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Abstract
We study different parallelization schemes for the stochastic dual dynamic program-
ming (SDDP) algorithm. We propose a taxonomy for these parallel algorithms, 
which is based on the concept of parallelizing by scenario and parallelizing by node 
of the underlying stochastic process. We develop a synchronous and asynchronous 
version for each configuration. The parallelization strategy in the parallelscenario 
configuration aims at parallelizing the Monte Carlo sampling procedure in the for-
ward pass of the SDDP algorithm, and thus generates a large number of support-
ing hyperplanes in parallel. On the other hand, the parallel-node strategy aims at 
building a single hyperplane of the dynamic programming value function in par-
allel. The considered algorithms are implemented using Julia and JuMP on a high 
performance computing cluster. We study the effectiveness of the methods in terms 
of achieving tight optimality gaps, as well as the scalability properties of the algo-
rithms with respect to an increasing number of CPUs. In particular, we study the 
effects of the different parallelization strategies on performance when increasing 
the number of Monte Carlo samples in the forward pass, and demonstrate through 
numerical experiments that such an increase may be harmful. Our results indicate 
that a parallel-node strategy presents certain benefits as compared to a parallel-sce-
nario configuration.
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1  Introduction

The stochastic dual dynamic programming (SDDP) algorithm, developed by Pereira 
and Pinto (1991), has emerged as a scalable approximation method for tackling 
multistage stochastic programming problems. The algorithm is based on building 
piecewise linear approximations of the value functions of the dynamic programming 
equations. The algorithm has its origins in hydrothermal scheduling (Pereira and 
Pinto, 1991; Flach et al., 2010; De Matos et al., 2010; Pinto et al., 2013), although 
other applications have emerged in recent years, including day-ahead bidding of 
pumped-hydro storage plants (Löhndorf et al., 2013), natural gas storage valuation 
(Löhndorf and Wozabal, 2020), dairy farm operations (Dowson et  al., 2019), and 
short-term energy dispatch (Papavasiliou et al., 2017; Kaneda et al., 2018).

Multistage stochastic programming problems are generally computationally 
intractable and therefore pose serious computational challenges, even for SDDP. For 
example, SDDP is unable to close the optimality gap for the problem studied in Sha-
piro et al. (2013), even after several hours of run time. In order to reduce the com-
plexity of the algorithm, different techniques have been proposed in the literature. 
With an objective of limiting the complexity of the cost-to-go function, cut selection 
techniques are considered in De Matos et al. (2015); Guigues (2017); Guigues and 
Bandarra (2019); Löhndorf et al. (2013).

Regularization techniques are studied in Asamov and Powell (2018) in order to 
accelerate convergence.

The nature of the SDDP algorithm makes it suitable for parallel computing 
(Pereira and Pinto, 1991). This has led to parallel schemes for SDDP in past research 
that aim at improving the performance of the algorithm (da Silva and Finardi, 2003; 
Pinto et  al., 2013; Helseth and Braaten, 2015; Dowson and Kapelevich, 2021; 
Machado et al., 2021).

1.1 � Parallelism in large‑scale optimization

Parallelism is a crucial attribute for tackling large-scale optimization problems, but 
is often undermined by synchronization bottlenecks. In power system applications, 
for instance, parallelism has allowed tackling large-scale day-ahead stochastic unit 
commitment problems (Papavasiliou et al., 2014). While synchronous parallel com-
puting algorithms require run times in the order of a weeks for certain instances of 
stochastic unit commitment, asynchronous implementations of Lagrange relaxation 
have been shown to reduce these run times to a few hours (Aravena and Papavasil-
iou, 2020). This allows us to hope for an eventual deployment of stochastic opera-
tional planning models in actual operations, where run time constraints are critical.

This objective motivates our research on the parallelism attributes of SDDP. Nev-
ertheless, the extant literature on SDDP presents a limited study in this front. The 
literature provides a narrow set of parallel schemes, which rely on increasing the 
number of Monte Carlo samples that are used in the forward pass of the algorithm 
(da Silva and Finardi, 2003; Pinto et al., 2013; Helseth and Braaten, 2015; Dowson 
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and Kapelevich, 2021). The aforementioned literature provides evidence that such 
schemes are superior relative to a serial approach. The literature, however, does not 
focus on how different schemes may compare relative to each other.

In Pinto et al. (2013) and da Silva and Finardi (2003) the authors propose a syn-
chronous parallel scheme, according to which subproblems are solved in parallel at 
every stage. Parallelization is also applied in the backward pass of the algorithm. 
This introduces a natural synchronization bottleneck at each stage. In Helseth and 
Braaten (2015) the authors propose a relaxation in the synchronization points of this 
synchronous parallel scheme. According to the proposed scheme, a worker waits for 
a subset of subproblems at each stage of the backward pass. The authors provide 
empirical evidence that demonstrate that their approach achieves performance gains 
relative to the synchronous setting. However, the analysis is not sufficiently robust, 
since the authors declare convergence once the lower bound is within the 95% confi-
dence interval of the upper bound. This convergence criterion has been criticized in 
Shapiro (2011).

In our work, we propose a richer family of parallelizable algorithms for SDDP. 
Our analysis considers synchronous as well as asynchronous computation. We 
develop a taxonomy of (i) parallelization by scenario of Monte-Carlo samples in the 
forward pass of the algorithm, and (ii) parallelization by node of the underlying sto-
chastic process, that encompasses the traditional parallel schemes that are encoun-
tered in the literature, and gives rise to new parallel formulations. We present an 
analysis for the resulting class of algorithms, and compare the relative strengths and 
weaknesses of the proposed algorithms.

1.2 � Limitations of parallelism

Parallelism is often viewed as a one-way procedure, where more processors neces-
sarily imply better performance. The SDDP literature tends to consider an increase 
in the number of Monte Carlo samples in the forward pass, in order to be able to 
rely on more processors (da Silva and Finardi, 2003; Pinto et al., 2013; Helseth and 
Braaten, 2015; Dowson and Kapelevich, 2021). Nevertheless, there is a lack of evi-
dence for assessing the effect of such an increase on the performance of the SDDP 
algorithm. In our work, we present empirical evidence which indicates that increas-
ing the number of Monte Carlo samples in the forward pass of the SDDP algorithm 
may in fact undermine performance. This indicates a serious drawback with tradi-
tional parallel schemes that have been proposed in the literature, since it indicates 
that these traditional parallel schemes may not scale well.

1.3 � Contributions

Our contribution to the literature on SDDP parallelization is two-fold. First, we 
enrich the set of available parallel schemes that have been considered in the litera-
ture, by considering both synchronous as well as asynchronous computation, and we 
present a taxonomy that categorises existing and new schemes. Second, we conduct 
an extensive numerical experiment in order to compare the relative performance 
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of these schemes when the objective is to achieve tight optimality gaps with high 
confidence. Moreover, our analysis provides empirical evidence that indicates that 
increasing the number of parallel processors may harm the performance of tradi-
tional parallel schemes that have been proposed for SDDP.

The paper is organized as follows. In Sect. 2 we present the notation and formu-
lation of Multistage Stochastic Programs, and we describe the SDDP algorithm. In 
Sect. 3 we describe our proposed parallelization schemes for SDDP. In Sect. 4 we 
present numerical case studies which constitute the basis for our empirical observa-
tions. Finally, in Sect. 5 we summarize our conclusions and outline future directions 
of research that are inspired by this work.

2 � Stochastic dual dynamic programming (SDDP)

Let us consider a multistage stochastic linear program with T stages, given by

Here, the vectors ct,bt as well as the matrices Bt,At form the stochastic data pro-
cess ξt = (ct,bt,Bt,At). We assume that c1,b1,A1 are deterministic. Let us assume that, 
at each stage, there are finitely many outcomes Ωt, and that the data process follows 
a Markov chain. The dynamic programming equations can be written as

for t = 2,···,T. There is no associated function QT+1 in the last stage. Note that, due 
to the Markov property, the cost-to-go function Qt(xt−1, �t) and the expected value 
cost-to-go functions Qt+1(xt, �t) depend only on ξt, and not on the entire history of 
the data process. Moreover Qt+1(xt, �t) is a convex function of xt (Birge and Lou-
veaux, 2011) and can therefore be approximated by a piecewise linear function. The 
idea of SDDP is to generate approximations Q̂t+1(xt, �t) of the expected value cost-
to-go functions through supporting hyperplanes H, commonly referred to as cuts. 
The cost-to-go functions can then be approximated as:

The procedure for generating a cut H is a two-step process that consists of for-
ward and backward passes. During forward passes, we generate trial points. During 
backward passes, we generate cuts for the expected value cost-to-go functions at the 
trial points.

1.	 Forward Pass Draw N Monte Carlo scenarios of the realization of uncertainty 
throughout the entire time horizon of the problem. This yields sequences 
�n
1
,⋯ , �n

T
 , where �n

t
∈ Ωt for n = 1,···,N.

min
A1x1=b1
x1≥0

cT
1
x1 + �[ min

B2x1+A2x2=b2
x2≥0

cT
2
x2 + �[⋯ + �[ min

BTxT−1+ATxT=bT
xT≥0

cT
T
xT ]]]

Qt(xt−1, �t) = min
xt

{cT
t
xt +Qt+1(xt, �t) ∶ Btxt−1 + Atxt = bt, xt ≥ 0}

Qt+1(xt, �t) ∶= �[Qt+1(xt, �t+1)|�t]

Q̂t(xt−1, 𝜉t) = min
xt

{cT
t
xt +

�Qt+1(xt, 𝜉t) ∶ Btxt−1 + Atxt = bt, xt ≥ 0}
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This process produces trial points x̂n
1
,⋯ , x̂n

T
 for n = 1,···,N.

2.	 Backward Pass 

This two-step process constitutes an iteration of the algorithm. In Philpott and 
Guan (2008) it is proven that this procedure converges, meaning that the algorithm 
converges almost surely after finitely many iterations.

A common and attractive way to represent this process and the underlying struc-
ture of the problem graphically, relies on a lattice representation of uncertainty. Fig-
ure 1 presents a lattice, where each column represents a time stage of the problem, 
and where each node represents the possible outcomes at the current time stage. 
Note that each node of the lattice is associated with an optimization problem, which 
aims at minimizing the current-period cost plus the cost-to-go function of the given 
node.

Figure  2 presents an SDDP iteration graphically over a lattice. The computa-
tional time evolves along the y axis, as indicated by the left-most arrow. The red 

Fig. 1   Lattice representation of uncertainty in SDDP. Each node corresponds to a realization of uncer-
tainty. Nodes grouped in the same column correspond to a given time stage of the problem. Lines con-
necting nodes represent the probability of transitioning form one node to another. Each node stores an 
associated subproblem and a value function
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dashed boxes indicate the work that a CPU is performing over the lattice and the y 
axis length represents the elapsed computational time for the current task. During 
a forward pass, a sample path is drawn from the distribution implied by the lattice. 
This results in selecting the red nodes in the figure, namely nodes 1, 2, and 5. The 
subproblems associated to these nodes are solved, starting from the first stage to 
the last one, that is node 1, then node 2, and finally node 5. This process produces 
trial points x̂1,⋯ , x̂T . Note that the subproblems at each stage are calculated at the 
trial point that is obtained in the previous time stage. The backward pass procedure 
moves backward in time, starting from the last stage and moving towards the first 
stage. At the last stage, the subproblems associated to nodes 7, 6, and 5 are solved at 
the trial point x̂2 . The order in which these nodes are solved is not critical. The dual 
multipliers of these problems are used for computing a cut of the value functions of 
stage 2 at point x̂2 . The procedure continues in this manner throughout all stages.

3 � Parallel schemes for SDDP

We begin this section by presenting parallel strategies for SDDP and then pro-
ceed to explain how these strategies can be implemented in a synchronous and 
asynchronous setting. These schemes span the different strategies that have been 
proposed in the literature (da Silva and Finardi, 2003; Pinto et  al., 2013; Hel-
seth and Braaten, 2015; Dowson and Kapelevich, 2021; Machado et  al., 2021) 
and some new schemes that, to the best of our knowledge, have not yet been 
considered.

Fig. 2   Graphical representation of the SDDP algorithm on a lattice. The position of the red dashed boxes 
on the y axis represents the elapsed computational time. The forward pass draws a sample path and pro-
duces trial points x̂1, x̂2 . During the backward pass, the third stage produces a cut at x̂2 for the value 
functions associated to nodes in stage 2. The second stage generates a cut at x̂1 for the value functions 
associated to nodes in stage 1
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3.1 � Parallelizing by scenario and by node

3.1.1 � Parallelizing by scenario (PS)

As we demonstrate graphically in panel (a) of Fig. 3, in this approach, each pro-
cessor generates a cut that supports the expected value cost-to-go functions at 
different sample points of the state space. The forward and backward steps are 
executed as follows:

•	 Forward pass The forward pass consists of N Monte Carlo scenarios. Each 
processor computes a different scenario, thus producing trial points xn

1
,⋯ , xn

T
 

in the state space, for n = 1,···,N.
•	 Backward pass At stage t, the nth processor generates a cut for the expected 

cost-to-go functions of stage t − 1 at point xn
t−1

.

The Parallel Scenario approach appears to be the most common paralleliza-
tion strategy for SDDP in the literature. Different variants have been proposed, 
ranging from synchronous schemes (da Silva and Finardi, 2003; Pinto et  al., 
2013) to relaxations in the synchronization points (Helseth and Braaten, 2015), 
to asynchronous schemes (Dowson and Kapelevich, 2021).

3.1.2 � Parallelizing by node (PN)

In panel (b) of Fig. 3 we can observe that, as opposed to the PS strategy, the idea in 
PN strategies is to use the available processors in order to generate a single cut at a 
single trial point. The forward and backward steps are executed as follows:

Fig. 3   Representation of SDDP parallel schemes. The height of the red and blue dashed boxes represents 
the elapsed time. a Presents the parallel scenario scheme. At each iteration a cut is built at 2 different 
points, and each cut is computed by a different CPU. b Presents the parallel node scheme. The grey 
dashed boxes represent outcomes that belong to the same time stage. At each iteration, a cut is computed 
at a single point of the state space. The work that is required for computing such a cut is distributed 
among the available CPUs
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•	 Forward Pass The main processor computes trial points along a single scenario. 
This produces a sequence x1,⋯ xT . Note that there is no parallelization at this 
step.

•	 Backward Pass Moving backwards in time through the lattice, each processor 
selects a node of the lattice that has not yet been updated and solves the corre-
sponding subproblem.

A competitive implementation for this scheme is unfortunately limited to a shared 
memory setting. This is due to the fact that, when a CPU commences a task in a 
distributed memory setting, there is a non-negligible communication startup time 
involved with receiving the required data for commencing the task. This implies that 
the task executed by each processor must require significantly more time than this 
start up time if parallelism is to deliver benefits, otherwise the latency of the network 
becomes an important factor in slowing down the algorithm. In the PN scheme, at 
stage t, each processor withdraws a subproblem from the list of |Ωt| problems and 
proceeds to solve it. In a distributed memory setting, this solve time is compara-
ble to the startup time of the processor. Thus, the latency of the network becomes 
problematic.

In Machado et  al. (2021) a similar approach is followed, a single scenario is 
considered and the work required to compute the scenario is distributed among the 
workers. However, the authors consider a different scheme to distribute the nodes 
among the processors. They allow processors to be attached to a stage. The proces-
sors are then constantly generating cuts for the given stage.

3.2 � Synchronous and asynchronous computing

As is commonly the case in parallel computing algorithms (Bertsekas and Tsitsik-
lis, 1989), the interaction between processors in our proposed schemes can unfold 
synchronously or asynchronously. In what follows, we propose synchronous and 
asynchronous schemes for both the parallel scenario (PS) and parallel node (PN) 
versions of SDDP. This leads to a variety of algorithms, which are summarized in 
Table 1.

3.2.1 � Synchronous parallel scenario (sync PS)

As we discuss in Sect. 3.1.1, in the PS scheme each processor builds a cut. The dif-
ference between the synchronous and asynchronous version of the algorithm is how 
these cuts are exchanged between processors. Given N processors, the forward and 
backward procedures for the synchronous PS scheme can be described as follows.
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1.	 Forward Pass: The n-th processor computes a Monte Carlo scenario, thus obtain-
ing a sequence�n

1
,⋯ , �n

T
 , where �n

t
∈ Ωt.

	   At the end of this step, the processors synchronize1

2.	 Backward Pass:

The n-th processor solves: 

In panel (a) of Fig. 4 we present the evolution of the algorithm over a lattice. In 
the forward pass, the processors compute a scenario and synchronize at the end of 
the forward pass. In the backward pass, at stage 3, both processors compute a cut 
which is shared in order to approximate the expected value cost to go functions. 
Because of the synchronization, both processors must wait until receiving the cut 
of the other processor. If one processor is faster when computing a cut, then it must 
stay idle until all other processors have computed their cut. Note that, apart from the 
synchronization at the end of each stage during the backward pass, synchronization 

Fig. 4   Synchronous and asynchronous parallel scenario schemes. The height of the red and blue dashed 
boxes represents the elapsed time

1  The processors could in fact start as soon as possible. Nevertheless, since the forward pass represents a 
small part of the computational effort, the algorithm is implemented as described here.
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also occurs at the end of the backward pass. Consequently, in the next iteration, all 
processors commence with the same set of cuts.

The synchronous version appears in a number of publications (da Silva and 
Finardi, 2003; Pinto et  al., 2013). In Helseth and Braaten (2015) the authors pro-
pose a relaxation in the synchronization points of each stage of the backward pass, 
whereby a processor waits for a subset of processors. This work discusses empirical 
evidence that indicate benefits relative to a fully synchronous version.

3.2.2 � Asynchronous parallel scenario (async PS)

The difference between Async PS and the synchronous version is that processors do 
not wait for cuts that have not been computed yet. The algorithm can be described as 
follows.

1.	 Forward pass: The n-th processor performs the same steps as in the synchronous 
setting, the difference is that there is no synchronization.

2.	 Backward pass:The n-th processor solves:

As we can observe in panel (b) of Fig. 4, in the forward pass each processor com-
putes a sample and proceeds immediately to the backward pass. In the backward 
pass, once a processor computes a cut, this cut is shared with the master process. 
The processor then asks for available cuts and proceeds without waiting for cuts that 
have not been computed yet. For instance, at stage 3, the blue processor computes a 
cut faster than the red processor, sends the cut and asks if the cut provided by the red 
processor is already available. Since the red processor has not finished its job, the 
blue processor proceeds to stage 2 without waiting for the cut provided by the red 
processor. On the other hand, once the red processor finishes stage 3, it will receive 
the cut provided by the blue processor. A disadvantage of this scheme is that, since 
every processor operates with a different set of cuts, it is not clear how to estimate 
an upper bound. In Sect. 4 we discuss how the convergence evolution is measured.

In Dowson and Kapelevich (2021) the authors follow the aforementioned asyn-
chronous strategy, nevertheless no evidence of its benefits are developed in detail.

3.2.3 � Synchronous parallel node (sync PN)

In Sect.  3.1.2 we present the PN scheme, according to which different processors 
are allocated to different nodes of the lattice for a given stage. The synchronous and 
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asynchronous schemes then differ on whether a processor waits for the nodes com-
puted by other processors. The forward and backward passes can be described as 
follows.

1.	 Forward pass: The main process computes a single Monte Carlo scenario, thus 
obtaining a sequence �1,⋯ , �T , where �t ∈ Ωt.

Note that there is no parallelization in this step.

2.	 Backward Pass:

In Fig. 5, panel (a), we present this process graphically over a lattice. Note that, 
in stage 3, the blue processor solves the subproblem associated with the first node, 
while the red processor solves the subproblem associated with the second node. The 
red processor finishes first and proceeds with the third node. Note that, once the blue 
processor finishes, it must stay idle as there are no more nodes available for that 
stage. The solution information of all the nodes is then used in order to compute a 
cut, which is then transmitted to stage 2. Note that, before passing to stage 2, all the 
subproblems of the third stage must be solved.

3.2.4 � Asynchronous parallel node (async PN)

In contrast to the synchronous version, in the asynchronous version the processors 
do not wait for nodes that have not been solved. The procedures in the backward and 
forward passes can be described as follows.

1.	 Forward Pass: The same process as in the synchronous PN setting is executed. 
There is no parallelization in this step.

2.	 Backward Pass:
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This process is presented graphically in panel (b) of Fig. 5. At stage 3, the blue 
processor solves the subproblem associated to the first node. When it completes 
its computation, there are no more subproblems available for that stage, since the 
red processor has already solved the second node and is now working on the third 
node. Then the blue processor starts processing the nodes of the second stage. 
However, in order to compute a cut for stage 2, without having access to the solu-
tion information from the subproblem of node 3, the processor uses the subprob-
lem information of node 3 of the cut obtained in the previous iteration. The blue 
processor is thus able to build a cut, and can start processing the nodes of stage 2.

The following lemma shows that the proposed cuts are valid. The proof can be 
found in the “Appendix 1”.

Lemma 1  The cuts built in the Async PN scheme are valid cuts.

Fig. 5   Synchronous and asynchronous parallel node schemes. The height of the red and blue dashed 
boxes represents the elapsed time. The dashed grey box represents outcomes that belong to the same 
stage
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Following a similar argument as the one presented in Philpott and Guan (2008), 
we can show that, after a finite number of iterations, no new cuts will be added. The 
proof can be found in the “Appendix 1”.

Lemma 2  Let Gt,�

k
 be the set of cuts at stage t, node ω and iteration k. There exists 

mt,ω such that |Gt,�

k
| ≤ mt,� for all k, 1 ≤ t ≤ T − 1.

It is worth mentioning that as the missing information is not completed using the 
cuts that are the tightest at the current trial point, as is the case in Philpott and Guan 
(2008), the convergence might be to a different value. However, as the value func-
tion is a lower approximation we can always ensure that the convergence will be an 
under-estimation. We have also tested the approach of using the cut that maximizes 
the current trial point, however no considerable difference is observed. In practice, 
the considered test cases have shown that Async PN presents a convergence behav-
iour comparable to the one obtained by the other schemes that are implemented in 
the paper.

As previously said, the authors in Machado et al. (2021) consider a variant in the 
distribution of the nodes among the processors. Instead of distributing the nodes at 
each stage, the processors are attached to the nodes of a fixed stage. The authors pro-
pose an asynchronous version. The results of the authors vary. On certain instances, 
such an approach exhibits superior performance relative to a synchronous PS imple-
mentation. On other instances, the performance of the proposed method is compara-
ble to a synchronous PS implementation.

4 � Case studies

In this section we present results for an inventory control problem and a hydrother-
mal scheduling problem. The considered case studies aim at present results that 
correspond to state-of-the-art problem sizes that can be found in the literature. We 
present problem sizes that correspond to recent SDDP literature in Table  2. Our 
experimental results can be summarized as follows.

i	 Asynchronous computing is not helpful for achieving tight optimality gaps faster. 
Nevertheless, in certain cases, there is a temporary advantage in the asynchronous 
PS scheme in early stages of the execution of the algorithm.

ii	 The PN scheme performs better than the PS scheme during early stages of the 
execution of the algorithm.

iii	 The PS scheme scales poorly when increasing the number of Monte Carlo sam-
ples.

iv	 The PN scheme exhibits desirable parallel efficiency properties, nevertheless a 
competitive implementation is limited to a shared memory setting.
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We proceed by briefly introducing the test cases that we analyze in this work. The 
models are presented in further detail in the “Appendix 1”.

Inventory control problem We model a stochastic inventory problem with Marko-
vian demand. The objective of the problem is to maximize expected profits by plac-
ing optimal order quantities xtn for products n ∈ N over periods t ∈ H. Demand is sat-
isfied from on-hand inventory vt−1,n by selling a quantity stn of each product. Any 
excess demand is considered as being lost. We consider a case with 10 products, 
which is the dimension of the random vector. The problem horizon is equal to 10 
stages, with 100 nodes per stage.

Hydrothermal scheduling problem The Brazilian interconnected power system is a 
multistage stochastic programming problem that has been analyzed extensively in 
the literature due to its practical relevance (Pereira and Pinto, 1991; Shapiro et al., 
2013; Pinto et al., 2013; De Matos et al., 2015; Löhndorf and Shapiro, 2019). The 
Brazilian power systems comprises, as of 2010, more than 200 power plants. Among 
these, 141 are hydro units.

The objective of the problem is to determine optimal operation policies for power 
plants while minimizing operation costs and satisfying demand. Representing the 
141 hydro plants as well as their associated inflows results in a high-dimensional 
dynamic problem. In order to tackle this problem, the literature typically separates 
it into long-term, medium-term and short-term operational planning. The value 
functions obtained in long-term operational planning problem are used as input for 

Table 2   Overview of problem sizes in the literature. The problem sizes are ranked according to the year 
of publication. The dashes indicate that the data was not available in the paper

Author State space dimen-
sion

Nodes Scenarios Stages

Machado et al. (2021) 44 20 20,119 120
Dowson et al. (2019) 5 60 9 · 2052 52
Löhndorf and Shapiro (2019) 4 1000 1000119 120
Van Ackooij et al. (2019) 16 80 8096 96
Asamov and Powell (2018) 500 – – 288
Philpott et al. (2018) 7 30 3051 52
Kaneda et al. (2018) 5 10 1095 96
Papavasiliou et al. (2017) – 10 10 95 96
De Matos et al. (2015) 4 20 20119 120
Helseth and Braaten (2015) 12 – – 156
Löhndorf et al. (2013) 7 – – 365
Pinto et al. (2013) 4 50 50119 120
Shapiro et al. (2013) 4 100 100119 120
Philpott and De Matos (2012) 9 20 2051 52
De Matos et al. (2010) 9 20 2051 52
Flach et al. (2010) 5 50 5059 60
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medium-term planning. The value functions from medium-term planning are then 
used, in turn, as input for the short-term operational planning problem. The SDDP 
algorithm is applied in the long-term operational planning problem. The problem is 
simplified by aggregating reservoirs into equivalent energy reservoirs (Arvanitidits 
and Rosing, 1970). The literature typically considers 4 energy equivalent reservoirs 
for this problem instance: North, Northeast, Southeast, South and a Transshipment 
node. The Transshipment node has no loads or production. The system is presented 
in Fig. 6.

The problem aims at satisfying the demand at each node by using the hydro and 
thermal power of that node, as well as power that is imported from other nodes. 
However, there is a limit in the power that can flow trough the transmission lines 
of the electricity network. In the literature, the problem is typically solved for a 
60-month planning period. However, in order to represent the continuation of opera-
tions at the end of the planning horizon, 60 additional months are considered. This 
leads to a multi-stage stochastic program in 4 dimensions and 120 stages. We con-
sider a setting with 100 nodes per stage.2

Fig. 6   Brazilian hydrothermal test case—equivalent reservoirs

2  The inventory test case data and the lattice used in the hydrothermal test case can be found in the fol-
lowing link: https://​github.​com/​Danie​lAvil​aGira​rdot/​Test-​Cases-​Data.

https://github.com/DanielAvilaGirardot/Test-Cases-Data
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4.1 � Experimental results

The computational work is performed on the Lemaitre3 cluster, which is hosted 
at the Consortium des Equipements de Calcul Intensif (CECI). It comprises 80 
compute nodes with two 12-core Intel SkyLake 5118 processors at 2.3  GHz and 
95 GB of RAM (3970 MB/core), interconnected with an OmniPath network (OPA-
56Gbps). The algorithms are implemented in Julia v0.6 (Bezanson et al., 2017) and 
JuMP v0.18 (Dunning et al., 2017). The chosen linear programming solver is Gurobi 
8.

4.1.1 � Synchronous and asynchronous computation

Figure 7 presents the evolution of the optimality gap for all algorithms against run 
time. The algorithms are run with 20 CPUs. Obtaining a reliable upper bound at each 
point in time can be very time consuming. Thus, providing a reliable gap evolution 

Fig. 7   Comparison of algorithms. a, b Present the evolution of the optimality gap against time for the 
inventory test case. c, d Present the evolution of the optimality gap for the hydrothermal problem. a, c 
Show the gap evolution throughout the entire execution time, with emphasis on presenting the differ-
ences when the gap is low. b, d Present a close up at the beginning of the run time, emphasizing the dif-
ferences between the PS and PN schemes at the early steps of execution
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can be time consuming as well. Moreover, estimating an upper bound for the Async 
PS scheme is difficult, as on each CPU there is a policy evolving differently. There-
fore, in order to provide a fair comparison between the different schemes, we have 
pre-calculated a best available lower bound and compared the lower bound evolution 
of all the algorithms against this best known solution. Concretely, the gap is meas-
ured as the relative difference between the lower bound evolution of the algorithm 
and the “best available lower bound” L that we are able to compute for the problem. 
What we refer to as the “best available lower bound” L is a lower bound that cor-
responds to a high-quality policy. The way in which we verify a high-quality policy 
is by verifying that the relative difference between the upper bound estimate of said 
policy and L is below 1%. The upper bound estimate for this policy is calculated 
with a sufficient number of samples so as to ensure a 1% difference between the per-
formance of this policy and L with a confidence of 95%. Once this best lower bound 
L is calculated, the reported gaps are calculated as follows: (L–Lt) · 100/L, where Ltis 
the lower bound calculated as each algorithm progresses. More specifically, for the 
PN schemes and the Sync PS scheme, Ltis the lower bound at the end of iteration t. 
For the Async PS scheme, each CPU is performing it’s own SDDP run and sharing 
cuts whenever they are available. Namely, on each CPU the policy is evolving dif-
ferently. Therefore, Ltcorresponds to the lower bound at the end of iteration t of the 
fastest CPU.

1.	 Parallelizing by Scenario: For the inventory test case, the asynchronous schemes 
tend to perform better during early iterations, as indicated in panels (a) and (b) 
of Fig. 7. Instead, for the hydrothermal test case there is not a considerable dif-
ference, see panels (c) and (d) of Fig. 7. The difference in the behaviour between 
both test cases can be explained as follows. As pointed out in De Matos et al. 
(2015), the expected value cost-to-go function approximations tend to be myopic 
at early iterations, when the gap is high. This implies that the trial points and the 
cuts obtained when there is a high gap tend to produce low-quality information. 
Therefore, the following possibilities can occur:

•	 When the algorithm struggles to decrease the gap during early iterations, the 
synchronous version tends to perform poorly. This is due to the fact that the 
processors wait for the generation of loose cuts. Instead, an asynchronous ver-
sion benefits from the fact that the fastest processor is not waiting for these 
low-quality cuts.

•	 On the other hand, when the algorithm manages to reduce the optimality gap 
during early iterations, the disadvantage of the synchronous version dimin-
ishes. This is due to the fact that, since the gap reduces quickly, the value 
functions are of good quality. Consequently, the synchronous version will 
wait for useful information.

	   The inventory test case corresponds to the former case, whereas the Brazil-
ian hydrothermal test case corresponds to the latter. Panel (a) of Fig. 8 dem-
onstrates that, after 500 scenarios, the gap for the PS methods is above 100% 
for the inventory test case. Instead, the same number of scenarios analyzed 
results in a gap below 20% for the hydrothermal test case, as we can observe 
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in panel (c) of Fig. 8. Moreover, as we can observe in panel (b) of Fig. 8, the 
PS scheme is able to process more scenarios compared to the PN scheme for 
the inventory test case. Nevertheless, the PS gap is worse, thus supporting the 
observation that the value functions computed during early steps of the algo-
rithm are poorly approximated.

	   Despite these observations, we note that there is no significant difference 
between the synchronous or asynchronous schemes when aiming for tight opti-
mality gaps. This can be observed in Fig. 7. When we target tight gaps, many 
additional scenarios are required, as we can observe in panels (a) and (c) of 
Fig. 8. Unfortunately, Async PS is not able to visit many more scenarios than 
the synchronous counterpart, see panels (b) and (d) of Fig. 8. As a consequence, 
although Async PS may reduce the optimality gap faster during early iterations, 
both synchronous and asynchronous schemes achieve similar performance after 
a significant amount of computation time has elapsed.

2.	 Parallelizing by Node: As seen in panels (b) and (d) of Fig. 8 the asynchronous 
version is able to process more scenarios as compared to the synchronous coun-
terpart. Nevertheless, the main observation of Fig. 7 is that there is no significant 

Fig. 8   Scenarios analyzed by each method. The scenarios analyzed refers to the number of scenarios vis-
ited during the training process for each method. The first row corresponds to the inventory test case, the 
second row corresponds to the hydrothermal test case. a, c Present the evolution of the optimality gap 
against the number of scenarios analyzed. b, d Present the number of scenarios analyzed against time
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benefit in an asynchronous implementation for parallelizing by node. Both the 
synchronous and asynchronous parallel node algorithms are attaining comparable 
performance in terms of gap throughout the entire course of the execution of the 
algorithms.

In order to evaluate the reproducibility of the results under different runs, 5 rep-
etitions are performed for each method. We report that we observe a similar con-
vergence trend for each repetition. In addition to the experiments shown, an out-
of-sample estimation was performed. Every x scenarios used to train the policy, 
an out-of-sample estimation is done by considering 2000 scenarios not used in the 
training process. We report the same behaviour already shown in Fig. 7. Concretely, 
In both test cases the PN schemes tend to perform better at the beginning. For the 
inventory test case, there is a considerable difference between the Sync PS and 
Async PS schemes, where the asynchronous version dominates at the beginning.

4.1.2 � Parallel node versus parallel scenario

Interestingly, as we can observe in panels (b) and (d) of Fig. 7, the PN strategy is 
behaving much better than the PS strategy during early iterations. The reason is that, 
as we discuss previously, the value function approximations tend to be poor in early 
iterations (De Matos et al., 2015). Thus, at each iteration, the PS version generates 
several cuts that are loose approximations of the value functions, whereas the PN 
setting generates a single cut. Nevertheless, if the goal is to obtain tight gaps, the 
difference is not significant. The reason is that, once value functions of better quality 
have been obtained by either algorithm, there is a benefit of visiting more than one 
scenario per iteration. This works in favor of the PS setting.

4.1.3 � Scalability of parallel scenario

Panel (a) of Figs. 9, 10 presents the evolution of the PS algorithms when increasing 
the number of CPUs. Figure 9 corresponds to the inventory test case, and Fig. 10 

Fig. 9   CPU scalability for the inventory test case
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corresponds to the hydrothermal test case. The target gap for terminating the algo-
rithms is set to 10%. As in the previous experiments, the gap refers to the relative 
difference between the lower bound and the best available solution. The algorithms 
present an inherent uncertainty due to the Monte Carlo sampling which is performed 
in the forward pass. Consequently, the run time itself is random. Therefore, for each 
CPU count we conduct the experiment 5 times, in order to construct 95% confidence 
intervals, which are based on Student’s t-distribution. Panels (a) and (b) of Figs. 9 
and 10 demonstrate that an initial increase in the number of CPUs results in a nota-
ble performance improvement. Nevertheless, there is a point at which this trend is 
reversed. This is especially true for the inventory test case. We arrive to the same 
observation when reporting the speedup of the algorithms. Note, in panel (b) of the 
Figures, that there is a point beyond which the speedup decreases. This is due to 
the fact that, as more CPUs are introduced, more samples are introduced per itera-
tion. As we have argued, the expected value cost-to-go functions are myopic at early 
steps. Consequently, more samples tend to introduce information that is not entirely 
useful for the algorithm, more so in early iterations. This results in a slowdown of 
the Sync PS algorithm. As the asynchronous version is not waiting for the possi-
bly loose cuts, the effects in the speed up are not as adverse as for the synchronous 
version. We would also like to point that, as explained by Bertsekas and Tsitsiklis 
(1989), a synchronous algorithm exhibits a more severe deterioration in scalability 
when increasing the CPU count, because more problems solved once implies that 
the slowest one will require more run time. Thus, synchronism affects the algorithm 
adversely. Note that the problems assignation to the CPUs may affect the perfor-
mance, showing a closely relation with a job-scheduling problem.

In order to tackle the poor quality of cuts that is produced as a result of the myopic 
value function that is found at early steps, the cut selection methodology proposed 
in Löhndorf et al. (2013) is implemented for the Sync PS algorithm. Our choice to 
focus on the Sync PS algorithm is motivated by the fact that is suffered the most due 
to the aforementioned effect. This cut selection technique rejects a cut, calculated 
at point xt, if the value function is not improved by some > 0 when adding the cut 
at point xt. We observe, however, that introducing such a cut selection method has a 

Fig. 10   Hydrothermal test case—CPU scalability
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damping effect: the issue is diminished but is not solved. The cut selection technique 
helps by not adding some non-useful cuts to the linear programs, nevertheless the 
computational resources are wasted as several scenarios end up building non-useful 
cuts. Concretely, resources are wasted by solving linear programs that end up build-
ing non-useful cuts.

4.1.4 � Parallel node scalability

Panel (a) of Figs.  9, 10 presents the performance when increasing the number of 
CPUs for the parallel node setting. As in the previous paragraph, the target opti-
mality gap is set to 10% and 95% confidence intervals are presented. Note that the 
performance of the algorithm improves with additional CPUs. Since the algorithm is 
building one cut per iteration, as more CPUs are introduced, that single cut is com-
puted faster. This is an important difference as compared to the PS scheme, where 
the speedup can decrease.

Although this scheme exhibits favorable scalability behavior, it is limited to a 
shared memory setting. As stated in Sect. 3.1.2 the reason behind this limitation is 
that the solve time of a subproblem is comparable to the startup cost of a worker in 
a distributed memory setting. Concretely, after some hundred of iterations the solve 
time per subproblem for both test cases ranges in a few milliseconds, a time which 
is comparable to the startup cost which is about 3 ms. Therefore, the latency of the 
network becomes an issue.

5 � Conclusions

In this paper we propose a family of parallel schemes for SDDP. These schemes 
are differentiated along two dimensions: (i) using parallel processors in order to dis-
tribute computation per Monte Carlo sample of the forward pass (per scenario) or 
per node of the lattice at every stage of the problem (per node); (ii) implementing 
the exchange of information among processors in a synchronous or asynchronous 
fashion. We compare the performance of these algorithms in two case studies: (i) an 
inventory management problem, and (ii) an instance of the Brazilian hydrothermal 
scheduling problem. The case studies deliver consistent messages, which we sum-
marize below in the form of four conclusions.

(i) Asynchronous computing is not helpful in the studied experiments, when the 
goal is to achieve a tight optimality gap in a shorter time. Asynchronous schemes, 
on the other hand, may be beneficial at early stages of the Parallel Scenario strategy. 
(ii) We have proposed a Parallel Node strategy for SDDP, which performs better at 
early iterations than the traditional parallel scheme for SDDP. (iii) Parallel schemes 
that are based on increasing the number of scenarios which are processed during 
the forward pass, may not scale well with extra CPUs. This is the case for the PS 
scheme. (iv) The Parallel Node strategy presents desirable CPU scalability proper-
ties, but only in a shared memory setting.

We would also like to highlight that synchronous schemes are easier to fully 
reproduce. While reproducing results may be easier, it still remains difficult. Full 
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reproducibility of a synchronous parallel scheme entails solving node problems 
and updating cuts in a fixed order. This naturally decreases the benefits of parallel 
computing, since an idle processor would need to wait for its turn according to the 
fixed sequence. The reproducibility of asynchronous schemes is considerably more 
involved, as it would require to pre-define the exact sequence of events and the exact 
exchange of information between CPUs. This introduces synchronization between 
CPUs and undermines the purpose of an asynchronous implementation. The imple-
mentation and study of full reproducibility is beyond the scope of the present paper.

In our work we have indicated some of the weaknesses in the parallelization of 
SDDP. On the one hand, we have empirically demonstrated scalability issues with 
the commonly proposed parallel scheme. On the other hand, we have proposed a 
new set of parallel schemes, with better scalability properties. However, our pro-
posed algorithms which present better scalability with respect to CPU count are 
restricted to a shared memory setting. This observation motivates future research 
into scalable parallel SDDP schemes based on backward dynamic programming. 
These schemes, which present desirable scalability properties, are closer to the per-
node strategy, but are also implementable in distributed memory settings, such as 
high performance computing clusters.

Appendix: Inventory control problem

The inventory control problem can be modeled as a multistage stochastic problem. 
The uncertainty in the problem is due to stochastic demand, which is assumed to fol-
low a Markov Chain. The cost-to-go function Qt(vt−1, �t) is computed by solving the 
following problem:

The variables are given as follows:

•	 vt,n: The state variable, which represents the on-hand inventory for product n ∈ 
N.

•	 st,n: Variable representing the amount of sold items for product n ∈ N.
•	 xt,n : Variable representing the ordered quantities for product n ∈ N.

The parameters can be described as follows:

•	 P: The sales price.

max
∑

n∈N

P ⋅ st,n − HC ⋅ vt,n − PC ⋅ xt,n +Qt+1(vt, �t)

s.t. vt,n = vt−1,n + xt,n − st,n n ∈ N

st,n ≤ vt−1,n n ∈ N

st,n ≤ Dt,n(�t) n ∈ N

vt,n ≤ C n ∈ N

vt,n, st,n, xt,n ≥ 0 n ∈ N
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•	 HC: The inventory holding cost.
•	 PC: the purchase cost.
•	 Dt,n: The demand for product n ∈ N.
•	 C: The inventory capacity.

The problem is set up for 10 products. This is the dimension of the random vec-
tor. The time horizon is equal to 10 stages. We consider 100 nodes per stage.

Hydrothermal Scheduling problem

We use a transportation model to approximate the operation of the transmission net-
work. The cost to go function Qt(vt−1, �t) can then be computed by solving the fol-
lowing problem:

The variables can be described as follows:

•	 vt: The state variable vector, which represents the stored energy of the equivalent 
reservoir.

•	 qt,st : Decision variables which represent the generated hydro energy and the 
spillage, respectively.

•	 lstn : Decision variable which represents load shedding.
•	 gt: The vector of generated power from thermal plant i ∈ G.

The parameters can be described as follows:

•	 Mi: The generation cost of thermal plan i ∈ G.
•	 V OLL: The value of lost load.
•	 Pi: The hydro generation coefficient of hydro plant i ∈ H.
•	 At: The inflow vector.
•	 Lt: Load at stage t.
•	 G,¯ V ,¯ Q,¯ F¯ : Physical upper limits on the variables.

min
∑

i∈G

Mi ⋅ gt,i + VOLL
∑

n∈N

lst,n +Qt+1(vt, �t)

s.t. vt,n = vt−1,n + At,n(�t) − qt,n − st,n n ∈ N

qt,n +
∑

i∈G

gt,i +
∑

i∈Fn

ft,i = Lt,n n ∈ N

gt ≤ G

vt ≤ V

qt ≤ Q

ft ≤ F

gt, lst, vt, qt, st, ft ≥ 0
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Further details for the Brazilian hydrothermal model, and the description of the 
data, can be found in Shapiro et al. (2013).

Convergence of the async PN scheme

The proposed strategy to build cuts for the Async PN scheme is a valid strategy, as 
the following lemma shows.

Lemma 1  The cuts built in the Async PN scheme are valid cuts.

Proof  Let x̂k
t−1

 be the obtained trial point for stage t − 1 at iteration k. Consider the 
cut for the cost-to-go function.

Qt(xt−1, �t) , which is given by

The expected cost-to-go function satisfies

Then, a cut for Qt(xt−1, �t−1) is given by

Let us now build a cut for the expected cost-to-go function at iteration k + 1 using 
incomplete information. Assume that, at iteration k + 1, we do not have access to 
the solution information of outcome 𝜉t . Note that, as Eq. (1) holds for any xt−1, and 
given Eq. (2), we can write

Note that, in Eq. 4, the missing information, at iteration k + 1, of outcome 𝜉t is 
completed by using the information of the previous iteration, namely by using the 
cut coefficients 𝛼k

𝜉t ,t
, 𝛽k

𝜉t ,t
 of the previous iteration.

In Philpott and Guan (2008) the authors show that any sequence of cuts will nec-
essarily be finite, in the sense that after a finite number of iterations no new cuts will 
be computed. Concretely, the following lemma, which is just an adaptation of the 
proof shown in Philpott and Guan (2008), proves that after a finite number of itera-
tions the algorithm will not produce new cuts.

(1)Qt(xt−1, �t) ≥ �k
�t ,t

+ �k
�t ,t

⋅ xt−1

(2)Qt(xt−1, �t−1) =
∑

�t∈Ωt

Qt(xt−1, �t) ⋅ P(�t|�t−1)

(3)Qt(xt−1, �t−1) ≥
∑

�t∈Ωt

�k
�t ,t

⋅ P(�t|�t−1) +
∑

�t∈Ωt

�k
�t ,t

⋅ P(�t|�t−1) ⋅ xt−1

(4)

Qt(xt−1, 𝜉t−1) ≥
∑

𝜉t∈Ωt−{𝜉t}

𝛼k+1
𝜉t ,t

⋅ P(𝜉t|𝜉t−1) + 𝛼k

𝜉t ,t
⋅ P(𝜉t|𝜉t−1)

+ [
∑

𝜉t∈Ωt−{𝜉t}

𝛽k+1
𝜉t ,t

⋅ P(𝜉t|𝜉t−1) + 𝛽k
𝜉t ,t

⋅ P(𝜉t|𝜉t−1)] ⋅ xt−1
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Lemma 2  Let Gt,�

k
 be the set of cuts at stage t, node ω and iteration k. There exists 

mt,ω such that |Gt,�

k
| ≤ mt,� for all k, 1 ≤ t ≤ T − 1.

Proof  Let’s proceed by induction on t. For t = T − 1. Note that as there are no cuts in 
the last stage, the set of multipliers in the last stage is given by,

Thus, there are at most let’s say MT,ω possibilities for multipliers. Assuming there 
are Nt nodes for stage t, then it implies that at stage T there are at most ∏N

T

i=1
M

T ,�
i

 

combinations of multipliers. As a consequence for any node ω at stage T − 1 there 
are at most 

m
T−1,� ∶=

∏
N
T

i=1
M

T ,�
i

 possibilities to build a cut. Let’s now assume that 

for t we have mt,ω such that |Gt,�

k
| ≤ mt,� for all k. We have to show the property 

holds for t − 1.
Due to the assumption, we know that for node ω in stage t, |Gt,�

k
| ≤ mt,� , in par-

ticular this implies that there exists a k̂ such that Gt,𝜔

k̂
= G

t,𝜔

k
 for all k > ̂k , and so any 

cut after iteration k̂ is already in the set of cuts. Then after iterationk̂ , the linear pro-
gram of node ω at stage t won’t have new cuts. As a consequence the set of multipli-
ers for node ω at stage t is finite, say Mt,ω. This implies that at stage t there are 
∏N

t

i=1
M

t,�
i

 possible combinations of multipliers. Therefore, for any node ω at stage 

t − 1 there will be at most 
m

t−1,� ∶=
∏N

t

i=1
M

t,�
i

 possibilities to build a cut, which 

proves the result.
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