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Abstract

This paper introduces a node formulation for multistage stochastic programs with endogenous (i.e.,
decision-dependent) uncertainty. Problems with such structure arise when the choices of the decision
maker determine a change in the likelihood of future random events. The node formulation avoids
an explicit statement of non-anticipativity constraints, and as such keeps the dimension of the model
sizeable. An exact solution algorithm for a special case is introduced and tested on a case study. Results
show that the algorithm outperforms a commercial solver as the size of the instances increases.

1 Introduction

Multistage stochastic programs offer a viable framework for modeling and solving problems involving a
sequence of decisions interspersed with partial resolutions of some stochastic process. At each decision
stage the decision maker knows the content of the uncertainty resolved until that stage and a probabilistic
characterization of the remaining stochastic process. In the classical settings, it is assumed that decisions do
not modify the stochastic process in any way (see e.g., Kall and Wallace, 1994; Birge and Louveaux, 1997).
In other words, the uncertainty is entirely exogenous. While this description fits a large number of decision
problems, several other can be found where decisions have an influence on the remainder stochastic process,
e.g., by changing the likelihood of future realizations. This category of problem is referred to as multistage
stochastic programs with endogenous uncertainty (MSPEU).

Following (Goel and Grossmann, 2006), there exist at least two ways in which decisions can influence
the underlying stochastic process. The first possibility is that decisions alter the probability distribution of
the stochastic process, thus changing the likelihood of the possible events. The second possibility is that
decisions determine the time when the uncertainty is (partially) resolved. This article is concerned with
multistage stochastic programs affected by the first type of endogenous uncertainty.

The research dealing with decisions influencing probability distributions is rather sparse. Jonsbr̊aten
et al. (1998) consider a case where decisions influence both the probability measure and the timing of
the observation, i.e., at which stage certain random variables will be observed. The framework includes
both two-stage and multistage problems, though the decisions influencing the uncertainty must be made
at the first-stage only. Ahmed (2000) illustrates examples of problems with endogenous uncertainty, such
as facility location, network design and server selection. The author presents an exact solution method
for the resulting one-stage integer problems. Viswanath et al. (2004) consider the problem of investing in
strengthening actions for the links of a network subject to disruptive events. The problem is modeled as
a two-stage stochastic program where first-stage investment decisions influence the likelihood of disruptive
events happening at upgraded links. The same problem is studied also by da Costa Flach (2010), Peeta
et al. (2010) and Laumanns et al. (2014). Held and Woodruff (2005) consider the problem of interdicting
a stochastic network, that is a network whose structure is unknown to the interdictor. In this problem,
the probabilities of different future network configurations depend on previous interdiction actions. Tong
et al. (2012) present an oil refinery planning problem considering that the uncertainty in product yield is
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influenced by operation mode changeovers. Hellemo (2016) and Hellemo et al. (2018) discuss several ways
of incorporating the influence of decision variables on the underlying probability distributions in two-stage
stochastic programs. Particularly, the authors formulate two-stage models where prior probabilities are
distorted through an affine transformation, or combined using a convex combination of several probability
distributions. Furthermore, the authors present models which incorporate the parameters of the probability
distribution as first-stage decision variables. Finally, Escudero et al. (2018) study the problem of mitigating
the effects of natural disasters through preventive actions. The problem is formulated as a three-stage
stochastic bilinear integer program with both exogenous and endogenous uncertainty. Particularly, decisions
can influence both the probabilities and the intensity of future uncertain events.

When the second type of uncertainty is considered, the decision making process is such that the un-
certainty is not resolved automatically at each decision stage as in classical stochastic programs with only
exogenous uncertainty. Rather, the decisions made implicitly determine the time when the uncertainty is
resolved. A typical example, provided by Goel and Grossmann (2004) and based on the petrochemical in-
dustry is as follows. A decision maker has to decide which gas reservoirs to explore, and when, by installing
exploration facilities. The size and quality of the reservoirs is uncertain and can be known only when fa-
cilities have been installed. Thus, the time the uncertainty is resolved depends on installation decisions.
The literature dealing with this type of stochastic programs includes Colvin and Maravelias (2008), Tarhan
and Grossmann (2008), Tarhan et al. (2009), Colvin and Maravelias (2010), Gupta and Grossmann (2011),
Mercier and Van Hentenryck (2011), Tarhan et al. (2013), Apap and Grossmann (2016).

The contribution of this paper is as follows. First, we introduce a novel node-formulation for multi-
stage stochastic programs where decisions (at all stages) influence probability distributions at future stages.
A node formulation automatically ensures non-anticipative decisions and thus avoids writing explicit non-
anticipativity constraints (NACs) that are necessary when the uncertainty is represented via scenarios. NACs
have typically been addressed as a bottleneck of available models for MSPEU, and motivated recent research
to find and discard redundant NACs, see Apap and Grossmann (2016), Hooshmand and MirHassani (2016)
and Hooshmand and MirHassani (2018). The new formulation is based on a novel scenario tree structure
which incorporates the possibility that several (finitely many) different distributions for later stages can em-
anate based on the decisions made at a certain decision stage. The new scenario tree structure represents the
second contribution of this paper. Third, we propose a general-purpose efficient algorithm for a special class
of MSPEUs. We demonstrate the use of the new formulation, scenario tree structure and solution algorithm
on instances of the Football Team Composition Problem. The instances are made available online for the
benefit of future research at https://github.com/GioPan/instancesFTCPwithEndogenousUncertainty.

The remainder of this paper is organized as follows. In Section 2 we provide a model formulation and
new scenario tree structure for MSPEUs. In Section 3 we describe a solution algorithm for a special case
of MSPEUs. In Section 4 we present a case study in which we formulate the Football Team Composition
Problem as a MSPEU and solve it using our specialized algorithm. Finally, we provide concluding remarks
in Section 5.

2 Multistage stochastic programs with decision-dependent uncer-
tainty

The decision maker is concerned with a sequence of decisions (xt)
T
t=1 at decision stages t = 1, . . . , T , condi-

tional on the partial resolution of a random process (ξt)
T
t=1. At decision stage t, decisions are non-anticipative,

meaning that they are based only on the realization of the random process up to, and including, ξt. The
realization of the remaining random process ξt+1, . . . , ξT is still uncertain. For t = 2, . . . , T , the probability
distribution of ξt, . . . , ξT is dependent on past decisions x1, . . . , xt−1. The resulting multistage stochastic
program is thus characterized by endogenously defined uncertainty.

Consistently with Jonsbr̊aten et al. (1998) we assume that the set of potential probability distributions
enforced by decisions is finite and countable. Furthermore, we assume that the probability distributions
are discrete (possibly after a scenario generation phase). The latter assumption is rather standard and
required in order to solve real-life stochastic programs (except perhaps for a number of specific applications).
The resulting decision-dependent discrete stochastic process can be depicted by means of the scenario tree
structure illustrated in Figure 1. In what follows we refer to this scenario tree structure as a multi-distribution
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Figure 1: Multidistribution scenario tree.

scenario tree (MDST) (see, e.g., also how Kaut et al. (2014) modified the classical structure of scenario trees
in order to account for multiple time resolutions).

In an MDST the root node, arbitrarily named 0, represents the current state of the world, when first-stage
decisions are made. First-stage decisions will enforce one out of a finite number of distributions represented
by the set D0. As an example, in Figure 1, decisions might determine, among other, distributions d ∈ D0 or
d+1 ∈ D0. Distribution d is characterized by realizations, represented by nodes, that include l and m, while
distribution d + 1 is characterized by realizations that include q and o. Similarly, at stage t = 2, assuming
realization m of distribution d occurs at stage t = 1, the actions of the decision maker will determine one
out of a number of different distributions including d and d+ 1 from the set Dm. This process continues in
a similar manner until stage T − 1. Given a realization n at stage T − 1 the actions of the decision maker
will determine one out of a finite number of distributions Dn, which include d and d + 1. Finally, at stage
T all the uncertainty is resolved and the decision maker makes final decisions.

Given an MDST, let us introduce the notation necessary for formulating the MSPEU. Let N be the set
of nodes in the scenario tree, Nt be the set of nodes at stage t, 0 the root node, t(n) ∈ {1, . . . , T} the stage
of node n, and a(n) ∈ N the parent node of node n except the root node. Let Dn be the set of possible
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Figure 2: Example multidistribution scenario tree with three stages, two possible distributions for each node,
and two possible realizations for each distribution.

distributions which can be enforced by decision made at node n ∈ N , and Nnd be the child nodes of node n
if distribution d ∈ Dn is enforced. Let πn be the probability of node n with π0 = 1, and

∑
m∈Ndn

πm = πn
for all n ∈ N , d ∈ Dn. An example of this notation is provided in Figure 2 for a three-stage scenario tree,
with two possible distributions emanating from each node and each distribution being characterized by two
possible realizations.

Let decision variables xn ∈ RNt(n) , n ∈ N represent decisions made at node n. These decisions may
be integer or fractional and represent ordinary decision made in the decision process. Let δnd be a binary
variable which captures the probability distribution enforced by the decisions made at node n. It takes value
1 if the decisions at node n enforce probability distribution d at the child nodes of n, 0 otherwise. Finally, let
θn ∈ R1 be a decision variable which holds the expected value of the decisions made at the nodes descending
from n. For the reader’s convenience, the notation is also reported in Appendix A in a tabular format. An
MSPEU is thus

max rT0 x0 +
∑
d∈D0

q0dδ0d + θ0 (1a)

s.t.
∑
d∈Dn

δnd = 1 n ∈ N , (1b)
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Anxn +
∑
d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (1c)

θn =
∑
d∈Dn

δnd

( ∑
m∈Nnd

πm(rTmxm +
∑
d∈Dm

qmdδmd + θm)

)
n ∈ N \ NT , (1d)

θn = Θn n ∈ NT , (1e)

xn ∈ Xt(n) n ∈ N , (1f)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (1g)

θn ∈ R n ∈ N . (1h)

where, for each n ∈ N , rn ∈ RNt(n) and qnd ∈ R1 represent the rewards of decisions xn and δnd,
respectively, An ∈ RMt(n)×Nt(n) , Bnd ∈ RMt(n)×1, Ca(n) ∈ RMt(n)×Nt(a(n)) , and Da(n),d ∈ RMt(n)×1 are

matrices of coefficients and hn ∈ RMt(n) a right-hand-side vector, with the assumption that Ca(0),d := 0 and

Da(0),d := 0. Finally, Θn ∈ R1 represents the future expected value at leaf node n, and Xt(n) ⊆ RNt(n) the
domain of the xn variables. Objective function (1a) represents the sum of the profit for the decisions made a
the root node (n = 0) and expected profit of future decisions. Constraints (1b) ensure that the decisions made
at each node determine exactly one probability distribution. That is, the stochastic phenomena following
the decisions at node n, are described by exactly one probability distribution (among the available ones),
enforced by the decisions made. Constraints (1c) describe the dependency between decision variables x and
δ at each node, and between them and the corresponding decision variables at the parent node. That is,
the choice of a probability distribution at node n, δnd, depends on the decisions xn made at the same node
as well as on the decisions xa(n) made at the parent node and on the consequent choice of a probability
distribution, δa(n),d. Constraints (1d) ensure that decision variables θn hold the expected value of future
decisions calculated according to the probability chosen. Consider a generic node n other than a leaf node,
and note that, according to (1b), at this node there will be exactly one δnd equal to one, that is exactly
one distribution be chosen. Thus, the right-hand-side of constraints (1d) will be equal to the term of the
outer summation corresponding to the index d whose δnd is set to one. The remaining terms are zero.
Correspondingly, θn will hold the expected value calculated according to the chosen probability distribution
d. Constraints (1d) can be linearized using standard techniques. A linear reformulation is provided in
Appendix B and a general procedure to determine the necessary big-M values is described in Appendix C.
Constraints (1e) set the future expectation at the leaf nodes. Finally, constraints (1f) to (1h) set the domain
of the decision variables. Particularly, Xt(n) represents the domain of the xn variables and may impose
integrality restrictions on some/all variables.

A node formulation implicitly includes non-anticipativity, that is, automatically ensures that the decisions
made at a given stage are only based on available information. On the other hand, a classical scenario
formulation requires non-anticipativity explicitly enforced by means of constraints, and in general, generates
a much larger problem. This can be illustrated by the following example. Consider Figure 3 which provides
the scenario representation of the example MDST in Figure 2. The number of scenarios is 15, and is the
same as the number of leaf nodes in Figure 2. Assuming the decision at each stage are represented by N
decision variables and have to satisfy M constraints, the corresponding scenario formulation would include

• N × 15× 3 decision variables, where 3 is the number of stages,

• M × 15× 3 constraints, and

• approximately N × (15 + 8) non-anticipativity constraints (approximately 15 for the first stage and 8
for the second stage, though more efficient specifications may be possible).

The node formulation would include

• N × 21 variables (where 20 is the number of nodes in the scenario tree in Figure 2), and

• M × 21 constraints.

Clearly, node formulations generate, in general, much smaller problems with non-anticipativity constraints
playing an important role in scaling up the dimension of a scenario formulation, see e.g., Apap and Grossmann
(2016), Hooshmand and MirHassani (2016) and Hooshmand and MirHassani (2018) for how to reduce the
number of non-anticipativity constraints.
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Figure 3: Scenarios in the example multidistribution scenario tree in Figure 2. Plain lines connect the nodes
belonging to the same scenario. Dashed lines represent non-anticipativity constraints.
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3 A solution algorithm for a special case

In this section we introduce an algorithm for solving the special case of problem (1) with Ca(n) = 0 for all
n. The algorithm builds on the fact that, when Ca(n) = 0, the link between decisions at subsequent stages
is created by the δ variables, i.e., those that enforce a probability distribution for the next stage. In this
case, since we have finitely many distributions, we are allowed to enumerate the expected values obtainable
at each node in the scenario tree. This procedure would become impractical when Ca(n) is different from 0,
unless further assumptions on xn are made.

Let us thus consider the following equivalent formulation of problem (1).

z = max rT0 x0 +
∑
d∈D0

q0dδ0d + θ0 (2a)

s.t.
∑
d∈Dn

δnd = 1 n ∈ N , (2b)

Anxn +
∑
d∈Dn

Bndδnd +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (2c)

θn ≤ φnd +Mnd(1− δnd) n ∈ N \ NT , d ∈ Dn (2d)

φnd =
∑

m∈Nnd

πm(rTmxm +
∑

d′∈Dm

qmd′δmd + θm) n ∈ N \ NT , d ∈ Dn (2e)

θn = Θn n ∈ NT , (2f)

xn ∈ Xt(n) n ∈ N , (2g)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (2h)

θn ∈ R n ∈ N , (2i)

φnd ∈ R n ∈ N \ NT , d ∈ Dn. (2j)

Problem (2) modifies problem (1) in two elements. First, constraints (2c) take into account that Ca(n) = 0.
Second, constraints (1d) have been linearized using constants Mnd and auxiliary decision variables φnd
yielding constraints (2d) and (2e) (see e.g., Appendix C for a general purpose procedure to determine these
big-M values).

Problem (2) can be solved in a dynamic programming fashion using the following backward procedure.
The procedure starts by calculating the optimal last-stage expectation for each node at the second-last stage
and for each possible probability distribution. For each m ∈ NT−1 and probability distribution k ∈ Dm, the
optimal expectation at the last stage is obtained by solving the following problem.

Φmk = max
∑

n∈Nmk

πn(rTnxn +
∑
d∈Dn

qndδnd + Θn) (3a)

s.t.
∑
d∈Dn

δnd = 1, n ∈ Nmk, (3b)

Anxn +
∑
d∈Dn

Bndδnd = hn −Dmk n ∈ Nmk, (3c)

xn ∈ XT n ∈ Nmk, (3d)

δnd ∈ {0, 1} n ∈ Nmk, d ∈ Dn. (3e)

Problem (3) provides the last-stage expectation for each node m ∈ NT−1 at the second-last stage, and for
each possible selection of a probability distribution from Dm. Notice in (3) that Θn is input data and that
Dmk is moved to the right-hand-side to stress that it does not multiply a decision variable as in (2c), since
the choice of a probability distribution at the parent node m has been fixed to k.

Then, for stage t = T − 2, . . . , 1, for node m ∈ Nt, and for distribution k ∈ Dm we calculate Φkm by
solving problem (4).

Φmk = max
∑

n∈Nmk

πn(rTnxn +
∑
d∈Dn

qndδnd + θn) (4a)

7



s.t.
∑
d∈Dn

δnd = 1, n ∈ Nmk, (4b)

Anxn +
∑
d∈Dn

Bndδnd = hn −Dmk n ∈ Nmk, (4c)

θn ≤ Φnd +Mnd(1− δnd), d ∈ Dn, n ∈ Nmk, (4d)

xn ∈ Xt(n) n ∈ Nmk, (4e)

δnd ∈ {0, 1} n ∈ Nmk, d ∈ Dn, (4f)

θn ∈ R n ∈ Nmk. (4g)

Notice in problem (4) that Φnd is input data and has been calculated in the previous steps of the algorithm.
Finally, we can solve the following problem for the root node.

z = max rT0 x0 +
∑
d∈D0

q0dδ0d + θ0 (5a)

s.t.
∑
d∈D0

δ0d = 1, (5b)

A0x0 +
∑
d∈D0

B0dδ0d = h0, (5c)

θ0 ≤ Φ0d +M0d(1− δ0d), d ∈ D0, (5d)

x0 ∈ X1, (5e)

δ0d ∈ {0, 1} d ∈ D0, (5f)

θ0 ∈ R. (5g)

Letting D = maxn∈N |Dn|, the algorithm entails solving O
(
D|N |

)
mixed-integer programs of size signif-

icantly smaller than (1).

4 Case study

In this section we present a case study based on the Football Team Composition Problem (FTCP – Pantuso
(2017); Pantuso and Hvattum (2020)) which we extend in order to account for decision-dependent uncertainty.
The problem consists of selecting players for a football team while their future market value is uncertain
and influenced by the team for which they play. The scope of the computational study is to compare the
performance of the algorithm to that of a state-of-the-art commercial solver. We remark, however, that
formulation (1) and the solution algorithm proposed are general and applicable beyond the context of the
FTCP, which we use solely as an example. Decision problems under endogenous uncertainty may, in fact,
arise in several business context, some of which are mentioned in Section 1. To provide another practical
example, consider an agribusiness making periodic production planning decisions for a number of different
crops while demand is uncertain. Product substitution is a common phenomenon in the production of crops.
In fact, a customer, say a farmer, may view multiple crops as suitable for their farming needs, see, e.g.,
Bansal and Dyer (2020). Thus, the uncertain demand for a crop may depend in part on the portfolio of
crops an agribusiness offers for sale, yielding a decision problem under endogenous uncertainty.

In Section 4.1 we describe the FTCP in more details and formulate it as an MSPEU. In Section 4.2 we
illustrate an efficient procedure to obtain big-M values. In Section 4.3 we introduce the problem instances
and finally in Section 4.4 we present and discuss the results. The data of the problem instances is avail-
able online at https://github.com/GioPan/instancesFTCPwithEndogenousUncertainty for the benefit
of future research.

4.1 The Football Team Composition Problem

The FTCP is the problem of composing a football team by purchasing and selling professional football
players. A complete description of the problem can be found in Pantuso (2017). In what follows, we report
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the basic elements necessary for this case study. The decision problem can be described as follows. At every
stage, i.e., transfer market window (TMW), professional football clubs can renew their teams by purchasing
players from other clubs or selling available players to other clubs. In order to participate in national and
international competitions, professional clubs must compose a team made of a fixed number of players. In
addition, the coach of the team requires players with different roles (e.g., defenders or mid-fielders) and skills.

Club managers are often given a budget to spend in the transfer market and are typically allowed
to reinvest the revenue from the sale of players. The current market value of football players is known,
while the future value is stochastic as it depends on a number of random events such as injuries, fitness,
motivation and ultimately luck. Therefore, at every TMW, football clubs make decisions in conditions of
uncertainty with the scope of maximizing the expected value of the team. Furthermore, the market values
of the players in the same team are strongly correlated. This generates a multistage stochastic program
with endogenous uncertainty, since the decision of hiring or selling a player will change the correlations of
the joint value distribution of the players considered. That is, hiring a football player will make their value
strongly correlated with the value of the other players in the team, while selling or not hiring a player will
make their value uncorrelated with the value of the players in the team.

In order to model the FTCP we assume the club is evaluating a finite number of alternative team
compositions. Every team composition consists of the required number of players and contains the necessary
mix of skills. Let I be the set of possible team compositions, N the set of nodes in the MDST describing
the underlying uncertainty, Nin the set of child nodes of node n ∈ N if team composition i ∈ I is chosen
at node n. Note in fact that the selection of a team composition determines the correlations between the
values of the players in the instance, and thus the probability distribution. Let NL be the set of leaf nodes,
i.e., the nodes at the last decision stage, and t(n) ∈ {1, . . . , T} the stage corresponding to node n.

Let Vin be the value of team composition i ∈ I at node n (i.e., the sum of the values of the players
in team composition i), let CSin be the cost of the salary of the players in team composition i at node n,
CTjn the cost of transitioning from team composition i to team composition j at node n, i.e., the cost of the
transfer fees for the players bought minus the revenue for the transfer fees of the players sold. Furthermore,
let B be the budget available to the club for the transfer market at node n and En a stochastic extra-budget
conditional on events such as sport successes. Let Xi be equal to one if team composition i ∈ I is the initial
team composition, Min a suitably large constant for each i and n (see Section 4.2), and ρ a discount rate.
Let δin be a binary decision variable which is equal 1 if team composition i ∈ I is chosen at node n ∈ N ,
xijn a binary decision variable which is equal 1 if the club transitions from team composition i ∈ I to team
composition j ∈ J at node n ∈ N and, φin the expected net value of the team at the children of node n if
composition i is chosen and, finally, θn the expected net value of the team at the child nodes of node n ∈ N .
The FTCP with endogenous uncertainty is hence:

max
∑
i∈I

(Vi0δi0 − CSi0δi0 −
∑
j∈I

CTij0xij0) + θ0 (6a)

s.t.
∑
i∈I

δin = 1 n ∈ N ,

(6b)

δi0 −Xi +
∑

j∈I:j 6=i

(xij0 − xji0) = 0 i ∈ I,

(6c)

δin − δi,a(n) +
∑

j∈I:j 6=i

(xijn − xjin) = 0 n ∈ N \ {0}, i ∈ I,

(6d)∑
i∈I

∑
j 6=i∈I

xijn ≤ 1 n ∈ N ,

(6e)
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∑
i∈I

∑
j∈I

CTijnxijn ≤ B + En n ∈ N ,

(6f)

θn ≤ φin +Min(1− δin) i ∈ I, n ∈ N ,
(6g)

φin =
∑

m∈Nin

1

1 + ρt(m)
πm

θm +
∑
j∈I

(
Vjmδjm − CSjmδjm −

∑
k∈I

CTjkmxjkm

) i ∈ I, n ∈ N \ NL,

(6h)

θn =
1

1 + ρt(n)+1

∑
i∈I

Vinδin n ∈ NL,

(6i)

δin ∈ {0, 1} i ∈ I, n ∈ N ,
(6j)

xijn ∈ {0, 1} i, j ∈ I, n ∈ N ,
(6k)

θn ∈ R n ∈ N .
(6l)

Objective function (6a) represents the sum of the value of the team composition chosen here-and-now,
minus the expenses for salaries and, if any, the transition cost from the initial team composition. In addition
it takes into account the expected value of the team at future nodes. Constraints (6b) ensure that only
one team composition is chosen at each decision node, while constraints (6c)-(6d) state that either the club
holds the same team composition as in the previous season or a new team composition is chosen at node 0
and at the rest of the nodes, respectively. Constraints (6e) state that at most one team change can be done
at each node. Constraints (6f) ensure that the net expenses for transitioning from a team composition to
another (i.e., the money spent in the transfer market) do not exceed the available budget. Constraints (6g)
state that the future net expected value of the team depends on the team composition chosen. Constraints
(6h) sets the expected value at the children of node n if composition i is chosen, while constraints (6i) set
the final value of θn to the value of the team chosen at the leaf nodes. This corresponds to a sunset value
which accounts the termination of an infinite horizon problem. Notice that the final value of the team is
discounted as a future value. Finally, constraints (6j)-(6l) define the domain for the decision variables.

4.2 Finding big-M values for the FTCP

We illustrate a fast method to set the Min values in (6). The method proposed resulted, on this special case,
significantly faster than the general method described in Appendix C.

We start by observing that, for all i ∈ I and n ∈ N we are looking for a value Min such that:

θn − φin ≤Min

and that, based on constraints (6g), we have

θn ≤ max
i∈I

φin

consequently, we need to set
Min ≥ max

i∈I
φin − φin

thus, under the very mild assumption that φin ≥ 0 (i.e., that the team does not spend in transfers and
salaries more than the value of the entire team), for every i ∈ I a valid Min is

Min = Mn = max
i∈I

φin

By expanding φin according to constraints (6h) and (6i) we can set
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• Min = maxi∈I
1

1+ρt(n)+1Vin for all i ∈ I if n ∈ NL

• Min = maxi∈I

{∑
m∈Nin

1
1+ρt(m)πm

(
Mm + maxj∈I

{
Vjm

})}
for all i ∈ I if n ∈ N \ NL.

4.3 Problem instances

Instances are generated from the case studies on the FTCP presented by Pantuso (2017) and are available on-
line at https://github.com/GioPan/instancesFTCPwithEndogenousUncertainty. The instances consist
of the 20 teams competing in the English Premier League 2013/2014 and dealing with the transfer market
of summer 2014. Each team is characterized by a budget, a list of players (made of the current and target
players), and a number of randomly generated team compositions I complying with the regulations of the
league and with the coach’s specifics. In turn, each player is characterized by age, role, current market value,
salary, selling and purchase price. The value and cost of salaries of a team composition are calculated as the
sum of values and salaries, respectively, of the players contained. Similarly, transition costs are calculated
as the revenue for the players sold, minus the cost of the players bought.

Future player values are stochastic and modeled by means of the regression equation available in Pantuso
(2017). The joint probability distribution of the market values for all the players forms a multivariate
normal distribution. In addition, we set a 0.8 correlation between the players belonging to the focal team
and no correlation between the players belonging to the focal team and the remaining players. Therefore, the
correlations change with the decisions of the team to buy or sell players creating an MSPEU. Scenario trees
are obtained by sampling realizations from the underlying multivariate normal distributions. Finally, for each
node in the scenario tree, the random extra-budget En is calculated as a percentage of the deterministic
budget B. The percentage is the same as percentage increase of team value from the parent node, that
is max

{
0, 100 ∗ (Vin − Vi,a(n))/Vi,a(n)

}
. That is, an increase in the team value yields an increase in the

spending capability of the team.
The instances represent a four-stage horizon and are identified by (i) the focal team, where Team ∈ {

ARS, ASV, CAR, CHE, CRP, EVE, FUL, HUL, LIV, MAC, MAU, NEC, NOR, SOU, STO, SUN, SWA,
TOT, WBA, WHU }, (ii) the number of team composition |I| ∈ {3, 4, 5}, and (iii) the number of samples
in each distribution S ∈ {4, 5}, yielding 120 numerically different instances with up to approximately 400
thousand binary variables.

4.4 Results

We implemented our algorithm in Python 2.7 using Cplex 12.8 for solving the subproblems. Cplex 12.8
has also been used to solve the full problems. All experiments have been run on a server with 64 double
AMD Opteron 6380 processors and 251 GB RAM. Tables 1 to 3 report the results for different cardinalities
|I| and different number of samples S for all the focal teams. The computation times do not include the
time required to find big-M values as illustrated in Section 4.2. An account of these times is reported
in Appendix D. Note that big-M values are required both when solving the full problem and when using
our algorithm and in both cases are calculated beforehand. Thus, their computation time does not have an
impact on the comparison between the two solution methods. Since the algorithm entails iteratively building
and solving mixed-integer programs, the times reported include the time required for building the models.

Table 1 reports the results with |I| = 3, generating instances with up to approximately 32000 binary
variables. For these instances it can be noticed that Cplex performs much better than our method on the
smaller test cases (with S = 4 samples) while our algorithm is more competitive on the instances with S = 5.
Altogether, Cplex solves the problems approximately 25% faster than our method.
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Table 1: Results with |I| = 3. S indicates the number of realizations describing each distribution. #Var,
#Bin and #Con indicate the total number of variables, the number of binary variables, and the number of
constraints, respectively. τ (Cpx) indicate the elapsed time when using the algorithm (Cplex). Obj. (Cpx)
indicates the objective value obtained using the algorithm (Cplex). ∆τ is calculated as 100(τ - τ Cpx)/τ
Cpx.

Team S #Var #Bin #Con τ Cpx [sec] Obj. Cpx τ [sec] Obj. ∆τ [%]

ARS 4 24505 16965 22620 86.924 1487.985 178.413 1487.985 105.252
ASV 4 24505 16965 22620 107.462 858.189 228.801 858.189 112.914
CAR 4 24505 16965 22620 112.806 642.253 282.521 642.253 150.448
CHE 4 24505 16965 22620 144.798 2604.929 297.918 2604.929 105.748
CRP 4 24505 16965 22620 105.784 471.838 232.649 471.838 119.929
EVE 4 24505 16965 22620 198.908 1216.299 189.362 1216.299 -4.799
FUL 4 24505 16965 22620 116.068 694.942 187.200 694.942 61.284
HUL 4 24505 16965 22620 174.406 571.997 215.792 571.997 23.729
LIV 4 24505 16965 22620 457.376 1371.466 196.851 1371.466 -56.961
MAC 4 24505 16965 22620 165.375 1734.123 166.470 1734.123 0.662
MAU 4 24505 16965 22620 2036.260 2474.198 231.169 2474.198 -88.647
NEC 4 24505 16965 22620 95.849 974.510 213.350 974.510 122.589
NOR 4 24505 16965 22620 69.662 486.204 161.434 486.204 131.739
SOU 4 24505 16965 22620 153.804 640.762 143.529 640.762 -6.681
STO 4 24505 16965 22620 79.237 674.964 165.104 674.964 108.366
SUN 4 24505 16965 22620 229.976 837.582 202.287 837.582 -12.040
SWA 4 24505 16965 22620 90.615 659.840 228.751 659.840 152.442
TOT 4 24505 16965 22620 193.830 1383.202 171.743 1383.202 -11.395
WBA 4 24505 16965 22620 223.691 570.527 179.085 570.527 -19.941
WHU 4 24505 16965 22620 259.587 785.027 202.723 785.027 -21.905
ARS 5 47008 32544 43392 189.159 1508.956 403.177 1508.956 113.142
ASV 5 47008 32544 43392 486.235 801.662 400.098 801.662 -17.715
CAR 5 47008 32544 43392 223.908 661.053 389.787 661.053 74.083
CHE 5 47008 32544 43392 593.065 2667.682 628.685 2667.682 6.006
CRP 5 47008 32544 43392 222.443 478.977 483.007 478.977 117.138
EVE 5 47008 32544 43392 726.302 1134.583 387.368 1134.583 -46.666
FUL 5 47008 32544 43392 275.205 717.025 377.999 717.025 37.352
HUL 5 47008 32544 43392 2785.695 494.981 446.281 494.981 -83.980
LIV 5 47008 32544 43392 7386.953 1403.374 391.775 1403.374 -94.696
MAC 5 47008 32544 43392 349.382 1769.971 306.545 1769.971 -12.261
MAU 5 47008 32544 43392 7755.757 2260.280 488.009 2260.280 -93.708
NEC 5 47008 32544 43392 481.964 1014.031 440.037 1014.031 -8.699
NOR 5 47008 32544 43392 356.411 499.601 317.165 499.601 -11.012
SOU 5 47008 32544 43392 148.499 656.613 322.197 656.613 116.968
STO 5 47008 32544 43392 391.803 689.878 359.498 689.878 -8.245
SUN 5 47008 32544 43392 481.092 854.091 406.024 854.091 -15.604
SWA 5 47008 32544 43392 444.930 681.336 386.791 681.336 -13.067
TOT 5 47008 32544 43392 418.714 1409.204 400.087 1409.204 -4.449
WBA 5 47008 32544 43392 299.717 522.849 367.367 522.849 22.571
WHU 5 47008 32544 43392 654.066 678.902 426.684 678.902 -34.764

Avg 744.342 305.093 25.378

By increasing the number of team compositions we generate larger MDSTs, and the corresponding
MSPEUs also become larger. Table 2 reports the results with |I| = 4 generating a MDST with four possible
distributions at each decision node and problems with up to approximately 135 thousand binary variables.
In this case, our algorithm performs significantly better that Cplex on almost all instances, solving the
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problems 32.8% faster.

Table 2: Results with |I| = 4. S indicates the number of realizations describing each distribution. #Var,
#Bin and #Con indicate the total number of variables, the number of binary variables, and the number of
constraints, respectively. τ (Cpx) indicate the elapsed time when using the algorithm (Cplex). Obj. (Cpx)
indicates the objective value obtained using the algorithm (Cplex). ∆τ is calculated as 100(τ - τ Cpx)/τ
Cpx.

Case S #Var #Bin #Con τ Cpx [sec] Obj. Cpx τ [sec] Obj. ∆τ [%]

ARS 4 91749 69904 65535 469.440 1409.074 585.920 1409.074 24.812
ASV 4 91749 69904 65535 560.788 916.248 453.329 916.248 -19.162
CAR 4 91749 69904 65535 551.781 574.859 524.636 574.859 -4.920
CHE 4 91749 69904 65535 756.516 2476.158 729.832 2476.158 -3.527
CRP 4 91749 69904 65535 558.236 431.065 632.984 431.065 13.390
EVE 4 91749 69904 65535 7656.373 1282.401 535.382 1282.401 -93.007
FUL 4 91749 69904 65535 932.283 711.560 488.729 711.560 -47.577
HUL 4 91749 69904 65535 7746.679 559.913 608.927 559.913 -92.140
LIV 4 91749 69904 65535 7627.856 1452.961 545.440 1452.961 -92.849
MAC 4 91749 69904 65535 888.410 1657.326 371.674 1657.326 -58.164
MAU 4 91749 69904 65535 7672.755 2489.203 701.230 2489.203 -90.861
NEC 4 91749 69904 65535 545.592 908.271 518.564 908.271 -4.954
NOR 4 91749 69904 65535 393.393 443.482 371.138 443.482 -5.657
SOU 4 91749 69904 65535 368.125 603.976 342.766 603.976 -6.889
STO 4 91749 69904 65535 453.101 633.148 396.288 633.148 -12.539
SUN 4 91749 69904 65535 529.445 785.688 513.954 785.688 -2.926
SWA 4 91749 69904 65535 469.695 607.176 440.718 607.176 -6.169
TOT 4 91749 69904 65535 639.796 1295.453 421.155 1295.453 -34.174
WBA 4 91749 69904 65535 3945.793 633.948 473.058 633.948 -88.011
WHU 4 91749 69904 65535 8498.951 828.664 601.910 828.664 -92.918
ARS 5 176841 134736 126315 1210.558 1440.502 1340.235 1440.502 10.712
ASV 5 176841 134736 126315 1946.890 760.043 1381.227 760.043 -29.055
CAR 5 176841 134736 126315 1357.787 597.870 1329.530 597.870 -2.081
CHE 5 176841 134736 126315 1706.027 2602.808 1896.954 2602.808 11.191
CRP 5 176841 134736 126315 1365.008 467.102 1489.021 467.102 9.085
EVE 5 176841 134736 126315 8505.074 1232.924 1260.209 1232.924 -85.183
FUL 5 176841 134736 126315 7808.254 699.597 1388.999 699.597 -82.211
HUL 5 176841 134736 126315 8642.826 553.807 1300.262 553.807 -84.956
LIV 5 176841 134736 126315 8326.633 1460.389 1234.644 1460.389 -85.172
MAC 5 176841 134736 126315 1020.989 1678.841 1149.133 1678.841 12.551
MAU 5 176841 134736 126315 8397.024 2285.317 1405.108 2285.317 -83.267
NEC 5 176841 134736 126315 1623.349 1062.903 1427.509 1062.903 -12.064
NOR 5 176841 134736 126315 1041.199 480.087 1085.893 480.087 4.293
SOU 5 176841 134736 126315 1000.712 616.957 1020.687 616.957 1.996
STO 5 176841 134736 126315 1111.253 663.486 1059.614 663.486 -4.647
SUN 5 176841 134736 126315 1480.353 891.809 1609.855 891.809 8.748
SWA 5 176841 134736 126315 1197.202 623.004 1596.017 623.004 33.312
TOT 5 176841 134736 126315 2560.338 1441.642 1264.625 1441.642 -50.607
WBA 5 176841 134736 126315 8304.973 601.984 1152.420 601.984 -86.124
WHU 5 176841 134736 126315 8432.614 755.708 1416.893 755.708 -83.197

Avg 3207.601 926.661 -32.873

This pattern illustrates that our algorithm scales significantly better than Cplex, and is confirmed also by
our results on the instances with |I| = 5, the largest we tested. These instances generate problems with up
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to approximately 400 thousand binary variables and the corresponding results are provided in Table 3. It is
possible to notice that our algorithm outperforms Cplex on almost all instances. Altogether, our algorithm
is able to solve the same instances 61.1% faster than Cplex. Only on two instances (CAR and CHE, with
S = 4) Cplex performs better than our algorithm. Similar cases are to be expected since our algorithm
entails solving several subproblems which are mixed-integer programs. Therefore, it is possible that some
numerically difficult subproblems are found that slow down the entire algorithm (in our case we do not
solve problems in parallel). However, despite that, the average performance of our algorithm on the largest
instance is by far better.

These results illustrate that MSPEU easily generate very large optimization problems. The size of the
problems, in our instances, increases by approximately three to five times by increasing the number of
possible distributions. However, the algorithm we provide scales better than the solver Cplex. Particularly,
when using Cplex, the average solution time increases by approximately 330% when increasing |I| from 3
to 4, and by approximately 175% when increasing |I| from 4 to 5. With our algorithm the average solution
time increases by approximately 203% when increasing |I| from 3 to 4, and by approximately 158% when
increasing |I| from 4 to 5.

Table 3: Results with |I| = 5. S indicates the number of realizations describing each distribution. #Var,
#Bin and #Con indicate the total number of variables, the number of binary variables, and the number of
constraints, respectively. τ (Cpx) indicate the elapsed time when using the algorithm (Cplex). Obj. (Cpx)
indicates the objective value obtained using the algorithm (Cplex). ∆τ is calculated as 100(τ - τ Cpx)/τ
Cpx.

Case S #Var #Bin #Con τ Cpx [sec] Obj. Cpx τ [sec] Obj. ∆τ [%]

ARS 4 261051 210525 151578 4148.394 1412.322 2487.630 1412.322 -40.034
ASV 4 261051 210525 151578 9128.747 888.394 2360.369 888.394 -74.144
CAR 4 261051 210525 151578 2324.632 559.909 2951.872 559.909 26.982
CHE 4 261051 210525 151578 2941.786 2351.709 4074.808 2351.709 38.515
CRP 4 261051 210525 151578 4873.336 403.008 2757.925 403.008 -43.408
EVE 4 261051 210525 151578 9240.398 1318.359 2367.225 1328.380 -74.382
FUL 4 261051 210525 151578 9385.279 676.308 2775.651 676.308 -70.425
HUL 4 261051 210525 151578 9616.179 496.264 2430.993 600.252 -74.720
LIV 4 261051 210525 151578 9892.436 1584.601 1522.159 1584.601 -84.613
MAC 4 261051 210525 151578 1748.831 1589.133 1070.475 1589.133 -38.789
MAU 4 261051 210525 151578 9294.710 2529.355 1935.253 2533.948 -79.179
NEC 4 261051 210525 151578 6984.354 1202.156 1502.823 1202.156 -78.483
NOR 4 261051 210525 151578 3516.805 420.312 1038.191 420.312 -70.479
SOU 4 261051 210525 151578 3593.291 599.703 947.766 599.703 -73.624
STO 4 261051 210525 151578 1966.818 632.875 1182.410 632.875 -39.882
SUN 4 261051 210525 151578 4767.951 731.767 1460.145 731.767 -69.376
SWA 4 261051 210525 151578 4397.444 576.314 1280.492 576.314 -70.881
TOT 4 261051 210525 151578 3894.520 1392.754 1169.367 1392.754 -69.974
WBA 4 261051 210525 151578 11192.050 590.701 1298.701 661.566 -88.396
WHU 4 261051 210525 151578 9314.423 600.960 1755.932 768.724 -81.148
ARS 5 504556 406900 292968 5985.321 1453.229 3231.294 1453.229 -46.013
ASV 5 504556 406900 292968 13100.017 969.935 2557.610 969.935 -80.476
CAR 5 504556 406900 292968 12990.803 612.171 3115.356 612.171 -76.019
CHE 5 504556 406900 292968 15815.020 2608.034 4221.096 2608.034 -73.310
CRP 5 504556 406900 292968 13160.004 476.955 3668.813 476.955 -72.121
EVE 5 504556 406900 292968 18368.885 1289.379 2913.376 1452.827 -84.140
FUL 5 504556 406900 292968 13385.821 746.554 2811.966 755.759 -78.993
HUL 5 504556 406900 292968 12995.828 516.157 3335.790 655.447 -74.332
LIV 5 504556 406900 292968 12808.767 1473.064 2854.447 1706.759 -77.715
MAC 5 504556 406900 292968 5341.258 1681.019 2050.793 1681.019 -61.605
MAU 5 504556 406900 292968 13282.279 2690.920 3722.067 2712.864 -71.977
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NEC 5 504556 406900 292968 13368.708 1365.929 2971.268 1365.929 -77.774
NOR 5 504556 406900 292968 5352.415 462.292 2111.632 462.292 -60.548
SOU 5 504556 406900 292968 5347.118 624.205 1897.896 624.205 -64.506
STO 5 504556 406900 292968 5679.705 660.999 2308.348 660.999 -59.358
SUN 5 504556 406900 292968 13483.620 927.387 2961.979 927.387 -78.033
SWA 5 504556 406900 292968 11568.065 631.495 2500.653 631.495 -78.383
TOT 5 504556 406900 292968 12955.368 1490.643 2323.134 1490.643 -82.068
WBA 5 504556 406900 292968 12852.950 709.452 2696.335 718.245 -79.022
WHU 5 504556 406900 292968 13408.572 843.851 3371.308 844.027 -74.857

Avg 8836.822 2399.883 -65.192

5 Conclusions

This paper introduced 1) a novel scenario tree structure and 2) a node formulation for multistage stochastic
programs with endogenous uncertainty, as well as 3) a solution algorithm for a special case. A computa-
tional study shows that while, as expected, problems with endogenous uncertainty tend to generate large
optimization problems, all our instances where solvable by Cplex to optimality in at most approximately 5
hours. Furthermore, our algorithm outperformed Cplex on the medium and large instances and showed that
it scales well with the size of the problem.

Despite the encouraging results obtained in our study, solving multistage stochastic programs with en-
dogenous uncertainty remains, in general, a challenging task. Our algorithm requires an explicit scenario tree
structure, and solves a number of problems which grows linearly with the number of nodes. However, the
number of nodes in a scenario tree grows exponentially with the number of stages and the treatment of cases
with more than a handful of stages may soon become prohibitive. New approaches in the spirit of Pereira
and Pinto (1991); Zou et al. (2019), based on progressive approximations of future stages, may be proven
more scalable. Furthermore, our models employ so called big-M constants. Poorly chosen big-M values,
e.g., by trial-and-error, may become problematic. It is well known that they may create numerical difficulties
when solving mixed-integer programs. In addition, as discussed in Pineda and Morales (2019), they may
lead to highly sub-optimal solutions. The authors use a simple bilevel programming problem (which can be
reformulated as a mixed-integer program that uses big-Ms) to show how a poorly designed trial-and-error
procedure may generate the false belief that the solution to the reformulation is indeed optimal for the orig-
inal bilevel problem. Based on these evidences we also advocate caution and the use of more sophisticated
procedures for setting big-M values. The procedure in Appendix C goes in this direction. Finally, cases
more general than the special one treated Section 3 remain to be addressed.
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A Notation table

Table 4: Notation of problem (1).

Sets

{1, . . . , T} Set of decision stages
N Set of nodes in the multi-distribution scenario tree
Nt ⊆ N Set of nodes at stage t
Dn Set of possible distributions applicable at node n
Nnd ⊆ N Set of child nodes of node n if distribution d ∈ Dn is enforced
Xt Domain of the decision variables at stage t

Parameters

t(n) Stage of node n
a(n) Parent node of node n
πn Probability of node n
rn ∈ RNt(n) Coefficients of decision variables xn in the objective function
qnd ∈ R1 Coefficient of decision variable δnd in the objective function
An ∈ RMt(n)×Nt(n) Coefficients of variables xn in the constraints that connect xn and δnd decisions
Bnd ∈ RMt(n)×1 Coefficients of variable δnd in the constraints that connect xn and δnd decisions
Ca(n) ∈ RMt(n)×Nt(a(n)) Coefficients of variables xa(n) in the constraints that connect xn and δnd decisions
Da(n),d ∈ RMt(n)×1 Coefficients of variable δa(n),d in the constraints that connect xn and δnd decisions
hn ∈ RMt(n) Right-hand-side coefficients of the constraints that connect xn and δnd decisions
Θn ∈ R1 Terminal value of the decisions following node n ∈ NT

Variables

xn ∈ RNt(n) Decisions made at node n
δnd ∈ {0, 1} Decision on whether to apply probability distribution d at node n
θn ∈ R1 Expected value of the decisions made at the nodes descending from n
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B A big-M reformulation

In this appendix a big-M reformulation that linearizes model (1) is introduced. In addition to the notation
introduced in Section 2, let Mnd ∈ R1 be a suitably high constant. The linearized EUMSP is thus

max rT0 x0 +
∑
d∈D0

q0dδ0d + θ0 (7a)

s.t.
∑
d∈Dn

δnd = 1 n ∈ N , (7b)

Anxn +
∑
d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (7c)

θn ≤
∑

m∈Nnd

πm(rTmxm +
∑
d∈Dm

qmdδmd + θm) +Mnd(1− δnd) n ∈ N \ NT , d ∈ Dn (7d)

θn = Θn n ∈ NT , (7e)

xn ∈ Xt(n) n ∈ N , (7f)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (7g)

θn ∈ R n ∈ N . (7h)

Note, particularly, that constraints (7d) are equivalent to (1d). Consider a given node n, other than a leaf
node. Observe that only for one distribution d there will be a δnd which takes value one at n (see (7b)). For
the same n and for the same d, the second term on the right-hand-side of (7d) will be zero (i.e., the big-M
will not be enforced), and the resulting right-hand-side will be the most binding among the |Dn| constraints
for node n. Since we are maximizing, at optimality θn will take value of the expectation according to the
distribution d for which δnd = 1, as it happens in model (1).

C Finding big-M values

An efficient implementation of model (7) requires tight big-M values. Observe that, for n ∈ N \ NT and
d ∈ Dn, constant Mnd must be a valid upper bound for constraints (7d), that is:

θn −
∑

m∈Nnd

πm(rTmxm +
∑
d∈Dm

qmdδmd + θm) ≤Mnd

Let us introduce φnd to represent the expectation at the children of node n for distribution d, that is:

φnd =
∑

m∈Nnd

πm(rTmxm +
∑
d∈Dm

qmdδmd + θm)

Consider the numerical example shown in Table 5 for a given node n and three possible distributions d. The
table reports the highest and lowest values the expectation at the following stage can take for each possible
distribution, and the corresponding value of θn should a specific distribution be chosen. When choosing
Mn,d1

, notice that the maximum value θn can reach for other distributions is 9, and that the least value
φn,d1 can reach is 5. Therefore, we can set Mn,d1 = 9 − 5. In fact, if distribution d2 is chosen, θn will be
at most 9 and φn,d1 at least 5, thus adding 4 to φn,d1 will ensure that θn is correctly set to 9. Similarly, we
choose Mn,d2

= 6 as the highest value θn can take if d2 is not selected is 10, while the least value of φn,d2
is

4. Finally, with a similar reasoning we can set Mn,d3
= 7.

From the example in Table 5 we understand that finding values for Mnd amounts to finding highest values
for φnd and differences θn − φnd. In what follows we illustrate how these values can be found for t = T − 1
in Section C.1 and t = T − 2, . . . , 1 in Section C.2.

C.1 Big-M values for stages t = T − 1

We start at the second-last stage, t = T − 1. Our task is that of finding, for each node n̄ ∈ NT−1 and for
each distribution d̄ ∈ Dn̄, a constant Mn̄d̄ which is slightly higher than the highest difference θn̄−φn̄d̄, where
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Table 5: Numerical example for the calculation of constants Mnd

φnd
d θn Max Min Mnd

d1 10 10 5 9− 5 = 4
d2 9 9 4 10− 4 = 6
d3 8 8 3 10− 3 = 7

again

φn̄d̄ =
∑

m∈Nn̄d̄

πm(rTmxm +
∑
d∈Dm

qmdδmd + θm)

Now, the highest difference can be found solving the following optimization problem:

M∗n̄d̄ = max θn̄ −
∑

m∈Nn̄d̄

πm(rTmxm +
∑
k∈Dm

qmkδmk + Θm) (8a)

s.t.
∑
d∈Dn

δnd = 1 n ∈ N , (8b)

Anxn +
∑
d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (8c)

θn̄ ≤ Θ∗n̄d̄, (8d)

xn ∈ Xt(n) n ∈ N , (8e)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (8f)

δn̄d̄ = 0 (8g)

Problem (8) consists of finding the feasible solution to problem (7) which yields the highest value for the
left-hand-side of constraint (7d) for n̄ and d̄. The following two elements must be noted in (8). Constraints
(7d) of the original problem, which determine the correct expectations at the stages before T − 1, are not
included as they are irrelevant for stage T − 1. The second element to note is constraint (8d) which sets an
upper bound θn̄. This upper bound represents the highest value θn̄ can take for the distributions other than
d̄. This value can, in turn, be obtained solving optimization problems. The highest expectation for stage T ,
given distribution d′ ∈ Dn̄ is the optimal value to problem (9):

Φ∗n̄d′ = max
∑

m∈Nn̄d′

πm(rTmxm +
∑
k∈Dm

qmkδmk + Θm) (9a)

s.t.
∑
d∈Dn

δnd = 1 n ∈ N , (9b)

Anxn +
∑
d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (9c)

xn ∈ Xt(n) n ∈ N , (9d)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (9e)

δn̄d′ = 1 (9f)

Therefore, when calculating Mn̄d̄, the upper bound Θ∗n̄ in (8d) is given by:

Θ∗n̄d̄ = max
d∈Dn̄:d6=d̄

Φ∗n̄d

Clearly, solving problems (8) and (9) amounts to solving integer programs of size comparable with the
original problem (7). However, the tightest Θ∗

n̄d̄
and Mn̄d̄ are not necessary, and higher values would still

provide correct results. A suitable value for Mn̄d̄ can be obtained by solving any relaxation of problem (8),
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yielding MR
n̄d̄

, and (9), yielding ΦR
n̄d̄

and in turn ΘR
n̄d̄

. As an example, one might solve the linear programming
relaxation of problems (8) and (9) or, if the size of the problems is excessively high, one might choose to
relax constraints (8c) and (9c) for some stages. Finally, since the procedure outlined might return negative
values for some Mnd, we set Mnd = max{0,MR

nd} to reduce, when possible, high big-M absolute values. The
procedure is summarized in Algorithm 1.

Algorithm 1 Algorithm for calculating Mnd for T − 1

1: Input: N , Dn for n ∈ N , Θn for n ∈ NT
2: for Node n̄ ∈ NT−1 do
3: for Distribution d ∈ Dn̄ do
4: Calculate ΦLPn̄d by solving the LP relaxation to problem (9)
5: end for
6: for Distribution d̄ ∈ Dn̄ do
7: In constraint (8d) set Θ∗

n̄d̄
= maxd∈Dn̄:d6=d̄ ΦLPn̄d

8: Calculate MR
n̄d̄

by solving a suitable relaxation to problem (8)

9: Set Mn̄d̄ = max{0,MR
n̄d̄
}

10: end for
11: end for
12: return Mnd for n ∈ NT−1 and d ∈ Dn.

C.2 Big-M values for stages t = T − 2, . . . , 1

Once constants Mnd are available for every n ∈ NT−1 and d ∈ Dn we can proceed in a similar way to
calculate big-Ms for stages T − 2, . . . , 1. Given a stage t̄ ∈ {T − 2, . . . , 1}, a node at that stage, n̄ ∈ Nt̄, and
distribution available at that node d̄ ∈ Dn̄, the tightest value of constant Mn̄d̄, namely M∗

n̄d̄
, is

M∗
n̄d̄

= max θn̄ −
∑

m∈Nn̄d̄

πm(rTmxm +
∑

k∈Dm

qmkδmk + θm) (10a)

s.t.
∑

d∈Dn

δnd = 1 n ∈ N , (10b)

Anxn +
∑

d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (10c)

θn ≥
∑

m∈Nnd

πm(rTmxm +
∑

k∈Dm

qmkδmk + θm)−Mnd(1− δnd) t = t̄+ 1, . . . , T − 1, n ∈ Nt, d ∈ Dn, (10d)

θn = Θn n ∈ NT (10e)

θn̄ ≤ Θ∗
n̄d̄
, (10f)

xn ∈ Xt(n) n ∈ N , (10g)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (10h)

δn̄d̄ = 0 (10i)

Problem (10) consists of finding the feasible solution to problem (7) which yields the highest value of the
left-hand-side of constraint (7d) for node n̄ and distribution d̄. Notice that, unlike in problem (8), problem
(10) includes constraints (10d) which are necessary to ensure that θn values are set to the lowest expectation
for all stages between t̄ and T −1. Note that constant Mnd in constraints (10d) is also an upper bound to the
quantity θn −

∑
m∈Nnd

πm(rTmxm +
∑
k∈Dm

qmkδmk + θm) and can be thus set to the quantities determined

at previous iterations. Also in this case, Θ∗n̄ in (10f) represents the highest possible value θn̄ can take for
distributions other than d̄. The highest expectation for stage t̄+ 1, given distribution d′ ∈ Dn̄ is the optimal
value to problem (11)

Φ∗n̄d′ = max
∑

m∈Nn̄d′

πm(rTmxm +
∑

k∈Dm

qmkδmk + θm) (11a)

s.t.
∑

d∈Dn

δnd = 1 n ∈ N , (11b)
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Anxn +
∑

d∈Dn

Bndδnd + Ca(n)xa(n) +
∑

d∈Da(n)

Da(n),dδa(n),d = hn n ∈ N , (11c)

θn ≤
∑

m∈Nnd

πm(rTmxm +
∑

k∈Dm

qmkδmk + θm) +Mnd(1− δnd) t = t̄+ 1, . . . , T − 1, n ∈ Nt, d ∈ Dn, (11d)

θn = Θn n ∈ NT (11e)

xn ∈ Xt(n) n ∈ N , (11f)

δnd ∈ {0, 1} n ∈ N , d ∈ Dn, (11g)

δn̄d′ = 1 (11h)

Therefore, the upper bound Θ∗
n̄d̄

in (10f) is given by:

Θ∗n̄ = max
d∈Dn̄:d6=d̄

Φ∗n̄d

Similarly to Section C.1, calculating the optimal M∗
n̄d̄

is cumbersome as well as not strictly necessary.
Therefore, any computationally suitable relaxation to problems (10) and (11) can be adopted. The procedure
for obtaining constants Mnd for stages T − 2, . . . , 1 is sketched in Algorithm 2.

Algorithm 2 Algorithm for calculating Mnd for t̄ = T − 2, . . . , 1

1: Input: N , Dn for n ∈ N , Θn for n ∈ NT , Mnd for n ∈ Nt, t = t̄+ 1, . . . , T − 1, d ∈ Dn.
2: for Node n̄ ∈ Nt̄ do
3: for Distribution d ∈ Dn̄ do
4: Calculate ΦLPn̄d by solving the LP relaxation to problem (11)
5: end for
6: for Distribution d̄ ∈ Dn̄ do
7: In constraint (10f) set Θ∗

n̄d̄
= maxd∈Dn̄:d6=d̄ ΦLPn̄d

8: Calculate MR
n̄d̄

by solving a relaxation to problem (10)

9: Set Mn̄d̄ = max{0,MR
n̄d̄
}

10: end for
11: end for
12: return Mnd for n ∈ Nt̄ and d ∈ Dn.

D Computation time for finding big-M values for the FTCP

Table 6: Average elapsed time in seconds for the computations of big-M values using the procedure in
Section 4.2. S indicates the number of realizations describing each distribution.

Team S |I| = 3 |I| = 4 |I| = 5

ARS 4 11.216 36.161 66.495
ASV 4 13.387 37.614 84.259
CAR 4 17.873 44.370 96.844
CHE 4 16.862 52.053 149.683
CRP 4 17.100 47.362 129.843
EVE 4 10.921 36.309 93.248
FUL 4 12.467 39.589 67.543
HUL 4 11.928 40.945 86.544
LIV 4 11.384 32.654 84.933
MAC 4 12.999 32.460 71.190
MAU 4 14.093 38.464 95.931
NEC 4 11.079 32.661 87.461
NOR 4 9.897 28.554 66.370
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SOU 4 10.861 23.151 66.977
STO 4 11.009 37.650 68.867
SUN 4 18.335 36.425 85.658
SWA 4 12.770 32.966 99.143
TOT 4 11.475 28.322 69.286
WBA 4 10.644 28.465 85.157
WHU 4 17.390 45.385 78.934
ARS 5 23.028 59.372 165.883
ASV 5 21.531 62.066 167.843
CAR 5 24.472 74.075 241.720
CHE 5 28.144 84.103 301.168
CRP 5 21.557 74.754 257.036
EVE 5 21.673 72.323 183.927
FUL 5 19.659 50.441 142.312
HUL 5 23.749 51.421 176.955
LIV 5 18.195 40.295 150.142
MAC 5 20.799 47.659 117.553
MAU 5 31.487 64.327 155.962
NEC 5 35.180 64.231 175.313
NOR 5 26.893 51.132 146.938
SOU 5 18.282 43.805 120.134
STO 5 21.236 54.687 151.571
SUN 5 29.861 66.360 187.473
SWA 5 30.952 59.528 141.202
TOT 5 28.963 56.107 128.371
WBA 5 23.609 54.868 139.128
WHU 5 27.754 63.924 176.582

Avg 19.018 48.176 129.039
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