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Abstract
Anew computational approach based on the pointwise regularity exponent of the price
time series is proposed to estimate Value at Risk. The forecasts obtained are compared
with those of two largely used methodologies: the variance-covariance method and
the exponentially weighted moving average method. Our findings show that in two
very turbulent periods of financial markets the forecasts obtained using our algorithm
decidedly outperform the two benchmarks, providingmore accurate estimates in terms
of both unconditional coverage and independence and magnitude of losses.

Keywords Value-at-Risk · Time-varying variance and kurtosis · Pointwise regularity

1 Introduction

Since its adoption by the Basel Committee on Banking Supervision in 1996, Value
at Risk—roughly defined as the maximum loss that can be expected over a given
interval of time, once a certain level of confidence is fixed—has gained an increasing
consensus as market-risk measurement tool in the banking sector. Despite the fact
that it is not a coherent measure of risk Philippe et al. (1999), the success of VaR is
largely due to its conceptual simplicity and immediacy. The coarse definition recalled
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above reveals that VaR is inherently dictated from the distribution of returns of the
portfolio whose risk is being assessed. Many approaches have been proposed to esti-
mate the VaR quantile, and—even though no method can be considered the best since
each has its limitations Lechner and Ovaert (2010)—one common assumption is that
daily portfolio returns are normally distributed. This is for example the premise of
the parametric variance-covariance approach, that calculates VaR as the α-quantile
of the estimated distribution. The assumption of normality on the one hand greatly
simplifies calculations, particularly when one deals with multi-asset portfolios and/or
multi-horizons, but on the other hand it often underestimates VaR, since the uncondi-
tional distributions of financial returns tend to display fat tails and left skewness hard
to be modeled. This is mainly due to volatility and kurtosis clustering: in fact, it is
well known Engle (1982) that if, conditional on the variance, returns are normally dis-
tributed, then the resulting unconditional distribution will be fat-tailed with respect to
the normal distribution. Evenwhen this effect is accounted for usingmodels such as the
Exponentially Weighted Moving Average (EWMA) or the Generalised Autoregres-
sive Conditional Heteroscedasticity (GARCH), empirical evidence suggests that also
the conditional kurtosis of the returns is not constant. As noted by Guermat and Harris
(2002), the time-varying degree of persistence of volatility clustering—captured by
both EWMA and GARCH models—can be a potential cause of kurtosis clustering.
This has relevant consequences for risk assessment, and for VaR in particular. In fact,
unlike the variance (concerned mainly with the central mass of distribution), kurtosis
affects specifically tail probabilities, which represent precisely the focus of VaR.

Several attempts tomodeling time-varying kurtosis have beenmade: Hansen (1994)
extends Engle’s ARCH model to permit parametric specifications for conditional
dependence and finds evidence of time-varying kurtosis; Engle andManganelli (2004)
introduce the Conditional Autoregressive Value at Risk (CAViaR), which estimates
conditional quantiles in dynamic settings using an autoregressive process and, assum-
ing independence in the probability of exceeding the VaR, they test the adequacy of the
model; CAViaR is extended into Multi-Quantile CAViaR by White et al. (2008), who
apply their method to estimate the conditional skewness and kurtosis of the S&P500
daily variations; Wilhelmsson (2009) proposes a model with time varying variance,
skewness and kurtosis based on the Normal Inverse Gaussian (NIG) distribution and
finds that NIG models outperform Gaussian GARCH models; jointly modeling long
memory in volatility and time variation in the third and fourth moments, Dark (2010)
generalizes the Hyperbolic Asymmetric Power ARCH (HYAPARCH) model to allow
for time varying skewness and kurtosis in the conditional distribution and finds that,
when forecasting VaR, skewness and leptokurtosis in the unconditional return dis-
tribution is generally better captured via an asymmetric conditional variance model
with Gaussian innovations; Gabrielsen et al. (2015) propose an exponential weighted
moving average (EWMA) model that jointly estimates volatility, skewness and kur-
tosis over time using a modified form of the Gram-Charlier density and describe VaR
as a function of the time-varying higher moments, by applying the Cornish-Fisher
expansion series of the first four moments. Despite the refinements introduced, the
authors find that the results from the validation process are inconclusive in favour of
their model; similarly, Marcucci (2005) and Alizadeh and Gabrielsen (2013) could not
find a uniformly accurate model. Authors in Gabrielsen et al. (2015) ascribe this to the
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selection of the back-testing period, coinciding with the credit crisis. To some extent,
this would support the provocative and a bit simplistic idea that prompted hedge fund
manager David Einhorn to refer to VaR as to “an airbag that works all the time, except
when there is a crash".

The need to put a special emphasis on the response of risk assessment models
during times of crisis emerged dramatically with the last global financial crisis and
was incorporated in the most recent directions formulated by the Basel Committee on
Banking Supervision. The Basel III document states:

“11. One of the key lessons of the crisis has been the need to strengthen the risk
coverage of the capital framework. Failure to capture major on- and off-balance
sheet risks, as well as derivative related exposures, was a key destabilising factor
during the crisis.
12. In response to these shortcomings, the Committee in July 2009 completed a
number of critical reforms to the Basel II framework. These reforms will raise
capital requirements for the trading book and complex securitisation exposures,
a major source of losses for many internationally active banks. The enhanced
treatment introduces a stressed value-at-risk (VaR) capital requirement
based on a continuous 12-month period of significant financial stress.[…]”
[68], paragraph 2 (Enhancing risk coverage)

To provide a framework for the purpose highlighted in bold in the previous quotation
is precisely the main motivation of this work. In order to evaluate and improve the
response of VaR estimates in periods of significant financial stress, we model the
price dynamics as a (discretized) Multifractional Process with Random Exponent
(MPRE) Ayache and Taqqu (2005) whose pointwise regularity index (or pointwise
Hurst parameter) is provided by an autoregressive process estimated on real data. The
idea takes its cue from the encouraging findings of Frezza (2018), where empirical
evidence is provided that even using simple AR(1) or AR(2) processes to model the
pointwise regularity exponent of a MPRE generates marginal distributions that fit the
actual ones. Even if more recent and refined approaches (see, e.g. Garcin (2020)) use
fractional dynamics to characterize the pointwise regularity parameter, the common
idea is to build from data an appropriate dynamics of the time-changing regularity
exponents in order to obtain more realistic models of the price dynamics which can
replicate the stylized facts of financial time series. In our approach, the AR process is
used to generate the dynamics of the pointwise regularity exponents needed to simulate
the trajectories of the MPRE. We then use this model to simulate the conditional
distributions and to forecast the conditional VaR quantiles for three main stock indices
(S&P500, Eurostoxx and Nikkei 225) during two financial crises: the 2000–2002
downturn, which affected primarily the United States stock market with a variation of
about −39.5% of the S&P500 between January 3rd, 2000 and December 31st, 2002);
and the 2007–2008 global financial crisis (−36.2% of the S&P500 between January
3rd, 2007 and December 31st, 2008). One of the advantages in modeling financial data

through the MPRE lies in the generalization of the so called t
1
2 rule, widely used in

financial practice to scale risks and distributions over different time horizons. In this
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respect, we find that the recommendations of the Basel Committee can be reformulated
to improve the forecasts of VaR estimates over longer time horizons.

In this work, the analysis is restricted to the stock market because our main target is
to test VaR forecasts faced with the occurrence of unexpected crises which typically
affect stockswithmore emphasiswith respect to other large and globalmarkets, such as
e.g. the exchange rates. These display some peculiarities; for example, the rates series
are generally reputed stationary and the classical Brownian motion model is there
transformed by the Ornstein-Uhlenbeck approach or the Lamperti transform; samely,
fractional Brownian motion is made stationary using similar techniques (see, e.g.,
Cheridito Kawaguchi and Maejima (2003), Chronopoulou and Viens (2012), Flandrin
et al. (2003), Garcin (2019)). In addition to these standard approaches, it is worthwhile
to quote the recent work by Garcin (2020), who - stressing the analogue with the
evolution of the volatility models and by using a Fisher-like transformation - defines
the Multifractional Process with Fractional Exponent (MPFE). Remarkably, the new
process, which is characterized by the fact that its pointwise regularity exponent is
itself a fractional sequence, is self-similar and with stationary increments.

Finally, it should be noticed that in recent years a substantial literature dealt with
the Value-at-Risk in amultifractal context. For example, using simulation based on the
Markov switching bivariate multifractal model, Calvet et al. (2006) computed VaR in
theUSbondmarket and the exchangemarket forUSD-AUD;using themultifractal ran-
domwalk (MRW) andmultifractalmodel of asset retruns (MMAR) respectively, Bacry
et al. (2008) and Batten et al. (2014) measured VaR in exchangemarket; Bogachev and
Bunde (2009) introduced a historical VaR estimation method considering multifractal
property of data; Dominique et al. (2011) find that the SP-500 Index is characterized
by a high long-term Hurst exponent and construct a frequency-variation relationship
that can be used as a practical guide to assess the Value-at-Risk; Lee et al. (2016)
introduce a VaR consistent with the multifractality of financial time series using the
Multifractal Model of Asset Returns (MMAR); Brandi and Matteo (2021) propose a
multiscaling consistent VaR using a Monte Carlo MRW simulation calibrated to the
data. Anyway, the majority of such contributions follows the multifractal approach,
which influences the regularity of the trajectories by acting on a proper time-change
instead of calibrating the pointwise regularity itself. This second approach is the one
we analyze in this work.

The paper is organized as follows. In Sect. 2 VaR methodology is shortly recalled
and the variance-covariance and the EWMA approaches, that we use as benchmarks,
are discussed. Section 3 describes the model we adopt to estimate VaR and discusses
several technical issues. The empirical analysis is developed in Sect. 4, where also the
results are discussed. Finally, Sect. 5 concludes.

2 Value at risk

With reference to the sample spaceΩ ≡ R of the rates of return r on a given investment
or portfolioW (expressed in domestic currency units), let rτ be the rate of return ofW
over the time horizon τ . Let us denote by Fτ : Ω → [0, 1] the distribution function of
rτ , i.e. Fτ (x) := P(rτ ≤ x) = ∫ x

−∞ p(rτ )drτ , where p is the probability density of
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rτ . Let Ω̃ ≡ R be the sample space of currency-valued returns, defined as Rτ = rτW .
Let us denote by Lτ the (potential) loss resulting from holding the portfolio over a
time horizon τ ; it is defined as the negative difference between the return and its mean
value μ, that is Lτ := −(Rτ − μW ) = μW − Rτ = (μ − rτ )W . The distribution
function of the loss F̃τ : Ω̃ → [0, 1] is therefore (see e.g. De Vries (2006), Hult and
Lindskog (2007))

F̃τ (l) = P(Lτ ≤ l) = 1 − Fτ (μ − l/W ) (1)

With the notation above, we can give the following

Definition 1 Given the loss Lτ and the confidence level α ∈ (0, 1), VaRα(Lτ ) is the
smallest number l such that the probability that the loss Lτ exceeds l is no larger than
1 − α, i.e.

VaRα(Lτ ) = inf{l ∈ R : P(Lτ > l) ≤ 1 − α}
= inf{l ∈ R : P(rτ ≤ μ − l/W ) ≤ 1 − α}

Definition 2 Given a nondecreasing function F : R → R, the generalized inverse of
F is given by

F←(y) = inf{x ∈ R : F(x) ≥ y} (2)

with the convention inf ∅ = ∞.

Remark 1 If F is strictly increasing the F← = F−1, that is the usual inverse.

Using the generalized inverse, for the distribution function of loss Lτ , by (2) the
α-quantile of F̃τ is

qα(F̃τ ) = F̃τ
←

(α) = inf{l ∈ R : F̃τ (l) ≥ α}, α ∈ (0, 1). (3)

Thus, with the notation above, it readily follows

VaRα(Lτ ) = qα(F̃τ ) (4)

According to the Basel III framework, the basis of the calculation is the one-day
VaR (τ = 1) computed at the 99th percentile using the one-tailed confidence inter-
val and at least one year of data as past sample. The one-day VaR is then scaled,
because “an instantaneous price shock equivalent to a 10 day movement in prices is
to be used, i.e. the minimum “holding period” will be ten trading days. Banks may
use value-at-risk numbers calculated according to shorter holding periods scaled
up to ten days by, for example, the square root of time (...)” [68]. Thus, the rule
VaRα(Lt+10,τ ) = 101/2VaRα(Lt,τ ) is used to settle the minimum requirement in
terms of risk assessment. This rule of thumb rests on the prevalent, but not necessarily
well specified, assumption of independence of the price variations, which in its turn is
justified by the assumption that the market would be informationally efficient. From
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a topological point of view (see Sect. 3), this means to assume that the pointwise
regularity of the price process is everywhere constant and equal to 1

2 .
The different approaches that can be followed to estimate VaR can be grouped into

four categories: the Variance-Covariance (VC) or parametric method, the historical
simulation, the Monte Carlo simulation and the Extreme Value approach. Despite
the proliferation of alternative methodologies, which span from GARCHmodels with
various specifications, aimed to capture the “volatility on volatility” Corsi et al. (2008),
to fractionally autoregressive moving average (ARFIMA) models Andersen et al.
(2001), that directly capture the volatility dynamics in terms of conditional mean,
more than 70% of banks among 60 U.S., Canadian and large international banks over
1996–2005 have reported that their VaR methodology used was historical simulation,
followed by the Monte Carlo (MC) simulation as the second most popular method
Pérignon and Smith (2010).

For this reason, we will refer in the following to the two popular benchmarks
introduced in Riskmetrics of J.P. Morgan (Morgan 1996): the Variance-Covariance
and the Exponential Weighted Moving Average (EWMA). We will omit the results
obtained using historical simulation, since they are very close to those provided by
VC. Both VC and EWMA are shortly recalled in the next two paragraphs.

2.1 Variance-covariance (V-C)

Among the different approaches to market risk measurement, the variance-covariance
method, also known as parametric approach or linear VaR, or even delta normal VaR, is
maybe one of themostwidespread amongfinancial institutions. This is due to historical
(it was developed first, exploits results from the modern portfolio theory, and its usage
quickly spread among US banks), technical (it is conceptually and computationally
simple) and practical reasons (the Riskmetrics database is based on this approach and
a large number of professional software use it).

The VC method assumes that the daily change in the price is linearly related to
the daily returns from market variables, which in turn are assumed to be normally
distributed. This implies that volatility can be described in terms of standard deviation
and that only the first two moments (the mean μ and the standard deviation σ ) fully
describe the whole distribution. The method uses therefore covariances (volatilities
and correlations) of the risk factors and the sensitivities of the portfolio with respect to
these risk factors in order to determine directly the value at risk of the portfolio.With the
assumption above, the Z -score (that is the number of standard deviations from themean

value of the reference population) of X
d= N (μ, σ ) is simply calculated as Z = X−μ

σ
and, unless themean value, VaR can be calculated asmultiple of standard deviation; for
example, ΦZ (−2.326) ≈ 0.01 or 1%, indicating that this is the probability to extract
a standard normal random variable whose value is lower than −2, 326. In terms of
VaR, the probability for losses larger than x = zασ + μ is associated to the area
under the normal curve, left of X and equal to 1 − α. For α = 99%, zα = −2.326,
and the area is 1% of total area under the normal distribution, so there is confidence
of 99% that losses will not exceed −2, 326σ + μ. Thus, referring to an initial value
Wt,τ (where t denotes the timeline in, e.g., days, and τ the time horizon) subject a
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normally distributed changes with mean 0 and standard deviation σ , the one-day VaR
in currency-valued terms, is calculated as (recall that zα < 0)

VaRα(Wt+1,τ ) = −zασWt,τ . (5)

The VaR of a portfolio Π is usually calculated as:

VaRα(Πt+1,τ ) = (VCV T )
1
2 (6)

where V is the row vector of VaRs of the individual positions, C is the correlation
matrix, and V T denotes as usual the transpose of V .

2.2 Exponentially weightedmoving average (EWMA)

TheExponentiallyWeightedMovingAverage (EWMA) approach has been introduced
to reconcile the observed market heteroskedasticity with the unrealistic assumption
that past returns have all the same weight on the latest observations. The method,
which consists in weighting more the recent data, can be obtained as a special case of
the GARCH(1,1) model, according to which

rt+1 = μ + σtεt+1

and

σ 2
t = ω + βσ 2

t−1 + ασ 2
t−1ε

2
t ,

where ω ≥ 0, β ≥ 0 and α ≥ 0 ensure positive variances, and εt is assumed to follow
some probability distribution with zero mean and unit variance, such as the standard
Gaussian distribution. Setting μ = ω = 0, β = λ and α = 1− λ, with λ called decay
factor, the return return variance conditional on information accumulated up to time
t reads as

σ 2
t = λσ 2

t−1 + (1 − λ)r2t .

Thedecay factorλ is generally set equal to 0.94 for daily data (see, e.g.Riskmetrics).
Using EWMA approach, the one-day VaR is calculated as in (6), that is

VaRα(Wt+1) = −zασt+1W (7)

where σt+1 is the standard deviation of the portfolio’s return, rt+1, conditional on the
information accumulated up to time t , and zα is the α-quantile of the standard normal
distribution.
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Fig. 1 Hölder regularity of the
graph of a random function

3 Path regularity and value at risk

In this Section we will introduce a VaR estimate based on the pointwise regularity of a
sample path. The idea is that volatility affects the smoothness of the graph describing
the dynamics of financial price changes. In order to deduce such an estimate, we first
recall the notion of pointwise regularity.

Consider the stochastic process X(t, ω) with a.s. continuous and not differentiable
trajectories over the real line R. The local Hölder regularity of the trajectory t �→
X(t, ω)with respect to some t can bemeasured through its pointwiseHölder exponent,
defined as (see Ayache (2013))

αX (t, ω) = sup

{

α ≥ 0 : lim sup
h→0

|X(t + h, ω) − X(t, ω)|
|h|α = 0

}

. (8)

The geometrical intuition of (8) is provided by Fig. 1: function X has exponent α at
t0 if, for any positive ε, there exists a neighborhood of t0, I (t0), such that, for t ∈ I (t0),
the graph of X is included in the envelope defined by t �→ X(t0) − c|t − t0|α−ε and
t �→ X(t0)+ c|t − t0|α+ε (see Lévy Véhel and Barriére (2008)). For certain classes of
stochastic processes, remarkably for Gaussian processes, by virtue of zero-one law,
there exists a non random quantity aX (t) such that P(aX (t) = αX (t, ω)) = 1 ( Ayache
(2013)). In addition, when X(t, ω) is a semimartingale (e.g. Brownian motion), αX =
1
2 ; values different from 1

2 describe non-Markovian processes, whose smoothness
is too high (low volatility), when αX ∈ ( 1

2 , 1
)
, or too low (high volatility), when

αX ∈ (
0, 1

2

)
, to satisfy the martingale property. In particular, the quadratic variation

of the process can be proven to be zero, if αX > 1
2 and infinite, if αX < 1

2 .
Examples of stochastic processes that can be characterized by the Hölder pointwise
regularity are:

– the fractional Brownian motion (fBm) of parameter H , for which α(t, ω) = H
a.s., and, as a special case, the standard Brownian motion (α(t, ω) = 1/2 a.s.).
Recall that, up to a multiplicative constant and for all t ∈ R, the fBm has the
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following harmonizable representation

B̃H (t) =
∫

R

eitξ − 1

|ξ |H+ 1
2

dŴ (ξ) (9)

where dW is the usual Brownian measure and dŴ is the unique complex-
valued stochastic measure satisfying

∫
R
f (x)dW (x) = ∫

R
f̂ (x)dŴ (x) for all

f ∈ L2(R). A different representation of fBm involves the stochastic integral
with respect to the Wiener process on the real line {W (s),−∞ < s < ∞}

BH (t) = 1

Γ (H + 1/2)

{∫ 0

−∞

[
(t − s)H−1/2 − (−s)H−1/2

]
dW (s)

+
∫ t

0
(t − s)H−1/2 dW (s)

}

(10)

Up to an equality in probability, (10) is the only Gaussian process such that: (a)
BH (0) = 0, and (b) there exists K > 0 such that for any t ≥ 0 and h > 0,
BH (t + h) − BH (t) distributes as N

(
0, K 2Hh2H

)
, where K is a scale factor;

– the multifractional Brownian motion (mBm) with functional parameter H(t), for
which α(t, ω) = H(t) a.s.;

– the Multifractional Processes with Random Exponents (MPRE) of parameter
H(t, ω), for which—under some technical conditions (see Theorem 3.1 in Ayache
and Taqqu (2005))—it is again α(t, ω) = H(t, ω) a.s.;

– the symmetric α-stable Lévy motion (0 < α ≤ 2), for which H = 1/α a.s.;
– the fractional Lévy motion, of parameter H − 1

2 + 1
α
a.s.

All these fractal processes have been considered to some extent as potential models
of the financial dynamics Tapiero et al. (2016); in particular, the mBm and the MPRE
seem to account for many stylized facts (Bouchaud 2005), primarily the log-return
heteroskedasticity, which constitutes one of the main challenges for VaR assessment.
For this reason, following Costa and Vasconcelos (2003), Frezza (2012), Bianchi
and Pianese (2014), Corlay et al. (2014), Garcin (2017), Bertrand et al. (2018)), we
will assume the log-price process to be modeled as an MPRE with random parameter
H(t) := H(t, ω). This process can be represented as an extension of the harmonizable
fBm (9) as

Z(t) =
∫

R

eitξ − 1

|ξ |H(t)+ 1
2

dŴ (ξ). (11)

If H(t) is independent on dŴ , the stochastic integral is well-defined ( Papanico-
laou and Sølna (2002), Ayache and Taqqu (2005)) and the main results stated for the
mBm can be extended to the MPRE. In particular, assuming the paths of the process
{H(t)}t∈R to be almost surely Hölder functions of order β = β(T ) > maxt∈T H(t)
on each compact T ⊂ R, the pointwise Hölder regularity of the graph of Z(t) equals
the stochastic parameter H(t) almost surely (see Ayache et al. 2007).
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3.1 Estimation of H(t)

Two main directions have been followed in literature to estimate H(t): the general-
ized quadratic variations (Istas and Lang 1997; Benassi et al. 1998) and the absolute
moments of a Gaussian random variable (Péltier and Lévy Véhel 1994; Bianchi 2005;
Bianchi et al. 2013). The properties and the accuracy of these estimators have been
widely discussed (see, e.g., Istas and Lang 1997; Bianchi 2005; Ayache and Peng
2012; Storer et al. 2014), and in consideration of the results exhibited in Benassi et al.
(2000), Coeurjolly (2001), Coeurjolly (2005), Gaci and Zaourar (2010), Gaci et al.
(2010), Bianchi et al. (2013), Frezza (2018)), we have chosen to adopt the estimation
procedure provided by Pianese et al. (2018). The advantage is that it efficiently com-
bines both the approaches and produces fast and unbiased estimates of the function
H(t). In the following, we will summarize the estimation technique.

Let us consider a discrete version X = (X(i/n))i=1,..,n of {Z(t), t ∈ [0, 1]}, with
H(t) independent on dŴ and Hölder continuous. As mentioned above, both these
assumptions legitimize the use of the estimator that will be described. Coeurjolly
Coeurjolly (2005) introduces a local version of the k-th order variations statistics that
fits the case of a Hölderian function H : t ∈ [0, 1] → H(t) of order 0 < α ≤ 1 and
such that supt H(t) < min(1, α). Since the variance of the estimator is minimal for
k = 2, in the following the discussion will be referred only to the case k = 2. Given
the two integers � and p, a filter a := (a0, ..., a�) of length � + 1 and order p ≥ 1 is
built with the following properties:

�∑

q=0

aqq
r = 0, for r = 0, · · · , p − 1 and

�∑

q=0

aqq
p = 0.

The filter is a discrete differencing operator; for example, a = (1,−1) returns the dis-
crete differences of order 1 of X ; a = (1,−2, 1) returns the second order differences,
and so on. The filter, which defines the new time series

V a
(
j

n

)

=
�∑

q=0

aq X

(
j − q

n

)

for j = � + 1, ..., n − 1,

acts to make the sequence locally stationary and to weaken the dependence between
the observations sampled in X .

Given the neighborhood of t , Vn,εn (t) := { j = � + 1, · · · , n : | j/n − t | ≤ εn} for
some εn > 0 such that nεn → 0 as n → ∞ and denoted by ν := νn(t) the number of
observations in Vn,εn (t), the quadratic variations statistics associated to the filter a is
defined as

Vn,εn (t, a) = 1

ν

∑

j∈Vn,εn (t)

{
V a( j/n)2

E(V a( j/n)2)
− 1

}

. (12)
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Under these assumptions, it can be proved that Vn,εn (t, a) → 0 as n → ∞ and this
asymptotic behavior allows to define estimators of H(t) by acting into two directions:

(a) as the filter a is dilated m times, exploiting the local H(t)-self similarity of X ,

the linear regression of logE
(
1
ν

∑
j∈Vn,εn (t) V

am ( j/n)2
)
versus logm for m =

1, ..., M , defines the class of unbiased estimators Ĥn,εn (t, a, M) whose variance
is O((nεn)

−1). In particular, Coeurjolly Coeurjolly (2005) proves that a filter of
order p ≥ 2 ensures asymptotic normality for any value of H(t), whereas if
a = (1,−1), the convergence holds if and only if 0 < supt H(t) < 3

4 . In this case,
by taking εn = κn−α ln(n)β with κ > 0, 0 < α < 1 and β ∈ R, it follows that

Var(Ĥn,εn (t, a, M)) = O
(

1
κn1−α ln(n)β

)
;

(b) by setting p = 1 and a = (1,−1), for j = t − ν, · · · , t − 1 and t = ν + 1, . . . , n,
Eq. (12) becomes

Vn,εn (t, a) =
1
ν

∑
j |X j+1 − X j |2

K 2 (n − 1)−2H(t)
− 1. (13)

From this, Bianchi (2005), Bianchi et al. (2013), Bianchi and Pianese (2014) and
Bensoussan et al. (2015) define the estimator

Ĥν,n,K (t) = −
ln

(
1
ν

∑
j |X j+1 − X j |2

)

2 ln(n − 1)
+ ln K

ln(n − 1)
( j = t − ν, . . . , t − 1),

(14)

whose rate of convergence is O(ν− 1
2 (ln n)−1), enough to ensure accuracy even

for small estimation windows ν.
When actual data are considered, the scale factor K is generally unknown and—as
it is evident from (14)—a misleading value produces estimates which are shifted
with respect to the true ones. In addition, since the logarithm is slowly varying at
infinity, the shift can be significant even for large n. Therefore, estimating H(t)
by using in (14) an arbitrary running parameter K ∗, will lead to the bias given by
the second term of the right-hand side of

H(t) = Ĥν,n,K ∗(t) + ln(K/K ∗)
ln(n − 1)

. (15)

One way to get rid of the parameter K (see e.g. Istas and Lang (1997), Benassi et al.
(1998), Garcin (2017)) is to calculate the numerator of (13) using different resolutions.
For example, by halving the points into the estimation window, for a = (1,−1) one
has1
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M2(t, a) = 1

ν

ν−1∑

j=0

|X j+1 − X j |2, and M ′
2(t, a) = 2

ν

ν/2−1∑

j=0

|X2( j+1) − X2 j |2;

since as n tends to ∞, M2(t, a) and M ′
2(t, a) tend to K 2(n − 1)−2H(t) and

K 2
( n−1

2

)−2H(t)
, respectively, their ratio tends to 22H(t), from which an estimate of

the Hurst exponent which converges almost surely to H(t) is

Ĥν,n(t, a) = 1

2
log2

(
M ′

2(t, a)

M2(t, a)

)

(16)

Given the rate of convergence discussed in (a), this technique leads to erratic esti-
mates, to the point that recently Garcin Garcin (2017) has proposed a non-parametric
smoothing technique to reduce the noise. Thus, estimator (16) is unbiased, but affected
by a large variance, whereas estimator (14) exhibits low variance and a bias (due to the
unknown K ) that requires a computationally intensive correction (see e.g. Bianchi and
Pianese (2008) or Bianchi et al. (2013)). The solution, recently proposed by Pianese
et al. (2018), is to combine the two estimators into one, as follows. Denoted by ξ a
zero-mean random variable, one can write

Ĥν,n(t, a) = H(t) + ξ(t). (17)

On the other side, from (15) it is also

Ĥν,n,K ∗(t) = H(t) − ln(K/K ∗)
ln(n − 1)

. (18)

Therefore,

ln(K/K ∗)
ln(n − 1)

= Ĥν,n(t, a) − ξ(t) − Ĥν,n,K ∗(t),

from which, by averaging with respect to t , it immediately follows

h := ln(K/K ∗)
ln(n − 1)

= 1

n

n∑

t=1

(
Ĥν,n(t, a) − Ĥν,n,K ∗(t)

)
.

Notice that, since K ∗ is chosen arbitrarily, the corrected estimate

Ĥν,n(t, a) = Ĥν,n,K ∗(t) + h (19)

does not depend on K any longer.

1 Similarly, fora = (1,−2, 1) it would beM2(t, a) = 1
ν−1

∑ν−2
j=0 |X j+1−2X j+X j−1|2, andM ′

2(t, a) =
2

ν−1
∑ν/2−2

j=0 |X2( j+1) − 2X2 j + X2( j−1)|2.
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3.2 VaR forecast through Ĥ�,n(t, a)

Since the Basel III framework gives the banks the freedom to choose among models
based on variance-covariance matrices, historical simulations or Monte Carlo simu-
lations, value at risk can be calculated starting from the pointwise regularity of the
log-prices estimated by (19). This is particularly useful when prices display high
volatility, subject to abrupt changes even in very short time spans. Indeed, this is the
case in which standard models generally do not work efficiently, despite the fact that
VaR is conceived precisely to face stress circumstances.

The procedure that we suggest can be described through the following steps:

– following Frezza (2018), given the daily log-prices and denoted by n the sample
size, for each t = ν, . . . , n the last d estimates Ĥν,n(t, a) are used to simulate
N paths of d regularity exponents (H̃ (i)(t + k)), i = 1, . . . , N ; k = 1, . . . , d, as
autoregressive processes of order λt , namely

H̃ (i)(t + k) =
λt∑

j=1

θ j H̃
(i)(t + k − j) + εt+k

where the innovations εt+k are white noise.

As far as the knowledge of the authors, there are few studies documenting the dis-
tribution of H(t) estimates; nevertheless, the vast majority of the literature about
dynamic estimates of the regularity exponents (or Hurst parameter) for financial
series indicates values in the range 0.2–0.7. Even if some preliminary results seem
to credit that a Gaussian distribution could be enough to describe the dynamics
of H(t) (see e.g. Lillo and Doyne Farmer (2004), Cajueiro and Tabak (2004),
Bianchi and Pantanella (2011), Bianchi et al. (2015)), the choice to consider an
autoregressive model with Gaussian innovations as a first approximation is clearly
arbitrary (see Garcin (2020) for a discussion of what happens when considering
non-Gaussian extensions in the case of FX markets). Although aware of this limit,
in this paper we restrict ourselves to this dynamic for consistency with what we
assumed about the distribution of H(t) in order to apply the estimator (14).

The optimal λt is chosen by exploiting the Bayesian Information Criterion (BIC)
for lags varying from 1 to ν. This technique—also known as Schwartz criterion
Schwarz (1978) and related to the Akaike Information Criterion (AIC)—is based
on the log-likelihood function and constitutes a standard procedure inmodel selec-
tion. Themodelwith the lowestBIC is preferred.Notice that the standard procedure
requiring at least one year of past prices to calculate the one-day VaR rests on the
premise that data belonging to this window be homogeneous. This is a crucial
weakness, because precisely in turbulent periods data homogeneity usually dete-
riorates very quickly. To overcome this limit, in the application we will choose a
smaller time horizon.
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– the simulated H̃ (i)(t + k) constitute the input to generate N sample paths of

MPRE, Z̃ (i)(t + k).2 The 1-day log-return ln Z̃ (i)(t+1)
Z̃ (i)(t)

is then used to build the

1-day distribution and to calculate the corresponding α-quantile (VaRα);
– as discussed above, regulators suggest to forecast the h-days VaR by applying
the t1/2-rule, namely VaRα(Lt+h) � h1/2VaRα(Lt ). Since our results show that
H(t) actually changes through time and can stay far from 1

2 even for not negligible
periods, opposite to the standard approach, the h-days log-returns are calculated
by replacing the t1/2 rule by the following scaling law

R̃(i)(t + h) = hH̃ (i)(t+h)R(t), 2 ≤ h ≤ d; i = 1, . . . , N (20)

which accounts for the sequence of time-changing regularity exponents from time t
to time t+h. Finally, the values R(i)(t+h) are used to build the h-days distribution
and, by this, to compute the h-days VaR.

3.3 Evaluation of results

The assessment of the three VaR forecasting models (V-C, EWMA, MPRE) was per-
formedbyusing three backtesting statistics justifiedby the arguments shortly discussed
hereafter.

(a) As a fundamental requirement (see the Basel’s directives), themodel should gener-
ate a violation rate (proportion of times thatVaR forecast is exceeded) “close” to the
nominal value, that is the model should provide correct unconditional coverage.
Thus, the number of exceptions should be neither too large (risk underestima-
tion) nor too small (risk overestimation) and ideally, the violation rate should
converge to the VaR quantile α as the sample size increases. The setup to test
this is the Bernoulli trials framework. Under the null hypothesis that the model
is correctly calibrated, the number of violations V over a sample N follows the
binomial probability distribution f (V ) = (N

V

)
αx (1 − α)N−V , with E(V ) = αN

and Var(V ) = α(1 − α)N . As N increases, the central limit theorem ensures
that the binomial distribution converges to the normal distribution. Therefore, the
statistic which can test the unconditional coverage is (see, e.g., Guermat andHarris
2002; Jorion 2006, pp.143–146)

tU = V − αN
√
V

(
1 − V

N

) → N (0, 1), for large N (21)

(b) A more demanding requirement is that a VaR model should also account for
the “unpredictability” of exceptions, that is the model should provide conditional

2 The simulations were carried out in MatLab by using FracLab, a general purpose signal and image
processing toolbox developed by the Anja team at Inria Rennes/Laboratoire Jean Leray, Université de
Nantes.
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coverage independence. This was tested through the LRC -statistic proposed by
Christoffersen (1998):

LRC = 2 (ln L A − ln L0) , (22)

where L A = (1 − π01)
T00 · π

T01
01 · (1 − π11)

T10 · π
T11
11 , πi j = Ti j

Ti0+Ti1
, L0 = (1 −

π)T00+T10 · πT01+T11 and π = (T01 + T11) / (T00 + T01 + T10 + T11), Ti j being
the number of times that state i is followed by state j . State 0 and state 1 indicate,
respectively, the time in which actual portfolio loss is less than the estimated
VaR and viceversa. It is worthwhile to highlight that we tested separately the
unconditional and conditional coverage independence, because— as observed by
Campbell et al. Campbell (2005)—in some cases the model can pass the joint test
while still failing either the independence test or the unconditional one;

(c) since themagnitude aswell as the number of violations constitute two fundamental
parameters to assess the quality of a VaR forecast model, the performances of
the three approaches were evaluated also through the regulators’ loss-function
proposedbySarmaet al. (2003)Sarmaet al. (2003).Bymodifying the loss-function
of Lopez (1998) Lopez (1998), the measure assigns the score Si , i = 1, . . . , N ,
to each candidate model as follows:

Si =
{

(Li − Vi )2 if Li > V i

0 otherwise
(23)

where Vi is the estimated VaR and Li is the observed loss at time i . Following the
regulator’s directions, Sarma measure S = ∑n

i=1 Si penalizes the model display-
ing more violations and—as a consequence—the model with lower value should
be preferred.

Finally, as prescribed by the regulators, a 250-day window was used for the V-C and
EWMAmethods (Basel III requires at least one year of observations to calculate VaR).
However, the difference in width between the window considered for the MPRE (32
trading days) and for the standard estimates (V-C and EWMA) does not impact on the
results of the VaR estimates because the EWMA method calculated with a window
of only 32 trading days virtually produces the same results as that calculated with a
window of 250 trading days, since the weight attributed to less recent observations
decreases exponentially. This effect is described in Fig. 2 for the years 2003–2005.
We observe the convergence of the V-C method to the EWMA and the absence of
differences between the EWMA calculated at 250 days and at 32 days. For this rea-
son, when evaluating the performance of the VaR estimates calculated with the mBm
compared with those calculated with the two standard methods, reference will mostly
bemade to the benchmark represented by the EWMA,which - for the reason explained
above—tends to coincide with the V-C at 32 days.
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Fig. 2 Comparison of VaR forecasts for Euro STOXX 50 Index (SX5E). Notice the convergence of the V-C
method to the EWMA and the substantial absence of differences between the EWMA calculated at 250
days and at 32 days

Table 1 Basic statistics of the autoregressive fitting

θ̂1 2000–2002 2007–2008

S&P500 N225 SX5E S&P500 N225 SX5E

Mean 0.932 0.917 0.895 0.923 0.941 0.928

Std 0.068 0.077 0.110 0.065 0.078 0.060

Max 1 1 1 1 1 1

Min 0.572 0.601 0.602 0.599 0.698 0.553

σ̄ 2
ε × 105 2.33 2.50 1.36 4.94 2.15 5.02

4 Application

4.1 Data and parameters

The VaR forecast methodology described in Sect. 3.2 was applied to three stock
indices: the Standard&Poor’s 500 (S&P500), the Nikkei 225 (N225) and the Euro
STOXX 50 (SX5E), representative of the three main financial areas U.S., Asia and
Europe. Table 2 summarizes the basic statistics of the daily log-changes of the three
indices. The analysis was focused on two periods of special relevance in terms of mar-
ket turbulence and high volatility: the stock market downturn of 2000-2002, that can
be viewed as part of the correction—triggered also by shocks as 9/11 and the dot com
bubble—that began in 2000 after a decade-long rising market; and the global financial
crisis of 2007–2008, which is considered to have been one of the worst financial crises
since the Great Depression.

Estimator (19) was implemented on the series of the daily closing indices with
parameters a = (−1, 1) (i.e. first differences were considered) and ν = 21, set to
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Table 2 Basic statistics of log-changes of the three samples, (∗) × 10−4

2000–2002 2007–2008

S&P500 N225 SX5E S&P500 N225 SX5E

Mean(∗) −6.530 −1.100 −9.350 −9.817 −1.610 −1.100

Dev.std 0.015 0.016 0.018 0.020 0.022 0.019

Kurtosis 4.132 4.329 4.417 10.152 9.838 9.876

Skewness 0.194 0.094 0.045 −0.179 −0.392 0.135

Max 0.056 0.072 0.071 0.109 0.132 0.104

Min −0.060 −0.072 −0.066 −0.095 −0.121 −0.082

match about one trading month. To ensure the statistical significance of the sample
and to simulate efficiently the MPRE, minimizing the computational time, we chose
to set d = 32. To save the integrity of the time series, H(t) was estimated also before
the starting date reported in Table 2; in fact, since the forecasted VaR starts on January
2nd, 2000 and on January 2nd, 2007, respectively, the first d estimates of H(t) used
to simulate the first AR(λt ) belong to the last d days of 1999 or 2006, respectively.

For each examined index and each period, Table 1 summarizes the basic statistics of
the autoregressive fitting. We report the values only for the first-order autoregressive
term since the optimal λt chosen by the Schwarts criterion is 1 in over 95% of cases.

4.2 Results and discussion

Figure 3 displays the proportion of violations and the corresponding tU -statistic for
the three indices and different days ahead h, in the period of 2007−2008, while Table
3 summarizes the LRC -statistic for the same period. Tables 4, 5 and 6 report—for each
index—the tU -statistic (top) and LRC -statistic (bottom) in the period 2000 − 2002
(to streamline the presentation of the results, we omitted the corresponding graphs).
Finally, Fig. 4 displays the S-Sarma measure for all indices in both periods.

Figure 3 shows that MPRE outperforms both V-C and EWMA in terms of uncon-
ditional coverage. For the three confidence levels, the number of violations of MPRE
forecasts is in line with the nominal ones; as h increases, the number of violations
for V-C (worst case) and EWMA systematically exceeds the nominal values. This
pattern—which is particularly evident for the S&P500 between 2000 and 2002 at
α = 0.01 (see the last three columns of Table 4)—suggests that in turbulent periods
using the t1/2 rule leads to underestimate the risk: this is evident for the EWMA,
which is close to the nominal value for one- or two-days forecasts, but increasingly
biased as h increases; V-C forecasts instead are generally biased starting from the very
one-day estimate. The graphs summarizing the tU -statistics (see Fig. 3, right panels)
fully agree with this conclusion: for any h and for any α, MPRE forecast lie within the
confidence interval of the statistic, whereas—as expected—V-C forecasts are always
outside and EWMA forecasts diverge from the confidence interval as the number of
days ahead increases.
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Fig. 3 Percentage of violations (left) and tU statistic (right) for the three stock indices and the three levels of
confidence. The left panels show that theMPREoutperforms bothV-C andEWMA in terms of unconditional
coverage; in all cases, the number of violations of MPRE forecasts is in line with the nominal ones. As h
increases, the number of violations for V-C (worst case) and EWMA systematically exceeds the nominal
values. This pattern suggests that the usage of the t1/2 rule leads to underestimate the risk in turbulent
periods. The right panels show the tU -statistics for the V-C, the EWMA and the MPRE, along with the
confidence intervals of the statistic: for any h and α, the MPRE generally lie within the confidence interval,
whereas the V-C is always outside and the EWMA diverges from the confidence interval as the number of
days ahead increases

Similar results hold also in the time interval 2000–2002 for MPRE forecasts (see
Tables 4, 5 and 6), which in all cases belong or are closer (with respect to the other
models) to the confidence intervals. However, in this period, both V-C and EWMA
forecasts are generally better with respect to those of 2007–2008. A possible explana-
tion for this behavior is the different nature of the turbu lence which affected markets
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in the two periods: while the period 2000–2002 was characterized by a slow dowturn
with very rare sudden downward variations, the period 2007–2008 was on the contrary
marked out from unexpected and violent crashes (one for all, the Lehman Brothers
bankruptcy), witnessed by a distribution of log-price variations which displays much
fatter left tail with respect to 2000–2002. This implies faster changes in the volatility,
which both V-C and EWMA forecasts don’t fully succeed to capture.

The LRC -statistics (Table 3) indicate that, with the exception of EWMAat 95%, the
independence cannot be rejected only for h = 1. As the forecasting horizon increases,
all methods display dependence in the number of violations, even if for the MPRE the
LRC -statistic is generally smaller than the corresponding values calculated for both
V-C and EWMA.

Figure 4 summarizes the Sarma’s measure, sensitive not only to the number but also
to the magnitude of the violations. In all cases but the S&P500 in 2007–2008, MPRE
forecasts provides losses significantly lower than both V-C and EWMA. Interestingly,
the behavior of the Sarma’s index is consistent with the argument discussed above
regarding the diverse nature of the turbulence in the two examined periods. For the
period 2007–2008 the measure is one order magnitude larger than in period 2000–
2002; this is clearly attributable to the huge unforeseen downward movements which
impacted on the size of the losses, for all the methods.

To complete the analysis, we have also compared the results provided by theMPRE-
basedVaRestimator during the calmperiod 2003–2005with respect to those calculated
using the EWMA approach. Figure 5 summarizes the comparison in terms of percent-
age of violations and tU statistic for the three stock indices and the three levels of
confidence. In all cases, both the estimates seem virtually superimposed and there no
significant difference in the two forecasts. This would suggest that the new method,
while performing better than the standard ones in turbulent periods, does not lose its
forecast capability in stable periods.
Of interest is also the response of VaR estimators to flash crashes, particularly of those
occurred when circuit breakers were not regulated yet3. As an example, for the Black
Monday of 1987 we have recorded the following VaR estimates, respectively for the
95, 97.5 and 99%: EWMA (−3.11%, −3.71%, −4.41%), MPRE (−5.65%, −6.43%,
−7.54%). Even if still far from the sudden variation recordered in the market (the
S&P500 dropped 57.86 points, about −20.47% in a single day), the VaR estimates
obtained by the MPRE for the S&P500 are almost twice those achieved by EWMA
(from 1.71 to 1.82). Conversely, as all fat-tails models, the MPRE is slower in the
after-crash phase, the is it takes more time than EWMA to restore the spike towards
more reduced values. This is clearly due to how the estimator is designed; while the
EWMA gives more weight to the most recent observations, the MPRE equally weighs
the observations in the estimation window.

3 Circuit breakers—namely the temporary halt of trading on an exchange or a single stock to prevent
market crashes triggered by panic selling—are a somewhat controversial regulatory emergency measure.
Some analysts argue in fact that circuit breakers delay the market return to the equilibrium, and contribute
to keep it artificially volatile, since they cause orders to build at the limit level and decrease liquidity.
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Table 5 tU -statistic (top) and LRC -statistic (bottom) for N225 in period 2000-2002. The respective 5%,
2.5% and 1% critical values for the LRC are 3.84, 5.02 and 6.63 while the acceptance region for the
tU -statistic are (−1.65, 1.65), (−1.96, 1.96) and (−2.33, 2.33), respectively

N225 95% 97.5% 99%

h-days V-C MPRE EWMA V-C MPRE EWMA V-C MPRE EWMA

(1) −0.25 −4.30 0.08 −0.17 −3.18 −1.70 1.06 −3.23 −1.12

0.39 0.70 0.57 0.57 0.21 0.45 0.32 0.10 0.06

(2) 0.86 −4.30 0.71 0.70 −3.21 1.08 1.30 −1.70 1.06

19.79 4.11 25.65 5.05 4.49 9.01 6.34 6.26 7.05

(3) 1.82 −4.70 1.70 1.27 −3.73 1.09 0.79 −0.56 1.06

58.89 30.7 49.74 15.76 9.70 35.51 14.80 4.29 14.15

(4) 0.56 −3.50 1.56 1.27 −1.88 1.09 1.95 −2.54 2.33

46.80 41.63 51.58 46.64 27.59 42.60 47.22 0.20 43.05

(5) 0.71 −2.95 1.70 0.90 −1.19 1.09 1.75 −1.06 1.75

50.70 51.41 65.81 59.66 40.67 65.29 50.89 0.60 50.39

(6) 1.01 −1.70 1.29 1.08 −1.88 1.94 1.30 −1.06 1.75

77.94 47.24 60.33 48.95 19.45 59.45 46.82 14.26 40.67

(7) 0.40 −3.20 0.57 0.28 −2.60 1.78 0.79 −2.54 1.53

81.83 62.66 101.91 59.86 14.80 78.45 32.40 7.60 24.11

(8) 0.40 −3.80 1.56 0.90 −2.26 1.78 0.50 −2.54 1.53

67.67 51.01 117.58 43.66 29.84 87.61 35.37 20.06 25.58

(9) 1.29 −2.17 1.43 1.44 −2.60 2.39 0.79 −2.54 2.33

93.56 85.71 121.25 59.55 23.01 91.14 23.01 7.60 19.25

(10) 1.82 −1.49 1.83 1.27 −2.26 1.94 1.06 −2.54 2.33

89.01 75.41 143.21 46.64 29.84 102.68 39.62 7.60 70.64

(11) 1.56 −1.49 1.70 1.44 −2.60 2.67 1.53 −1.06 2.83

87.74 102.68 130.20 85.71 43.56 120.24 65.42 5.27 79.51

(12) 1.70 −1.93 2.45 1.78 −2.26 2.67 1.95 −1.70 2.83

114.05 91.40 148.00 78.64 35.71 120.24 47.22 0.40 69.35

(13) 2.80 −0.49 3.77 2.53 −0.60 2.94 2.33 −2.54 3.28

113.80 92.79 148.40 71.59 35.71 102.88 81.89 0.20 98.33

(14) 2.45 −0.87 3.35 2.39 −0.60 3.07 2.33 −6.42 2.98

131.69 82.61 218.95 91.20 53.75 116.90 81.89 0.20 85.83

(15) 2.80 −1.93 3.24 2.09 −1.19 2.67 2.14 −6.42 3.13

144.12 101.26 204.93 108.27 50.39 130.26 87.07 0.20 92.10

(16) 2.80 −1.07 2.57 2.09 −0.90 3.07 2.33 −1.70 2.98

178.43 94.77 169.76 118.44 47.22 157.10 60.25 16.61 65.87

(17) 2.45 −1.27 2.68 2.53 −0.60 3.07 2.14 −2.54 2.50

193.70 89.42 223.40 114.88 53.75 146.37 44.35 7.60 77.28
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Table 5 continued

N225 95% 97.5% 99%

h-days V-C MPRE EWMA V-C MPRE EWMA V-C MPRE EWMA

(18) 2.57 −0.70 2.57 3.20 −1.19 3.07 1.06 −3.83 2.50

198.21 96.35 178.94 121.97 40.67 116.90 29.84 9.69 101.07

(19) 2.91 −0.31 2.45 2.39 −1.19 2.94 2.14 −1.07 2.67

182.73 89.40 183.95 109.49 31.80 121.12 53.75 25.65 95.43

(20) 3.77 −0.50 3.46 2.24 −1.52 2.81 2.95 −1.70 2.50

225.94 151.84 168.51 158.32 43.56 135.67 68.06 0.40 88.69

5 Conclusion

Risk assessment is one of the most relevant issues for individual firms, banks and
regulators. One of the dimensions with respect to whom it is estimated is the market
risk, that is the possibility that an investor suffers losses due to factors that affect
the overall performance of the financial markets. Value at Risk is probably the most
known and widely used tool to assess the exposure to market risk of an individual
asset or a portfolio. Classical approaches are known to perform poorly during periods
of high volatility, owing to the inertia originated by the large amount of past data used
to build the forecasting distributions. The limitations of the standard models have
become dramatically evident during the last global financial crisis, when losses have
been underestimated to such an extent to induce a deep revision of the directions given
by regulators.

In this paper we propose an alternative model to estimate value at risk and pro-
vide evidence that it produces better forecasts with respect to the variance-covariance
method and to the exponentially weightedmoving averagemethod. Our approach rests
on the estimation of the pointwise regularity exponent of the price process, which suc-
ceeds to capture the changes of volatility timely. Our forecasts are based on a Monte
Carlo methods: past data (which serve as training period) are used to build autoregres-
sive processes which are used as inputs to simulate paths of Multifractional Processes
with Random Exponents (by Monte Carlo simulation). Our findings, related to two
long turbulent market periods (2000–2002 and 2007–2008) and to three main stock
indices (Standard & Poor’s 500, Nikkei 225 and Eurostoxx), show that the forecasts
obtained by this methodology outperform those achieved using the other twomethods,
in terms of unconditional coverage and independence and of (minimal) magnitude of
extra-losses (defined as Sarma’s measure).

Our research could be extended in several ways. A refinement of the estimation
procedure could come from considering a time-changing training period, which could
depend on the level of local volatility (of pointwise regularity) in such away to integrate
in our estimator the capability shown by the ExponentiallyWeightedMovingAverage.
A further extension, supported by the results obtained for quiet market periods, could
be to define a switching model to properly assess market risk, depending on the local
volatility level. Finally, our study only considered indices because more emphasis
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Fig. 4 Sarmameasures. The performances of the three approaches are evaluated also through the regulators’
loss-function proposed by Sarma et al. (2003). The measure assigns a score to each candidate model which
penalizes the model displaying more violations and—as a consequence – the model with lower value should
be preferred

was placed on the novelty of the estimation procedure rather than on the number of
the samples. Since the new standard for capital requirements for market risk calls for
backtesting at both the individual financial assets and the aggregate levels, it could be
of interest to analyze also the case of single assets and portfolios.
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Fig. 5 Percentage of violations (left) and tU statistic (right) for the three stock indices and the three levels
of confidence. To complete the analysis, the MPRE-based VaR estimator is compared with the EWMA
approach during a calm period (2003–2005). In all cases, both the estimates seem virtually superimposed
and there no significant difference in the two forecasts. This would suggest that the new method, while
performing better than the standard ones in turbulent periods, does not lose its forecast capability in stable
periods
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