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Abstract
Members of an organization have conflicting preferences. Principal-agent theory 
analyzes how and under which conditions this conflict can be resolved by means 
of incentives. In this paper we discuss an alternative to incentives: the engineering 
of delegation. The principal can divide the organizational decision making prob-
lem into subproblems and appropriately delegate different subproblems to different 
agents, letting them free to act according to their individual preferences. We intro-
duce a formal model which analyzes whether and under which conditions the princi-
pal can in this way obtain the decisions she prefers without manipulating incentives 
nor using authority to overrule what agents autonomously decide.

Keywords  Delegation · Conflict · Complexity · Agency theory

1  Introduction

Conflict is an ubiquitous component of all human organizations. Human beings pur-
sue, at least partly, heterogeneous individual objectives and have diverging prefer-
ences. For instance, standard neoclassical economics assumes that human beings 
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are selfish utility maximizers1 and that they can be induced to pursue the organiza-
tional goals only by coercion or by means of (monetary) incentives which modify 
their preference orders. To put it very simply, consider the problem of an agent in an 
organization who must choose between actions A to B on behalf of the organization. 
The agent gets higher utility (or lower disutility) by choosing A, while B is prefer-
able for the principal. The latter can either force by authority the agent to choose B 
or give him a reward for choosing B which is higher than his differential disutility 
for choosing B rather than A. In both cases, in addition, the organization must also 
be able to monitor (possibly in a way which can be verified by a third party judge) 
that the agent actually chooses B, which might be problematic with uncertainty and 
information asymmetries. Only when these conditions are met will the agent choose 
B and act in the interest of the principal.

Another type of conflict does not emerge from diverging objectives but from 
diverging views on how a common objective should be pursued. Richard Rumelt 
calls this type of conflict “incommensurable beliefs”, i.e. “...the problem that arises 
when different individuals or groups hold sincere but differing beliefs about the 
nature of the problem and its solutions” (Rumelt 1995, p. 109). This kind of con-
flict has been overlooked by economic theory and in principle it looks even more 
difficult to manage, also because in this case the organization faces a dilemma 
between control and learning (Marengo and Pasquali 2012). On one side, the prin-
cipal can increase control by aligning the views and beliefs of agents. This can be 
done through incentives, or persuasion, or simply by hiring agents whose views and 
believes are more similar to those of the principal. However in doing so the principal 
overlooks the opportunities of learning from diversity as the beliefs and views of 
some agents may happen to be more effective in solving the problem (Page 1996).

Whatever the source, unresolved conflict always characterizes organizations. In 
his seminal 1962 article “The Business Firm as a Political Coalition” James March 
states this point in the clearest way and formulates two “postulates of conflict”, 
namely: 

1.	 There are consistent basic units. [...] Each elementary unit in the system can be 
described as having a consistent preference ordering over the possible states of 
the system [...] i.e. an ordering such that for any realizable subset of possible 
states of the system there exists at least one state as good as any other state in the 
subset.

2.	 There is conflict. The preference orderings of the elementary units are mutually 
inconsistent relative to the resources of the system. Conflict, in this sense, arises 
when the most preferred state of all elementary units cannot be simultaneously 
realized. (March 1962, p. 663)2.

1  Recent developments have partly modified this assumption by admitting that individuals can hold 
other-regarding preferences that take into account also the utility or disutility of others (see, e.g., Fehr 
and Fischbacher 2002 for a survey). Reciprocal, altruistic, spiteful behaviours can result from such pref-
erences, but the selfish idiosyncratic component remains the main argument in all utility functions.
2  It is interesting to notice the similarities between these postulates and Simon’s notion of complex sys-
tems (Simon 1981). In both cases we have a system made of several units and such units are interdepend-
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In this paper we start from March’s postulate and, in particular, we consider an 
organization made of agents (elementary units) with mutually inconsistent prefer-
ence orderings over a set of interrelated policies. Thus, we assume that organiza-
tional decisions are multidimensional and complex, in the sense that decisions in 
one dimension usually produce effects also on other dimensions. However we do 
not focus on the use of incentives as a means to resolve this conflict. We acknowl-
edge that conflict is a permanent feature of organizations and we analyze how a 
principal, rather than diluting it by aligning preferences with incentive, can actu-
ally exploit the multidimensionality and complexity of decisions and obtain a 
desired course of action also from agents who do not share her preferences. The 
principal can in fact act on the division and allocation of decision rights on the 
various policies the organization must decide on. We call this the “engineering of 
delegation”, that is an appropriate division of the organization’s decision problem 
into subproblems and an appropriate allocation of decision rights for each of 
these subproblems to specific agents. Suppose the principal knows the prefer-
ences of the agents3, we ask whether she4 can use delegation to obtain her most 
preferred outcomes from a set of agents who have preferences different from hers. 
The underlying idea is very simple. Suppose the organization must take decisions 
on a set of n interdependent policies P = {p1, p2,… , pn} where each policy pi can 
take, for simplicity, a finite set of values pi = {v1

i
, v2

i
,… , vh

i
} . The principal and 

the agents have complete orderings over all possible policy vectors and such 
orderings, in general, differ across individuals. Suppose now that the principal’s 
most preferred policy vector is v∗

1
, v∗

2
,… , v∗

n
 and that such a vector is not the most 

preferred policy by any agent. Nevertheless some agents may have preferences 
which are locally aligned with the principal’s, for instance one agent may prefer 
v∗
i
 as an option for the i-th policy either always or at least when the other elements 

of the vector have some specific values. Another agent may choose v∗
j
, v∗

k
, v∗

h
 in 

some circumstances, and so on and so forth. Thus, it may be possible for the prin-
cipal to partition5 the n policies into subsets and delegate each subset to a specific 
agent in order to exploit “local” preference alignments with each of them. Using 
this kind of “divide and conquer” strategy the principal may obtain from the 

3  For simplicity and mathematical tractability we make this extreme assumption that the principal per-
fectly knows the agents’ preferences and that the latter always act according to their individual prefer-
ences, i.e. if an agent prefers A to B he will always choose A. Thus we rule out the possibility that, 
alike strategic voting in social choice theory, an agent may strategically choose B although he prefers A 
because he realizes that by choosing B he will finally obtain a better outcome.
4  Conventionally we will use “she” for principal and “he” for agents.
5  For simplicity in this paper we consider only delegations which partition the set of policies, assigning 
each policy to one and only agent. In real organizations delegation is often non-partitional, with different 
agents or units taking decisions on the same policies. Actually such overlaps and ambiguities in delega-
tion can be an additional tool that the principal may use to get favourable outcomes, but we leave this 
easy extension of our model to future work.

ent in the sense that actions or changes of state in one unit may determine disruptions in other units (see 
also Marengo 2020 on this point). We will come back later in the paper on the relation between conflict 
and complexity.

Footnote 2 (continued)
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agents the policies she prefers, although none of agents fully shares her 
preferences.

It is worth stressing that this possibility and the properties we will discuss in 
this paper are strictly dependent on the assumption that the organization has to 
take multiple decisions. If, on the contrary, the organizational decision consisted 
of only one element everything we discuss in this paper would reduce to a trivial 
condition: either there exists one agent who has the same most preferred value for 
the unique policy as the principal and therefore the principal delegates the deci-
sion to him, or delegation alone will never allow the principal to obtain her most 
preferred outcome.

It also worth stressing that we do not put any restriction on individual preferences 
besides completeness and transitivity. In particular, we do not impose separability 
among preferences on individual policies, meaning that the preferred value of one 
policy may depend on the values of other policies. To be more precise, if for instance 
the principal’s most preferred policy vector is v∗

1
, v∗

2
,… , v∗

n
 , this does not imply that 

the principal must prefer v1, v2,… , v∗
i
, vn to v1, v2,… , vi, vn for every i and for all the 

values taken by the policies different from pi . In other words, there can be interde-
pendencies and non monotonicities in the preference orders, i.e. individual prefer-
ences may form complex and rugged landscape like Stuart Kauffman’s NK fitness 
landscapes (Kauffman 1993; Levinthal 1997). Such interdependencies are a source 
of conflict when subsets of policies are allocated to different agent. Suppose that one 
agent has chosen his most preferred values for the policies delegated to him given 
the current value for the policies not delegated to him. When other agents modify 
the latter, his choice might no longer be optimal and he may revise it. However this 
revision will, in general, generate changes also in the decision of the other agents, 
and so on and so forth. In other words, non separabilities will induce externalities 
among decisions: decisions of one agent will induce changes in the decisions of the 
other agents. Also this source of complexity is important in our framework because 
it implies that, for instance, the principal may exploit this conflict in order to obtain 
her preferred policies.

In this paper we introduce a graph based mathematical model that formalizes this 
idea and derives the main conditions under which the divide and conquer strategy 
enables the principal to obtain her preferred outcomes. We model a principal and a 
population of agents holding heterogeneous preferences over the set of vectors on n 
policies. We only require that such preferences be complete and transitive and put no 
other restriction. The principal does not take any decision directly but can only par-
tition the vector of policies and delegate decisions on each subset to a specific agent. 
Once this delegation structure has been put in place, the principal can no longer 
intervene and agents are free to decide on the policies allocated to them following 
their own individual preferences. Decisions by agents on the policies assigned to 
them can, given non-separabilities and externalities, determine an organizational 
equilibrium, i.e. a policy vector which is not modified by any agent because no agent 
can obtain a vector he prefers by changing the values of the policies allocated to 
him, or a cycle, i.e. a situation in which externalities among agent results in an end-
less repetition of a sequence of policy vectors. If they exist, organizational equilibria 
can be either global, if there exists a unique equilibrium which can be reached from 
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any initial policy vector, or local, if there are multiple equilibria and the initial con-
ditions determine which one(s) can be be reached.

We call “organizational structure” a partition of the set of policies together with 
an assignment of each subset to a specific agent. In Theorem 3.1 we give a necessary 
and sufficient condition for the existence of an organizational structure that makes 
a given policy vector, e.g. the one most preferred by the principal, an equilibrium 
for the organization. Then we introduce an algorithm, based on Theorem 3.1, which 
computes the probability for a local equilibrium both to exist and to be the princi-
pal’s optimum and we provide numerical results which show how the probability 
that this equilibrium exists and coincides with the principal’s most preferred out-
come depends on the number of policies, the number of alternatives for each policy, 
and the number of agents.

Finally, we discuss more in details the role of diversity among the principal and 
the agents. We introduce a notion of distance between two preference orderings and 
we suppose that the principal can hire agents who are “similar enough” to herself, 
i.e. whose preferences are within a maximum distance from hers.

Our model assumes that the principal is an optimal delegation engineer and has 
perfect knowledge of the preferences of agents. We do realize that such knowledge 
and rationality requirements are unrealistic and real decision makers are character-
ized on the contrary by limited rationality and limited knowledge. However, on the 
one hand, our assumption is no more at odds with reality than the perfect rationality 
assumption of for instance the standard principal-agent model, where the design of 
an optimal incentive compatible contract requires full knowledge of the agent’s util-
ity function. On the other hand, we consider this paper a first step which provides 
some limit properties of optimal delegation structures. In future papers we plan to 
investigate how boundedly rational principals can adaptively develop effective, if not 
optimal, delegation structures.

The paper is organized as follows. In Sect.  2 we introduce our notation and 
describe the model. In Sect.  3 we provide our main results in the form of Theo-
rem 3.1 and, in Sect. 4 we summarize the numerical results produced by an algo-
rithm based on such a theorem. Finally in Sect. 5 we introduce a definition of dis-
tance, and we give numerical results for the case in which the distance between 
principal and agents is fixed, then we compare the results of the fixed distance case 
with those of Sect. 4 with random distance. Finally, in Sect. 6 we discuss some limi-
tations of our approach and directions for future research.

2 � Definitions and structure of the model

2.1 � Preliminaries

In this subsection we introduce our notation and graph theoretic representation of 
individual preferences and organizational decisions.
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Let P = {p1,… , pn} be a bundle of policies on which an organization has to take 
decisions. The i-th policy can take mi values6, i.e.  pi ∈ {0, 1, 2,… ,mi − 1} with 
i = 1,… , n . A policy vector is an n-uple x = v1 ⋯ vn of values such that 0 ⩽ vi < mi . 
The set of all policy vectors will be denoted by X and its cardinality, 

∏n

i=1
mi , will be 

denoted by M.
Consider an organization composed by a principal Π and a set A = {ai}1≤i≤h 

of h agents. Each agent ai ∈ A is associated with a (possibly empty) subset 
di ∈ P(P) = {d ∣ d ⊆ P} of policies under his control. The principal instead does not 
control any policy. We call organizational structure a partition of the set policies 
into disjoint subsets together with an assignment of the decision rights on each such 
subset to a specific agent. More formally, an organizational structure � is a function

such that, if we denote by di ∶= �(ai) then

In general we assume that h ≥ n , i.e. that there are at least as many agents as poli-
cies, and therefore all organizational structure, including the one with the finest par-
tition into n singletons, are feasible.

We assume that the principal Π and each agent ai have complete, transitive and 
strict7 preference orders ≻Π and ≻i, i = 1,… , h on the set of policy vectors X and we 
put no additional restriction on such orders. In particular, we focus on principal and 
agents having different and conflicting orders. We will also assume that everybody’s 
choices are fully determined by her/his own preferences, i.e. that everybody acts 
selfishly but not strategically, therefore ruling out the possibility of choosing now a 
less preferred option in order to get a better outcome later, like in strategic voting in 
social choice theory. Thus, when asked to choose between two options, an agent will 
choose the one that ranks higher in his preference order.

We model preference orderings by means of graphs as follows. A total order ≻ on 
the set X defines a graph Y

≻
= (Y0,≻,Y1,≻) such that the set of nodes is Y0,≻ = X and 

the set of edges or arcs is

The couple (y, x) ∈ Y1,≻ means that the edge or arc is orientated from y to x. For the 
sake of simplicity, we will use the same symbol x for the nodes of Y

≻
 and (x, y) for 

its arcs. A cycle

� ∶ A ⟶ P(P)

(1)
h⋃
i=1

di = P with di ∩ dj = �,∀i ≠ j.

Y1,≻ = {(y, x) ∈ X × X ∣ x ≠ y and x ≻ y} ⊂ X × X .

6  These values do not have to be interpreted necessarily as numbers, but, more generally, as elements of 
a set of m

i
 alternatives. For instance a set of possible suppliers from which a component can be bought, a 

set of alternative R &D projects which could be undertaken, etc.
7  For the sake of simplicity, we consider only strict preferences, i.e. we consider only total orders on the 
set of policy vectors. This restriction is almost always unnecessary, but simplifies our presentation.
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in the graph Y
≻
 corresponds to a sequence of preferences

Note that the completeness and transitiveness assumptions on preferences imply that 
the graph Y

≻
 is connected, without cycles and each pair of nodes {x, y} is connected 

by at most one arc (see, for instance, Fig. 1 where the missing arcs can be obtained 
by transitivity).

Given an initial policy vector x ∈ X , an organizational structure � defines a tran-
sitive (i.e. without cycles) sub-graph Y(x,di)

 of the whole graph Y
≻i

 of ai ’s preferences 
for each agent ai with di = �(ai) . More precisely, the set of nodes Y0,(x,di)

 of this 
sub-graph contains x and all the policy vectors y ∈ X that differ from x only in the 
policies in di , i.e. if x = w1 ⋯wn then

An arc (x, y) is in Y1,(x,di)
 if and only if it is an arc in Y

≻i
 with nodes in Y0,(x,di)

.

Example 2.1  Let us consider an easy example given by a set of two policies 
P = {p1, p2} in which the first policy can take three values p1 ∈ {0, 1, 2} and the 
second one only two values p2 ∈ {0, 1} . The organization is composed of a principal 
Π and three agents {ai}1≤i≤3 with the following complete and transitive strict prefer-
ences ≻i:

The associated graphs {Y
≻i
}1≤i≤3 are reported in Fig. 1, where, for the sake of sim-

plicity, we draw only the necessary arcs since all missing ones can be easily obtained 

(x2, x1), (x3, x2),… , (x1, xh)

x1 ≻ x2 ≻ ⋯ ≻ xh ≻ x1.

y = v1 ⋯ vn ∈ Y0,(x,di)
iff vj = wj∀j such that pj ∉ di .

≻1 ∶ 01 ≻1 00 ≻1 10 ≻1 20 ≻1 21 ≻1 11,

≻2 ∶ 21 ≻2 11 ≻2 01 ≻2 00 ≻2 10 ≻2 20,

≻3 ∶ 00 ≻3 11 ≻3 01 ≻3 10 ≻3 20 ≻3 21.

Fig. 1   Graphs of transitive preferences for agents a1, a2 and a3
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by transitivity. For example, there is an arc, which we do not draw, connecting vec-
tor 21 to 01 in the graph Y

≻1
 , which is implied by the transitivity of ≻1.

Now, for example, the delegation structure d1 = {p1} , d2 = {p2} and d3 = � cor-
responds to considering the (disconnected) horizontal subgraph of a1 , i.e. the sub-
graph obtained by deleting for a1 all vertical arcs, because the delegation structure 
allows a1 to act only on the first policy item and therefore to move only horizontally. 
On the contrary, a2 can act only on the second policy, therefore he can operate on his 
subgraph including only the vertical arcs. Finally, since a3 is not delegated any deci-
sion, his graph is fully disconnected (see Fig. 2).

Let x ∈ X be a policy vector, � an organizational structure and ai an agent who 
controls the policies di = �(ai) . Hence by the transitivity of the graph Y0,(x,di)

 , sub-
graph of the transitive graph Y

≻i
 , it follows that there is one and only one node 

w ∈ Y0,(x,di)
 such that (y,w) ∈ Y1,(x,di)

 , i.e. w ≻i y , for any y ∈ Y0,(x,di)
, y ≠ w.8 The 

node w will be called the preferred neighbor of x for the agent ai and the organiza-
tional structure � and it will be denoted by pi(x,�) . Notice that the case pi(x,�) = x 
is possible and, in particular, we assume that pi(x,�) = x whenever di = �.

Example 2.2  Let us consider the same agents {a1, a2, a3} as in example 2.1 with the 
organizational structure � defined by d1 = {p1} , d2 = {p2} , d3 = � . We get (see 
Fig. 2):

p1(01,�) = 01, p1(11,�) = p1(21,�) = 01

p2(01,�) = 01, p2(11,�) = 11, p2(21,�) = 21

p3(x,�) = x ∀x ∈ X

Fig. 2   The sub-graphs corresponding to the agents a1 , a2 and a3 , if d1 = {p1} , d2 = {p2} and d3 = �

8  Such a node is usually called sink in graph theory.
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2.2 � The decision process

We can now describe the organizational decision process. A domination path 
DP(x, y,�) in an organizational structure � is a sequence of policy vectors

such that xi = pki (xi−1,�) for i = 1,… , s . In terms of graph theory a domination 
path DP(x, y,�) lives in the graph Y(x,y,�) obtained as the union of the graphs

where the union of graphs is the graph whose nodes are given by the union of the 
sets of nodes and whose arcs are given by the union of the sets of arcs. Of course 
the graph Y(x,y,�) is, in general, neither transitive nor complete, even when all graphs 
forming the union are both transitive and complete.

A policy vector y is said to be reachable from another vector x in the organiza-
tional structure � if there exists a domination path DP(x, y,�).

The domination path x0 → x1 → ⋯ → xs is said to end in xs if, given the organ-
izational structure, no agent will decide to modify any policy item in xs . It is said, 
instead, to reach a cycle if it enters a sequence

An agenda � for an organizational structure � is the order in which the agents are 
called to decide upon the policy items under their control, that is an ordered t-uple 
of indices (k1,… , kt) with t ≥ h such that {k1,… , kt} = {1,… , h} . In other words, 

1.	 All policy items must be considered, that is the set {k1,… , kt} has to be equal to 
{1,… , h} , and

2.	 The same policy item could be considered more than once, that is t ≥ h.

By definition of organizational structure, to state the order in which the agents 
decide is equivalent to order their policy items. The ordered t-uple of policy items 
� = (dk1 ,… , dkt ) is denoted by �

�
 . Note that repetitions of the agenda, in general, 

are allowed.
Let � = (k1,… , kt) be an agenda of an organizational structure � . A domina-

tion path in �

is said to be ordered along � if the order of the agents is given by � , i.e. if xi−1 → xi 
for the agent akq+1 where kq is the remainder of the division of i − 1 by t. Such a 
domination path will be denoted by DP(x, y,�

�
).

Example 2.3  Let us consider three agents {a1, a2, a3} with preferences as in Exam-
ple 2.1 and the organizational structure �′ defined by d1 = {p2} , d2 = {p1} , d3 = � 
(see Fig. 3). The domination path starting from the policy vector x = 21 ends in a cycle

x = x0 → x1 → ⋯ → xs = y

(2)Y(x,y,�) = Y(
x0,dk1

) ∪ Y(
x1,dk2

) ∪⋯ ∪ Y(xs−1,dks )
,

x1 → x2 → ⋯ → xh → x1 .

x = x0 → x1 → ⋯ → xs = y
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independently from the chosen agenda � . It is easy to prove that all domination paths 
starting from 21 contain the cycle

shown in Fig. 4. If we consider instead the organizational structure � of Example 2.2 
and we start from the policy vector x = 01 , we have pi(01,�) = 01 for i = 1, 2, 3 , 
and hence we get a domination path that ends in 01.

Actually, all domination paths in � starting from y = 21 end up in x = 01 , while 
all domination paths in �′ starting from y = 21 reach a cycle.

We can then give the following key definition. A local equilibrium for an organi-
zational structure � is a policy vector x ∈ X such that at least one domination path 

21 → 20 → 00 → 01 → 21

Y(21,d1)
∪ Y(20,d2)

∪ Y(00,d1)
∪ Y(01,d2)

Fig. 3   The sub-graphs corresponding to the agents a1 , a2 and a3 , if d1 = {p2} , d2 = {p1} , d3 = �

Fig. 4   Graph corresponding to the union Y(21,d1)
∪ Y(20,d2)

∪ Y(00,d1)
∪ Y(01,d2)

 for the organizational struc-
ture �′′′
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in � ends in it, i.e. pi(x,�) = x for each agent ai with i = 1,… , h . In general, more 
than one domination path ends in a local equilibrium and there may be more than 
one local equilibrium.

Example 2.4  The policy vector x = 01 in Example 2.2 is a local equilibrium for the 
organizational structure � . Indeed a domination path starting from x = 01 ends up in 
it. In Example 2.2 it is easy to verify that 01 is the only local equilibrium for � . On 
the contrary, the organizational structure �′ in Example 2.3 has no local equilibria.

Remark 2.5  Consider a domination path ordered along an agenda of an organiza-
tional structure. If the agenda is repeated over and over again, then the ordered dom-
ination path ends either in a local equilibrium or in a cycle. This is a consequence of 
the fact that the agenda � and the set of policy vectors X are both finite sets. Indeed a 
domination path is given, at any step, by a couple (xi, �kj ) which uniquely determines 
the subsequent node xi+1 . Since both X and � are finte sets, X × � is finite, and this 
implies that if the domination path doesn’t “stop” in a local equilibrium, it will even-
tually enter the same couple (xi, �kj ) again, giving rise to a cycle.

We can now describe the decision process, which proceeds along the following 
steps:

•	 Start from a status quo policy vector, i.e. a given x0 ∈ X.
•	 Take the first set dk1 of policy items in the agenda � , and look for the preferred 

neighbor of x0 for the agent ak1:

•	 If there is one, “move” to it;
•	 Otherwise “stay” in x0.

•	 Repeat for all policy items in the agenda.
•	 Repeat until either a local equilibrium or a cycle are encountered.

Hence a decision process gives rise to a domination path ordered along an agenda � , 
starting from a status quo x0 and ending either in a cycle or in a local equilibrium.

3 � Local equilibria

In this section we will give necessary and sufficient conditions for a policy vector to 
be a local equilibrium for at least one organizational structure when a set of agents is 
given. The question we are addressing is whether and under which conditions a prin-
cipal can obtain her own preferred policy vector by delegating decisions to agents 
holding any preference profile. In a sense we formalize a “divide and conquer” pro-
cess where, by properly dividing the decision making labour and properly allocating 
decisions to a set of agent, the principal can obtain her preferred outcome without 
using authority nor incentives, but letting agents free to decide on the policies allo-
cated to each of them.
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The following theorem states that x is a local equilibrium if and only if there 
exists a partition of the set of policies such that, for each subset of policies assigned 
to agent ai , x is a preferred neighbour for ai.

3.1 � Main theorem

In order to state the theorem, we first need to define, for each agent ai , i = 1,… , h , 
the following set of best policy assignments:

Of course this set will depend on the specific policy vector x under consideration.

Theorem 3.1  A policy vector x ∈ X is a local equilibrium for at least one organi-
zational structure � , if and only if there exists a set D = {d1,… , dh} such that 
(x, di) ∈ Ai for i = 1,… , h and

Proof  If there exists a set D = {d1,… , dh} with (x, di) ∈ Ai for i = 1,… , h such that

then we consider the organizational structure � such that �(ai) = di for i = 1,… , h . 
With respect to � the domination path (which does not depend on the agenda) start-
ing in x remains in x, which is therefore a local equilibrium.

Vice versa, if x is a local equilibrium for an organizational structure � (such that 
�(ai) = di for i = 1,… , h ) then pi(x,�) = x for i = 1,… , h , that is D = {d1,… , dh} 
is the required set. In fact, (x, di) ∈ Ai for i = 1,… , h and

	�  ◻

Example 3.2  In Example 2.1 the power set P(P) of the set of policies P is given by 
P(P) = {�, {p1}, {p2}, {p1, p2}} . So, for example, by definition of best policy pairs, 
we get that the set of the best policy pairs for the agent a1 will be given by

Hence, in particular, if �(a1) = d = � then p1(x,�) = x for any x ∈ X by definition. 
If �(a1) = d = {p1} then x = 00 and x = 01 are the only two nodes which satisfy 
p1(x,�) = x . This can be seen by looking at the upper left graph (the one related to 
a1 ) in Fig. 2. Analogously, looking at the upper left graph in Fig. 3 corresponding 

(3)Ai = {(x, d) ∈ X × P(P) ∣ pi(x,�) = x for all � s.t. �(ai) = d}.

h⋃
i=1

di = P with di ∩ dj = �,∀i ≠ j.

h⋃
i=1

di = P with di ∩ dj = �,∀i ≠ j,

h⋃
i=1

di = P with di ∩ dj = �,∀i ≠ j,

A1 = {(x, d) ∈ X × P(P) ∣ p1(x,�) = x for all � s.t. �(a1) = d}.
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to the case �(a1) = d = {p2} , we get that x = 01, x = 10 and x = 20 are the nodes 
which satisfy p1(x,�) = x . Finally if �(a1) = d = {p1, p2} then x = 01 is the only 
node such that p1(x,�) = x and we get:

Analogously for the agents a2 and a3 we get the following sets of best policy pairs:

Hence there are four policy vectors – 00, 01, 11, and 21 – that can be local equilibria 
for some organizational structure. In particular:

•	 01 is a local equilibrium for the organizational structures d1 = {p1, p2} , 
d2 = d3 = � and d1 = {p1} , d2 = {p2} , d3 = �;

•	 21 is a local equilibrium for d2 = {p1, p2} , d1 = d3 = �;
•	 00 is a local equilibrium for d3 = {p1, p2} , d1 = d2 = � and d1 = � , d2 = {p1} , 

d3 = {p2};
•	 11 is a local equilibrium for d1 = � , d2 = {p2}, d3 = {p1}.

It is also worth pointing out that 11 is a policy vector that is a local equilibrium but 
is not the preferred choice of any agent.

3.2 � The algorithm

We now describe an algorithm which finds all local equilibria for a given set of 
agents {a1,… , ah} and for different organizational structures. This algorithm is a 
straightforward application of Theorem 3.1. It goes through two main steps: 

Step A	� For i = 1,… , h , construct the set Ai.

Step B	� For each x ∈ X , consider the subsets 

 for i = 1,… , h , and search for h best policies assignment (x, d1), (x, d2),… , (x, dh) 
such that

•	 (x, di) ∈ Ai(x) for all i = 1,… , h,

A1 = {(00, �), (00, {p1}), (01, �), (01, {p1}), (01, {p2}), (01, {p1, p2}),

(10, �), (10, {p2}), (11, �), (20, �), (20, {p2}), (21, �)}.

A2 = {(00, �), (00, {p1}), (01, �), (01, {p2}), (10, �), (11, �),

(11, {p2}), (20, �), (21, �), (21, {p1}), (21, {p2}), (21, {p1, p2})},

A3 = {(00, �), (00, {p1}), (00, {p2}), (00, {p1, p2}), (01, �), (10, �),

(11, �), (11, {p1}), (11, {p2}), (20, �), (20, {p2}), (21, �)}.

Ai(x) = {(x, d) ∈ X × P(P) ∣ pi(x,�) = x for all � s.t. �(ai) = d} ⊂ Ai
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•	 {d1, d2,… , dh} satisfies (1).

	�  If we find such h best policies assignment, the policy vector x is a local 
equilibrium for the organizational structure � such that �(ai) = di ; oth-
erwise, x is not a local equilibrium for any organizational structure 
(Theorem 3.1).

Let us describe the two steps in details. Step  A consists of the following opera-
tions, which are repeated for i = 1,… , h : 

Step A1	� List all pairs (x, d) ∈ X × P(P) and construct a first version of Ai.

Step A2	� For each couple (x, y) ∈ X × X such that y ≻i x remove all pairs (x,  d) 
from Ai such that d contains all the policy items by which the policy vec-
tors x and y differ.

Step A3	� For each x ∈ X , the pairs (x, d) that remain after Step A2 are the elements 
of Ai(x).

Step B is recursive and, for each x ∈ X , repeatedly fixes one best policy assign-
ment (x, di) for each agent, finally ending up with {d1, d2,… , dh} . Let us describe 
the recursive step that depends on an integer i indexing the agents: 

Step B-Rec(1)	� For each pair (x, d1) ∈ A1(x) we fix it and go to the recursive 
Step B-Rec(2).

Step B-Rec(i)	� In the recursive step at level i (with 1 < i < h ), we suppose we 
have found (x, dj) ∈ Aj(x) for j = 1,… , i − 1 such that dj ∩ dj� = � 
if j ≠ j′ . For each pair (x, di) ∈ Ai(x) such that di ∩ dj = � for 
j = 1,… , i − 1 we fix it and go to the recursive Step B-Rec(i + 1).

Step B-Rec(h)	� We suppose we have found (x, dj) ∈ Aj(x) for j = 1,… , h − 1 such 
that dj ∩ dj� = � if j ≠ j′ . For each pair (x, dh) ∈ Ah(x) such that 
dh ∩ dj = � for j = 1,… , h − 1 we fix it.

 For each x ∈ X , we start from Step B-Rec(1), and we can end in two possible 
ways:
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•	 If a set {d1, d2,… , dh} such that 
⋃h

i=1
di = P is found, the policy vector x is a 

local equilibrium for the organizational structure � such that �(ai) = di (Theo-
rem 3.1);

•	 If Step  B-Rec(1) ends without finding any set {d1, d2,… , dh} such that ⋃h

i=1
di = P , x is not a local equilibrium for any organizational structure (Theo-

rem 3.1).

The time complexity of the algorithm is at most O(MO(h)h!) . For the sake of simplic-
ity, we have bound the complexity with lazy computations, but sharper ones would 
not improve the result. In order to compute the complexity let us start from Step A, 
which is the fastest one. The three Steps A1, A2 and A2 take O(M2n) , O(M2n) and 
O(1) time, respectively, which add up to O(M2 logM) time (because 2n ⩽ M ). Since 
the three Steps must be repeated h times, Step A takes O(hM2 logM) time. Instead, 
Step B is recursive. Step  B-Rec(1) takes O(23n) time, because Ai(x) may have at 
most 2n elements, it calls Step B-Rec(2) at most 2n times, and must be repeated 2n 
times (once for each x ∈ X ). Step  B-Rec(i) for 2 ⩽ i ⩽ h − 1 takes O(22nn(i − 1)) 
time because the check di ∩ dj = � for j = 1,… , i − 1 takes O(n(i − 1)) time, for 
each (x, di) ∈ Ai(x) , and it calls Step B-Rec(i + 1) at most 2n times. Step B-Rec(h) 
takes O(2nn(h − 1)) time because the check dh ∩ dj = � for j = 1,… , h − 1 takes 
O(n(h − 1)) time, for each (x, dh) ∈ Ah(x) . The times of Steps B-Rec(∗) multiply to 
O(M2h(log2 M)h−1(h − 1)!) , indeed we have

The algorithm can be useful in real life only when very few agents and policy vec-
tors are involved in the decision. Indeed, apart from the factorial time which makes 
the algorithm useless when many agents are involved, the algorithm is useless also 
when many policy vectors are involved in the decision, because, in order to use the 
algorithm, it is necessary to know the preferences of all agents (i.e., the whole ≻i for 
every i = 1,… , h)—which is also unusual in real life.

4 � Numerical results

In this section we present some numerical results obtained with the computer pro-
gram FLEOSStat, written by the first author of this paper, which implements the 
algorithm described in the previous section. The computer code and a more detailed 
description of its functionalities, together with instructions on how to run the pro-
gram are   freely available.9 The program takes as inputs the number of values of 

23n

(
h−1∏
i=2

22nn(i − 1)

)
2nn(h − 1) ⩽ M2h(log2 M)h−1(h − 1)!

9  The reader can find the computer code along with a detailed description in the web page: http://​www.​
dm.​unipi.​it/​~amend​ola/​files/​softw​are/​fleos​stat/.

http://www.dm.unipi.it/%7eamendola/files/software/fleosstat/
http://www.dm.unipi.it/%7eamendola/files/software/fleosstat/
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each policy, the number of random agents, and the number of repetitions, and it 
works as follows:

•	 It repeatedly

•	 Creates a random set of agents,
•	 Computes the number of local equilibria;

•	 It collects and outputs the following results:

•	 The number of local equilibria,
•	 The percentage of cases where a local equilibrium is equal to the principal’s 

most preferred policy vector.

In the following subsections we summarize the main numerical results for binary 
and non binary cases.

4.1 � Binary policies

We start by comparing two cases where we increase the number of agents from 2 to 
8, observing the behaviour of the results listed above when we have 6, 7 and 8 binary 
policies. We consider two different scenarios: in the first scenario the principal is 
free to choose any organizational structure, including those in which some agent 
are left idle and not delegated any decision. Results on this scenario are reported in 
Figs. 5a and 6a. In the second scenario instead the principal must delegate at least 
one policy to each agent and none of the latter may be left idle. Results on this sec-
ond scenario are reported in Figs. 5b and 6b.

In Fig. 5 we report the number of local organizational equilibria as the number 
of agents increases. While in the case in which each agent must be assigned at least 
one policy (panel b) we have an inverted U-shaped curve, in the case in which the 

Fig. 5   Average number of local equilibria when we have 6(thin, square), 7(dashed, star) or 8(thick, trian-
gle) binary policies. Some agents may be idle in a whereas all agent must be active in b 
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Principal has the possibility to leave some agents idle, we observe, as expected, a uni-
form increase in the number of local equilibria as we increase the number of agents.

Let us now study the probability with which the principal may get by delega-
tion her most preferred policy vector. Results are reported in Fig. 6a for the case 
in which some agents can remain idle and in Fig. 6b when instead all agents must 
be assigned at least one policy. In the former case we observe a steep increase 
of such a probability. In the latter case instead we observe an inverted U-shaped 
curve, where the percentage rises until the number of agents is slightly over half 
the number of policies and then decreases as we approach the maximum number 
of agents. We also see that, in the case of Fig. 6a, the principal will be able to 
find a local equilibrium equal to her preferred choice almost 100% of the times 
provided she has a large enough number of agents. This is not true in the case of 
Fig. 6b, where her best chances lie at most in the 40–50% range with a number of 
agents close to half of the number of policies to be assigned.

4.2 � Probability in the binary case

Similarity between Figs. 5 and 6 suggests that the probability for the Principal to 
get her preferred outcome only depends on the number of local equilibria. Indeed 
the probability for the principal’s preferred policy vector to be a local equilib-
rium for the organization equals the probability that a given policy vector x – the 
principal’s best – is a local equilibrium for some organizational structure �x . 
Let us denote by xi the vector which differs from x only for the policy i, i.e. if 
x = v1 … vi … vn then xi = v1 … vi … vn where vi = 0 if vi = 1, or vi = 1 if vi = 0. In 
order for x to be a local equilibrium for an organization, there must exist at least 
one agent who prefers x over xi for each policy pi . Let Li

x
 denote the event that 

there exists an agent a ∈ A that prefers x to xi , we are interested in computing 

Fig. 6   Percentage of cases in which the principal can obtain her own preferred policy vector. Cases 
with 6(thin, square), 7(dashed, star) or 8(thick, triangle) binary policies. Some agents may be idle in a 
whereas all agent must be active in b 
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P(Li
x
) . In order to do this, let us note that the probability that x is preferred to xi by 

one agent is 1
2
 . This means that the probability of the complement, xi is preferred 

to x, is also 1
2
 . It follows that the probability that xi is preferred to x for all agents 

is ( 1
2
)h since we have h agents whose preferences are independent. It follows that

Hence, if Lx is the event in which for every pi there exists an agent who prefers x 
over xi , then

which increases as the number of agents h increases, rapidly approaching 1. By 
the previous remark, we assume that the probability that x is a local equilibrium 
when we have n policies and h agents is compatible with the probability P(Lx) 
conditioned on the fact that there exists at least one organization satisfying Theo-
rem 3.1 among the ones which assign policy pi to one of the agents for whom x is 
preferred to xi . That is, if �x is the event that such an organization exists, if some 
agents may not be assigned a policy and the number of agents h is sufficiently large, 
then P(�x) ≃ P(Lx) . Indeed an organization �x such that di = {pi} and (x, di) ∈ Ai , 
i = 1,… , n satisfies the conditions of Theorem  3.1 and it exists with probabil-
ity 

∏n−1

i=0
(1 −

1

2h−i
) which goes rapidly to 1 if we increase the number of agents h 

and keep the  number of policies n fixed.
If instead all agents must be assigned at least one policy then only organizations �x 

for which �x(ai) ≠ � for any agent ai in A are admissible. Since there are 
(
n

h

)
 ways to 

assign n policies to the h agents, that is 
(
n

h

)
 admissible organizations among nh possi-

ble organizations, then P(�x) ∼

⎛⎜⎜⎝
n

h

⎞⎟⎟⎠
nh

⋅ P(Lx) and the final probability follows 

⎛⎜⎜⎝
n

h

⎞⎟⎟⎠
nh

 
when n grows since P(Lx) rapidly goes to 1.

4.3 � Non binary polices

In this case, we look at the effect that increasing the number of alternatives for each policy 
has on the results. Let us for instance consider the case with four agents. Figure 7 shows 
that, regardless of whether agents must be assigned a policy or not, increasing the number 
of alternatives determines a fall in the percentage of cases with a local equilibrium equal 
to the principal’s optimum. We also see that, in line with the previous results, imposing 
that all agents must be assigned at least one policy sharply decreases this percentage.

To conclude, the principal’s possibilities to obtain her best preferred policy vector are 
higher when the number (and therefore the diversity) of agents increases, the number of 
alternatives for each policy is small, and some agents can be left idle without any deci-
sion assigned to them.

P
(
Li
x

)
= 1 −

1

2h
.

P(Lx) =

n∏
i=1

(
1 −

1

2h

)
=
(
1 −

1

2h

)n
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5 � Choosing agents of your own kind

In the previous sections we have assumed that the principal must employ agents with 
random and therefore potentially very diverse preferences. In this section instead we 
investigate the case in which the principal can select agents whose preferences are 
relatively similar to hers. How similar do the agents’ preferences have to be to the 
principal’s, and how does this similarity affect the probability that she gets her most 
preferred policy implemented? In order to investigate these questions, we must first 
define a notion of distance between preferences.

For the sake of simplicity in this section we focus only on the case in which all 
agents must be assigned at least one policy, which is, as we showed in the previous 
sections, the case in which it is harder for the principal to have her own objectives 
pursued.

Given two systems ≻1 and ≻2 of transitive and strict preferences on X, i.e. two 
total orders on X , we define the distance between ≻1 and ≻2 as the minimum number 
of contiguous exchanges which must be performed on one order to make it equal 
to the other. For example, the two orders 1 ≻1 2 ≻1 3 ≻1 4 and 3 ≻2 1 ≻2 2 ≻2 4 
differ by two contiguous exchanges,10 and therefore the distance between them is 
2. This distance is known as the Kendall � rank distance or bubble-sort distance 
(named after the bubble-sort algorithm) and is widely used in statistics to measure, 
for instance, rank correlation.

In terms of the graphs associated to the two total orders ≻1 and ≻2 , each exchange 
corresponds to inverting the direction of one arc.

Fig. 7   The effect on the percentage of cases with a local equilibrium equal to the principal’s optimum as 
we change policy size with 4 agents

10  Starting e.g. from 1 ≻1 2 ≻1 3 ≻1 4 we can exchange 2 with 3 and obtain 1 ≻1 3 ≻1 2 ≻1 4 and then 
exchange 1 with 3 to obtain the same order of ≻2.
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We chose Kendall’s � rank as our notion of distance because it seems plausible in 
our framework. Indeed it is reasonable to assume that a principal with preferences 
1 ≻ 2 ≻ 3 ≻ 4 will perceive someone with preferences 3 ≻ 1 ≻ 2 ≻ 4 as closer than 
someone with preferences 4 ≻ 3 ≻ 2 ≻ 1 . Of course this choice remains largely arbi-
trary and different notions of distance could be used.

If we want to consider only agents whose distance from the principal is at most 
m, then for each agent we take a random integer d with 0 ⩽ d ⩽ m and generate his 
preferences by performing d random contiguous exchanges on the principal’s prefer-
ences (avoiding exchanges that simply undo previous ones).

Let us now look at the effect that fixing a maximum distance has on the probabil-
ity for the principal to get her most preferred policy vector as a local equilibrium for 
the organization. An example is reported in Fig. 8a, that presents the case in which 
five policies must be allocated to a number of agents ranging from 2 to 5 and each 
agent has a maximum distance from the principal which is reported on the horizon-
tal axis as a percentage of the maximum possible distance (which is 10296). The 
five policies are a mixture of binary and non-binary with 2 binary, 2 ternary and 1 of 
size 4. Obviously the percentage of cases in which the organization has a local equi-
librium equal to the principal’s optimum approaches 100 when the distance between 
principal and agents goes to zero and quickly drops when this distance increases, 
going to 0 when the distance reaches its maximum. It is however worth pointing out 
that this decrease is steeper the lower the number of agents. For instance if we take a 
distance equal to 1/4 of its maximum, the principal can get her best preferred policy 
vector only about 40% of the cases if she employs 2 agents and 80% of the cases if 
she employs 5 agents. Once again, number and therefore diversity of agents strongly 
increases this probability.

Another example is reported in Fig. 8b, with seven binary policies to be allocated 
to a number of agents ranging from 2 to 7. Here the difference between the case with 
only 2 agents and the one with one agent for all the policies is even sharper. With a 
distance of 1/2 of its maximum, the principal can get her best preferred policy vector 

Fig. 8   Percentage of cases in which the organization has a local equilibrium equal to the principal’s opti-
mum as a function of the maximum distance between the principal’s and the agents’ orders
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only about 23% of the cases if she employs 2 agents and 75% of the cases if she 
employs 7 agents.

6 � Conclusions

In this paper we have presented a graph-theoretic model of delegation in an organi-
zation that is called to take decisions on several interdependent policies. In our 
model the principal does not take any decision directly but can only partition the set 
of decisions and allocate each part to a different agent. We have discussed how and 
under which conditions this “divide-and-conquer” strategy may allow the principal 
to obtain from the agents the decisions she prefers. We have shown that having a 
relatively large set of diverse agents increases the possibilities for the principal to 
successfully apply this strategy, and showed that diversity among agents plays a key 
role.

This paper is only a rather preliminary investigation and our model is based on a 
couple of assumptions which are rather unrealistic and should be relaxed in future 
work. First, we suppose that the principal can be an optimal engineer of delegation, 
meaning that she knows the preferences of every agent and can therefore optimally 
allocate decisions to them. We do acknowledge that this assumption is far from 
being realistic and strongly limits the applicability of our approach. However we 
believe that our model offers a rather original perspective on the use of delegation 
inside organization, which could fruitfully complement existing theories and empiri-
cal works.

The standard principal-agent model takes delegation as the source of agency 
problems. In so far as the principal must delegate some actions or decisions to an 
agent and the latter cannot be perfectly monitored, incentive contracts must be 
designed to motivate the agent to pursue the organizational goals. However we know 
that in the presence of uncertainty and information asymmetries, agency costs and 
inefficient contracts are the norm. The perspective we offer here is that delegation 
could on the contrary mitigate the need of incentive contracts by partly (if not opti-
mally as discussed in our model) aligning the agents’ decisions with the principal’s 
goals. This—we argue—is a feature which emerges when the object of delegation 
are sets of interdependent decisions, and the principal can delegate specific subsets 
thereof.

Indeed the type of optimal delegation which we investigate in this paper requires 
that the principal has   perfect knowledge of the agents’ preferences. A possible 
way to relax this unrealistic assumption is to assume that the principal learns the 
preferences of the agents by observing their behaviour and modifies adaptively the 
organizational structure as a consequence of learning. In such a model the organiza-
tional structure would have a double role: sampling and learning the preferences and 
behaviours of the agents and getting appropriate decision from them, similarly to 
what we find in exploration versus exploitation models (March 1991).

Second, we have assumed that the agents’ preferences are fixed and that their 
choices strictly reflect such preferences, without any possibility of strategic behav-
iour and strategic misrepresentation of one’s preferences. Both phenomena are 
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indeed very common in real organizations, and indeed organizations can partly 
shape and modify the preferences of their members. Also in this case, without 
resorting to a game-theoretic model with fully rational agents, an agent-based model 
with boundedly rational and adaptive agents who are capable of limited and myopic 
strategizing could provide valuable insight.

Finally, we considered here the engineering of delegation as an alternative to incen-
tives and developed a model in which the principal can only act on delegation but not on 
incentives. Indeed, delegation and incentives could complement each other and incen-
tives could be used to support delegation and to compensate for sub-optimal delegation 
structures which may emerge from the principal’s imperfect knowledge of the agents’ 
preferences. Models which study the relations between delegation and incentives do 
already exist (Bester and Krahmer, 2008, e.g.), but our perspective could extend them 
to complex sets of interdependent decisions that typically characterize real organiza-
tion. We plan to pursue this line of research in the near future.
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