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Coordination of Power and Natural Gas Markets via
Financial Instruments

Anna Schwele · Christos Ordoudis ·
Pierre Pinson · Jalal Kazempour

Abstract Current electricity and natural gas markets operate with deter-
ministic description of uncertain supply, and in a temporally and sectorally
decoupled way. This practice in energy systems is being challenged by the
increasing integration of stochastic renewable energy sources. There is a grow-
ing need for exchanging operational flexibility among energy sectors, which
requires to improve the sectoral coordination between electricity and natural
gas markets. In addition, the dispatch of flexible units in both sectors needs
to be made in a more uncertainty-aware manner, requiring to strengthen the
temporal coordination between day-ahead and real-time energy markets. We
explore the use of existing financial instruments in the form of virtual bid-
ding (VB) as a market-based solution to enhance both sectoral and temporal
coordination in energy markets. It is established in the literature that VB
by purely financial players is able to enhance the temporal coordination be-
tween deterministic day-ahead and real-time markets. By developing various
stochastic equilibrium and optimization models, we show that VB by physical
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players, i.e., gas-fired power plants, at the interface of power and natural gas
systems is of great potential to improve not only the temporal coordination
between deterministic day-ahead and real-time markets, but also the sectoral
coordination between deterministic electricity and natural gas markets. We
exploit a fully stochastic co-optimization model as an ideal benchmark, and
numerically illustrate the benefits of VB for increasing the overall market ef-
ficiency in terms of reduced expected operational cost of the entire energy
system. We eventually show that flexible resources in both electricity and nat-
ural gas markets are dispatched more efficiently in the day-ahead stage when
VB exists.

Keywords Electricity market · Generalized Nash equilibrium · Natural gas
market · Sectoral and temporal coordination · Stochastic programming ·
Virtual bidding

1 Introduction

The growing share of power production from stochastic renewable energy
sources, e.g., wind and solar power units, increases the need for operational
flexibility1 to deal with their variability and uncertainty (NERC, 2010). Nat-
ural gas-fired power plants are one of the main sources of flexibility in power
systems, and are able to compensate for the production variability and un-
certainty caused by stochastic renewable sources (Meibom et al., 2013; Gil
et al., 2014). These gas-fired power plants operate at the interface of electric-
ity and natural gas systems, yielding both physical and economic interactions
(Fleten and Nasakkala, 2010). The natural gas system is crucial for ensuring
fuel availability and technical feasibility, while it is also able to provide power
systems with flexibility through stored gas in the pipelines (Correa-Posada and
Sánchez-Mart́ın, 2015; Yang et al., 2018; Ordoudis et al., 2019). The volatile
and uncertainty-driven dispatch of gas-fired power plants to offset wind and so-
lar intermittency introduces demand fluctuations into the natural gas market
and propagates uncertainty from the power system to the gas sector (Heinen
et al., 2017; Dall’Anese et al., 2017; Nicholson and Quinn, 2019; Ratha et al.,
2020).

1.1 On the need for sectoral coordination between electricity and natural gas
markets

Despite increasing interdependencies between energy sectors, in practice elec-
tricity and natural gas markets are still cleared sequentially and separately.
In various countries and regions, the electricity market participants includ-
ing gas-fired power plants estimate the gas price and submit their offer to
the electricity market accordingly. Given the gas demand determined from

1 By operational flexibility, we refer to the capability of a power system to modify its
output or state in response to a change in renewable power production (Zhao et al., 2016).
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the clearing outcomes of the electricity market, the natural gas market oper-
ator clears the market and disseminates the actual gas prices, which are not
necessarily identical to estimated gas prices in the electricity market (Byeon
and Van Hentenryck, 2020; Ordoudis et al., 2019). In several countries these
two energy markets are usually asynchronous, implying that the timing of
the gas nomination cycles is not necessarily well aligned with the needs of the
electricity sector (Tabors et al., 2012). In addition, power and natural gas mar-
kets generally use different trading mechanisms. For example, European gas
markets decouple the trading and transport of natural gas by using an entry-
exit system (Hallack and Vazquez, 2013; Schewe et al., 2020), which is not
fully harmonized with the current zonal market design of European electricity
markets. Despite all these differences, sectoral coordination between electricity
and natural gas markets is crucial for renewable-based energy systems. This
need has been recognized by several market regulators, including Federal En-
ergy Regulatory Commission (FERC) in the U.S. that issued Order 809 in
April 2015. This order makes changes to the gas nomination cycles to improve
day-ahead and intra-day coordination of power and natural gas systems. The
details and implications of this order are described in Carter et al. (2016);
Orvis and Aggarwal (2018) and Craig et al. (2020).

The sectoral coordination of power and natural gas systems in their short-
term operations has been extensively addressed in the recent literature. While
several papers suggest an extreme regulatory solution by merging the op-
erational problems of power and natural gas systems (Correa-Posada and
Sánchez-Mart́ın, 2015; Zlotnik et al., 2016; Chen et al., 2019; Manshadi and
Khodayar, 2019; Ordoudis et al., 2019; Schwele et al., 2019; Roald et al., 2020;
Ratha et al., 2020), some other works develop more practical solutions where
the clearing sequence of power and natural gas markets is preserved. For ex-
ample, Zhao et al. (2019) propose a coordination mechanism that does not
require the exchange of proprietary information between power and natural
gas system operators – the only information to be exchanged between the two
markets are fuel price, supply and demand. An operational equilibrium model
for sequential but interrelated power and natural gas systems is developed in
Chen et al. (2020). As a practical solution, Byeon and Van Hentenryck (2020)
propose a hierarchical tri-level optimization methodology that makes the unit
commitment problem aware of gas networks, while recognizes and eliminates
the invalid bids of gas-fired power plants. Finally, Ordoudis et al. (2020) pro-
pose various methods built upon bi-level programming, where coordination
between power and natural gas systems is obtained by optimally adjusting the
gas volume availability as well as the estimated gas price in the day-ahead
electricity market.

1.2 On the need for temporal coordination between trading floors

In addition to the lack of proper coordination between various energy sec-
tors, another challenge for renewable-based energy markets is the potentially
loose temporal coordination between electricity markets that are cleared se-
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quentially in different points of time2 (Morales et al., 2014). The majority
of current electricity markets throughout the world clear several sequential
markets in short run, including day-ahead (DA), intra-day and real-time (RT)
markets (Daraeepour et al., 2019). The DA market is cleared based on a deter-
ministic description of uncertain supply. Given updated but still single-point
deterministic forecasts of uncertain supply, intra-day and RT markets adjust
the power system imbalances. Similar balancing stages, which are not neces-
sarily market-oriented, exist in the natural gas sector. For example, there is a
single balancing stage in the Danish gas system, where the day-ahead gas nom-
inations can be modified (Energinet, 2021). This practice is likely different in
various countries. For the sake of a stylized model, we consider a single balanc-
ing stage, the so-called RT market, in the power sector as the representative
of all balancing stages to be cleared after the DA electricity market. Similarly,
we consider a single RT market for the natural gas sector to be cleared after
the DA gas market. The key point is that despite all advances in forecasting
tools, the deterministic forecast of stochastic renewable energy sources used
at the DA stage can still be erroneous, which may cause wrong unit commit-
ment and dispatch decisions. This eventually results in market inefficiency, i.e.,
a comparatively high operational cost for the whole system (Jonsson et al.,
2010). To resolve such an inefficiency, temporal coordination between DA and
RT electricity markets and also between DA and RT natural gas markets is
required (Morales and Pineda, 2017). Through temporal coordination, the DA
electricity and the DA gas markets become uncertainty-aware. In contrast, via
sectoral coordination, the electricity market becomes aware of the gas sector.
Both temporal and sectoral coordination are desired for future energy systems
with high penetration of renewables.

1.3 Financial instruments as coordination mechanisms

The market-based mechanisms for improving both sectoral and temporal co-
ordination of power and natural gas systems range from an extremely disrup-
tive choice of designing a fully stochastic integrated energy market to less-
disruptive solutions that preserve the current regulatory framework with sep-
arate, sequential and deterministic clearing of the markets. The latter, i.e.,
less disruptive (or “soft”) market mechanisms, is the focus of this paper, while
the former, i.e., the fully stochastic integrated energy market, is used as an
ideal benchmark to assess the performance of the proposed mechanisms. By
soft market mechanisms, we refer to any mechanism or process that increases
the overall system efficiency while respecting the current operational and eco-
nomic regulations. These non-disruptive coordination mechanisms can be of
financial, operational or communicative nature. These mechanisms aim at en-
hancing the information flow, either directly or indirectly, between the systems
and creating incentives for each sector to dispatch resources in a way that ben-

2 Note that this definition of loose temporal coordination should not be confused with the
issue that the timing of gas nomination cycles is not necessarily harmonized with the needs
of the power industry. We do not address such a harmonization issue in this paper.
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efits the overall system. Among others, the soft market-based mechanisms for
coordination of energy sectors can be achieved by direct or indirect informa-
tion exchange among the markets (Zhao et al., 2019; Byeon and Van Henten-
ryck, 2020), defining new market products (Warrington et al., 2013; Wang and
Hobbs, 2016; Chen et al., 2017; O’Malley et al., 2019), prescribing new bid-
ding formats (Liu et al., 2015; O’Connell et al., 2016; Savelli et al., 2018; Bobo
et al., 2021), and introducing new market players which act as coordinators
at the interface of different sectors.

In this paper, we focus on the use of financial instruments to enhance the
coordination of power and natural gas markets. Specifically, we explore the ef-
fect of virtual bidding (Hogan, 2016), also known as “convergence bidding” (Li
et al., 2015), as a soft market-based mechanism for improving both temporal
and sectoral coordination of power and natural gas systems under uncertainty.
Virtual bidding (VB) refers to financial arbitrage between two trading floors
in an energy market, e.g., between DA and RT electricity markets. A virtual
bidder may earn profit due to price difference in DA and RT markets by per-
forming arbitrage. This virtual bidder can be a purely financial player who
has no physical asset, the so-called explicit virtual bidder, or she can be one of
the existing physical market players, the so-called implicit virtual bidder (Ise-
monger, 2006; Mather et al., 2017). An example of an implicit virtual bidder
is a generator, who performs arbitrage between DA and RT markets by selling
electricity in DA more than her installed capacity. Further details about VB
and in particular explicit and implicit VB will be provided later in Section 2.2.

Virtual bidding exists today in various electricity markets throughout the
world. Most of U.S. electricity markets allow both forms of virtual bidding,
i.e., explicit and implicit, such as California Independent System Operator,
CAISO (Li et al., 2015), Midcontinent Independent System Operator, MISO
(Birge et al., 2018) and Pennsylvania-New Jersey-Maryland Interconnection,
PJM (Hogan, 2016). Although explicit VB is not allowed in European energy
markets, implicit VB may occur to some extent (Papavasiliou et al., 2021).
The reason for this is that every power producer in European energy markets
is allowed to submit an offer in the DA market based on her entire produc-
tion portfolio. This leaves room for producers to do arbitrage to some extent
between DA and RT markets.

Note that by taking VB into account in this paper as a coordination tool,
we do not intend to focus on a market in a specific country. In contrast, we
consider a stylized market model, where both electricity and gas markets allow
VB, and they are cleared sequentially in both DA and RT stages. This stylized
model offers a general market framework, but it may not respect all regulatory
and operational details of markets in the U.S., or in Europe, or anywhere else.

1.4 State of the art, contributions, and paper organization

The implications of VB on converging DA and RT prices and on strength-
ening the temporal coordination among various trading floors, e.g., between
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deterministic DA and RT electricity markets, have been extensively studied in
the literature, see for example Parsons et al. (2015); Ito and Reguant (2016);
Morales and Pineda (2017); Birge et al. (2018); Kazempour and Hobbs (2018)
and Kohansal et al. (2020). The reason for such an improvement is that VB in-
creases market liquidity and brings additional uncertainty-related information
to the deterministic DA market through virtual bids. The underlying assump-
tion is that virtual bidders possess more adequate information about uncer-
tainty compared to the market operator who clears the DA market in a deter-
ministic manner. Therefore, it is implicitly assumed that virtual bidders have
used a proper stochastic model to make uncertainty-aware bidding decisions.
These bids indirectly make the deterministic DA market uncertainty-aware. In
order to quantify the maximum potential of VB to improve the coordination,
we assume each virtual bidder has perfect foresight of DA and probability dis-
tribution of RT prices. The affiliated assumption is that this virtual bidder is
risk-neutral, and is not going to use such information in a strategic manner. All
these assumptions together imply that we consider “perfect” virtual bidding3.
Compared to the stochastic market-clearing model as an ideal benchmark, it
is worth noting that the efficiency of the deterministic DA market may not
be “fully” improved by VB under some circumstances (Parsons et al., 2015),
or VB might not be able to do so alone (Morales and Pineda, 2017), or may
have some limits (Ito and Reguant, 2016; Birge et al., 2018). An example of
such conditions is markets where virtual bidders behave strategically (Lo Prete
et al., 2019a,b).

In the context of the existing literature, the main contribution of this pa-
per is to show that VB is able to improve not only the temporal coordination
among deterministic DA and RT markets, but also the sectoral coordination
among deterministic electricity and natural gas markets. To the best of our
knowledge, the effect of VB on sectoral coordination improvement among en-
ergy sectors has not been addressed in the literature. We illustrate that virtual
bidders (here, gas-fired power plants) are of great potential to behave as co-
ordinators at the interface of power and natural gas systems, and enhance
the overall efficiency by indirect information exchange among the two sectors
through making informed unit commitment and dispatch decisions. In par-
ticular, we aim at quantifying the maximum potential of VB for improving
both sectoral and temporal coordination of electricity and natural gas mar-
kets under supply uncertainty. To this purpose, we first integrate explicit VB
to electricity and natural gas markets, which achieves temporal coordination
between deterministic DA and RT markets in each energy sector. Then, we
investigate the possibility of natural gas-fired power plants, who are at the
interface of power and natural gas markets, to behave as implicit virtual bid-
ders. We illustrate that such implicit virtual bidders have the capability to

3 To relax this assumption, we will use later an out-of-sample analysis in our numerical
study, where the realized RT prices are different than those within the stochastic program
of the virtual bidders. This analysis shows that imperfect virtual bidding can still improve
the coordination but to a limited extent.
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achieve both temporal and sectoral coordination in deterministic electricity
and natural gas markets.

From a methodological perspective, we model renewable generation uncer-
tainty via a finite set of scenarios, and develop several stochastic generalized
Nash equilibrium (GNE) problems (Facchinei and Kanzow, 2007), whose solu-
tion existence can be mathematically ensured under some assumptions. These
stochastic equilibrium models serve as simulation tools for deriving policy im-
plications to explore how much VB can improve the sectoral and temporal
coordination in renewable-based electricity and natural gas markets. We also
provide analytical insights by comparing the GNE problems and the ideal
benchmark, i.e., the two-stage stochastic co-optimization problem (Pritchard
et al., 2010; Zavala et al., 2017; Zakeri et al., 2019). It is important to empha-
size that all stochastic equilibrium models in this paper are developed based on
a stylized market framework. While this framework may not accurately reflect
the way actual energy markets are cleared in specific countries, we develop
our models in a general and compact manner to gain overall insights into the
coordination of power and natural gas markets. These stylized models should
be seen as policy tools, since they are not intended to be used for market
clearing in practice.

The manuscript is organized as follows. In Section 2 we provide more details
about temporal and sectoral market coordination, the concept of VB and our
modeling assumptions. Sections 3 and 4 contain the mathematical formulations
of GNE models with explicit and implicit VB, respectively. The formulation of
the ideal benchmark model is included in Section 5. In Section 6, we show the
numerical results for a case study, and finally Section 7 concludes the paper.
For clarity purposes, we maintain the general representation of optimization
problems throughout the paper, and include their detailed representations in
the online appendix (Schwele et al., 2021).

2 Preliminaries

This section first highlights the temporal and sectoral coordination of power
and natural gas markets under uncertainty. Then, it further describes both
types of VB (explicit and implicit). Finally, it summarizes the modeling as-
sumptions made in this paper.

2.1 Two-dimensional coordination: Temporal and sectoral

The independent market operators clear each trading stage (DA and RT) sep-
arately and sequentially for electricity and natural gas markets. The current
market-clearing framework for electricity and natural gas systems is illustrated
in Fig. 1, including four market-clearing sequences. First, the electricity mar-
ket is cleared in a DA auction 12-36 hours before actual energy delivery using
a deterministic forecast of uncertain parameters, e.g., renewable power gen-
eration and natural gas prices. Note that future natural gas prices directly
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Day-ahead Real-time

I Electricity day-ahead
market clearing

Electricity
x

Natural gas

III Electricity real-time
market clearing

under scenario ω

II Natural gas day-ahead
market clearing

IV Natural gas real-time
market clearing

under scenario ω

L
9
9

Natural gas demand

99K Day-ahead schedule

Fig. 1 Sequential setup of electricity and natural gas markets, including four market-
clearing sequences I to IV.

impact the marginal production cost of natural gas-fired power plants and
consequently the merit order4 in the electricity market. Second, the natural
gas DA market is cleared for given natural gas demand of gas-fired power
plants determined by their dispatch in the electricity market. Third, once the
uncertainty is realized (e.g., scenario ω occurs), the RT electricity market is
cleared to adjust imbalances under fixed DA unit commitment and dispatch
decisions. Fourth, the natural gas market is cleared in RT, while the dispatch
of gas suppliers in DA and the demand of natural gas-fired power plants in
RT are given.

The sequential setup in Fig. 1 is totally uncoordinated in both temporal
and sectoral dimensions. This setup is temporally uncoordinated since both
electricity and gas markets in DA are cleared based on the available deter-
ministic forecast in that stage, without foresight into the potential deviations
that may realize in RT. It is also sectorally uncoordinated because the elec-
tricity market is cleared based on an estimation of natural gas price, and the
gas market is cleared afterwards. As it is common in practice, the integra-
tion of operating reserve as an extra market product is able to potentially
enhance the temporal coordination between DA and RT markets. However it
may bring extra inefficiencies if the value assigned for the minimum reserve
requirement in the DA market is not properly selected (Doherty and O’Malley,
2005; Zugno and Conejo, 2015). This can be an even more challenging issue in
European markets, where energy and reserve markets are cleared sequentially
(Dominguez et al., 2019). Aligned with such a sequential energy and reserve
market-clearing framework, Dvorkin et al. (2019) propose a stochastic bi-level

4 The merit order refers to placing the power plants with an ascending order of marginal
production costs.
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Fig. 2 An example for the hourly trading profile of an explicit virtual bidder in the DA
market (left), in the RT market (middle), and her final position, i.e., the sum of her trades
in DA and RT (right). The amount of trade in DA and RT could be negative (as an energy
buyer) or positive (as an energy seller), but the final position is always zero.

program that determines the optimal value for the minimum reserve require-
ment. Note that we exclude the reserve market as it is not the focus of this
study.

While the share of stochastic renewable energy sources is growing, the lack
of temporal and sectoral coordination in electricity and natural gas markets
may cause market inefficiency. In other words, the overall operational cost of
electricity and natural gas systems in DA and RT might be comparatively
higher than that cost in the ideal co-optimization benchmark. The reason for
such an inefficiency is suboptimal DA dispatch decisions made due to unco-
ordinated DA market clearing. If flexible resources are dispatched in the DA
stage inefficiently, they will not be available in RT to cope with imbalances.
As a consequence, more expensive actions, e.g., load curtailment, might be
required. Therefore, it is desirable to dispatch the flexible sources in DA in an
efficient manner while preserving the current sequential market-clearing frame-
work. This requires soft market-based mechanisms for enhancing the temporal
and sectoral coordination of power and natural gas markets, which is the focus
of this paper.

2.2 Virtual bidding

Virtual bidding is a purely financial instrument for market players including
suppliers, consumers, and financial traders to do arbitrage based on price dif-
ferences between trading floors (Hogan, 2016; Li et al., 2015; Birge et al., 2018).
We explain below both forms of VB, i.e., explicit and implicit VB (Isemonger,
2006; Mather et al., 2017).

2.2.1 Explicit virtual bidding

An explicit virtual bidder is a purely financial player who does not own any
physical assets. Therefore, her positions in DA and RT need to even out to
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Day-ahead Real-time

Day-ahead
market clearing

Real-time
market clearing

under scenario ω

Explicit
virtual bidder

max. expected profit
99K Day-ahead schedule

−→ Virtual trade

Fig. 3 Explicit virtual bidding by arbitraging electricity between the DA and RT electricity
markets (or by arbitraging gas between DA and RT natural gas markets). This type of virtual
bidding has potential to enhance temporal coordination between DA and RT markets.

zero. For example, an explicit virtual bidder may buy 10 MWh in the DA
electricity market in a specific hour at the DA market price in that hour, and
then sells the same 10 MWh back in the RT electricity market at the same
hour but at the price of the RT market. Therefore, her payoff is equal to the
difference between the DA and RT prices times the amount of virtually traded
power. Fig. 2 illustrates another example for the hourly trading profile of an
explicit virtual bidder.

Assuming that the explicit virtual bidder is a price-taker with perfect fore-
sight into the distribution of DA and RT prices, she is supposed to enhance in-
formational and productive efficiency of the two-settlement market by bringing
more competitiveness, liquidity and transparency to wholesale energy markets.

Fig. 3 illustrates how such an explicit VB is integrated into the two-
settlement market-clearing setup. While DA and RT energy markets are cleared
deterministically and sequentially, the explicit virtual bidder solves a stochastic
program maximizing her own expected profit. The outcomes of the stochastic
program of virtual bidders, i.e., virtual trades, are exogenous in DA and RT
markets. In other words, these virtual bidders act as self-scheduling market
players. This means that they make their DA dispatch decisions internally,
rather than submitting price-quantity bids to the DA market. However, these
self-scheduling market players can equivalently be viewed as financial players
who submit price-quantity bids to the DA market at sufficiently low (high) sell-
ing (purchasing) prices to ensure such bids would be cleared. In our proposed
model, the amount of virtual trade is exogenous in DA and RT market-clearing
problems, while each virtual bidder is still paid or pays based on the corre-
sponding market-clearing prices. Therefore, the DA and RT market-clearing
prices are exogenous in the stochastic program of the virtual bidder.

It is obvious from Fig. 3 that a set of interrelated optimization problems
(one for DA market clearing, one for RT market clearing per scenario, and one
for explicit virtual bidder) is required to explore the performance of explicit
VB. This clarifies the need for developing a stochastic equilibrium model. It is
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Fig. 4 An example for the hourly trading profile of an implicit virtual bidder, e.g., a gas-
fired power plant, in the DA market (left), in the RT market (middle), and her final position,
i.e., the sum of her trades in DA and RT (right). The amount of trades in DA and RT could
be negative (as an energy buyer) or positive exceeding the installed capacity (as energy
seller), but the final position should lie within zero and the installed capacity.

demonstrated in Kazempour and Hobbs (2018) that this setup can bring tem-
poral coordination between deterministic DA and RT electricity markets. This
is an interesting insight for market operators since they can keep the market
clearing deterministic, while leaving the correction of market inefficiency to
virtual bidders. However, VB may not always work in such a desirable way, as
discussed in Parsons et al. (2015); Morales and Pineda (2017) and Birge et al.
(2018).

2.2.2 Implicit virtual bidding

Unlike the explicit VB, the implicit virtual bidder is a physical market player
who blends virtual bids with physical bids. Fig. 4 shows an example for the
hourly trading profile of an implicit virtual bidder, who is able to do arbitrage
between DA and RT markets as long as her final position, i.e., the sum of her
trade in the DA and RT markets, lies within her actual operational limits.

An example of such a player is a natural gas-fired power plant who is at
the interface of power and natural gas systems, as illustrated in Fig. 5. This
power plant has potential to enhance both temporal and sectoral coordina-
tion in electricity and natural gas markets. Although the presence of explicit
VB may eliminate the motivation for physical players to perform arbitrage,
physical players may still find self-scheduling profitable to forgo the market
and dispatch their production/consumption themselves outside the market.
For example, assume a natural gas-fired power plant that has perfect fore-
sight into future DA and RT power and gas prices, and realizes that her profit
is not maximized when she participates in deterministic electricity and nat-
ural gas markets. In other words, she has the opportunity to gain a higher
profit in expectation by self-scheduling outside the market (Guo et al., 2016;
Sioshansi et al., 2010). Note that the power production and gas consumption



12 Anna Schwele et al.

Day-ahead Real-time

Electricity day-ahead
market clearing

Electricity
x

Natural gas

Electricity real-time
market clearing
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Natural gas day-ahead
market clearing

Natural gas real-time
market clearing
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Self-scheduling
gas-fired unit

max. expected profit

L
9
9

Natural gas demand

99K Day-ahead schedule

−→ Dispatch decision

Fig. 5 Implicit virtual bidding by a natural gas-fired power plant, who is on the interface of
electricity and natural gas systems. This power plant self-schedules her power productions
and gas consumptions in DA and RT electricity and natural gas markets. This type of virtual
bidding has potential to enhance temporal and sectoral coordination between DA and RT
electricity and natural gas markets.

of this power plant are exogenous in the market-clearing problems, while she
still pays/is paid based on the market-clearing prices (Jha and Wolak, 2015;
Papavasiliou et al., 2015). An implicit virtual bidder may benefit from self-
scheduling by solving her own stochastic program with better representation
of uncertainty and technical constraints for a longer time horizon. However,
these self-schedulers take on the full risk of RT price uncertainty. The in-
fluence of risk aversion and price volatility on the decision of generators to
do self-scheduling is discussed in Papavasiliou et al. (2015) and Conejo et al.
(2004).

2.3 Modeling framework and assumptions

In general, stochastic equilibrium models are computationally challenging, and
therefore simplifying assumptions might be required. In addition, these as-
sumptions enable us to quantify the maximum potential of VB in enhancing
temporal and sectoral coordination in the proposed simulation tool. In the
following we explain our assumptions.

As pointed out in Section 1, we consider two trading floors (DA and RT)
only, and other potential floors, e.g., intra-day adjustment markets, are ex-
cluded. We also consider simple price-quantity bids only, discarding any other
types of bids, e.g., bid curves and block bids, which are prevalent in European
electricity markets. Wind power production is assumed as the only source of
uncertainty. Note that the wind power forecast in DA is a single point (de-
terministic), while different scenarios may occur in RT, i.e., we are not sure



Coordination of Power and Natural Gas Markets via Financial Instruments 13

about the actual outcome of the uncertain parameter. Wind power uncertainty
is represented using a finite set of scenarios. The wind power production cost
is zero, and can be spilled at zero cost.

Both electricity and natural gas demands are assumed to be inelastic to
price. This implies that demand-side flexible resources are discarded. All de-
mand and supply in both energy sectors are assumed to be located at a single
node, neglecting the transmission systems. By discarding the natural gas net-
work, we exclude the potential flexibility that can be provided by the stored
gas in the pipelines, which is known as linepack.

A multi-period unit commitment scheduling model is used in the power
sector. We relax the binary nature of commitment status of conventional gen-
erators to lie within zero and one, but in a tight manner (Hua and Baldick,
2017). This relaxation ensures convexity, which is required to solve the stochas-
tic equilibrium model as a mixed complementarity problem, while providing
more accurate cost estimates than pure dispatch models. The production cost
of generators is assumed to be a linear function. We assume all market players
including virtual bidders (either explicit or implicit) to act competitively, non-
strategically, and in a risk-neutral manner when participating in the markets,
so they offer at prices identical to their marginal costs. We assume virtual
bidders can always zero out their position in RT.

Notation: We denote by R and R+ free and non-negative real numbers,
respectively. We use upper case letters for matrices and lower case letters for
vectors. Bold lower case letters denote vectors of variables. Note that e is
the vector of ones and (.)> is the transpose operator. We use functions h(.)
and g(.) to show equality and inequality constraints in every optimization
problem, but note that these constraints for different optimization problems
are not necessarily identical.

3 Temporal Coordination

In this section, we explore the temporal coordination between deterministic
DA and RT markets via explicit VB. The sectoral coordination between deter-
ministic electricity and natural gas markets via implicit VB will be discussed
later in Section 4.

3.1 Temporal coordination between DA and RT markets

We present below optimization problems in the power sector, and then in
the gas sector. These optimization problems are interrelated and construct a
stochastic equilibrium problem.
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3.1.1 Explicit electricity virtual bidder:

The expected profit-maximization problem of each explicit electricity virtual
bidder r ∈ R over the time horizon T writes as{

max
vE
r ,∆vE

r

λDA,E> vE
r +

(∑
ω

πω λRT,E
ω

)>
∆vE

r (1a)

subject to vE
r + ∆vE

r = 0

}
∀r. (1b)

Note that (1) is a two-stage stochastic linear program. The virtual bidder de-
termines her DA position vE

r ∈ RT , r ∈ R given the DA electricity prices
λDA,E ∈ RT as well as the distribution of RT electricity prices λRT,E

ω ∈
RT , ω ∈ Ω weighted by probability πω over the set of scenarios ω ∈ Ω. This
virtual bidder is a purely financial player without physical assets, and there-
fore is obliged to offset her DA position by her RT position ∆vE

r ∈ RT , r ∈ R
in each scenario5. Objective function (1a) maximizes the expected profit of
explicit virtual bidder who arbitrages between the DA and RT electricity mar-
kets. Constraint (1b) ensures that the virtual bidder sells (buys) the same
amount back in the RT market that was bought (sold) in the DA market. One
important observation about this explicit virtual bidder is that she enforces
the convergence of DA and expected RT electricity prices (Kazempour and
Hobbs, 2018). Derived from Karush–Kuhn–Tucker (KKT) optimality condi-
tions associated with (1), the virtual bidder enforces the DA and the expected
RT electricity prices to be equal, i.e., λDA,E =

∑
ω πωλ

RT,E
ω . See online ap-

pendix (Schwele et al., 2021) for further details. Note that market operators
treat the dispatch decision of virtual bidders as fixed input into the market-
clearing problem presented in the following section.

3.1.2 DA electricity market:

Consider G number of gas-fired generators and C number of non gas-fired gen-
erators, such that G ∪ C = I. Besides, consider J number of wind power units.
For given production cost of non gas-fired generators CE ∈ RC+, estimation of

natural gas prices λ̃G ∈ RT to compute the production cost C(λ̃G) ∈ RG×T
for gas-fired generators, and fixed dispatch of virtual bidders vE

r obtained from
(1), the electricity market operator clears the market in DA to minimize the
total operational cost of the power system as

min
p,u,s,w

e>pC CE + e>pG C(λ̃G) e+ e>s e (2a)

5 Although ∆vE
r is a recourse variable, it is not indexed by ω. The reason for this is that

throughout all scenarios, the RT position of the explicit virtual bidder should be identical.
Mathematically speaking, this variable can take a scenario index to become ∆vE

r,ω . However,
constraint (1b) would enforce again all those recourse variables over scenarios to take an
identical value.
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subject to h(p,w,vE
r ) = 0 : λDA,E, (2b)

g(p,w,u, s) ≤ 0. (2c)

Note that (2) is a deterministic linear program. Variables p,u, s ∈ RT ×I+ are
the dispatch, commitment status, and start-up cost of conventional generators
in DA, respectively. In particular, pC ∈ RT ×C+ and pG ∈ RT ×G+ are the DA
dispatch of non gas- and gas-fired generators, respectively. The commitment
status u is relaxed to lie within zero and one. Besides, w ∈ RT ×J+ refers to
the DA dispatch of wind power units, limited by their deterministic forecast
in DA.

Objective function (2a) minimizes the total system cost in DA, including
the operational and start-up costs of conventional generators. Equality con-
straint (2b) enforces the balance between power production and consumption
in DA with inelastic demand. The virtual DA positions vE

r are treated as given
inputs. The dual variable associated with power balance (2b), i.e., λDA,E ∈ RT ,
provides the DA electricity price. Recall that this vector of dual variables was
treated as exogenous values in the problem of virtual bidders (1). Inequal-
ity constraints (2c) enforce lower and upper bounds on the DA dispatch of
wind and conventional generation, impose ramping limits of conventional gen-
erators, represent the tight relaxation of unit commitment, and compute the
start-up cost of each conventional generator. The detailed representation of all
equality and inequality constraints is given in the online appendix (Schwele
et al., 2021).

3.1.3 RT electricity market:

The actual wind power production is realized in RT, which might not be nec-
essarily identical to the deterministic wind power forecast in DA. Therefore,
the electricity market operator clears the RT market to make the necessary
adjustments in order to keep the system balanced. The balancing actions are
the power adjustment of generators and the two extreme actions, i.e., wind
spillage and load shedding. The (relaxed) commitment status of fast-starting
conventional generators F ⊂ I and therefore their start-up cost can be up-
dated in RT, while that is not the case for the slow-starting generators S ⊂ I.
Note that F ∪ S = I. For given production costs of non gas-fired and gas-fired
generators CE ∈ RC+ and C(λ̃G) ∈ RG×T , load shedding cost Csh,E ∈ RT+, fixed

dispatch of explicit virtual bidders ∆vE
r achieved from (1) and fixed DA elec-

tricity market-clearing outcomes p and u obtained from (2), the RT electricity
market clearing under scenario ω ∈ Ω writes as{

min
∆pω,∆uω,∆sω,

∆wω,∆dE
ω

e>∆pC
ω CE + e>∆pG

ω C(λ̃G) e+ e>∆sω e+ Csh,E> ∆dE
ω

(3a)

subject to h(∆pω,∆wω,∆dE
ω ,∆vE

r ) = 0 : λRT,E
ω , (3b)
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g(∆pω,∆wω,∆dE
ω ,∆uω,∆sω,p,u) ≤ 0,

}
∀ω. (3c)

Note that (3), one per scenario, is a deterministic linear program. We denote by
∆pω ∈ RT ×I the power adjustment of conventional generators. In addition,
∆uω ∈ RT ×F and ∆sω ∈ RT ×F refer to the adjusted relaxed commitment
decision and the adjusted start-up cost of fast-starting units, respectively.
Wind spillage and load shedding actions are denoted by ∆wω ∈ RT ×J+ and
∆dE

ω ∈ RT+, respectively.
Objective function (3a) minimizes the total balancing cost for underlying

scenario ω. Equality constraint (3b) balances the wind power deviations in RT
from the DA schedule with the position of virtual bidders ∆vE

r as fixed input.
The dual variable vector λRT,E

ω ∈ RT represents the RT electricity prices
under scenario ω. Recall that this vector was exogenous in the problem of
virtual bidders (1). Inequality constraints (3c) enforce lower and upper bounds
on the load shedding and power adjustment of wind power units, conventional
slow- and fast-starting generators, restrict the ramp-rate limits of conventional
generators, enforce the adjusted unit commitment, and calculate the start-
up cost for fast-starting units. The detailed representation of constraints is
provided in the online appendix (Schwele et al., 2021).

3.1.4 Explicit natural gas virtual bidder:

Similarly to the electricity VB, the profit-maximization problem of each ex-
plicit natural gas virtual bidder q ∈ Q participating in the natural gas DA and
RT markets is given by the following two-stage stochastic linear program:

{
max

vG
q ,∆vG

q

λDA,G> vG
q +

(∑
ω

πω λRT,G
ω

)>
∆vG

q (4a)

subject to vG
q + ∆vG

q = 0

}
∀q. (4b)

For given DA and RT natural gas market prices λDA,G ∈ RT and λRT,G
ω ∈

RT , ω ∈ Ω, the virtual bidder solves (4) to maximize her expected profit
stemming from the price differences in DA and RT natural gas markets. Her
decision variables are DA positions, i.e., vG

q ∈ RT and RT positions, i.e.,

∆vG
q ∈ RT . Recall that we assume that the virtual bidder has a perfect

foresight into future DA and distribution of RT prices over scenarios. Equality
constraint (4b) zeros out the DA and RT trades of the explicit virtual bidder.
As an important observation, this explicit virtual bidder enforces the DA and
the expected RT natural gas prices to be equal, i.e., λDA,G =

∑
ω λRT,G

ω . This
observation can be derived by the KKT optimality conditions associated with
(4).
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3.1.5 DA natural gas market:

For given scheduled natural gas consumption of gas-fired generators as a func-
tion of pG obtained from the DA electricity market (2) and the DA trade of
virtual bidders vG

q determined in (4), the natural gas market operator clears
the DA market with K number of gas suppliers as

min
g

e>CGg e (5a)

subject to h(g,pG,vG
q ) = 0 : λDA,G (5b)

g(g) ≤ 0, (5c)

where (5) is a deterministic linear program. Parameters in the vector CG ∈
RK+ represent the supply cost of gas suppliers, and variables in the matrix

g ∈ RT ×K+ are the DA schedule of those suppliers. Objective function (5a)
minimizes the total gas supply cost. Equality constraint (5b) represents the DA
natural gas supply balance with inelastic demand including given gas demand
for power production and virtual trade vG

q . The “actual” natural gas prices

are derived through dual variables λDA,G ∈ RT , which are not necessarily
identical to the estimated prices λ̃G used in the electricity market-clearing
problems (2) and (3). Constraint (5c) enforces the lower and upper bounds on
the gas supply. The detailed representation of constraints is provided in the
online appendix (Schwele et al., 2021).

3.1.6 RT natural gas market:

The natural gas operator clears the RT natural gas market to offset the change
in fuel consumption of gas-fired generators ∆pG

ω occurred under scenario ω.
This deterministic linear problem writes as{

min
∆gω,∆dG

ω

e>CG∆gω e+ Csh,G> ∆dG
ω (6a)

subject to h(∆gω,∆pG
ω ,∆dG

ω ,∆vG
q ) = 0 : λRT,G

ω (6b)

g(∆gω,∆dG
ω ,g) ≤ 0

}
∀ω, (6c)

where objective function (6a) minimizes the total balancing cost. The first
balancing action is gas supply adjustment ∆gω ∈ RT ×K whose cost is CG ∈
RK×T+ . The second but extreme balancing action is the natural gas load shed-
ding ∆dG

ω ∈ RT+ at the comparatively high cost of Csh,G ∈ RT+. Equality
constraint (6b) balances the gas supply adjustments in RT. The actual natu-
ral gas RT prices under scenario ω are the vector of dual variables λRT,G

ω ∈ RT .
Constraints (6c) enforce the lower and upper bounds on gas supply, gas ad-
justments and gas load shedding. The detailed representation of constraints is
given in the online appendix (Schwele et al., 2021).
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3.2 Analysis of stochastic equilibrium problems

In order to achieve temporal coordination, the profit-maximization problem of
explicit virtual bidders as well as the DA and RT market-clearing optimization
problems need to be solved simultaneously. Note that the explicit virtual bid-
ders do not link the electricity and natural gas markets, but they will be linked
later in Section 4 with implicit VB. For now, we can identify two stochastic
equilibrium problems, one per energy sector. The first stochastic equilibrium
problem related to the electricity sector includes optimization problems (1)
∀r, (2) and (3) ∀ω. The second stochastic equilibrium problem corresponding
to the natural gas sector consists of (4) ∀q, (5) and (6) ∀ω. Note that these
two stochastic equilibrium problems should be solved sequentially, i.e., one
should first solve (1)-(3), and then for given natural gas demands, (4)-(6) can
be solved.

Remark 1 Each linear optimization problem (2), (3), (5) and (6) related to
DA and RT market-clearing problems can be equivalently reformulated as a
pure Nash equilibrium problem, wherein price-taking agents maximize their
profit in a perfectly competitive market.

The KKT optimality conditions of each optimization problem (2), (3), (5)
and (6) and its corresponding pure Nash equilibrium problem are identical. As
explained in Remark 1, each optimization problem (2), (3), (5) and (6) can be
replaced by a set of optimization problems that constitute the corresponding
Nash equilibrium problem. However, solving these problems simultaneously
as the equilibrium problems (1)-(3) and (4)-(6) leads to coupled strategy sets
and jeopardizes integrability of the equilibrium problem (Facchinei and Pang,
2007).

Remark 2 Both stochastic equilibrium problems (1)-(3) and (4)-(6) are GNE
problems.

In both stochastic equilibrium problems, the feasible set of some players
depends on the decision of other players. We focus on equilibrium problem
(1)-(3). The same discussion is also valid for the equilibrium problem (4)-(6).
The trading decisions of electricity virtual bidders in (1), i.e., vE

r and ∆vE
r ,

appear within the power balance constraints in (2) and (3). Replacing (2)
and (3) with their equivalent Nash equilibrium problems (as mentioned in
Remark 1) will not change the GNE nature of the overall problem, as the DA
power schedule of generators affects the feasible set of those generators in their
RT problem. Note that (1)-(3) is a special GNE problem, since variables of
(1) affect the feasible set of optimization problems (2) and (3), but not the
other way around. In other words, the feasible set of optimization problem
(1) is independent of DA and RT market outcomes. Similarly, the DA market
outcomes in (2) impact the RT constraints in (3), but again not the other way
around. One can interpret this linkage among (1), (2) and (3) in this way that
there is no feedback among the feasible set of players. However, this specific
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linkage of optimization problems in (1)-(3) does not change the fact that it is
a GNE problem.

The resulting challenge is that a GNE problem in general is formulated as
a quasi-variational inequality (Pang and Fukushima, 2005), which is generally
hard to solve and admits multiple or even infinite solutions (Facchinei and Kan-
zow, 2007). Note that Facchinei and Kanzow (2007); Harker and Pang (1990);
Harker (1991); Schiro et al. (2013); Krawczyk (2007); Fukushima (2011) and
Kulkarni and Shanbhag (2012) explore a specific class of GNE problems with
shared constraints. However, the coupling constraints in our proposed stochas-
tic equilibrium problems, i.e., (1)-(3), and (4)-(6), are not shared constraints.

Remark 3 Existence of a solution to the proposed stochastic GNE problems
can be mathematically proven under some circumstances.

The basis of this proof relies upon Harker (1991, Theorem 1) and Harker
(1991, Theorem 2), provided that the feasible set of every agent in the GNE
problems is non-empty, convex and compact. In our case, this condition will
be fulfilled only if we assume bounds on market prices, i.e., by imposing price
floors and caps, and bounds on virtual trades, e.g., by imposing a budget
constraint for each virtual bidder. The investigation of solution uniqueness for
these GNE problems is not straightforward (Harker, 1991; Fukushima, 2011).

4 Sectoral and temporal coordination

In order to enhance the sectoral coordination between electricity and natural
gas markets, this section extends the model in Section 3 and allows natural
gas-fired generators to act as implicit virtual bidders. In other words, they
are allowed to self-schedule outside the markets to optimally allocate their
operational flexibility in the electricity market and their fuel consumption
in the natural gas market. Each self-scheduler, i.e., implicit virtual bidder6,
maximizes her own expected profit. Similar to the explicit virtual bidders, we
assume that each self-scheduler has a perfect foresight into DA and distribution
of RT prices over scenarios in both electricity and natural gas markets. Note
that including these self-schedulers in the model links the power and natural
gas markets, so that a single stochastic equilibrium problem is achieved.

We consider both slow- and fast-starting types of gas-fired generators as
potential self-schedulers. The difference between these two types of generators
is that the slow-starting gas-fired units fix their unit commitment status in DA
and cannot change it in the RT, while the fast-start units can. The expected
profit maximization problem of each self-scheduling slow-starting gas-fired unit
G ∩ S participating in both electricity and natural gas markets is

max
p,u,s,∆pω

(
λDA,E − C(λDA,G)

)>
p− e>s

6 In the rest of the manuscript we use the terms implicit virtual bidder and self-scheduler
interchangeably.
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+
∑
ω

πω

[ (
λRT,E
ω − C(λRT,G

ω )
) ]>

∆pω (7a)

subject to g(p,u, s) ≤ 0 : µ, (7b)

g(∆pω,p,u) ≤ 0 : νω, ∀ω, (7c)

where (7) is a two-stage stochastic linear program, whose objective function
(7a) maximizes the expected profit of the underlying self-scheduling gas-fired
generator. Note that this objective function includes the actual DA and RT
gas prices λDA,G and λRT,G

ω from models (5) and (6), and not the estimated

gas price λ̃G. This problem is subject to the DA (7b) and RT operational
constraints (7c), so that the final production of gas-fired units in RT have to
lie within their feasible operational limits.

Similarly, each fast-start self-scheduling gas-fired unit G ∩ F solves a two-
stage stochastic linear program to maximize her expected profit as

max
p,u,s,∆pω,
∆uω,∆sω

(
λDA,E − C(λDA,G)

)>
p− e>s

+
∑
ω

πω

[ (
λRT,E
ω − C(λRT,G

ω )
)>

∆pω + e>∆sω

]
(8a)

subject to g(p,u, s) ≤ 0 : µ, (8b)

g(∆pω,∆uω,∆sω,p,u) ≤ 0 : νω, ∀ω. (8c)

The resulting stochastic GNE problem includes optimization problems (2),
(3) ∀ω, (5), (6) ∀ω, (7) and (8). Note that in this stochastic equilibrium prob-
lem, the decisions of self-schedulers p, and ∆pω in (7) and (8) are exogenous
values within the market-clearing problems (2), (3), (5) and (6).

Remark 4 Let us consider a case with both implicit and explicit VB. If the dis-
patch of self-schedulers in DA is restricted by either (7b) or (8b), the stochastic
equilibrium problem will be feasible if and only if such DA constraints are in-
active. Any non-zero dual variable corresponding to the DA constraints of
self-schedulers will make the stochastic equilibrium problem infeasible.

Including explicit and implicit VB requires solving (1)-(8) as a GNE prob-
lem by neglecting the operational bounds of self-schedulers in DA, i.e., (7b)
and (8b). Self-schedulers can submit physical and virtual bids as long as their
positions in RT adhere to their feasible operational limits, thus acting as im-
plicit virtual bidders.

5 Ideal benchmark

We compare the proposed “soft” market-based mechanism for power and nat-
ural gas coordination to the ideal benchmark of a fully stochastic integrated
energy market clearing. This ideal benchmark is indeed a disruptive solution
to achieve a full temporal and sectoral coordination, which ignores the current
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market sequences. Assuming that the given set of scenarios is a good repre-
sentation of the probability distribution of uncertainty, the stochastic market
clearing efficiently makes informed DA decisions by anticipating the potential
recourse actions in RT (Pritchard et al., 2010; Morales et al., 2012; Zakeri
et al., 2019; Zavala et al., 2017). In this benchmark, the fully integrated power
and natural gas system is co-optimized under complete exchange of opera-
tional information. The resulting two-stage stochastic linear program aims at
minimizing the total expected operational cost of both sectors in DA and RT,
and writes as

min
p,u,s,w,g,∆pω,
∆uω,∆sω,∆wω,

∆dE
ω,∆gω,∆dG

ω

e>pCCE + e>s e+ e>CGg e+
∑
ω

πω

(
e>∆pωCE + e>∆sω e

+ Csh,E> ∆dE
ω + e>CG∆gω e+ Csh,G> ∆dG

ω

)]
(9a)

subject to (2b), (2c), (5b), (5c), (9b)

(3b), (3c), (6b), (6c), ∀ω. (9c)

Objective function (9a) minimizes the total DA system cost for power pro-
duction and gas supply as well as the expected RT balancing costs in both
sectors, while respecting the operational constraints in DA (9b) and in RT (9c)
for each scenario. The stochastic optimization problem (9) can be equivalently
reformulated as a pure Nash equilibrium problem, wherein each market player
is a stochastic decision-maker, who maximizes her expected profit with respect
to DA and RT operational constraints with perfect information regarding un-
certainty and prices in both sectors.

Remark 5 The GNE problem (1)-(8) defined in Section 4 including explicit
and implicit VB is not necessarily equal to the ideal benchmark (9), since
their KKTs are different.

Recall that the GNE problem enforces convergence of DA and expected
RT prices in both power and natural gas sectors through the optimality con-
ditions of explicit virtual bidders. On the contrary, in the stochastic market
clearing problem (9), the DA and RT prices converge in expectation only if all
DA operational inequalities are non-binding, i.e., every market player acts as
an unrestrained arbitrager between DA and RT markets. This can be easily
explored by checking the KKT optimality conditions associated with (9). Note
that this observation is valid under this circumstance that an operational con-
straint with the corresponding dual variable of equal to zero at the optimal
point is necessarily non-binding.

The co-optimization of power and natural gas system correctly accounts
for the impact of natural gas prices on the merit order of the electricity supply
curve. Allowing all gas-fired units to self-schedule in the sequential setup with
perfect knowledge over both natural gas and electricity prices approximates
system integration. This is further explored in the following proposition.
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Table 1 Summary of market setup models.

Market setup Name Model Optimization Equilibrium Model type

Sequential Seq

(2)
(5)
(3) ∀ω
(6) ∀ω

X
X
X
X

−∗
−∗
−∗
−∗

LP
LP
LPs
LPs

Sequential with
explicit virtual bidding

Seq+eVB
(1) ∀r, (2), (3) ∀ω
(4) ∀q, (5), (6) ∀ω

−
−

GNE
GNE

MCP
MCP

Sequential with
implicit virtual bidding

Seq+iVB
(2), (3) ∀ω,
(5), (6) ∀ω, (7), (8)

− GNE MCP

Sequential with both
explicit and implicit
virtual bidding

Seq+VB
(1) ∀r, (2), (3) ∀ω,
(4) ∀q, (5), (6) ∀ω,
(7a), (7c) , (8a), (8c)

− GNE MCP

Ideal benchmark Ideal (9) X −∗ LP

∗There exists a pure Nash equilibrium (NE) which is equivalent to the optimization problem.

Proposition 1 If DA operational bounds on p,u,w,g in the stochastic opti-
mization problem (9) are non-binding, the DA and the RT prices converge in
expectation (i.e., λE,DA =

∑
ω πωλ

E,RT
ω and λG,DA =

∑
ω πωλ

G,RT
ω ) and the

outcomes of (9) are equal to the GNE problem (1)-(8) when all gas-fired units
are implicit virtual bidders.

Proof. This is proven by demonstrating that the KKT optimality conditions
of the two problems above under the conditions mentioned are identical – See
online appendix (Schwele et al., 2021) for more details.

Table 1 summarizes all models introduced. While sequential and ideal
benchmark can be solved as linear programs (LP), all other models are re-
cast as mixed complementarity problems (MCP) by concatenating all KKT
conditions from the respective optimization models.

6 Numerical results

This section provides a case study to analyze and compare the proposed market
setups presented in Sections 3, 4 and 5, which are summarized in Table 1.
We solve all models using an Intel CoreTM i7-7820HQ with four processors
clocking at 2.70 GHz and 16 GB of RAM in GAMS using PATH and CPLEX
solver for MCP and LP models, respectively. The CPU time for LP models is
below 1 second, while that time for different MCPs varies between 1 and 800
seconds. See online appendix (Schwele et al., 2021) for further details.

6.1 Input data

This case study contains a power system with 6 non gas-fired generators
(namely, C1 to C6) and 4 gas-fired generators (namely, G1 to G4). These gas-
fired generators connect the power system to a natural gas system with four
gas suppliers, namely K1 to K4. We consider a 24-hour time horizon. All tech-
nical details of generators and natural gas suppliers as well as the total hourly
demand in both power and natural gas sectors are provided in the online ap-
pendix (Schwele et al., 2021). Note that the demand in both sectors is certain,
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Fig. 6 Natural gas supply function.
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Fig. 7 Electricity merit order depending on natural gas price. The plots on the left-hand,
middle, and right-hand sides show the merit order corresponding to the low, average and
high prices for natural gas (as illustrated in Fig. 6), respectively.

and the only source of uncertainty is assumed to be the wind power. Wind
forecast and scenarios are also given in the online appendix. The natural gas
supply curve is shown in Fig. 6, which is the same throughout all 24 hours.
Fig. 7 illustrates the shifting of the electricity merit order curve due to a po-
tential change in the natural gas price. The reason for this shift is that the gas
price affects the marginal production cost of the gas-fired generators. Since in
both DA and RT stages, the electricity market is cleared before the natural gas
market, the electricity market operator needs an estimation of the gas price. In
the following, we assume that the electricity market operator uses the average
gas supply cost, i.e., $2.5/kcf, as a deterministic and static estimation of the
natural gas prices in both DA and RT. The value of lost load in the electricity
and natural gas sectors are set to $600/MWh and $300/kcf, respectively. The
wind power penetration, i.e., total wind power capacity installed divided by
the total electricity demand, is 34%. The next subsections provide the market
outcomes obtained from different setups.
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Fig. 8 Total expected cost of the electricity and natural gas systems calculated by (9a)
under different market setups. The percentages show the reduction in the total expected
system cost compared to that cost in the fully uncoordinated sequential setup (first bar).

6.2 Main results: Total expected system cost

The total expected cost of electricity and natural gas systems achieved under
different market setups is shown in Fig. 8. As expected, the highest system
cost corresponds to the sequential setup Seq (first bar in Fig. 8), which is
a fully uncoordinated model. On the other hand, the fully coordinated ideal
model (i.e., last bar in Fig. 8) yields the lowest cost. In this case study, the
full temporal and sectoral coordination results in a 7.06% cost reduction. The
three proposed setups Seq+eVB, Seq+iVB and Seq+VB provide partial coor-
dination, and therefore, the system cost achieved in those setups is between
the upper and lower bounds. Among these three market setups, Seq+VB with
both implicit and explicit VB yields the highest cost saving, which is 6.94%
(fourth bar in Fig. 8). Out-of-sample simulation relaxes our assumptions of per-
fect knowledge of virtual bidders. An analysis of out-of-sample performance
can be found in the online appendix (Schwele et al., 2021). In the following
three subsections, we discuss in details how each market setup impacts the
DA schedules. For clarity, we focus on DA dispatch of one of the slow-start
gas-fired generators, i.e., G4, and analyze how each market setup affects her
dispatch, and therefore her individual expected profit.

6.3 Upper bound: Sequential market setup (Seq)

The corresponding market-clearing outcomes of the fully uncoordinated se-
quential market setup Seq are given in Fig. 9. The DA schedules in this setup
have no foresight into uncertainty in the RT operation and sectoral interactions
between the two systems. Thus, the DA and expected RT prices can signif-
icantly differ. An example of such case is the electricity market price during
hours 14 to 22 in the left-hand side plot and the natural gas market price during
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Fig. 9 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from fully uncoordinated sequential market setup Seq.
The left- and right-hand side plots correspond to the electricity and natural gas market
outcomes, respectively.
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Fig. 10 Hourly profit in DA and in expectation in RT of slow-start gas-fired generator G4

obtained from fully uncoordinated sequential market setup Seq. The left-hand plot shows
the estimated profits using natural gas price estimations while the actual profits for realized
natural gas prices are depicted on the right-hand side.

hours 9 to 13 and 18 to 20 in the right-hand side plot of Fig. 9. The slow-start
gas-fired generator G4 is dispatched in the DA electricity market myopically,
without considering the volatility of the actual hourly natural gas price and
the need for flexibility provided by G4 in RT. This generator is scheduled in
hours 10 to 13 relying on the comparatively low estimated gas price, while her
real production cost is higher due to comparatively high natural gas market
prices. When power system flexibility is required, which is evident from the
high expected RT electricity prices in hours 14 and 20, generator G4 is unable
to provide upward adjustment since she is already dispatched at full capacity
in DA. Apart from the high expected system cost, this inefficient DA dispatch
results in a negative expected profit (-$529,059) for G4, as given in Table 2.
The faulty estimation of natural gas prices when clearing the electricity mar-
ket leads to underestimating power generation costs and overestimating the
profits of G4 in RT, such that G4 actually operates at negative profits in RT,
see Fig. 10. This illustrates the need for market coordination, and specifically
the potential of scheduling power generators in DA more efficiently.
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Seq Seq+eVB
Seq+iVB
(self-scheduling by G4)

Seq+VB
(implicit VB by G4)

Ideal

C1 14,078 13,693 13,499 13,411 12,410
C2 18,713 18,180 22,330 17,623 16,362
C3 26,029 8,673 36,920 11,099 8,673
C4 711 254 693 494 0
C5 134,062 126,703 127,079 123,956 115,180
C6 90,417 85,375 81,230 84,315 76,314
G1 -198,988 6,608 10,661 8,003 8,960
G2 1,267 0 -809 0 0
G3 11,127 6,332 5,564 5,535 4,177
G4 -529,059 4,878 11,415 8,319 8,833

Table 2 Expected profit of each generator under different market setups
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Fig. 11 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from fully coordinated market setup Ideal. The left-
and right-hand side plots correspond to the electricity and natural gas market outcomes,
respectively.

6.4 Lower bound: Ideal benchmark (Ideal)

In this ideal stochastic co-optimization model, the DA decisions are made while
perfectly foreseeing uncertainty in RT as well as the sectoral interdependencies.
As given in Fig. 11, the DA and expected RT prices converge in both power
and natural gas sectors. The fully efficient DA dispatch in this ideal market
setup ends up to a non-negative expected profit for all generators (see Table
2), including G4 whose expected profit is $8,833.

6.5 Temporal coordination: Seq+eVB

Recall that the market setup Seq+eVB provides the DA-RT temporal (but not
sectoral) coordination by allowing explicit VB in both electricity and natural
gas markets. Note that it is sufficient to consider a single explicit virtual bidder
only in each sector since the transmission network is not considered. The hourly
amount of DA virtual bids in both sectors is shown in Fig. 12. The virtual
bidders act as either buyers or sellers over the 24 hours in the DA market. For
example, the virtual bidder in DA electricity market acts as a seller in hours
3-6, 10, 11, 20, and 24, while as a buyer in the rest of hours as illustrated in
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Fig. 12 Hourly DA schedule of explicit virtual bidder (i.e., the purely financial player)
and slow-start gas-fired generator G4 as well as DA and expected RT market-clearing prices
obtained from market setup Seq+eVB. The left- and right-hand side plots correspond to the
electricity and natural gas market outcomes, respectively.

the left-hand plot of Fig. 12. The DA positions of this player are going to be
zeroed out by her RT actions. Practically, this means that every MWh the
virtual bidder sells in DA in hours 3-6, 10, 11, 20, and 24 will be bought back
in the same hours in RT. The right-hand plot of Fig. 12 shows that in the DA
natural gas market, the virtual bidder acts as a supplier in most hours. She
behaves as a natural gas consumer only in hours 5, 10, 11 and 24. Note that
allowing explicit VB achieves full convergence of DA and expected RT prices
in both power and gas markets. Explicit VB also impacts the DA dispatch
of generators. For example, the slow-start gas-fired generator G4 is no longer
dispatched between hours 2 and 11, while she is fully dispatched in hours 13
to 22. Explicit VB alone decreases the total expected system cost, but to the
disadvantage of several individual generators. For example, the expected profit
most generators decreases compared to the fully coordinated sequential model
and only gas-fired generators G1 and G4 are better off.

6.6 Temporal and sectoral coordination: Seq+iVB and Seq+VB

The efficient dispatch of market players operating on the interface of electricity
and natural gas sectors can enhance the sectoral coordination. A foresighted
schedule of gas-fired generators in the DA electricity market may improve not
only the temporal coordination with the RT electricity market, but also the
sectoral coordination with the DA natural gas market. We analyze below the
two market setups Seq+iVB and Seq+VB separately.

6.6.1 Self-scheduling gas-fired generators: Seq+iVB

As realized in the previous subsections, the DA dispatch of gas-fired gener-
ator G4 in setup Seq is inefficient, such that she ends up to a negative ex-
pected profit. This shows the significant potential for this generator to do
self-schedule, rather than participating in the markets relied upon a determin-
istic sequential clearing procedure. Fig. 13 shows the DA dispatch and market
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Fig. 13 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected
RT market-clearing prices obtained from market setup Seq+iVB. Generator G4 does self-
scheduling. The left- and right-hand side plots correspond to the electricity and natural gas
market outcomes, respectively.
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Fig. 14 Hourly profit in DA and in expectation in RT of slow-start gas-fired generator G4

self-scheduling in the sequential market setup Seq+iVB.

outcomes when generator G4 acts as an implicit virtual bidder. Note that
in this setup, the implicit virtual bidder has to still respect her operational
constraints in both DA and RT stages. This restriction will be relaxed later
in setup Seq+VB. According to Fig. 13, generator G4 increases her produc-
tion during hours 1 to 13 when the actual natural gas price is comparatively
low, whereas she reduces her power production and consequently natural gas
consumption when the gas price is comparatively high in hours 14 to 24. As
presented in Fig. 14, allowing this gas-fired generator to self-schedule alone
increases her expected profit to $11,415. Moreover, the total social welfare
is improved in terms of reducing the non-negative expected profits for other
generators and reducing the total expected system cost by 6.37% (third bar
in Fig. 8). Another important observation is that the self-scheduling by G4
causes shrinking the price spread between DA and expected RT prices in both
power and gas sectors.

6.6.2 Explicit and implicit virtual bidding: Seq+VB

This setup allows explicit VB by purely financial players and implicit VB by
gas-fired generator G4. Fig. 15 shows that the explicit and implicit VBs to-
gether achieve full price convergence in expectation in both power and natural
gas markets. When generator G4 is allowed to submit virtual bids in the elec-
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Fig. 15 Hourly DA schedule of explicit (i.e., purely financial player) and implicit virtual
bidder (i.e., generator G4) as well as DA and expected RT market-clearing prices obtained
from market setup Seq+VB. The left- and right-hand side plots correspond to the electricity
and natural gas market outcomes, respectively.

tricity and natural gas markets, the amount of explicit virtual trade decreases
significantly in the electricity market and almost disappears in the natural gas
market compared to Fig. 12. Note that G4 extends her bidding behaviour in
the DA electricity and natural gas markets beyond her operational constraints
acting as an implicit virtual bidder. For example, virtual bids are submitted
to act as an electricity consumer and natural gas producer in the DA markets,
e.g., in hours 3, 4 and 9. More specifically, she bids in DA below her opera-
tional capacity in hours 3, 4 and 9 and above her capacity in hours 12, 13, and
19-21. The convergence of DA and expected RT prices indicates full temporal
coordination. Moreover, the additional system cost reduction compared to the
case with explicit VB only (see second and fourth bars in Fig. 8) suggests
improved sectoral coordination. All generators can expect a non-negative ex-
pected profit in this market setup with both implicit and explicit VB. The
implicit virtual bidder G4 expects to earn $8,319. Although this generator can
extend her bidding activity beyond her operational constraints in DA, her ex-
pected profit is lower than that in a case when G4 is the only self-scheduler in
the market setup without explicit VB (Seq+iVB). However, when explicit VB
is allowed (Seq+iVB and Seq+VB), generator G4 is better off by submitting
virtual bids, see Table 2.

6.7 Main observations

Based on the above results, allowing market players to arbitrage seems to en-
hance the coordination of sectors and trading floors. The inclusion of explicit
VB results in generating better price signals that reflect the uncertainties in-
herent in the RT stages. These price signals improve DA schedules so that
the existing flexibility is allocated and utilized more efficiently. The VB im-
proves the temporal coordination of the sequential DA and RT markets in
the electricity and natural gas sectors. The self-scheduling gas-fired generator
strengthens the temporal coordination of DA and RT markets by decreasing
the price spread and improves the sectoral coordination by making use of her
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superior information of natural gas prices. In the same manner, the implicit
VB by gas-fired generators helps sectoral coordination between the electricity
and natural gas markets and improves the temporal coordination between DA
and RT markets. Such a gas-fired generator is able to arbitrage both between
the trading floors and between the sectors by submitting virtual bids in the
electricity and natural gas markets. That way the coordination between the
sectors flourishes via better information exchange. More specifically, better
price signals and improved DA schedules help allocate and utilize the existing
flexibility more efficiently. The DA schedules are improved through bidding
activities that better reflect the uncertainties and that take into account the
interactions of power and gas sectors.

7 Conclusion

This work explores the capability of financial instruments via VB either by
purely financial players (explicit VB) or by physical players like gas-fired gen-
erators (implicit VB) in improving the temporal and sectoral coordination
in two-stage (DA and RT) electricity and natural gas markets under uncer-
tainty. We use two models as benchmarks: a fully uncoordinated sequential
model which achieves an upper bound for the total expected system cost, and
a stochastic ideal co-optimization which provides full temporal and sectoral
coordination and yields a lower bound for the total expected system cost. The
resulting models with VB are equilibrium problems, including the determin-
istic market-clearing problems in DA and RT in both power and gas sectors,
and the two-stage stochastic optimization problems of virtual bidders, who
maximize their expected profit.

Our results reveal that competitive virtual bidders who have prefect insight
into the probability distribution of RT prices in power and natural gas mar-
kets increase the efficiency of deterministic sequential markets, such that the
resulting total expected system cost is between the lower and upper bounds. In
our case study, it is illustrated that the inclusion of virtual bidding can result
in an expected system cost that is very close to the lower bound. In particular,
the explicit VB provides a temporal coordination of the DA and RT stages in
power and natural gas markets. Moreover, implicit VB by gas-fired generators
brings both temporal and sectoral coordination. This implies that the sequen-
tial market with VB may approximate the stochastic ideal integrated energy
system, and help reveal and exploit the existing flexibility in the systems more
efficiently.

The main policy implication is that a disruptive market re-design to a
stochastic and integrated energy market might not be necessarily crucial for
unlocking the existing flexibility. Instead, this can be done to some extent via
financial instruments by allowing VB, while preserving the current sequential
market-clearing setup.

As potential future works, it is of interest to consider virtual bidders with
heterogeneous information and risk attitudes. It is also of interest to relax the
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assumption that explicit and implicit virtual bidders have perfect knowledge
of the probability distribution of real-time prices. This requires modeling the
potential information asymmetry in the equilibrium model (Lo Prete et al.,
2019b; Dvorkin Jr et al., 2019). In addition, it is important to analyze the cases
where virtual bidders behave as strategic players (Kohansal et al., 2020). In
particular, financial implications of risk attitudes and how strategic behaviour
affects market outcomes should be studied. Additional market participants,
e.g., demand-side flexibility providers, should be considered in future works,
who have the potential to perform arbitrage by adapting their consumption
levels. As another potential extension, the reserve market should be included to
investigate how the procurement of operating reserve products (Cleland et al.,
2015) affects the market outcome for virtual bidders and flexibility providers,
and thus the temporal and sectoral coordination. One can also explore how the
existence of diverse bidding formats, e.g., in the form of block bids, can impact
the performance of virtual bidders. Additional sources of uncertainty and their
potential correlation can also be considered. Another potential extension is to
include network constraints, especially in the natural gas sector as it allows
modeling linepack (stored gas in the pipelines). However, it will need either ap-
proximation (Correa-Posada and Sánchez-Mart́ın, 2015; Ordoudis et al., 2019)
or relaxation (Borraz-Sánchez et al., 2016; Schwele et al., 2019) methods to
convexify the linepack model. In particular, it is of interest to explore whether
the existence of financial instruments impacts the way the renewable supply
uncertainty is being propagated from the power sector to the natural gas net-
work. In this line, a systemic risk analysis for integrated energy systems will
be very relevant.

The proposed stochastic equilibrium model may become computationally
hard to solve if more players and scenarios are considered, and thus more
efficient solution techniques might be required. One potential solution can
be distributed optimization by solving the problem as an iterative Walrasian
auction, e.g., similar to the methods used in Höschle et al. (2018) and Mays
et al. (2019). However, the potential challenge is that the underlying GNE
problem may have multiple solutions, and this may affect the convergence of
such an iterative approach.
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