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Abstract
A decision maker usually holds various viewpoints regarding the priorities of crite-
ria, which complicates the decision making process. To overcome this concern, in 
this study, a diversified AHP-tree approach was proposed. In the proposed diversi-
fied AHP-tree approach, the judgement matrix of a decision maker is decomposed 
into several subjudgement matrices, which are more consistent than the original 
judgement matrix and represent diverse viewpoints on the relative priorities of crite-
ria. Thus, a nonlinear programming model was established and optimized, for which 
a genetic algorithm is designed. To assess the effectiveness of the proposed diversi-
fied AHP-tree approach, it was applied to a supplier selection problem. The experi-
mental results showed that the application of the diversified AHP-tree approach ena-
bled the selection of multiple diversified suppliers from a single judgement matrix. 
Furthermore, all suppliers selected using the diversified AHP-tree approach were 
somewhat ideal.

Keywords Analytic hierarchy process · Multiple-criteria decision-making · 
Consistency · Subjudgement matrix

1 Introduction

An analytic hierarchy process (AHP) is a recognized technique in multiple-criteria 
decision-making (MCDM) (Akgün and Erdal 2019; Chen et al. 2019; Dilawar et al. 
2019; Wang et  al. 2019). AHP is based on a decision maker’s judgment matrix, 
which summarizes the pairwise comparison results of the relative priorities of cri-
teria (Saaty 2008). However, since only two criteria are compared each time, it is 
not easy to make all pairwise comparison results fully consistent (Benítez et  al. 
2011; Ami et al. 2018). To overcome this difficulty, an intuitive approach is to ask 
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the decision maker to modify his/her pairwise comparison results (Lin and Yang 
1996). However, such a treatment may go against his/her wishes. If more pairwise 
comparisons are to be made, it is more difficult to maintain consistency. For this 
reason, Wedley (1993) recommended that a decision maker made only some pair-
wise comparisons. Then, the results of other pairwise comparisons were estimated. 
Soliciting opinions from multiple decision makers is a viable way to enhance con-
sistency (Moreno-Jiménez et al. 2008; Krivulin 2020). Xu (2000) and Escobar et al. 
(2004) applied the weighted geometric mean method to aggregate multiple decision 
makers’ judgment matrixes. The experimental results showed that consistency has 
improved after aggregation. Benítez et  al. (2011) proposed an algorithm that can 
automatically modify a judgment matrix slightly to make it more consistent. Some 
studies suggested using different indicators (e.g., geometric consistency index, the 
index of determinants, harmonic consistency index, etc.) to measure consistency (or 
inconsistency) to increase the likelihood that a judgment matrix is consistent (Wed-
ley 1993; Wang and Chen 2008; Business Performance Management Singapore 
2013; Franek and Kresta 2014; Liu et al. 2017; Peláez et al. 2018). However, these 
treatments have changed the original rules of AHP, which may be unacceptable. In 
addition, there is still a need to find a way to improve consistency without asking 
a decision maker to modify his/her pairwise comparison results, compromise with 
others, or change the method of measuring consistency (Lin and Chen 2019; Chen 
et al. 2020). To this end, a diversified AHP-tree approach is proposed in this study.

In the diversified AHP-tree approach, it is assumed that a decision maker holds 
various views on a decision-making problem at the same time (Shen et al. 2019; Lin 
and Chen 2020), which leads to inconsistency among pairwise comparison results. 
To address this issue, a decision maker’s judgement matrix is decomposed into 
several subjudgement matrices, and each subjudgement matrix represents a single 
viewpoint of the decision maker when comparing criteria. A subjudgement matrix 
should be more consistent than the original judgement matrix, because there is no 
need to trade off various points of view. In addition, a subjudgement matrix can be 
further decomposed into its subjudgement matrices. Finally, a judgement matrix is 
decomposed into a tree comprising numerous subjudgement matrices. The priorities 
of criteria determined by these subjudgement matrix will be different.

One possible concern about this study is that AHP has been extensively stud-
ied and is mature. It seems that no further research can increase novelty. How-
ever, the diversified AHP-tree approach is novel in the following aspects:

(1) This study provides a novel interpretation of a decision maker’s judgement 
matrix.

(2) Since different subjudgement matrixes provide differrent priorities of criteria, it 
is easy to select multiple alternatives that are simultaneously optimal.

(3) In addition, the optimal alternatives selected using the diversified AHP-tree 
approach are diversified, which is also novel.

The rest of this article is organized as follows. Section  2 provides a prelim-
inary introduction to the conventional AHP approach and details the proposed 
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diversified AHP-tree approach. Section 3 describes the application of the diversi-
fied AHP-tree approach to a supplier selection problem to evaluate its effective-
ness. Some available methods are also applied to this case for comparison. Sec-
tion 4 concludes this study. Some future research topics are also provided.

2  Diversified AHP‑tree approach

The diversified AHP-tree approach proposed in this study aims to decompose a 
judgement matrix into several subjudgement matrices. These subjudgement matrices 
represent diverse viewpoints on the relative priorities of criteria (Fig. 1). In addition, 
the decomposition process is repeated until a sufficient number of viewpoints have 
been manifested. The result shows a tree-like structure of subjudgement matrices, 
which is termed a subjudgement tree or an AHP tree. Based on each subjudgement 
matrix, the priorities of criteria can be set, and then the best alternative is selected 
based on these priorities. Finally, many alternatives that are simultaneously optimal 
from various viewpoints can be chosen. For example, Fig. 1 shows nine judgement 
and subjudgement matrices. Based on these judgement and subjudgement matrices, 
up to nine best alternatives can be chosen.

The diversified AHP-tree approach includes the following steps:

Step 1 Construct a judgement matrix.
Step 2 Evaluate the consistency of the judgement index in terms of consistency 
ratio (CR).
Step 3 Derive the priorities of criteria from the judgement matrix.
Step 4 If consistency is sufficiently high (i.e., CR < 0.1), go to Step 8; otherwise, 
go to Step 5.
Step 5 If the number of viewpoints is sufficient, go to Step 8; otherwise, decom-
pose the least consistent judgement or subjudgement matrix.
Step 6 Evaluate the consistency of each subjudgement matrix.

somewhat inconsistent

more consistent

Fig. 1  Decomposition of a judgement matrix
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Step 7 Derive the priorities of criteria from each subjudgement matrix. Return to 
Step 5.
Step 8 End.

Figure 2 shows a flowchart illustrating the procedure for implementing the diversi-
fied AHP-tree approach.

2.1  Preliminary: analytic hierarchy process

In AHP, a decision maker compares the relative priority (or weight) of a criterion over 
that of another using linguistic terms, such as “as equal as,” “weakly more important 
than,” “strongly more important than,” “very strongly more important than,” and “abso-
lutely more important than.” These linguistic terms are generally mapped to integers 
within [1, 9] (Saaty 2008; Chen 2020):

L1 “As equal as” = 1.
L2 “Weakly more important than” = 3.
L3 “Strongly more important than” = 5.
L4 “Very strongly more important than” = 7.
L5 “Absolutely more important than” = 9.

If the relative priority is between two successive linguistic terms, then values, such 
as 2, 4, 6, and 8, can be used. On the basis of pairwise comparison results provided by 
the decision maker, the judgement matrix A is created as follows:

where n is the number of criteria.

aij is a relative priority of criterion i over criterion j selected using the aforemen-
tioned linguistic terms. aij is a positive comparison ifaij ≥ 1 . The eigenvalue and eigen-
vector of A, indicated respectively with λ and x, satisfy the following:

and

where I is the identity matrix. The maximum eigenvalue of A and the priority of 
each criterion are derived as follows:

(1)�n×n =
[
aij
]
; i, j = 1 ∼ n

(2)aij =

{
1 if i = j
1

aji
otherwise ; i, j = 1 ∼ n

(3)det(� − ��) = 0

(4)(� − ��)� = 0

(5)�max = max
i

�i
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Construct a judgement matrix

Decompose the least 
consistent judgement or sub-

judgement matrix

Evaluate the consistency of 
the judgement matrix

Derive the priorities of criteria 
from each sub-judgement 

matrix

Consistency 
high enough?

Yes

No

Start

Yes

End

Viewpoints 
sufficient?

No

Evaluate the consistency of 
each sub-judgement matrix

Derive the priorities of criteria 
from the judgement matrix

Fig. 2  The procedure for implementing the diversified AHP-tree approach
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On the basis of�max , the consistency among pairwise comparison results can be 
evaluated in terms of the following indexes (Wu et al. 2020):

where RI is random index (Saaty 2013) (Table 1). CI and CR should be less than 0.1 
for a small AHP problem. For a large-size AHP problem, the requirement for CI and 
CR can be relaxed to less than 0.3.

The arithmetic average method can be applied to estimate the values of priori-
ties as follows (Mousavi et al. 2013):

Moreover, according to Eq. (4),

Thus, the maximal eigenvalue can be estimated as follows:

(6)wi =
xi∑n

j=1
xj

(7)Consistency index: CI =
�max − n

n − 1

(8)Consistency ratio: CR =
CI

RI

(9)wi ≅

∑n

j=1
aij∑n

i=1

∑n

j=1
aij

(10)� =
��

�

Table 1  Random index N RI

1 0.00
2 0.00
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45
10 1.49
11 1.51
12 1.48
13 1.56
14 1.57
15 1.59
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By substituting Eq. (11) into Eq. (7), CI can be estimated as follows:

In addition,

2.2  The diversified AHP‑tree approach

In the diversified AHP-tree approach, judgement matrix A is decomposed into 
several subjudgement matrices {A(k)|k = 1 ~ K} by applying the arithmetic aver-
age operator as follows:

where A(k) is the kth subjudgement matrix; K is the number of subjudgement matri-
ces. Equation (14) is equivalent to

All subjudgement matrices satisfy the following basic requirements for a 
judgement matrix:

where det() returns the determinant of a matrix. By considering a single viewpoint at 
a time, a subjudgement matrix becomes more consistent than the judgement matrix 
as follows:

Applying Eq. (13) to Inequality (18) gives

(11)�max ≅
1

n

n�
i=1

�∑n

j=1
(aijwj)

wi

�

(12)
CI(�) ≅

1

n

∑n

i=1

�∑n

j=1
(aijwj)

wi

�
− n

n − 1

(13)CR(�) ≅

1

n

∑n

i=1

�∑n

j=1
(aijwj)

wi

�
− n

(n − 1)RI

(14)� ∶=

∑K

k=1
�(k)

K

(15)aij =

∑K

k=1
aij(k)

K
∀ aij > 1

(16)det(�(k) − �(k)�) = 0

(17)(�(k) − �(k)�)�(k) = 0

(18)CR(�(k)) ≤ CR(�)
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or

Equation (20) is not an assumption, but a constraint in generating subjudgement 
matrices. In addition, although a subjudgement matrix represents a single viewpoint, 
each decomposition generates at least two subjudgement matrices, as illustrated in 
Fig. 1.

However, possible subjudgement matrices are numerous. In the proposed diversi-
fied AHP-tree approach, if the distance between two subjudgement matrices A(k) 
and A(l) is the furthest, they will be generated first. For this purpose, the sum of the 
distances between any two subjudgement matrices is maximized:

where d() is the distance function. In this study, the Frobenius distance (Golub and 
Van Loan 1996) is adopted to measure the distance between two matrices as follows:

where

and

The aforementioned equation is a conjugate transpose. When all elements of X 
are real values,

Thus,

Subjudgement matrices are far from each other, meaning that the viewpoints they 
represent are diverse (Lin et al. 2019; Zhou and Bridges 2019).

(19)
1

n

∑n

i=1

�∑n

j=1
(aij(k)wj(k))

wi(k)

�
− n

(n − 1)RI
≤

1

n

∑n

i=1

�∑n

j=1
(aijwj)

wi

�
− n

(n − 1)RI

(20)
n�
i=1

�∑n

j=1
(aij(k)wj(k))

wi(k)

�
≤

n�
i=1

�∑n

j=1
(aijwj)

wi

�

(21)Max Z =

K−1∑
k=1

K∑
l=k+1

d(�(k), �(l))

(22)d(�, �) =

√
trace

(
(� − �) ∗ (� − �)H

)

(23)trace(�) =

n∑
i=1

xii

(24)�
H = �

T

(25)�
H = �

T

(26)d(�(k), �(l)) =

√√√√ n∑
i=1

n∑
j=1

(aij(k) − aij(l))
2
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Subsequently, the following nonlinear programming (NLP) model is optimized to 
select the most diverse subjudgement matrices:

(NLP Model I)

subject to

The objective function is to maximize the sum of distances between any two sub-
judgement matrices. Constraint (28) is used to decompose the judgement matrix into 
K subjudgement matrices. Constraint (29) is used to satisfy the reciprocal property of a 
subjudgement matrix. In Constraint (30), the consistency of each subjudgement matrix 
should be higher than that of the original judgement matrix. Constraint (31) estimates 
the values of weights from a subjudgement matrix.

To facilitate the optimization of NLP model I, it must be converted into a more trac-
table model (Tsai and Chen 2013; Lin et al. 2018; Chen and Wang 2019; Hübner et al. 
2020; Wang et al. 2020). The objective function involving square roots should first be 
replaced with the following linear and quadratic equations (Tsai and Chen 2014):

(27)Max Z =

K−1∑
k=1

K∑
l=k+1

√√√√ n∑
i=1

n∑
j=1

(aij(k) − aij(l))
2

(28)aij =

∑K

k=1
aij(k)

K
∀ aij > 1; i, j = 1 ∼ n

(29)aij(k)aji(k) = 1 ∀ i, j = 1 ∼ n; k = 1 ∼ K

(30)
n�
i=1

�∑n

j=1
(aij(k)wj(k))

wi(k)

�
≤

n�
i=1

�∑n

j=1
(aijwj)

wi

�
; k = 1 ∼ K

(31)wi(k) =

∑n

j=1
aij(k)∑n

i=1

∑n

j=1
aij(k)

∀ i = 1 ∼ n; k = 1 ∼ K

(32)aij(k) ∈ [0, 1) ∪ {1,… , 9} ∀ i, j = 1 ∼ n; k = 1 ∼ K

(33)wi(k) ∈ R+ ∀ i = 1 ∼ n; k = 1 ∼ K

(34)Max Z =

K−1∑
k=1

K∑
l=k+1

dkl

(35)d2
kl
=

n∑
i=1

n∑
j=1

(aij(k) − aij(l))
2
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Subsequently, let

Moving the denominator to the left-hand side gives

In addition, Constraint (29) is equivalent to

Moreover, Constraint (30) is equivalent to

Finally, the following NLP problem is solved instead:
(Model NLP II)

subject to

(36)�i(k) =

∑n

j=1
(aij(k)wj(k))

wi(k)

(37)�i(k)wi(k) =

n∑
j=1

(aij(k)wj(k))

(38)
n�
i=1

�i(k) ≤

n�
i=1

�∑n

j=1
(aijwj)

wi

�
; k = 1 ∼ K

(39)wi(k)

n∑
i=1

n∑
j=1

aij(k) =

n∑
j=1

aij(k) ∀ i = 1 ∼ n; k = 1 ∼ K

(40)Max Z =

K−1∑
k=1

K∑
l=k+1

dkl

(41)d2
kl
=

n∑
i=1

n∑
j=1

(aij(k) − aij(l))
2; k = 1 ∼ K−1; l = k + 1 ∼ K

(42)aij =

∑K

k=1
aij(k)

K
∀ aij > 1; i, j = 1 ∼ n

(43)aij(k)aji(k) = 1 ∀ i, j = 1 ∼ n; k = 1 ∼ K

(44)
n�
i=1

�i(k) ≤

n�
i=1

�∑n

j=1
(aijwj)

wi

�
; k = 1 ∼ K

(45)�i(k)wi(k) =

n∑
j=1

(aij(k)wj(k))
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A genetic algorithm (GA) is designed to solve NLP II problem. First, the encod-
ing of a chromosome is illustrated in Fig.  3. In the original judgement matrix A, 
a12 = 2 , a13 = 5 , and a32 = 3 . CR = 0.40. A can be decomposed into two subjudge-
ment matrices A(1) and A(2), in which a12(1) = 1 , a13(1) = 7 , and a32(1) = 1 , while 
A(2) can be derived from A(1) according to Eq. (15).

Therefore, only a single chromosome with three strings of integers within [1, 9] 
is required to represent this decomposition, and A(1) is represented with 171. Con-
straint (40) is incorporated into the objective function as a penalty term to form the 
fitness function:

where M is a large positive value. Each population has a size of 10 chromosomes. 
The roulette wheel method is applied to choose parent chromosomes to be paired 

(46)wi(k)

n∑
i=1

n∑
j=1

aij(k) =

n∑
j=1

aij(k) ∀ i = 1 ∼ n; k = 1 ∼ K

(47)aij(k) ∈ [0, 1) ∪ {1,… , 9} ∀ i, j = 1 ∼ n; k = 1 ∼ K

(48)wi(k) ∈ R+ ∀ i = 1 ∼ n; k = 1 ∼ K

(49)aij(2) = 2aij − aij(1)

(50)Max fitness =

K−1�
k=1

K�
l=k+1

dkl +M

K�
k=1

�
n�
i=1

�∑n

j=1
(aijwj)

wi

�
−

n�
i=1

�i(k)

�

1 7 1

Fig. 3  The encoding of a chromosome
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based on their fitness values. A single crossover point is chosen at random. Offspring 
chromosomes are generated by exchanging the genes of parents among themselves 
until the crossover point is reached. The crossover probability is 0.5. The mutation 
of a gene is done by slightly incrementing or decrementing its value:

The mutation rate is 0.1. The stopping criteria include

(1) 100 populations have been generated.
(2) The improvement in the average population fitness has been less than 0.5.
(3) The improvement in the fitness of the best individual at a given generation has 

been less than 0.1.

The GA algorithm is implemented using MATLAB which function eig() is con-
venient for deriving the eigenvalue and eigenvector of a judgment (or subjudgment) 
matrix.

Model NLP II can be applied to decompose the original judgement matrix or 
each subjudgement matrix. The decomposition process will terminate after the fol-
lowing conditions are met:

(1) No further decomposition is possible. For example, all subjudgement matrices 
are completely consistent, or no feasible solution can be found for Model NLP 
II.

(2) A sufficient number of priority sets have been generated.
  The priority sets with higher consistency (i.e., lower values of CR) will be 

applied earlier.

Model NLP II is not a convex problem. Therefore, determining the global optimal 
solution of the model is not always easy. However, aij(k) has values of positive inte-
gers from 1 to 9 for a positive comparison. Therefore, feasible solutions to Model 
NLP II are countable. An enumeration procedure can be performed to obtain the 
global optimal solution of Model NLP II when the problem scale is not extremely 
large.

3  Application to a supplier selection problem

The supplier selection problem discussed in Lima Junior et al. (2014) was used to illus-
trate the applicability of the proposed diversified AHP-tree approach. According to de 
Boer et al. (2001), existing supplier selection methods can be classified into five cat-
egories as follows: linear weighting methods, total cost of ownership methods, math-
ematical programming methods, statistical methods, and artificial intelligence methods. 
AHP and its variants are linear weighting methods and are one of the most prevalently 
and constantly employed methods for supplier selection (Kahraman et al. 2003; Chan 

5 → 4 or 6
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et al. 2008; Kilincci and Onal 2011; Deng et al. 2014; Dweiri et al. 2016; Sirisawat and 
Kiatcharoenpol 2018; Wang and Chen 2019; Chen et al. 2021).

In the supplier selection problem, the performance of a supplier was assessed in 
terms of five criteria, namely quality, price, delivery, supplier profile, and supplier rela-
tionship. Lima Junior et al. (2014) employed a fuzzy extent analysis (FEA)-based fuzzy 
AHP approach to solve this problem, in which all pairwise comparison results were 
given in fuzzy numbers.

In this problem, a decision maker constructed the following judgement matrix:

The CR of A was 0.154, which was inconsistent. The priorities of criteria were 
{0.451, 0.037, 0.099, 0.314, 0.099}. To decompose the judgement matrix into two sub-
judgement matrices, the Model NLP II of the problem was solved using GA in MAT-
LAB on a personal computer (PC) with an i7-7700 central processing unit of 3.6 GHz 
and 8 GB of random access memory, and the optimal solution was obtained as follows:

Z∗ = 10.630 ; CR(�∗(1)) = 0.147 ; and CR(�∗(2)) = 0.151 . The execution time 
was 12.14 s. In the GA algorithm, each population was composed of 10 chromosomes. 
All chromosomes were possible values of �∗(1) . For each of them, the correspond-
ing value of �∗(2) could be derived according to Eq. (15). Therefore, �∗(2) was not 
included in chromosomes. The initial population was randomly generated, as illustrated 
by Table 2. For example, the first chromosome of the initial population corresponded to 
the following subjudgment matrix:

Then, according to Eq. (15), the corresponding �∗(2) was derived as

� =

⎡
⎢⎢⎢⎢⎣

1 5 3 3 7

1∕5 1 1∕3 1∕9 1∕7

1∕3 3 1 1∕3 1

1∕3 9 3 1 7

1∕7 7 1 1∕7 1

⎤
⎥⎥⎥⎥⎦

�
∗(1) =

⎡
⎢⎢⎢⎢⎣

1 2 2 1 5

1∕2 1 1∕2 1∕9 1∕5

1∕2 2 1 1∕4 1

1 9 4 1 9

1∕5 5 1 1∕9 1

⎤
⎥⎥⎥⎥⎦
; �

∗(2) =

⎡
⎢⎢⎢⎢⎣

1 8 4 5 9

1∕8 1 1∕4 1∕9 1∕9

1∕4 4 1 1∕2 1

1∕5 9 2 1 5

1∕9 9 1 1∕5 1

⎤⎥⎥⎥⎥⎦

�(1) =

⎡
⎢⎢⎢⎢⎣

1 5 1 4 5

1∕5 1 1 1∕9 1∕5

1 1 1 1∕4 1

1∕4 9 4 1 6

1∕5 5 1 1∕6 1

⎤⎥⎥⎥⎥⎦

Table 2  Initial population

1 2 … 10

Chromosome (�∗(1)) 5145119465 1336319257 … 7347119175
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The values of parameters in the GA algorithm were determined using the 
parameter tuning approach (Boyabatli and Sabuncuoglu 2004; Hassanat et  al. 
2019), i.e., various values of a parameter were tried and then the one giving the 
best result was chosen before the final run of the GA algorithm. For example, the 
effect of the crossover probability on the best fitness, when other parameters were 
fixed, was shown in Fig.  4. In this experiment, when the crossover probability 
was set to 0.4, the GA algorithm achieved the highest fitness very quickly. For 
this reason, the crossover probability was set to this value.

In addition, the mutation rate was set to 0.1, meaning that the probability of 
mutating a chromosome (subjudgment matrix) was 0.1. If a chromosome was 
decided to be mutated, one of its genes was added or subtracted by one; other-
wise, it was not changed (see Fig. 5).

Although such a small-scale mutation seemed to delay the progress of achiev-
ing the global optimal solution, it actually prevented a subjudgment matrix from 
becoming invalid. For example, if the value of a gene was 2, subtracting 2 from it 
made it invalid, since all genes had to be within [1, 9]. For the same reason, add-
ing 2 to a gene with a value of 8 also made it invalid.

The evolution process was repeated 50 times. Each evolution process had at 
most 100 generations, as illustrated in Fig.  6. In most evolution processes, the 
best fitness did not change after 20 generations, while the average fitness contin-
ued to improve, but the improvement became negligible (i.e., less than 0.5) after 
about 30 generations.

The subjudgement matrices were more consistent than the original judgement 
matrix. The priorities of criteria determined using the two subjudgement matrices 

�(2) =

⎡
⎢⎢⎢⎢⎣

1 5 5 2 9

1∕5 1 1 1∕9 1∕5

1∕5 1 1 1∕4 1

1∕2 9 4 1 8

1∕9 5 1 1∕8 1

⎤
⎥⎥⎥⎥⎦

4

5

6

7

8

9

10

11

0 2 4 6 8 10

fit
ne
ss

generation

0.3
0.4
0.5
0.6

Fig. 4  Effect of the crossover probability on the best fitness
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were {0.279, 0.056, 0.101, 0.459, 0.105} and {0.555, 0.028, 0.098, 0.222, 0.097}, 
respectively.

Since �∗(1) was not sufficiently consistent, it was further decomposed as follow:

Z∗ = 10.670 ; CR(�∗(1 − 1)) = 0.135 ; and CR(�∗(1 − 2)) = 0.143 . The priorities 
of criteria determined were {0.275, 0.106, 0.100, 0.456, 0.063} and {0.233, 0.039, 
0.100, 0.494, 0.134}, respectively. Similarly, �∗(2) was further decomposed as follows:

�
∗(1 − 1) =

⎡
⎢⎢⎢⎢⎣

1 1 2 1 8

1 1 1 1∕9 1

1∕2 1 1 1∕3 1

1 9 3 1 9

1∕8 1 1 1∕9 1

⎤
⎥⎥⎥⎥⎦
; �

∗(1 − 1) =

⎡
⎢⎢⎢⎢⎣

1 3 2 1 2

1∕3 1 1∕3 1∕9 1∕9

1∕2 3 1 1∕5 1

1 9 5 1 9

1∕2 9 1 1∕9 1

⎤⎥⎥⎥⎥⎦

�
∗(2 − 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 7 2 1 9

1∕7 1 1∕6 1∕9 1∕9

1∕2 6 1 1∕3 1

1 9 3 1 9

1∕9 9 1 1∕9 1

⎤
⎥⎥⎥⎥⎥⎥⎦

; �
∗(2 − 2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 9 6 9 9

1∕9 1 1∕2 1∕9 1∕9

1∕6 2 1 1 1

1∕9 9 1 1 1

1∕9 9 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 5  Mutation mechanism
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Z∗ = 13.047 ; CR(�∗(2 − 1)) = 0.150 ; and CR(�∗(2 − 2)) = 0.140 . The priori-
ties of criteria determined were {0.362, 0.027, 0.122, 0.393, 0.096} and {0.641, 
0.031, 0.088, 0.120, 0.120}, respectively. Figure 7 shows the summarized results of 
the AHP tree. The decomposition process stopped at the third level because seven 
judgement (or subjudgement) matrices were available; however, further decompo-
sitions were still possible. These judgement (or subjudgement) matrices generated 
seven sets of priorities, thus enabling the selection of multiple suppliers that were 
simultaneously optimal from different viewpoints.

Table 3 summarizes the performances of six possible suppliers on various crite-
ria. All performances were scored on an integer scale from 1 to 10, and among these 
suppliers, two suppliers were selected. Table 4 summarizes the selection based on 
various viewpoints. Suppliers #1 and #2 were the optimal choices.

Table  5 shows the results using the conventional AHP approach. Suppliers #2 
and #6, which were different from those obtained using the diversified AHP-tree 
approach, were selected. Moreover, between the two selected suppliers using the 
conventional AHP approach, only Supplier #2 exhibited an optimal performance. 
By contrast, in the diversified AHP-tree approach, Suppliers #2 and #1 were selected 
and were optimally performing suppliers from different viewpoints.

Another existing method, the ordered weighted average (OWA) method (Yager 
and Kacprzyk 2012; Chiu and Chen 2021) was applied to this problem for compari-
son. In OWA, the performance of a supplier in terms of various criteria was sorted 
before aggregation. Weights assigned to the sorted performances depended on the 
decision strategy (Table 6). Table 7 summarizes the results obtained using the OWA 

0.451   0.037    0.099    0.314   0.099

0.279   0.056    0.101    0.459    0.105 0.555    0.028   0.098    0.222    0.097

0.641    0.031   0.088    0.120    0.1200.362   0.027    0.122    0.393    0.0960.233    0.039   0.100    0.494    0.1340.275   0.106    0.100    0.456    0.063

Fig. 7  AHP tree of the case study

Table 3  Performances of six 
suppliers on various criteria

Supplier # Quality Price Delivery Supplier 
profile

Supplier 
relation-
ship

1 6 6 5 5 4
2 6 4 5 5 6
3 5 4 6 4 9
4 4 4 8 4 9
5 5 6 3 4 6
6 5 5 9 4 9
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method. When the pessimistic decision strategy was adopted, the result obtained 
using the OWA method was close to that obtained using the diversified AHP-tree 
approach. However, only a single optimal supplier, i.e., Supplier #2, was obtained 
using the OWA method.

The third existing method to be compared is the measuring attractiveness by a 
categorical based evaluation technique (MACBETH) (Bana e Costa et  al. 2005). 
MACBETH is similar to AHP. Both methods are outranking methods based on 
the pairwise comparisons done by a decision maker. However, MACBETH uses 
an interval scale and AHP adopts a ratio scale. In addition, the calculation process 
of MACBETH is different from that of AHP. For the supplier selection problem, 
MACBETH solved the quadratic programming (QP) problem in Fig. 8 to derive the 
priorities of criteria. The results were w∗

i
 = {0.359, 0.000, 0.186, 0.309, 0.145}. The 

top performing supplier was Supplier #6, while the second was Supplier #3. The 
result were similar to that using OWA when the optimistic strategy was adopted, but 

Table 4  Selections based on 
various viewpoints

Point of view Choice

� Supplier #2
�

∗(1) Supplier #2
�

∗(2) Supplier #2
�

∗(1 − 1) Supplier #1
�

∗(1 − 2) Supplier #2
�

∗(2 − 1) Supplier #2
�

∗(2 − 2) Supplier #2

Table 5  Results obtained using 
the conventional AHP approach

Supplier # Overall performance Sequence

1 5.389 3
2 5.513 1
3 5.144 4
4 4.891 5
5 4.624 6
6 5.478 2

Table 6  Weights assigned to the 
sorted performances

Decision strategy Weights

Optimistic {1.00, 0.00, 0.00, 0.00, 0.00}
Moderately optimistic {0.62, 0.14, 0.10, 0.08, 0.06}
Neutral {0.20, 0.20, 0.20, 0.20, 0.20}
Moderately pessimistic {0.01, 0.06, 0.15, 0.30, 0.49}
Pessimistic {0.00, 0.00, 0.01, 0.10, 0.89}
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was different from that using the traditional AHP approach or the diversified AHP-
tree approach.

The experimental results indicated the following:

(1) Although the results obtained using several methods were compared, determin-
ing the best method was not easy. However, the differences among the results 
obtained using these methods were evident. The selection of diversified optimal 
suppliers was possible only when the diversified AHP-tree approach was applied. 
However, this behavior is not attributed to the formation of numerous ties in 
comparing supplier performances but to various viewpoints considered by the 
decision maker.

(2) Selecting suppliers based on the priority sets with higher consistency was pre-
ferred (i.e., lower values of CI).

(3) The continuous decomposition of a judgement (or subjudgement) matrix is 
always possible. For example, if the decomposition results comprise a com-
pletely consistent matrix, where CR is 0, then further decomposition may aggra-
vate CR. Furthermore, a judgement (or subjudgement) matrix with extreme 
values (i.e., 1 or 9) could not be decomposed.

(4) If three priority sets were to be generated, the judgement matrix was decomposed 
into two subjudgement matrices twice, thereby generating four subjudgement 
matrices, which may be more efficient than decomposing the judgement matrix 
directly into three subjudgement matrices (Fig. 9). For example, there are only 
two ways to decompose a judgement matrix with a matrix element aij = 3 into 
two subjudgement matrices, i.e., {1, 5} and {2, 4}. Therefore, decomposition 

Table 7  Results using the OWA method

Decision strategy Top 1 supplier Top 2 supplier

Optimistic Supplier #3, supplier #4, supplier #6
Moderately optimistic Supplier #6 Supplier #4
Neutral Supplier #6 Supplier #4
Moderately pessimistic Supplier #2 Supplier #6
Pessimistic Supplier #2 Supplier #1, supplier #6

min=Z;
Z=(v1-v2-5*a)^2+(v1-v3-3*a)^2+(v1-v4-3*a)^2+(v1-v5-7*a)^2+(v3-v2-
3*a)^2+(v3-v5-a)^2+(v4-v2-9*a)^2+(v4-v3-3*a)^2+(v4-v5-7*a)^2+(v5-v2-7*a)^2; 
v1=100; 
v3<=100; 
v4<=100; 
v5<=100; 
v6<=100; 
v2=0;

Fig. 8  QP problem solved in MACBETH
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using the same approach twice results in four matrices. By contrast, there are up 
to six ways to decompose the matrix into three subjudgement matrices, i.e., {1, 
1, 7}, {1, 2, 6}, {1, 3, 5}, {1, 4, 4}, {2, 2, 5}, and {2, 3, 4}. For different values 
ofaij , Table 8 summarizes the results. This is a severe concern if all matrix ele-
ments are considered. For example, assuming

  Then 2 * 12 * 6 = 144, and thus, there are 144 ways to decompose A into three 
subjudgement matrices.

(5) The effectiveness and efficiency of the GA algorithm was compared with those 
of an enumeration procedure that compared all feasible solution. The comparison 
results are summarized in Table 9. In most decompositions, GA could maximize 
the distance between subjudgement matrices efficiently. The enumeration pro-
cedure achieved the same purpose in all decompositions, but when there were a 
lot of feasible solutions, the efficiency might be very low.

� =

⎡⎢⎢⎣

1 2 5

1∕2 1 1∕3

1∕5 3 1

⎤⎥⎥⎦

Fig. 9  Two approaches to generate (at least) three priority sets

Table 8  The number of possible 
ways to decompose a judgement 
matrix by considering a single 
matrix element

aij No. of ways to decompose

2 Sub-judge-
ment matrices

3 Sub-judge-
ment matrices

4 Sub-judge-
ment matrices

5 Sub-judge-
ment matrices

1 0 0 0 0
2 1 2 4 6
3 2 6 14 27
4 3 10 26 56
5 4 12 32 72
6 3 10 26 56
7 2 6 14 27
8 1 2 4 6
9 0 0 0 0
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(6) To further elaborate the effectiveness of the diversified AHP-tree approach, it 
has been applied to another case (Chen et al. 2020), in which six factors critical 
to the robustness of a factory amid the COVID-19 pandemic, i.e., COVID-19 
containment performance, pandemic severity, vaccine acquisition speed, demand 
shrinkage, supplier impact, and infection risk, were compared. A decision maker 
constructed the following judgement matrix:

  CR(�) = 0.223 , which was somewhat inconsistent. To enhance consistency, 
the diversified AHP-tree approach was applied to decompose A into at most five 
more consistent subjudgement matrices. The results are shown in Fig. 10. The 
implications of the AHP tree were multiple. For example, the priority of “vaccine 
acquisition speed” ranged from 0.203 to 0.511, depending on the viewpoint of 
the decision maker.

4  Conclusions

A decision maker must make many tradeoffs in comparing criteria in pairs. 
Because such tradeoffs are subjective and unavoidably conflicting, the judge-
ment matrix is inconsistent. To overcome this problem, in the proposed diver-
sified AHP-tree approach, an inconsistent judgement matrix is decomposed into 
some subjudgement matrices that are more consistent than the original judge-
ment matrix. Such subjudgement matrices represent multiple viewpoints of the 
decision maker during the pairwise comparison process. The optimal performing 
alternative from each viewpoint can be selected. Therefore, multiple alternatives 

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1∕3 1∕4 4 5 5

3 1 1∕5 1∕3 4 2

4 5 1 3 5 5

1∕4 3 1∕3 1 5 5

1∕5 1∕4 1∕5 1∕5 1 3

1∕5 1∕2 1∕5 1∕5 1∕3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Table 9  Comparison between the GA algorithm and an enumeration procedure

Decomposition Enumeration procedure GA

Execution time (s) Distance between 
subjudgement 
matrices

Execution time (s) Distance between 
subjudgement 
matrices

A → A (1) & A (2)  > 1000 11.67 23.42 10.63
A (1) → A (1–1) & 
A (1–2)

12.11 10.67 5.42 10.67

A (2) → A (2–1) & 
A (2–2)

1.04 13.05 4.67 13.05
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can be simultaneously selected by the decision maker, all of which are the opti-
mal alternatives according to different viewpoints, which is the novelty of the 
diversified AHP-tree approach.

The diversified AHP-tree approach was applied to a supplier selection problem 
to demonstrate its applicability and effectiveness. According to the experimental 
results,

(1) Generating multiple viewpoints from a single judgement matrix for a single 
decision maker was possible using the diversified AHP-tree approach.

(2) Subjudgement matrices were more consistent than the original judgement matrix.
(3) Two suppliers, which were optimal from the two different viewpoints, were 

selected by using the proposed diversified AHP-tree approach. By contrast, the 
conventional methods could only select a single optimal supplier.

Numerous variants of the diversified AHP-tree approach can be implemented 
in the future. For example, a judgement matrix can be a geometric mean, not 
an arithmetic mean, of its subjudgement matrices. Furthermore, a more effi-
cient approach can be proposed to decompose a judgement matrix. The problem 
becomes complicated when multiple decision makers are involved. Future exami-
nations can be conducted in the aforementioned directions.

Declarations 

Conflict of interest The author declares that he has no conflict of interest.

Human and animal rights This article does not contain any studies with human participants or animals 
performed by any of the authors.

Informed consent Not required.

0.197   0.156    0.392    0.169   0.048 0.038

0.136   0.070    0.203    0.383   0.132 0.076

cannot be decomposed further

0.189   0.242    0.432    0.070   0.028 0.039

0.180   0.326    0.340    0.088   0.026 0.040 0.197   0.166    0.511    0.054   0.032 0.039

cannot be decomposed further

Fig. 10  The AHP tree of another case
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