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Abstract

The most common application of Black’s formula is interest rate derivatives pricing.
Black’s model, a variant of Black-Scholes option pricing model, was first introduced
by Fischer Black in 1976. In recent market conditions, where global interest rates are
at very low levels and in some markets are currently zero or negative, Black model—
in its canonical form—fails to price interest rate options since positive interest rates
are assumed in its formula. In this paper we propose a heuristic method that, without
explicit assumptions about the forward rate generating process, extends the cumulative
standard normal distribution domain to negative interest rates and allows Black’s model
to work in the conventional way. Furthermore, we provide the derivations of the so
called five Greek letters that enable finance professionals to evaluate the sensitivity
of an option to various parameters. Along with the description of the methodology,
we present an extensive simulation study and a comparison with the Normal model
which is widely used in the negative environment option pricing problems.

Keywords Black’s model - Normal distribution - Negative rates - Greek letters

1 Introduction

After the 2008 financial crisis, some Central Banks (such as the Swiss National Bank,
the European Central Bank and the Bank of Japan) took the extreme unconventional
measure of setting official interest rates to zero or below in order to spur inflation and
reinvigorate economic growth [see, for example, Jackson (2015)]. As a consequence,
negative interest rates have become a leit-motive in financial markets, causing technical
problems in many traditional formulas used to value interest rate derivatives [see
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European Actuarial Association (2016); Haug (2007); Hull (2018) among others].
In fact, Black-Scholes like models usually require positive interest rates in pricing
formulas and the corresponding Greeks.

Several recent papers focus on the matter of negative rate modelling on derivative
pricing. Cafferata et al. (2017) study the effects played on options pricing by negative
interest rates when the underlying is an equity with null dividends. Moreover, they
carry out an empirical investigation to higlight the differences between estimation
using some quasi-closed formulas for pricing an American option and the stochastic
trinomial trees algorithm. Giribone et al. (2017) investigate the effects of negative
rates on the calculation of option sensitivities by comparing the log-normal and the
normal framework, both from the practical and the theoretical viewpoint. Moreover,
Recchioni et al. (2017) use an adjusted Heston model (Grzelak and Oosterlee 2011)
to investigate if models allowing for negative interest rates can improve option pricing
and implied volatility forecasting. Finally, Friesa et al. (2017) introduce the displaced
historical simulation model which handle situations of close-to-zero or negative risk
variables particularly well.

Practitioners have traditionally focused on the closed-form Black’s model, a variant
of Black-Scholes model introduced by Fischer Black in 1976 for valuing caps, floors
and swaptions (Black 1976). The mathematical framework under this model is simply
unable to accept rates lower than zero, assuming positive interest rates evolve on the
basis of a log-normal process. A possible solution to fix this breakdown is to include
a positive adjustment to the forward value (see Sect. 2 for details).

In this paper we propose a heuristic method to solve the original Black’s formula
drawback by extending the cumulative standard normal distribution domain to negative
interest rates. No explicit assumptions about the underlying generating process are
made but, as a result, the logarithm is always well defined and the model returns a
simple and stable pricing formulation on the R..o domain of the rates thanks to which
traders are able to price vanilla options using the classical log-normal framework.
The use of complex numbers enables to move from the positive to the negative rates
environment without creating prices discrepancies that are surely obtained when using
the normal pricing structure.

The plan of the paper is as follows. In Sect. 2 some preliminary notions on Black-
Scholes and Black’s models are introduced. In Sect. 3 we set up the methodology of
our proposal. In Sect. 4 we derive the Greek letters in the context of negative interest
rates, with the proof deferred to the Appendix. In Sect. 5 some evidences on options
pricing in the negative domain of interest rates and a comparison with the Normal
model are presented. Conclusions follow.

2 Preliminary notions

The Black-Scholes model is the most common option derivatives pricing framework
(Black and Scholes 1973). The model assumptions are: (1) the underlying stock pays
no dividend; (2) options can only be exercised upon expiration; (3) market direction
cannot be predicted; (4) no commissions are charged in the transaction; (5) the volatility
of the underlying and the interest rate are constant over time; (6) stock returns are
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Black’s model in a negative interest rate environment... 27

log-normal distributed (see e.g. Shinde and Takale (2012) for details). It assumes a
geometric Brownian motion W, for the underlying stock price S such that

dS =rSd; + o SdW; (1)

under the risk-neutral measure, where r is the risk-free interest rate and o the volatility
of the stock price. Black-Scholes formulas for call and put options are as follows

C =SN(d)) — Xe "TN(d») )
P =Xe"TN(=dy) — SN(—d)) (3)

where

log % + (r + %02) T
di = “)
oNT

d=d; —oNT (5)

C and P are the call and put option price respectively, S and X the stock and strike price
respectively, 7' the time remaining to expiration! and N (-) the cumulative probability
function of a standard normal distribution.

In 1976 Black (1976) proposed a variant of Black-Scholes option pricing model
that, unlike the earlier model, is useful for valuing European call or put options on
future contracts. The time-evolution in (1) is revised as follows

dF = o FdW, (©6)

where the stock price S of the underlying is replaced by the forward price of the rate
F. The values of a call and a put option based on the Black formula become

C = Nye "I [FN(d)) — XN(d)] (7
P = Nye " [XN(~dy) — FN(—d))] ®)

where N, is the notional amount and

4 log§ + %ozT

1= —F—
oNT

d=dy —oJT (10)

(C))

One of the principal flaws of Black’s model is that the log-normal solution does
not allow rates to go below zero. This problem is empirically solved by practitioners
adding a positive shift § to the forward value in order to maintain the original analytical
solutions. This approach is often called shifted Black or displaced diffusion (see e.g.

Lris expressed as a fraction of a year.
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Joshi and Rebonato (2006)). This new model is similar to the Black’s model, except
that the forward rate F is replaced with the § shifted forward rate (F + §)

dF = o (F +8)dW, (11)

Therefore, it allows negative rates, with a fixed negative lower bound defined by the
amount of the 8. In other words, the zero lower bound of the Black’s model is shifted.
One of the main criticism is that the analyst should choose a priori the shift § to avoid
negative values of the (F' + &), thus knowing the most negative value the forward rate
may achieve in the future. The shifted Black’s model disadvantage is that volatilities
may not be quoted in the market, and then it is necessary to estimate them trough
other models, like the SABR one (Hagan et al. 2002). It is a stochastic volatility model
that defines the forward rate and its volatility according to the following stochastic
processes:

dF = o FPdw, (12)
do =vo dZ; (13)

The Brownian motions driving the forward rate and the volatility are correlated each
other by means of the p coefficient:

EC[dW, dZ,) = p dt (14)

Equation (12) describes the forward rate evolution with parameters o and §, which
represents the Constant Elasticity of Variance and allows the model to switch between
a lognormal model (8 = 1) and a normal one (8 = 0). From Eq. (13), the volatility
of the forward rate o is itself a stochastic variable with volatility v.

Finally, the shifted SABR model, that introduces a shift parameter y in the stochastic
process of the forward rate d F = o (F + y)ﬁd W;, can be used to obtain the shifted
Black volatilities when strikes are negative2 (Deloitte 2016).

3 Methodology

We now focus on the case of negative rates or - more generally - the case that the
logarithm is undefined, e.g. the corresponding argument is negative. In this context,
the value is not in the real numbers’ domain and then (9) and (10) are not defined.

Considering the Black’s model defined in Egs. (7) and (8), we work to extend the
domain of the standard normal distribution for values of the ratio

F o (15)
=— <
“Tx

We must therefore consider the values in the complex field.

2 Since the market gives shifted Black volatilities for some strike rate levels, the model cannot include any
arbitrary size of the shift parameter.
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If we take the log of (15)
loga =log|a| —ir (16)

Equations (9) and (10) become respectively

di =di, —idy, (17)
dy = dyy — oNT —idy, (18)
where
log | + 30T
diy = ———— 2 (19)
1r O’\/T
T
di, = (20)
oT

The branchin log || —i7 ensures the continuity on R4 of the real—valued cumulative
standard normal distribution when interest rates become negative.
Now consider the standard normal distribution in the field of complex numbers

1 .
G(z) = —e = (21)
T

where z = a — ib, a, b € R (Gallager 2008). The distribution in (21) has the well
known property

/ G(dz=1 (22)
C

Let N.(-) be the cumulative standard normal distribution in the field of complex
numbers

N:(2) = /X /y G(z)da - db (23)
we have
Ne(z) = % [1+erf(x)][1 + erf(y)] (24)

where erf is the error function. Figure 1 shows an illustrative example of the cumulative
standard normal distribution in the field of complex numbers.
The extension in the complex field of N (d;), N(d>) is straightforward

Nc(dl) = Nc(dlr - idlc) (25)
Ne(d) = Ne(dyy — o VT — idy,) (26)
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-5

Fig.1 Standard normal complex distribution N (x + iy)

Black’s original formulas in (7) and (8) become?

C = Nye T [FNc(dy) — XNe(da)] (27)
P = Nye T [XNe(—da) — FN (—d))] (28)
where
1
Neldiy = idie) = 711+ erf(dip)] [1 = erf(dic)] (29)
Ne(diy = oVT —idi) = % [1+erf@ = ovD| 11 —erf@]  (0)

Equations (27) and (28) are equivalent to (7) and (8) when the real numbers domain
is considered. In fact, if we extend the assumptions on « considering only o > 0 then
the imaginary part of log « is real. The cumulative standard normal distribution is as

follows
[1 +erf (%)] 31)

and is equal to N (x + i0) since erf(0) = 0.
From (31) we have

N(x) =

N =

1 2
N’ = - 32
(x) me (32)

3 All the proposed pricing formulas are referred to a single caplet or floorlet.
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Complex derivation follows from (21)

1 .
N/(z) = —e % (33)
T

4 Greek letters

The five Greek letters (or simply the Greeks) represent the sensitivity of the option
price with respect to the parameters that define the model of the underlying asset.
Each letter measures a different risk dimension in an option position [(see Giribone
et al. (2017), Hull (2018)] and is evaluated as an appropriate partial derivatives of the
option price. In this section we derive the mathematical formulas of the first-order
(delta, theta, vega and omega) and the second-order (gamma) Greeks both for a single
caplet and floorlet option®. The complete proofs are deferred to the Appendix.

Delta (A) measures the sensitivity of the option relative to the underlying. It is the
derivative of the option price with respect to the forward price F

aC _
A(Capten = 5= = Nae™ " Ne(dr) (34)
_ P _ T _
A(Fl{mrlez‘) T a9F Nge [Ne(dy) — 1] (35)

Theta (®) represents the price sensitivity to the passage of time. It is the derivative
of the option value with respect to the time T

aC N,Fo _

O(capler) = 3T rC — ;76 "TN/(d) (36)
aP N F
P - 2T TN 4y (37)

®(Flaorlet) = aT rr.— 2\/?

Vega (v) measures the sensitivity to volatility. It is the derivative of the option price
with respect to the volatility o of the underlying asset®

aC .,
V(Capteny = 5~ = FNae NI d)NT (38)

4 In addition to Greeks, the sensitivity of the option price with respect to the strike rate X is usually
considered. In detail, for caplet options

aC _

ax = ~Nae”" TN ()
whereas for floorlet options

ap _
ax = Nae TN (—dy).

5 Like in the standard Black’s framework V(Caplet) = V(Floorlet)-
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oP -~
Y(Floorten) = 35— = FNae "IN/ (d)NT (39)

Rho (p) measures the sensitivity to the interest rate. It is the derivative of the option
value with respect to the risk free interest rate r

aC

P(Caplet) = E =-TC (40)
JP
P(Floorlet) = B_l’ =-TP (41)

Gamma (I") represents the rate of change between A and the underlying asset price.
It is the second-order derivative of the option price with respect to the forward price
F6

BZC aA(Caplet) _ Ngy

Uicaptery = 32 aF Foﬁf’TNc’(dl) (42)
2P IA(Floorl N, _
Ciktoorten = 577 = — g = = e TN (43)

5 Simulation study

In this section some evidence on interest rates options pricing in the negative domain
is reported. The application context is that of interest rate Over The Counter (OTC)
derivatives or floating rate loans and bonds with embedded cap or floor options. Being
the result of a private transaction between the buyer and the seller or parts of a financial
instrument that includes a nonderivative host contract, these contracts are customized
in their characteristics (among all expiration date, type of exercise, number of units of
the underlying asset) and there is no secondary market [(see e.g. Fabozzi et al. (2003)].
For these reasons a great need of statistical and mathematical methods to determine
the option price and measure the risk of the corresponding positions is necessary.

In order to consider different scenarios, we run an extensive simulation study by
evaluating options pricing, along with the corresponding Greeks, by varying the main
parameters: forward rate F, strike price X, risk-free interest rate r, volatility o, time
to maturity 7' (in months). The list of the examined ranges is reported in Table 1.

A Mathematica™ Package® has been developed for options pricing and simulation
in the proposed framework. Our program evaluates Eq. (24) in the field of complex
numbers (e.g. when interest rates are negative), employing the usual standard nor-
mal distribution function when interest rates are positive”. Considering each possible

6 Like in the standard Black’s framework T(capter)y = T(Floorlet)-
7 All the ranges reported in Table 1, leaving out the 7' parameter, are expressed as percentages.
8 The package is available upon request.

9 The program combines the error function erf and the chop one that replaces approximate real numbers
in expr that are close to zero by the corresponding exact.
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Table 1 List of examined ranges

Parameters Min Max Step
F - 15 1.5 0.1
X - 15 1.5 0.1
r - 1.0 1.0 0.1
o 0.1 0.4 0.05
T 1 12 1
w
2
©
3
T
kT,
_8 Strikes
w
— 09
— 11

— 13
15

-0.50 0.00 0.50 1.00 1.50
Forward rate

Fig.2 Floorlet options: r =0, 0 = 0.1, T = 9 months

combination of the parameters reported in Table 1, we get about 2 million of pricing
values for the two type of options (caplet/floorlet).

To illustrate the strength of the proposed option pricing formula, here below we
report some results of our simulation analysis.

Figure 2 shows the theoretical price of a floorlet option (r = 0,0 = 0.1, T =9
months) with respect to the forward rate, for some of the considered range of strike
prices. The option pricing function P is continuous on the whole Ry domain of
interest rates and is capable to ensure continuity around zero values of F.

As for Greeks, all the patterns with respect to the option parameters resemble the
ones of the original Black’s model. Figure 3 illustrates, as an example, Delta behaviour
at various levels of the forward rate for some of the considered range of volatilities in
a floorlet option case (X = 1.1, = 0, T = 9 months), where the increase in Deltas
with respect to volatilities is the one expected.

Moreover, pricing values obtained with the proposed framework and the corre-
sponding ones of the Normal and Shifted Black models are compared. For the sake
of simplicity and to avoid redundancy, only the Normal model results are reported
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wv
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©
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. [e]

Volatility =
—0.1
0.2
—0.3
—0.4

-1.00 -0.50 0.00 0.50 1.00 1.50

Forward rate

Fig.3 Floorlet deltas: X = 1.1, = 0, T = 9 months

Forward rate

-1.00 1.00

—Black

—Normal

Caplet quotes

Fig.4 Black’s and Normal models comparison for a caplet option: X = 1.3,r = —0.6,0 = 0.2, T = 11
months

hereinafter'”. In Figs. 4 and 5 pricing results by varying the forward rate are showed:
pricing values are similar over the whole domain of the forward rate with the main
deviations that are reported when the extremes of F are approached!!. Similar results
are obtained for all the considered contracts.

Finally, in order to check if the two considered models are overall aligned in terms
of pricing values, we have performed a standard correlation analysis for different levels

10 The Normal model is considered a robust and reliable model and is based on the Bachelier pricing
framework for pricing the vanilla derivatives [see e.g. Jamshidian (1997); Terakado (2019)].

1 A for the floorlet option, due to the type of contract, deviations are only in the F' negative domain since
the models’ pricing converges to zero when F' moves away from the hypothesized strike price.
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Floorlet quotes

—Black
—Normal

-0.80 -0.40 0.00 0.40 0.80 1.20
Forward rate

Fig. 5 Black’s and Normal models comparison for a floorlet option: X = 1.5, =0.5,0 = 0.1, T =1
month

of the parameters strike price, volatility, risk-free interest rate and time to maturity.
Globally speaking, the average correlation is about 97% when floorlet options are
considered, whereas about 95% when caplet contracts are examined thus confirming
that the two models are aligned from the point of view of the pricing values provided.
When the analysis is partitioned into all the parameters excluding the volatility,
average correlations remain close to the global ones, irrespective of the contract type.
On the other hand, we observe a decrease in floorlet options average correlation as
volatility increases (see Fig. 6); anyway, the lower average correlation value is near to
90% when o = 40%, still ensuring a quite good match between the two models.

6 Concluding remarks

This paper contributes to the debate on the use of Black’s model when interest rates
follow into negative territory. Our paper shows that an intuitive strategy for using the
original formula in a negative—rate environment is to restate the cumulative standard
normal distribution domain in the complex field. This is achieved by means of a
specific branch of log(F/X) when passing through the complex domain, without
creating option price discrepancies that can be obtained when using the normal pricing
framework. Based on this framework new Greeks are introduced.

Finally, a comparison of our proposal with the Normal model shows that the prices
are similar over the whole domain of the forward rate, and a standard correlation
analysis confirms that the two models are aligned from the point of view of the pric-
ing values provided. Thus, the proposed methodology represents a simple and valid
alternative to the main solutions adopted by the most widespread pricing services.

Further research is continuing on the evaluation of the model developed in this paper.
Specifically, our work is primarily focused on how the forward price is determined
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Correlation
1
0.98 o,
0.96 ‘
0.94
0.92
0.9 .
0.88
0 005 01 015 02 025 03 035 04 045
Volatility
Volatility | Correlation
0.10 0.99081
0.15 0.98980
0.20 0.98882
0.25 0.98583
0.30 0.97556
0.35 0.96495
0.40 0.90120

Fig.6 Floorlet average correlations by volatility

investigating the stochastic model for the spot price dynamics when the Gaussian
distribution in the field of complex numbers is used.
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Appendix: derivations of Greek letters

All the proofs of Greek letters for both caplet and floorlet options in our proposal are
provided.
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6.1 Derivation of equations (34) and (35)

aC
A(Capler) = ﬁ
_ ad ddy
=Ny 'T |:Nc(dl) + FNC,(dl)ﬁ - XNé(dz)ﬁ}

N/(dy) Né(dl)]
oJT oJT

= Nage T Ne(dy) (44)
oP

9F

= Nge T [Nc(dn + — N.(d»)

A(Floorlet) =

= Nae "7 | =N(—dy) — Fi(l - Nc(dl))% + Xi(l — Ne(d2)) od>
ad, aF " ad,

oF
= Nge'T [Nc(dl) -1+ Ne@ XN’.(dz);}
oA/t ¢ FoT

= Noe T [No(dy) — 1] (45)
where

ad, ady 1 1
S s 46
3F ~ 9F ~ FoJT (46)

6.2 Derivation of equations (36) and (37)

E
oT
= Nare T [FN.(di) — XNe(do)]

®(Caplet) =

_ dad ddy
— Nge'T [FNC/(dl)ﬁ - XNé(dg)ﬁ]

N,Fo

=rC —
2JT

e TN/ (dy) (47)

P

aT

= Nare T [XNe(—d2) — FN(—d)]
dady
-

®(Floorlet) =

Sy EIPRN Y
— Nge [Xadz(l Ne(d2)) Fadl (I = Ne(dp) }

aT
=rP - e "IN/ (dy) (48)

where

ad d ad d
dai _ 0 _ 4 2 _ 4 (49)
aT 2T 2T oT 2T
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6.3 Derivation of equations (38) and (39)

aC
V(Caplet) = %
_ dad ddy
=Ny 'T [FNg(azl)E - XNC/(dz)%]
—rT / d ’ d
= Nge FN.(dy) (VT — — )+ FN@n—
= FN,e "IN (d)VT (50)
aP
V(Floorlet) = ——

do
_ a dady a dad;
=Nge T | X—(1 = Ne(dp)) — — F—(1 — N.(d}))—
a€ |: de( c( 2))80' Bdl( L( 1))30]

= Ne T [XNC’(dz)% + FN.(d)) (f - %‘)]

= FNue "N (d)NT (51)
where
dad di ddy dy
w1 % W (52)

6.4 Derivation of equations (40) and (41)

aC
P(Caplet) = E
= —N,Te " [FNc(d) — XN (d>)]
=-TC (53)
P
P(Floorlet) = W
= —NyTe T [XN.(~d>) — FNe(—d)]
—_TP (54)
where
dady ddy
o~ =0 (55)

6.5 Derivation of equations (42) and (43)

aZC _ aA(Caplet)

F(Caplet) = ﬁ = 3 F

@ Springer



Black’s model in a negative interest rate environment... 39

9 ad,
= Nge ' T — N.(d)) —
a€ ad, (. l)aF

No _,r
= "N/ (d 56
e (d1) (56)

32P _ d A(Floorlet)

l-‘(I‘"luorlet) = a? = 9F
7 0 ady
= Nye' T — N(dy) —
a€ 8d1 (,( 1) Ya
N,
e TN/ (d) (57)

B FoT
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