17% 84.66
22 0.96060 14.57% 178.20 0.06% 107.45 0.09% 143.36 0.00% 65.55 0.00% 92.09
23 0.96917 10.26% 192.27 0.00% 108.61 0.02% 151.42 0.02% 74.32 0.02% 103.48
24 0.97711 13.20% 202.90 0.00% 109.07 0.03% 152.71 0.00% 67.48 0.00% 94.54
25 0.98309 12.39% 209.77 0.00% 112.80 0.14% 158.04 0.02% 76.83 0.02% 107.45
26 0.98770 11.80% 221.78 0.00% 115.21 0.03% 157.99 0.02% 79.90 0.03% 113.28
27 0.99210 8.54% 230.00 0.02% 115.02 0.22% 164.06 0.00% 84.58 0.02% 115.98
28 0.99377 9.94% 236.59 0.06% 118.09 0.04% 165.25 0.00% 64.14 0.00% 90.03
29 0.99604 11.47% 254.07 0.08% 114.07 0.12% 163.13 0.00% 70.34 0.01% 100.62
30 0.99704 8.96% 260.81 0.04% 113.23 0.01% 162.62 0.00% 70.05 0.00% 99.71
31 0.99811 10.80% 266.64 0.00% 110.50 0.08% 156.56 0.00% 58.93 0.00% 83.28
32 0.99857 5.86% 274.88 0.07% 110.27 0.04% 152.58 0.00% 53.28 0.00% 77.36
33 0.99947 7.09% 295.22 0.02% 102.86 0.07% 147.00 0.00% 54.14 0.02% 75.36
34 0.99963 7.03% 294.63 0.03% 100.49 0.01% 139.83 0.00% 48.19 0.02% 65.98
35 0.99998 6.28% 305.51 0.01% 100.78 0.05% 134.79 0.00% 46.51 0.00% 67.91
36 1.00000 7.11% 312.73 0.02% 94.91 0.01% 136.91 0.00% 37.58 0.00% 53.99
37 1.00000 5.76% 325.34 0.01% 93.50 0.01% 132.18 0.00% 24.67 0.00% 33.30
38 1.00000 5.44% 337.85 0.00% 92.82 0.00% 124.58 0.00% 19.85 0.00% 27.05
39 1.00000 4.68% 339.68 0.00% 91.68 0.00% 124.43 0.00% 14.52 0.00% 19.33
40 1.00000 5.35% 350.84 0.00% 88.25 0.00% 122.49 0.00% 13.73 0.00% 18.80
Average: 11.36% 172.75 0.026% 71.76 0.033% 99.39 0.016% 37.81 0.018% 52.67
† Percent cover below best known solution.
‡ Total time in minutes for all runs.
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Small shade: 1 mile radius around census tract

Large circle: 3 miles radius around towers

Figure 3: Covering 85% of Customers in Orange County by 15 Towers

5.2 Testing Location Anywhere in the Plane

We compared maximum cover of all n = 577 census tracts. SNOPT (using the hexagonal pattern)

and Nelder-Mead (using Gaussian quadrature) )were run from random starting solutions. In order

to improve some best known solutions we also report results by Nelder-Mead starting from the

discrete best known solution found by the genetic algorithm and in Drezner et al. (2019). Each

variant was run for 100 and 1000 replications for each 2 ≤ p ≤ 40.

The results are summarized in Tables 6 and 7. Run times by Nelder-Mead are quite short. The

average run time for one run is about 5 seconds from a random starting solution and 3 seconds from

the best known discrete starting solution (it was repeated 100 or 1000 times). SNOPT was slower

and resulted in much poorer results and thus it is not discussed further. The random starting

solution performed better for small values of p and the discrete starting solution performed better
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Figure 4: Cover Increase at the Continuous Location

for larger values of p. The K = 3 yielded comparable results to those obtained for K = 4 in a

slightly shorter run time. Full cover was obtained for p ≥ 36 instances. Cover of 99.999% which is

practically full cover was obtained for p = 35. In Figure 3 the best cover obtained by 15 towers is

depicted. Full cover will be obtained if all gray shaded areas are covered by towers within 3 miles.

In Figure 4 we compare the best known cover for the discrete problem with the best known

cover for location anywhere in the plane. As would be expected, the cover by locating anywhere

in the plane is higher than the discrete cover. In some cases more than 1% is added to the cover

(out of 100%). On the left panel we show the increase as a function of the the number of towers.

We added a best fit function. On the right panel we show the same values (and the best fit graph)

with the discrete cover on the x-axis. Additional cover is low for few facilities because the facilities

in the continuous solution are located quite close to the demand points, and it is low for a large

number of facilities because there is not much extra market share remaining. For our case study

the maximum additional market share is obtained around 90% discrete cover.

We also investigated covering North Orange County (n = 131 census tracts for y ≥ 30). Full

cover for North Orange County was found by Nelder-Mead for p ≥ 8 facilities. SNOPT was not

tested on North Orange County in view of its performance for all Orange County. Nelder Mead was

run 100 times and full cover obtained 18 times for p = 8. Running time for all 100 runs for p = 8
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Figure 5: Covering All Customers in North Orange County
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was just 5.8 seconds. When the locations are restricted to census tracts full cover requires p = 10

facilities (Drezner et al., 2019). In earlier gradual cover models (Berman et al., 2019; Drezner and

Drezner, 2014) 13 towers are required for full cover. The solutions are depicted in Figure 5. Clearly,

locating anywhere in the plane provides much more flexibility.

6 Conclusions

We investigated locating a given number of facilities providing maximum cover of a set of demand

points applying the directional gradual cover model. This is a realistic and practical model com-
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pared with other gradual cover formulations. It is, however, more difficult to solve. A better

heuristic approach is obtained for the discrete case by a specially designed genetic algorithm.

We also find the best locations anywhere in the plane by Nelder-Mead and SNOPT. Nelder-

Mead provided superior results because the objective function has discontinuous derivatives. All

purpose non-linear optimization solvers perform poorly because of this discontinuity.

Some interesting and useful extensions can be investigated in future research. For example,

• The conditional version of the problem (Berman and Simchi-Levi, 1990; Minieka, 1980;

Ogryczak and Zawadzki, 2002). This means that several facilities already exist in the area

and additional facilities need to be located to maximize total cover.

• The problem can be defined on the globe with a large cover radius determined by a limited

flight time. The distance required for a given flight time can be in a range due to variable

flight conditions.

• The cost of a facility is a known function of the cover radius. For example, the cost consists of

a set-up cost plus a variable cost which is proportional to the square of the radius. A budget

is available for constructing new facilities. The cover radii of facilities are additional variables

in the model. The conditional version of this problem is also of interest.

Appendix: Finding the Joint Cover of One Demand Point by

Hexagonal Pattern

The points in the hexagonal pattern are defined by two sequences (all the combinations of the

two lists for x and y): (x = 0,±1,±2, . . . , y = 0,±
√

3,±2
√

3, . . .) and (x = ±1
2 ,±

3
2 ,±

5
2 , . . . , y =

±
√
3
2 ,±

3
√
3

2 ±
5
√
3

2 , . . .). All the points with distances up to
√
M for some M are selected. M = 52

yields N = 199 points and M = 110, 220 yield N = 397, 805 points. The points are then adjusted

by a factor of
√

2π
N
√
3
.

Every demand point is represented by N hexagonal pattern points (see for example Figure 2).

The distance between each of the N points to all facilities is calculated to find out whether the

point is covered or not. The total number of points covered, TC, is found and the cover estimate

is TC
N .
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Time saving measures can be implemented. We first find the distances dj between the demand

point (the center of the circle) and facility j for j = 1, . . . p. If there is a facility for which

dj ≤ Dj − Ri, the whole circle is covered. The cover is “1”, and there is no need to check the

other N − 1 points. If dj ≥ Dj +Ri, facility j provides no cover and can be removed from the list

of facilities to be checked by the other N − 1 points. A list, possibly shorter than p members, of

facilities is created. Only facilities in this list need to be checked for each of the remaining N − 1

points.

Note that once a facility covering a point is identified, the point is covered and there is no need

to check additional facilities. A point is not covered if and only if all facilities do not cover it.
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