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Abstract
In this paper, we present a network manipulation algorithm based on an alternating 
minimization scheme from Nesterov (Soft Comput 1–12, 2020). In our context, the 
alternative process mimics the natural behavior of agents and organizations operat-
ing on a network. By selecting starting distributions, the organizations determine the 
short-term dynamics of the network. While choosing an organization in accordance 
with their manipulation goals, agents are prone to errors. This rational inattentive 
behavior leads to discrete choice probabilities. We extend the analysis of our algo-
rithm to the inexact case, where the corresponding subproblems can only be solved 
with numerical inaccuracies. The parameters reflecting the imperfect behavior of 
agents and the credibility of organizations, as well as the condition number of the 
network transition matrix have a significant impact on the convergence of our algo-
rithm. Namely, they turn out not only to improve the rate of convergence, but also to 
reduce the accumulated errors. From the mathematical perspective, this is due to the 
induced strong convexity of an appropriate potential function.
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1  Introduction

Networks naturally occur in many areas such as economics, computer science, 
chemistry or biology. A common way to model scenarios within networks is to use 
Markov chains. For a finite state space, a transition matrix describes the structure 
of changes on the chain’s states, see e.g. Gagniuc (2017). Usually, the iterative pro-
cess of repeated transitions over the states provides a stationary distribution. How-
ever, if the considered time horizon is short, a question arises on how to efficiently 
manipulate the distribution of information within the network. As an obvious choice 
for manipulation, each agent may start with an initial distribution and spread the 
information by communicating with the neighbors. But, since the own manipulation 
power is often limited, it is quite reasonable for an agent to engage intermediary 
organizations instead. This could be due to the restricted access to the parts of the 
network, revealing the manipulation interests too apparently, or due to the lack of 
knowledge about the network structure. Possible examples include: 

Influencers	� Companies, who want to credibly advertise their products or 
services via social media channels, pay influencers on social 
media platforms. They act as a part of the network and spread 
information on the products or services.

Search engines	� Web site owners try to increase the visibility of their web 
sites. In order to find proper content, most of the Internet 
users enter a query into a web search engine. Thus, these 
query results strongly influence the short term behavior of the 
users.

Conspiracy theory	� Agents try to spread false information for different interests. 
In order to spread fake news, agents have to rely on differ-
ent distribution channels, such as groups in social media net-
works or Internet blogs.

 Note that two of our examples are related to the manipulation of information in a 
social network. There is a growing literature concerning this topic, see Acemoglu 
and Ozdaglar (2011) for an overview. Most of the models describe the update of 
opinions or beliefs, see e. g. DeGroot (1974), which is done according to a convex 
combination of other network members’ opinions. Applying traditional techniques 
from the analysis of Markov chains, the formation of a consensus is examined. In 
these approaches, manipulation is modeled by modifying the transition matrix, e. g. 
introducing randomness Acemoglu and Ozdaglar (2011). Förster et al. (2016) stud-
ied manipulation in a model of opinion formation. There, the weights of the transi-
tion matrices can be changed by agents, while all starting distributions are fixed. 
Our model differs from those in the existing literature, since we examine how the 
information regarding a topic is distributed among network participants through 
intermediaries. Loosely speaking, we analyze who knows how much and how this 
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information state can be efficiently manipulated by engaging intermediaries. As 
mentioned by Acemoglu and Ozdaglar (2011), one central component of opinion 
formation is how agents update their prior beliefs based on new information. In this 
paper, we also contribute to the opinion formation, because we investigate a way to 
manipulate the acquirement of information by employing the network of information 
sources. Our goal is not to learn the complete structure of the network, for which 
usually hidden Markov models are applied, see e.  g. Yang et  al. (1997). Instead, 
organizations should be able to select a starting distribution aiming to arrive at a 
certain information state after a number of iterations. Agents are choosing among 
the intermediary organizations to boost manipulation. This is at the core of our net-
work manipulation algorithm. Note that a similar problem has been analyzed by 
Lindqvist (1977), where the author applies decision-theoretic techniques to observe 
a state at a time and obtain information about the initial state.

Let us comment on the mathematics behind the proposed network manipulation algo-
rithm. It is motivated by Nesterov (2020) where a new technique for soft clustering is 
introduced. For this, voters and political parties alternately solve their subproblems, yield-
ing an alternating minimization scheme. The behavior of voters turns out to be in accord-
ance with the well known multinomial logit model from discrete choice theory. Namely, 
the voters choose rationally among the parties, but are prone to random errors, see e. g. 
Anderson et  al. (1992). The parties update their political positions depending on how 
many voters they attract. Overall, the resulting soft clustering is given in terms of prob-
abilities from the multinomial logit model. In this paper, we generalize the idea suggested 
in Nesterov (2020) to a broader class of discrete choice probabilities. This is done by pre-
senting a network manipulation model based on alternating steps performed by agents 
and organizations. Agents try to manipulate a network by choosing intermediary organ-
izations for helping in that. In order to select among the organizations, agents observe 
which of them better manipulate the network in comparison to agents’ goals. While doing 
so, agents are prone to random errors, which lead to choice probabilities following certain 
discrete choice models examined in our previous paper Müller et al. (2021a). Altogether, 
we show how the alternating minimization scheme introduced by Nesterov (2020) can 
be applied for network manipulation. Additionally, we present an inexact version of the 
alternating minimization scheme. Inexactness is due to the fact that the subproblems of 
agents and/or organizations may not be solved exactly and may suffer from numerical 
inaccuracies. Overall, we conclude that the agents’ imperfect behavior and organizations’ 
conservatism in profit maximization reduce the accumulated errors.

Notation In this paper, we mainly focus on subspaces of ℝn and ℝm×n , where ℝn 
is the space of n-dimensional column vectors

and ℝm×n denotes the linear space of (m × n)-matrices. We denote by ej ∈ ℝ
n the j-th 

coordinate vector of ℝn and write e for the vector of an appropriate dimension whose 
components are equal to one. By ℝn

+
 we denote the set of all vectors with nonnega-

tive components and notation �n is used for the standard simplex

x =
(
x(1),… , x(n)

)T
,
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We use the norms for x ∈ ℝ
n:

For x, s ∈ ℝ
n we use the standard scalar product:

For matrices A,B ∈ ℝ
m×n the inner product is defined via the trace:

A function F ∶ Q → ℝ is called �-strongly convex on a convex and closed set 
Q ⊂ ℝ

n w.r.t. a norm ‖ ⋅ ‖ if for all x, y ∈ Q and � ∈ [0, 1] it holds:

The positive constant � is called the convexity parameter of F. If � = 0 , we call F 
convex. A function � is �-strongly concave if −� is �-strongly convex. For a convex 
function F ∶ Q → ℝ the set �F(x) represents its subdifferential at x ∈ Q , i.e.

Its convex conjugate is

where s ∈ Rn is a vector of dual variables. We denote by ∇F(x) the gradient of a dif-
ferentiable function F at x.

2 � Manipulation model

Let us introduce our model in order to later construct a manipulation algorithm 
based on interaction within a network.

�n =

{
x ∈ ℝ

n
+
∶

n∑
i=1

x(i) = 1

}
.

‖x‖2 =
�

n�
i=1

x(i)2

� 1

2

, ‖x‖1 =
n�
i=1

���x
(i)���, ‖x‖∞ = max

i=1,…,n

���x
(i)���.

⟨x, s⟩ =
n�
i=1

x(i)s(i).

⟨A,B⟩ = Tr (AT
⋅ B).

F(�x + (1 − �)y) ≤ �F(x) + (1 − �)F(y) − �(1 − �) ⋅
�

2
‖x − y‖2.

�F(x) = {g ∈ ℝ
n ∶ F(y) ≥ F(x) + ⟨g, y − x⟩ for all y ∈ Q}.

F∗(s) = sup
x∈ℝn

{⟨x, s⟩ − F(x)},
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2.1 � Interaction network

A central aspect in our model is a network with n nodes. The structure of this net-
work describes how nodes interact among each other, e. g. how persons receive and 
exchange information. Thereby, a link from node j to i represents a connection. In 
the context of an information network, such a link would depict that person i 
acquires information from person j. We summarize the data in a transition matrix 
M =

(
Mij

)n
i,j=1

 , where Mij denotes the transition probability of node j to node i. 
Hence, the following holds:

M is a column stochastic matrix, i.e. M ≥ 0, eT ⋅M = eT . Our model describes the 
process of information acquirement rather than the formation of opinions as e. g. in 
Förster et al. (2016). We are interested in a few periods of interactions, thus, we take 
the transition matrix as fixed. The interaction causes different states of the network, 
based on the connections of its nodes. The state of a network can be represented 
as an element of the standard simplex in ℝn dependent on time variable. We call a 
vector x(t) ∈ �n a state of a network at time t. Such a state reflects the value each 
node possesses after an interaction with other nodes. This could be for example the 
amount of information a person possesses in relation to the others or the market 
share of a company.

The dynamics of interaction can be described by an iterative process. Starting 
with a vector x(0) ∈ �n , the nodes interact repeatedly with each other. Thus, the iter-
ative process is given by

Obviously, all x(t)’s generated according to this process are elements of �n . Our idea 
is closely related to the concept of network rankings, such as the famous PageR-
ank from Page et  al. (1999). However, we focus on a limited, mostly small num-
ber, of interaction periods. Within an information network, persons would typically 
exchange information for a few periods, before they make a decision. This short 
term behavior endows the starting vector x(0) ∈ �n with importance. For the sake of 
brevity, we drop the time index by writing x = x(0).

2.2 � Agents

Let us assume that agents want to manipulate the resulting state of a network in favor 
of their own interests. Though they aspire certain network states, agents face some 
challenges by trying to manipulate a network. Often, they do not have knowledge of 
the network structure. Additionally, there are many situations, where the agents can’t 
participate in the network because they cannot connect to a node without reveal-
ing their intentions, e.  g. companies cannot credibly advertise their products by 

n∑
i=1

Mij = 1 for j = 1,… , n.

(1)x(t) = M ⋅ x(t − 1) = … = Mt
⋅ x(0).
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themselves. There might also be networks, where an agent could interact in, but is 
restricted to start with a fixed vector. In particular, if the information is just spread 
uniformly. Instead, agents could instruct organizations to manipulate the interaction 
in order to reach an aspired state of the network. The organizations often have more 
information or at least experience about the structure of a network. In fact, they 
could even operate it. The agents choose among K organizations, where each organi-
zation provides an observable utility u(k) . This discrete choice behavior we describe 
by means of the so-called additive random utility models. The additive decomposi-
tion of utility goes back to psychological experiments accomplished in the 1920’s 
by Thurstone (1927). A formal description of this framework has been first intro-
duced in an economic context by McFadden (1978), where rational decision-makers 
choose from a finite set of mutually exclusive alternatives {1,… ,K} . Although the 
decision rule follows a rational behavior, agents are prone to random errors. These 
random errors describe decision-affecting features which cannot be observed. Each 
alternative k = 1,… ,K provides the utility

where u(k) ∈ ℝ is the deterministic utility part of the k-th alternative and �(k) is its 
stochastic error. We use the following notation for the vectors of deterministic utili-
ties and of random utilities, respectively:

The probabilistic framework yields choice probabilities for each alternative:

As the consumers behave rationally, their surplus is given by the expected maximum 
utility of their decision:

It is well known that the surplus function is convex, see e.g. Anderson et al. (1992). 
Additionally we make a standard assumption concerning the distribution of random 
errors.

Assumption 1  The random vector � follows a joint distribution with zero mean that 
is absolutely continuous with respect to the Lebesgue measure and fully supported 
on ℝK.

We stress that the zero mean part of Assumption 1 is not restrictive and could 
be replaced by a finite mean assumption. By adding constants to the deterministic 
utilities u, it can be achieved that the random vector � has zero mean, see e. g. Train 
(2009).

u(k) + �(k),

u =
(
u(1),… , u(K)

)T
, � =

(
�(1),… , �(K)

)T
.

(2)p(k) = ℙ

(
u(k) + �(k) = max

1≤m≤K
u(m) + �(m)

)
, k = 1,… ,K.

(3)E(u) = ��

(
max
1≤k≤K

u(k) + �(k)
)
.
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Let gk,m denote the density function of differences �(m) − �(k) , k ≠ m of random 
errors. Any point z̄k,m ∈ ℝ which maximizes the density function gk,m is called a 
mode of the random variable �(m) − �(k).

Assumption 2  The differences �(k) − �(m) of random errors have finite modes for all 
k ≠ m.

Assumption 1 guarantees that no ties in occur in (3), which provides differenti-
ability of the surplus function. Further, the gradient of E corresponds to the vector 
of choice probabilities, which is known as the Williams-Daly-Zachary theorem, see 
e.g. McFadden (1978), i.e.

Hence, each component of the gradient of E yields the probability that alternative k 
provides the maximum utility among all alternatives.

Another equivalent representation of choice probabilities can be obtained by 
means of the convex conjugate of the surplus function. Note that the convex conju-
gate of E is given by the function E∗ ∶ ℝ

K
→ ℝ ∪ {∞} , defined by:

where p =
(
p(1),… , p(K)

)T is the vector of dual variables. In view of conjugate dual-
ity, the vector of choice probabilities can be derived from an optimization problem 
of rational inattention, see e.  g. Fosgerau et  al. (2020) and Müller et  al. (2021a). 
Indeed, it has been shown that under Assumption 2 the vector of choice probabilities 
p is the unique solution of

Now, we assume that there are N agents trying to manipulate the network. Each 
agent i has an aspired state of network which we denote by vi ∈ �n . In order to reach 
the aspired state, agents can choose among K organizations. The k-th organization 
is able to manipulate the interaction dynamics in the network, which yields at time t 
a state of a network xk(t) ∈ �n, k = 1,… ,K . In general agents prefer organizations 
which provide a network state in line with the states they desire such as an aspired 
market shares distribution or state of information. In order to assess the outcome of 
a manipulation, any agent i has to compare K distances, i.e.

respectively

Note that (6) provides a way for agent i to observe the utility of choosing the k-th 
organization. The network state at time t is observable, so any agent is able to check, 

(4)
�E

�u(k)
= p(k), k = 1,… ,K.

E∗(p) = sup
u∈ℝK

{⟨p, u⟩ − E(u)},

(5)max
p∈�K

{⟨u, p⟩ − E∗(p)}.

‖vi − xk(t)‖2, k = 1,… ,K,

(6)‖vi −Mt
⋅ xk‖2, k = 1,… ,K.
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if an organization has manipulated the network satisfactorily. Let us put all the states 
in a matrix, which yields a way to summarize all the states of a network at time t in 
one variable, i.e.

The matrix above can also be expressed in terms of the starting vectors, by defining

which enables us to write

We define a vector valued function gi ∶ �K
n
→ ℝ

K
+

 for any agent i, which stores all 
these distances of the i-th agent and, hence, depends on a matrix X as input variable:

We write in matrix form:

In view of additive random utility models, gi(⋅) provides a way to characterize the 
observable utility ui by setting

Hence, the vector of the i-th agent choice probabilities has entries

Equivalently, pi(X) solves the following rational inattention problem:

Let us stack the choice probabilities of all the agents into a matrix and call it the 
choice matrix:

Similarly to the choice matrix, we write P ∈ �N
K

 for any matrix of probability vec-
tors, i.e. P =

(
p1,… , pN

)
 with pi ∈ �K , i = 1,… ,N.

2.3 � Organizations

Let us describe the behavior of advertising organizations. Their goal is to attract 
agents as clients by providing them with additional manipulation power. This is 
done by choosing an appropriate starting distribution, thus, the communication 

X(t) =
(
x1(t),… , xK(t)

)
∈ �K

n
.

X =
(
x1,… , xK

)
∈ �K

n
,

(7)X(t) = Mt
⋅ X.

gi(X) =
�‖vi −Mt

⋅ x1‖2,… , ‖vi −Mt
⋅ xK‖2

�T
, i = 1,… ,N.

G(X) =
(
g1(X),… , gN(X)

)
∈ ℝ

K×N .

ui = −gi(X), i = 1,… ,N.

p
(k)

i
(X) = ℙ

(
−g

(k)

i
(X) + �

(k)

i
= max

1≤m≤K
−g

(m)

i
(X) + �

(m)

i

)
, k = 1,… ,K.

(8)min
p∈�K

⟨gi(X), p⟩ + E∗
i
(p).

(9)P(X) =
(
p1(X),… , pN(X)

)
∈ �N

K
.
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process is initialized by organizations. By strategic decisions, such as substantial 
alignment, design, product placements or personal relations, or by direct deci-
sions, such as ranking of a website as result of a certain query or advertising 
products directly on a marketplace, the organizations determine these vectors, 
which reflect a network state before interaction starts.

In order to attract the i-th agent with aspired state vi , the k-th organization 
selects a starting distribution xk ∈ �n such that ‖‖vi −Mt

⋅ xk
‖‖2 becomes small. The 

organization’s goal is to acquire as many agents as possible by simultaneously 
satisfying the corresponding aspired states. However, the agents are not neces-
sarily equally important for the organization. Instead, the organization primary 
wants to please agents, who already prefer the organization compared to other 
competitors. Let us state these considerations in a formal way. An organization k 
observes to which extent the agents choose it, i.e. quantified by choice probabili-
ties p(k)

i
 , i = 1,… ,N . Thus, the k-th organization measures its performance by the 

following objective:

Yet, an organization’s choice of the manipulation distribution not only depends on 
the agents’ aspired states, but also on its own objectives. This reflects, that an organ-
ization might also aspire a certain state of the network in order to gain profits from 
the network participants. Therefore, we introduce a payoff function for organization 
k, which depends on its caused state of manipulation:

Let us illustrate by examples how a network state could affect the payoff of the k-
th organization. Groups in social media platforms might avoid sharing information 
with persons who have contrary opinions, such that no arguments against their theo-
ries or fake news are communicated. Prohibiting or restricting persons’ access to 
information might be a worthwhile purpose in an information network. Particularly, 
this is interesting in  situations, where direct manipulation of opinions is difficult. 
Since the authors in Acemoglu and Ozdaglar (2011) mention the source of informa-
tion as a key component of opinion formation, the manipulation of the information 
acquirement process contributes to the tampering of opinion formation. A social 
media influencer might loose credibility of her followers, if they find out about an 
unacceptable advertise. We state an assumption concerning the payoff functions.

Assumption 3  The payoff function �k is �k-strongly concave w.r.t. the norm ‖ ⋅ ‖2 for 
all k = 1,… ,K.

Altogether, the objective function of the k-th organization incorporates the 
both goals:

(10)
N�
i=1

p
(k)

i
⋅ ‖vi −Mt

⋅ xk‖2.

(11)�k
(
Mt

⋅ xk
)
.
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where 𝜂k > 0 is a regularization parameter, which shows the importance of payoffs 
generated by the network. Note that small values of �k indicate a more restrictive 
behavior of the k-th organization, meaning that it rather focuses on its own interests 
than to freely adjust the manipulation distribution according to the agents’ aspired 
states. According to Assumption 3, the negative of the payoff function serves as 
regularization term. Strongly concave regularization is a well-known and widely-
used technique in optimization theory, see e.g. Nesterov (2018). From an economic 
perspective, the payoff function mimics a stable behavior of the organization. Apart 
from the already mentioned payoffs generated by the network, this function could 
also reflect that the k-th organization avoids to deviate too much from a certain 
targeted state ck = Mt

⋅ sk , where sk ∈ �n , due to adjustment costs. As a matter of 
fact, organizations might know from experience which starting distributions cause 
network states at a neighborhood of the targeted state, but must take more effort 
to detect starting distributions for states outside this neighborhood and, thus, face 
larger adjustment costs. Based on these considerations, a typical �k-strongly concave 
payoff function is

We shall discuss the numerical practicability of this choice later on. For a given 
choice matrix P ∈ �N

K
 , network M and time t, the k-th organization chooses its opti-

mal starting distribution xk ∈ �n by solving

For now, we assume that the optimization problems given in (13) have unique solu-
tions for any choice matrix P, which we denote by xk(P) , k = 1,… ,K . We keep 
these optimal manipulation values in a matrix

and call it the manipulation matrix.

2.4 � Network manipulation algorithm

In the preceding section we described the behavior of agents and organizations when 
facing the challenge to manipulate a network in favor of agents’ desires. The key 
aspect is that their behavior summarized in (8) and (13) suggests an alternating inter-
action between both groups. Organizations enter the market and offer their manipu-
lation distributions. Then, agents observe how satisfactory organizations would 
manipulate the network state in view of the agents aspired states (e. g. by comparing 

(12)
N�
i=1

p
(k)

i
⋅ ‖vi −Mt

⋅ xk‖2 − 1

�k
⋅ �k

�
Mt

⋅ xk
�
,

�k(M
t
⋅ xk) = −

�k

2
‖‖Mt

⋅ xk − ck
‖‖22.

(13)min
xk∈�n

N�
i=1

p
(k)

i
⋅ ‖vi −Mt

⋅ xk‖2 − 1

�k
⋅ �k

�
Mt

⋅ xk
�
.

(14)X(P) =
(
x1(P),… , xK(P)

)
,
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past results caused by an organization). Based on these observations, agents make 
their decisions, i.e. they choose organizations with probability according to (8). The 
choice probabilities provide feedback to the organizations, which then in turn adjust 
their starting distributions following the behavior given in (13). By using previous 
notation, we have the following dynamics:

where X0 is any feasible starting variable, e. g. X0 =
1

n
⋅ eeT.

In what follows, we provide an equivalent description of this network manipula-
tion algorithm in order to better study its convergence properties. For that, we define 
a potential function which incorporates the behavior of all agents and organizations:

Therefore, the choice matrix solves the following minimization problem:

Analogously, we have for a manipulation matrix:

which means that the network manipulation algorithm can be viewed as an alternat-
ing minimization scheme.

From the viewpoint of computational economics, it seems reasonable to assume 
that agents and organizations are not able to solve their corresponding optimization 
problems exactly. Rather than that, the solutions can be obtained up to small errors. 
This can be for example due to observation errors of the input parameters given by 
choice and/or manipulation matrices. Another reason could be that exact optimiza-
tion is time-exhaustive or too costly. In order to incorporate this faulty behavior into 
our manipulation algorithm, we assume that just inexact minimization in (16) and 
(17) is possible. More precisely, �1-inexact solutions for (16) and �2-inexact solutions 
for (17) are available. We recall that evaluated at a �-inexact solution the function 
value is at most the minimum value plus � , see Sect. 3 for details. Thus, we are ready 
to state a more general network manipulation algorithm, based on an inexact alter-
nating minimization scheme: 

P
�+1 = P(X

�
), X

�+1 = X(P
�+1),

(15)

�(X,P) =

N�
i=1

E∗
i
(pi) +

K�
k=1

�
N�
i=1

p
(k)

i
⋅ ‖vi −Mt

⋅ xk‖2 − 1

�k
⋅ �k

�
Mt

⋅ xk
��

.

(16)P(X) = arg min
P∈�N

K

�(X,P).

(17)X(P) = arg min
X∈�K

n

�(X,P),

Initialize X̃0 ∈ ΔK
n
. For l = 0, 1, 2,… update:

P̃
�+1 = arg

𝛿1

min
P∈ 𝛥N

K

𝛷
(
X̃
�
,P

)

X̃
�+1 = arg

𝛿2

min
X∈ 𝛥K

n

𝛷
(
X, P̃

�+1

)
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The inexact algorithm raises the questions, if the corresponding alternating 
behavior converges to a stable equilibrium. Do agents and organizations reach a 
state, where their choices do not change anymore no matter what the starting dis-
tributions of the organizations look like? In other words, does a unique minimizer 
of the potential function exist and does the algorithm converge to this minimizer? 
Moreover, it is interesting to analyze how the faulty behavior in terms of the errors 
impacts the possible convergence. We shall answer these questions by applying 
general results on inexact alternating minimization schemes, which we present in 
Sect.  3. This is possible since the potential function (15) can be suitably decom-
posed. For that, we define:

Using the standard inner product, the potential function in (15) can be written as 
follows:

3 � Inexact alternating minimization

In cases, where the analytical solution of an optimization problem cannot be derived, 
it is necessary to solve the problem numerically. Normally, this numerical solutions 
are only exact up to a small �-error. We review some theoretical aspects of inexact 
optimization, which we need for convergence analysis. Let us consider optimization 
problems of the form

where � is a strongly convex function and Q a closed and convex set. We denote 
by z∗ the solution of problem (20). Recall that for a �-strongly convex function � it 
holds:

For a �-inexact solution we use the standard definition, see e.  g. Stonyakin et  al. 
(2019):

Definition 1  A point z̃ is a �-inexact solution with � ≥ 0 , i.e.

if and only if there exists g ∈ 𝜕𝛷(z̃) such that ⟨g, z∗ − z̃⟩ ≥ −𝛿.

(18)f (X) = −

K∑
k=1

1

�k
⋅ �k

(
Mt

⋅ xk
)
, h(P) =

N∑
i=1

E∗
i
(pi).

(19)�(X,P) = f (X) + ⟨G(X),P⟩ + h(P).

(20)min
z∈Q

�(z),

(21)�(z) ≥ �(z∗) +
�

2
‖z − z∗‖2 for all z ∈ Q.

z̃ ∈ arg
𝛿

min
z∈Q

𝛷(z),
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Due to Definition 1, a point z̃ provides the minimal objective function value of 
(20) up to the error � . This can be easily seen, because � is convex and therefore it 
holds for any z ∈ Q:

which is equivalent to

In what follows, we shall focus on decision variable z, which can be separated into 
two blocks, i.e. z = (x, p) . For those situations, alternating minimization methods 
can be applied. The block structure enables to minimize the objective function for 
each block separately, which is, in particular, a valuable property for big data appli-
cations. Over years, many convergence results for alternating minimization meth-
ods under different assumptions were shown. For example, Grippof and Sciandrone 
(1999) show that updating each component in a sequential manner yields a sequence 
of iterates such that each limit point is a global minimizer of a continuously dif-
ferentiable and pseudoconvex function. Under the assumption of Lipschitz continu-
ous gradients and coordinate-wise strong convexity of the objective function, Luo 
and Tseng (1993) prove linear convergence to a stationary point for constrained 
problems. Convergence of an alternating minimization scheme for objectives func-
tions with non-differentiable parts has been derived by Beck (2015). Pu et al. (2014) 
show, that under assumptions such as convexity for one and strong convexity for the 
other objective term, the inexact alternating minimization algorithm applied to the 
primal coincides with the inexact proximal gradient method to the dual problem. 
Recently, in Nesterov (2020) an alternating minimization method was used for soft 
clustering. There, the objective function additionally includes an interaction term 
linking both blocks of variables. Under certain assumptions, linear convergence was 
established provided the problem can be solved exactly in each block. In this paper, 
we are interested in an inexact alternating minimization algorithm for objective 
functions equipped with the structure introduced by Nesterov (2020). Let Q1,Q2 be 
closed and convex sets in finite dimensional vector spaces �1,�2 and let �  be a finite 
dimensional vector space. The objective function is given by

where the operators G1 ∶ �1 → �
∗ and G2 ∶ �2 → �  are Lipschitz-continuous with 

moduli L1 and L2 on the respective sets Q1,Q2 . Moreover, we assume that the inter-
action term ⟨G1(x),G2(p)⟩ is convex and closed in x ∈ Q1 for any fixed p ∈ Q2 
and vice versa and that the functions f and h are �1 - and �2-strongly convex on Q1 , 
respectively on Q2 . Further, we assume the following strict inequality to hold

under which the function � is shown to be strongly convex on Q = Q1 × Q2 , see 
Nesterov (2020). Let the optimal solution of (20) be written as z∗ = (x∗, p∗) . In order 

𝛷(z∗) ≥ 𝛷(z̃) + ⟨g, z∗ − z̃⟩ ≥ 𝛷(z̃) − 𝛿,

(22)𝛷(z̃) ≤ 𝛷(z∗) + 𝛿 ≤ 𝛷(z) + 𝛿.

(23)�(x, p) = f (x) + ⟨G1(x),G2(p)⟩ + h(p), x ∈ Q1, p ∈ Q2,

(24)L2
1
⋅ L2

2
< 𝜎1 ⋅ 𝜎2,
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to solve (20), an alternating minimization method has been proposed by Nesterov 
(2020). This method generates sequences {x

�
}
�≥0 and {p

�
}
�≥1 as follows:

Convergence analysis in Nesterov (2020) is based on fixed point iteration. For that, 
the operators T ∶ Q1 ↦ Q1 and S ∶ Q2 ↦ Q2 are defined as follows:

This enables to write the update step of the alternating minimization scheme:

Under condition (24), T(⋅) and S(⋅) are contraction mappings. Thus, the linear con-
vergence of the generated sequences to the minimizer (x∗, p∗) of � could be shown 
in Nesterov (2020):

where

We analyze an inexact version of the alternating minimization method applied to 
objective functions in (23), when subproblems are solved inexactly in the sense of 
Definition 1. For that, let us adapt the algorithm in the following way:

We allow different accuracy for the above subproblems. Moreover, we allow for iter-
ation-specific errors. The equations also suggest that in iteration � a �(�)-error is made 
twice. This can be seen by looking at the function values evaluated at two consecutive 
points of the sequences {x̃

�
}t≥0 and {p̃

�
}t≥0 generated via the �-inexact solutions of the 

auxiliary optimization problems:

Choose x0 ∈ Q1. For � = 0, 1, 2,… update:

p
�+1 = arg min

p∈Q2

�(x
�
, p) = u(x

�
)

x
�+1 = arg min

x∈Q1

�(x, p
�+1) = v(p

�+1)

(25)T(x) = v(u(x)), S(p) = u(v(p)).

x
�+1 = T(x

�
), p

�+1 = S(p
�
).

‖x
�+1 − x∗‖ ≤ ��+1‖x(0) − x∗‖, ‖p

�+1 − p∗‖ ≤ ��‖p(1) − p∗‖,

𝜆 =
L2
1
⋅ L2

2

𝜎1 ⋅ 𝜎2
< 1.

Choose x0 ∈ Q1. For � = 0, 1, 2,… update:

p̃
�+1 = arg

𝛿
(�)

1

min
p∈Q2

𝛷(x̃
�
, p) = u𝛿

(�)

1 (x̃
�
)

x̃
�+1 = arg

𝛿2

min
x∈Q1

𝛷(x, p̃
�+1) = v𝛿

(�)

2 (p̃
�+1)
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Next, we estimate the distances between u�
(�)

1 (x) and u(x) as well as between v�
(�)

2 (p) 
and v(p).

Lemma 1  For any x ∈ Q1 and � = 0, 1,… , it holds:

and for any p ∈ Q2 � = 0, 1,… it holds:

Proof  Take an arbitrary iteration � . We apply (21) to derive:

Due to (22) we additionally have:

Altogether, we obtain:

The proof for ‖v�(�)2 (p) − v(p)‖ follows analogously. 	�  ◻

Let us elaborate on the continuity properties for operators u�
(𝓁)

1 (⋅) and v�
(𝓁)

2 (⋅).

Lemma 2  For any x1, x2 ∈ Q1 and � = 0, 1,… it holds:

and for any p1, p2 ∈ Q2 and � = 0, 1,… it holds:

𝛷(x̃
𝓁+1, p̃𝓁+1) = f (x̃

𝓁+1) + ⟨G1(x̃𝓁+1),G2(p̃𝓁+1)⟩ + h(p̃
𝓁+1)

≤ f (x̃
𝓁
) + 𝛿

(𝓁)

2
+ ⟨G1(x̃𝓁),G2(p̃𝓁+1)⟩ + h(p̃

𝓁+1)

≤ f (x̃
𝓁
) + 𝛿

(𝓁)

2
+ ⟨G1(x̃𝓁),G2(p̃𝓁)⟩ + h(p̃

𝓁
) + 𝛿1

≤ 𝛷(x̃
𝓁
, p̃

𝓁
) + 2 ⋅max{𝛿

(𝓁)

1
, 𝛿

(𝓁)

2
}.

‖u�(�)1 (x) − u(x)‖ ≤

�
2�

(�)

1

�2
,

‖v�(�)2 (p) − v(p)‖ ≤

�
2�

(�)

2

�1
.

h(u�
(�)

1 (x)) + ⟨G1(x),G2(u
�
(�)

1 (x))⟩ ≥ h(u(x)) + ⟨G1(x),G2(u(x))⟩

+
�2

2
‖u�(�)1 (x) − u(x)‖2.

h(u(x)) + ⟨G1(x),G2(u(x))⟩ ≥ h(u�
(�)

1 (x)) + ⟨G1(x),G2(u
�1(x))⟩ − �

(�)

1
.

‖u�(�)1 (x) − u(x)‖2 ≤ 2�
(�)

1

�2
.

‖u�(𝓁)1 (x1) − u�
(𝓁)

1 (x2)‖ ≤ 2 ⋅

�
2�

(𝓁)

1

�2
+

L1 ⋅ L2

�2
⋅ ‖x1 − x2‖,
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Proof  Fix an arbitrary iteration � . Applying Lemma  1 and the triangle inequality 
twice yields:

The last inequality is due to Nesterov (2020), where it is shown for any x1, x2 ∈ Q1:

Similar reflections yield the result for ‖v�(�)2 (p1) − v�
(�)

2 (p2)‖ . 	�  ◻

Let us introduce inexact versions of the operators T and S:

which we use to rewrite the update of the inexact alternating minimization as

The following result provides uniform continuity up to an error of the operators 
defined in (26).

Proposition 1  For any x̃1, x̃2 ∈ Q1 and � = 0, 1,… it holds:

and for any p̃1, p̃2 ∈ Q2 it holds:

Proof  We apply Lemma 2 to derive

‖v�(𝓁)2 (p1) − v�
(𝓁)

2 (p2)‖ ≤ 2 ⋅

�
2�

(𝓁)

2

�1
+

L1 ⋅ L2

�1
⋅ ‖p1 − p2‖.

‖u�(𝓁)1 (x1) − u�
(𝓁)

1 (x2)‖ ≤ ‖u�(𝓁)1 (x1) − u(x1)‖ + ‖u(x1) − u�1(x2)‖

≤

�
2�

(𝓁)

1

�2
+ ‖u(x1) − u(x2)‖ + ‖u(x2) − u�1 (x2)‖

≤

�
2�

(𝓁)

1

�2
+

L1 ⋅ L2

�2
⋅ ‖x1 − x2‖ +

�
2�

(𝓁)

1

�2
.

‖u(x1) − u(x2)‖ ≤
L1 ⋅ L2

�2
‖x1 − x2‖.

T�(�) (x) = v�
(�)

2 (u�
(�)

1 (x)), S�
(�)

(p) = u�
(�)

1 (v�
(�)

2 (p)),

(26)x̃
�+1 = T𝛿(�) (x̃

�
), p̃

�+1 = S𝛿
(�)

(p̃
�
).

‖T𝛿(𝓁) (x̃1) − T𝛿(𝓁) (x̃2)‖ ≤ 𝜆‖x̃1 − x̃2‖ + 2 ⋅

�
2𝛿

(𝓁)

2

𝜎1
+ 2 ⋅

�
2𝛿

(𝓁)

1

𝜎2
⋅
L1 ⋅ L2

𝜎1
,

‖S𝛿(𝓁) (p̃1) − S𝛿
(𝓁)

(p̃2)‖ ≤ +𝜆‖p̃1 − p̃2‖ + 2 ⋅

�
2𝛿

(𝓁)

1

𝜎2
+ 2 ⋅

�
2𝛿

(𝓁)

2

𝜎1
⋅
L1 ⋅ L2

𝜎2
.
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Again, the second assertion follows similarly. 	�  ◻

Since we cannot rely on the contraction property of T�(�) and S�(�) , the conver-
gence analysis of the sequences {x̃

�
}
�≥0 and {p̃

�
}
�≥1 becomes involved. For that, 

we start with the following auxiliary result.

Lemma 3  For any x ∈ Q1 and � = 0, 1,… it holds:

and for any p ∈ Q2 and � = 0, 1,… it holds:

Proof  We show the first part. It follows by means of Lemmata 1 and 2.

Clearly, the proof of the second part is similar. 	�  ◻

Now we are ready to state the main result concerning convergence of the inex-
act alternating minimization scheme.

Theorem 1  For the inexact alternating minimization scheme holds:

‖T𝛿(𝓁) (x̃1) − T𝛿(𝓁) (x̃2)‖ = ‖v𝛿(𝓁)2 (u𝛿
(𝓁)

1 (x̃1)) − v𝛿
(𝓁)

2 (u𝛿
(𝓁)

1 (x̃2))‖

≤ 2 ⋅

�
2𝛿

(𝓁)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅ ‖u𝛿(𝓁)1 (x̃1) − u𝛿

(𝓁)

1 (x̃2)‖

≤ 2 ⋅

�
2𝛿

(𝓁)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅ 2

�
2𝛿

(𝓁)

1

𝜎2
+

L2
1
⋅ L2

2

𝜎1 ⋅ 𝜎2
���

=𝜆

⋅‖x̃1 − x̃2‖.

‖‖‖T(x) − T�(𝓁) (x)
‖‖‖ ≤

√
2�

(𝓁)

2

�1
+

L1 ⋅ L2

�1
⋅

√
2�

(𝓁)

1

�2
,

‖‖‖S(p) − S�
(𝓁)

(p)
‖‖‖ ≤

√
2�

(𝓁)

1

�2
+

L1 ⋅ L2

�2
⋅

√
2�

(𝓁)

2

�1
.

‖‖‖T(x) − T�(𝓁) (x)
‖‖‖ =

‖‖‖v(u(x)) − v�
(𝓁)

2 (u�
(𝓁)

1 (x))
‖‖‖

≤
‖‖‖v(u(x)) − v(u�

(𝓁)

1 (x))
‖‖‖ +

‖‖‖v(u
�
(𝓁)

1 (x)) − v�
(𝓁)

2 (u�
(𝓁)

1 (x))
‖‖‖

≤
L1 ⋅ L2

�1
⋅
‖‖‖u(x) − u�

(𝓁)

1 (x)
‖‖‖ +

√
2�

(𝓁)

2

�1

≤
L1 ⋅ L2

�1
⋅

√
2�

(𝓁)

1

�2
+

√
2�

(𝓁)

2

�1
.
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and

Proof  We apply Lemma 3 to derive:

We are therefore able to estimate the distance of the (� + 1)-th iterate to the 
minimizer:

For the proof of the inequality (30) note that the first iterate of the algorithm is not 
chosen freely. Instead it is the solution of the corresponding optimization problem. 
Hence, the first iterates of the exact and inexact version are in general not equal, i.e. 
p1 ≠ p̃1 , which provides

It remains to recall that p1 = u(x0) and p̃1 = u𝛿
(0)

1 (x0) and apply Lemma 1. The result 
(30) follows then in the same manner as for (29). 	�  ◻

According to Theorem  1, the inexact alternating minimization does not con-
verge in general. Yet, if the sequences of errors 

{
�
(�)

1

}
�≥0

 and 
{
�
(�)

2

}
�≥0

 are not 
growing, the right hand side of Eqs. (27) and (28) can be controlled by the mod-
el’s parameter. In order to reach good convergence results, Theorem 1 suggests 
that at the beginning of the inexact alternating minimization algorithm the 

(27)��x̃𝓁+1 − x∗�� ≤ 𝜆𝓁+1��x0 − x∗�� +
𝓁�

k=0

𝜆k
⎡
⎢⎢⎣

�
2𝛿

(𝓁−k)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

�
2𝛿

(𝓁−k)

1

𝜎2

⎤
⎥⎥⎦

(28)

��p̃𝓁+1 − p∗�� ≤ 𝜆𝓁
⎡⎢⎢⎣
��p1 − p∗�� +

�
2𝛿

(0)

1

𝜎2

⎤⎥⎥⎦
+

𝓁�
k=1

𝜆k
⎡⎢⎢⎣

�
2𝛿

(𝓁−k)

1

𝜎2
+

L1 ⋅ L2

𝜎2
⋅

�
2𝛿

(𝓁−k)

2

𝜎1

⎤⎥⎥⎦
.

��x̃𝓁+1 − x
𝓁+1

�� ≤ ��T(x𝓁) − T(x̃
𝓁
)�� + ���T(x̃𝓁) − T𝛿(𝓁) (x̃

𝓁
)
���

≤ 𝜆 ⋅ ��x𝓁 − x̃
𝓁
�� +

�
2𝛿

(𝓁)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

�
2𝛿

(𝓁)

1

𝜎2

≤ … ≤ 𝜆𝓁+1 ��x0 − x0
��

�������
=0

+

𝓁�
k=0

𝜆k
⎡
⎢⎢⎣

�
2𝛿

(𝓁−k)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

�
2𝛿

(𝓁−k)

1

𝜎2

⎤
⎥⎥⎦
.

��x̃𝓁+1 − x∗�� ≤ ��x̃𝓁+1 − x
𝓁+1

�� + ��x𝓁+1 − x∗��

≤

𝓁�
k=0

𝜆k
⎡⎢⎢⎣

�
2𝛿

(𝓁−k)

2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

�
2𝛿

(𝓁−k)

1

𝜎2

⎤⎥⎥⎦
+ 𝜆𝓁+1‖x0 − x∗‖.

��p̃𝓁+1 − p
𝓁+1

�� ≤ 𝜆𝓁��p̃1 − p1
�� +

𝓁�
k=1

𝜆k
⎡⎢⎢⎣

�
2𝛿

(𝓁−k)

1

𝜎2
+

L1 ⋅ L2

𝜎2
⋅

�
2𝛿

(𝓁−k)

2

𝜎1

⎤⎥⎥⎦
.
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problems can be solved up to bigger errors, whereas at later iterations the errors 
shall be reduced.

Corollary 1  Let in each iteration the same errors are made, i.  e. �(�)
1

= �1 and 
�
(�)

2
= �2 for � = 0, 1,… . Then, for the inexact alternating minimization scheme 

holds:

and

Proof  This directly follows from Theorem 1 and the fact that 𝜆 < 1 . 	�  ◻

According to Corollary 1, the distance to the minimizer is bounded by the second 
term of the right hand side of inequalities (29) and (30). By taking the limits, we obtain:

and

Obviously, convergence is guaranteed if the subproblems can be solved exactly, i.e. 
if �1 = �2 = 0 . This is not surprising as in this case the inexact alternating minimiza-
tion scheme coincides with the exact method proposed by Nesterov (2020). There-
fore, the iterates generated by the inexact alternating minimization scheme (26) 
coincide with those generated by the exact method. Inequalities (29) and (30) show 
that the total error of the inexact alternating minimization scheme can be controlled. 
Furthermore, large convexity parameters not only improve the rate of convergence 
for the exact version of the algorithm, but also decrease the total accumulated error 
in the inexact scenario.

4 � Convergence analysis

We analyze the convergence of our network manipulation algorithm by applying the 
general theory of inexact alternating minimization from Sect. 3. First, we estimate 
the convexity parameter of

(29)‖‖x̃𝓁+1 − x∗‖‖ ≤ 𝜆𝓁+1‖‖x0 − x∗‖‖ + 1 − 𝜆𝓁

1 − 𝜆

[√
2𝛿2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

√
2𝛿1

𝜎2

]

(30)

‖‖p̃𝓁+1 − p∗‖‖ ≤ 𝜆𝓁

[
‖‖p1 − p∗‖‖ +

√
2𝛿1

𝜎2

]
+

1 − 𝜆𝓁−1

1 − 𝜆

[√
2𝛿1

𝜎2
+

L1 ⋅ L2

𝜎2
⋅

√
2𝛿2

𝜎1

]
.

lim
𝓁→∞

‖‖x̃𝓁+1 − x∗‖‖ ≤
1

1 − 𝜆

[√
2𝛿2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

√
2𝛿1

𝜎2

]

lim
𝓁→∞

‖‖p̃𝓁+1 − p∗‖‖ ≤
1

1 − 𝜆

[√
2𝛿1

𝜎2
+

L1 ⋅ L2

𝜎2
⋅

√
2𝛿2

𝜎1

]
.
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w.r.t. the norm

It turns out that the strong convexity of E∗
i
 holds due to Assumption 2. This has been 

recently shown in Müller et al. (2021a).

Lemma 4  (Müller et al. (2021a)) Let the differences �(k)
i

− �
(m)

i
 of random errors have 

modes z̄k,m
i

∈ ℝ , k ≠ m . Then, the corresponding convex conjugate E∗
i
 is �i-strongly 

convex w.r.t. the norm ‖ ⋅ ‖1 , where the convexity parameter is given by

and gk,m
i

 denotes the density function of �(k)
i

− �
(m)

i
.

Let us review important discrete choice models in accordance with Assump-
tion 2, where convexity parameters can be explicitly estimated.

Remark 1  In the multinomial logit model (MNL), the error terms are IID Gumbel 
distributed with zero location parameter and variance �⋅�√

6
 , where 𝜇 > 0 , see e.g. 

Anderson et al. (1992). The choice probabilities are:

From the choice probabilities we can conclude that the parameter � reflects the ran-
domness of the decision. If � converges to zero, this would lead to the deterministic 
decision based on the observable utility only. On the other hand, very large values 
of the parameter provide very random choices, tending towards the uniform distribu-
tion in the limit. The convex conjugate of the corresponding surplus function is up 
to an additive constant:

It is well known from Pinsker inequality that this function is �-strongly convex w.r.t. 
the norm ‖ ⋅ ‖1.

h(P) =

N∑
i=1

E∗
i
(pi)

‖P‖
ℍ
=

�
N�
i=1

‖pi‖21
� 1

2

, P ∈ �N
K
.

𝛽i =
1

2

K∑
k=1

∑
m≠k

g
k,m

i

(
z̄
k,m

i

)
,

ℙ

(
u
(k) + �(k) = max

1≤m≤K
u
(m) + �(m)

)
=

e
u(k)

�

K∑
m=1

e

u(m)

�

, k = 1,… ,K.

E∗(p) = �

K∑
k=1

p(k) ⋅ ln p(k).
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Remark 2  Another famous example is the nested logit model (NL) introduced in 
McFadden (1978). Compared to the MNL, the NL is more appropriate in situations 
where some of the alternatives are correlated, i.e. the axiom of irrelevance of inde-
pendent alternatives is violated, see e.  g. Anderson et  al. (1992). In the NL, each 
alternative k belongs to one of L different nests N

�
⊂ {1,… ,K} for � = 1,… , L . 

The choice probabilities for k ∈ N
�
 , � ∈ L are

where the following condition shall be satisfied:

The parameter �
�
 determines the randomness of choices within the �-th nest. Fur-

ther, the correlation of alternatives within the same �-th nest is given by 1 − �2
�
 . The 

convex conjugate of the NL surplus function has been derived up to an additive con-
stant in Fosgerau et al. (2020):

It is 
(
min
�∈L

�
�

)
-strongly convex w.r.t. the norm ‖ ⋅ ‖1 , see Müller et al. (2021b).

Remark 3  MNL and NL belong to the broader class of generalized nested logit mod-
els (GNL) introduced in Wen and Koppelman (2001). GNL surplus functions are 
determined by the generating function

Here, L is a generic set of nests. The parameters �i� ≥ 0 denote the shares of the i-th 
alternative with which it is attached to the �-th nest. For any fixed i ∈ {1,… , n} they 
sum up to one:

and �i� = 0 means that the �-th nest does not contain the i-th alternative. Hence, the 
set of alternatives within the �-th nest is

The nest parameters 𝜇
�
> 0 describe the variance of the random errors while choos-

ing alternatives within the �-th nest. Analogously, 𝜇 > 0 describes the variance of 

ℙ

�
u
(k) + �(k) = max

1≤m≤K
u
(m) + �(m)

�
=

e
�
𝓁
ln
∑

m∈N𝓁
e

u(m)

�𝓁

�
𝓁∈L

e
�
𝓁
ln
∑

m∈N𝓁
e

u(m)

�𝓁

⋅
e

u(k)

�𝓁

�
m∈N

𝓁

e

u(m)

�𝓁

,

0 < 𝜇
�
≤ 1, � = 1,… , L.

E∗(p) =
∑
�∈L

�
�

∑
i∈N

�

p(m) ln p(m) +
∑
�∈L

(
1 − �

�

)( ∑
m∈N

�

p(m)

)
ln

( ∑
m∈N

�

p(m)

)
.

G(x) =
∑
𝓁∈L

(
n∑
i=1

(
�
i𝓁
⋅ x

(i)
) 1

�𝓁

) �𝓁

�

.

∑
�∈L

�i� = 1,

N
�
=
{
i | 𝜎i� > 0

}
.
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the random errors while choosing among the nests, where the following conditions 
shall be satisfied

Apart from MNL and NL, the concrete specification of the surplus’ convex conju-
gate E∗ is not known yet. Estimates of the convexity parameter of the convex conju-
gate are derived in Müller et al. (2021a). However, the choice probabilities are given 
as a formula.

The choice probability of the i-th alternative according to GNL amounts to

where we set eu =
(
eu

(1)

,… , eu
(n)
)
 for the sake of brevity.

We state Lemma 5 concerning the strong convexity of the function h defined 
in (18).

Lemma 5  Let the functions E∗
i
 be �i-strongly convex w.r.t. the norm ‖ ⋅ ‖1 , 

i = 1,… ,N . Then, the function h is �2-strongly convex w.r.t. the norm ‖ ⋅ ‖
ℍ
 , where

Proof  Take any P,Q ∈ �N
K
, � ∈ [0, 1] . Then the following holds

	�  ◻

�
�
≤ � for all � ∈ L.

ℙ

(
u(i) + �(i) = max

1≤i≤n
u(i) + �(i)

)
= �

�G(eu)

�x(i)
⋅

eu
(i)

G(eu)
=
∑
𝓁∈L

q
𝓁
⋅ pi𝓁 ,

�2 = min
1≤i≤N

�i.

h(� ⋅ P + (1 − �) ⋅ Q) =

N�
i=1

E∗
i

�
� ⋅ pi + (1 − �) ⋅ qi

�

≤� ⋅

N�
i=1

E∗
i
(pi) + (1 − �) ⋅

N�
i=1

E∗
i
(qi)

− � ⋅ (1 − �) ⋅

N�
i=1

�i

2
‖pi − qi‖21

≤� ⋅

N�
i=1

E∗(pi) + (1 − �) ⋅

N�
i=1

E∗(qi)

− � ⋅ (1 − �) ⋅
�2

2
⋅

N�
i=1

‖pi − qi‖21

=� ⋅ h(P) + (1 − �) ⋅ h(Q) − � ⋅ (1 − �) ⋅
�2

2
⋅ ‖P − Q‖2

ℍ
.
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Hence, the worst convexity parameter amongst all agents determines the strong 
convexity of the function h(P). In order to apply results from Sect. 3, we secondly 
need to show that

is strongly convex w.r.t. the norm

For that, we need to assume that the underlying network is regular.

Assumption 4  The smallest singular value of M is positive, i. e. 𝜎min(M) > 0 holds.

As a consequence, we are able to estimate the convexity parameter of f w.r.t. 
the norm ‖ ⋅ ‖

�
.

Lemma 6  The function f is �1-strongly convex w.r.t. the norm ‖ ⋅ ‖
�
 , where

Proof  First, we recall:

Hence, we get:

For any � ∈ [0, 1] and X, Z ∈ �K
n

 it holds due to the �k-strong convexity of −�k w.r.t. 
the norm ‖ ⋅ ‖2:

Further, we have:

f (X) = −

K∑
k=1

1

�k
⋅ �k

(
Mt

⋅ xk
)

‖X‖
�
=

�
K�
k=1

‖xk‖22
� 1

2

, X ∈ �K
n
.

�1 = min
1≤k≤K

�k

�k
⋅
[
�min(M)

]2t
.

�min(M) = min‖x‖2=1
‖M ⋅ x‖2.

�min

�
Mt

�
= �min

�
M ⋅Mt−1

�
= min‖x‖2=1

���M ⋅Mt−1
⋅ x
���2

≥ �min(M) ⋅ min‖x‖2=1
���M

t−1
⋅ x
���2 ≥ … ≥

�
�min(M)

�t
.

− �k
�
� ⋅Mt

⋅ xk + (1 − �) ⋅Mt
⋅ zk

�

≤ −� ⋅ �k
�
Mt

⋅ xk
�
− (1 − �) ⋅ �k

�
Mt

⋅ zk
�

− � ⋅ (1 − �) ⋅
�k

2
⋅ ‖Mtxk −Mtzk‖22.

‖Mtxk −Mtzk‖2 ≥ �min

�
Mt

�
⋅ ‖xk − zk‖2 ≥

�
�min(M)

�t
⋅ ‖xk − zk‖2.
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Hence, the convexity parameter of −�k
(

Mtxk
) is �k ⋅

[

�min(M)
]2t . The assertion follows 

analogously to the proof of Lemma 5. 	�  ◻

Note that the considerations in the proof of Lemma 6 also guarantee the existence 
of a unique minimizer x∗

k
(P) for each objective function in (13), i.e. the manipulation 

matrix X∗(P) is indeed well defined.
It remains to inspect the multiplicative term. We study the Lipschitz-continuity 

property of the operator

where

For that, the dual norm of ‖ ⋅ ‖
ℍ
 is required, see Nesterov (2020):

Lemma 7  The operator G is Lipschitz-continuous with modulus

where �max denotes the largest singular value of M. This is to say that

Proof  The Lipschitz-continuity of G follows mainly from (Nesterov 2020). In fact, 
take any X, Y ∈ �K

n
:

It holds by means of the triangle inequality:

Therefore,

G(X) =
(
g1(X),… , gN(X)

)
∈ ℝ

K×N ,

gi(X) =
�‖vi −Mt

⋅ x1‖2,… , ‖vi −Mt
⋅ xK‖2

�T
, i = 1,… ,N.

‖Z‖∗
ℍ
=

�
N�
i=1

‖zi‖2∞
� 1

2

, Z ∈ ℝ
K×N .

L1 = N
1

2 ⋅
[
�max(M)

]t
,

‖G(X) − G(Y)‖∗
ℍ
≤ L1 ⋅ ‖X − Y‖

𝔽
, X, Y ∈ �K

n
.

‖G(X) − G(Y)‖∗
ℍ
=

�
N�
i=1

‖gi(X) − gi(Y)‖2∞
� 1

2

.

��gi(X) − gi(Y)
�� = ��‖vi −Mt

⋅ xk‖2 − ‖vi −Mt
⋅ yk‖2��

≤ ‖Mtxk −Mtyk‖2 ≤
�
�max(M)

�t
⋅ ‖xk − yk‖2.
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and the assertion follows. 	�  ◻

Note that all components of G are convex and nonnegative. Moreover, all 
entries of the matrices P are nonnegative. Due to Lemmata  5 and  6, �(⋅,P) is 
strongly convex for any fixed P ∈ �N

K
 and �(X, ⋅) is strongly convex for any fixed 

X ∈ �K
n

 . We therefore conclude that the alternating update steps of our network 
manipulation algorithm are well defined.

Let us finally present our main results on the convergence of the network 
manipulation algorithm. Recall that the derived constants are as follows:

and

Moreover, for the rate of convergence we have:

where �(M) denotes the condition number of the matrix M. In order to establish con-
vergence of the network manipulation algorithm, we need an additional assumption 
which indicates a certain stability for the model.

Assumption 5  It holds:

Assumption 5 is a version of condition (24), which enforces 𝜆 < 1 and thereby, 
guarantees strong convexity of the potential function (19). The straightforward 
application of Theorem 1 respectively Corollary 1 now provides:

‖gi(X) − gi(Y)‖2∞ =

�
max
1≤k≤K

��‖vi −Mt
⋅ xk‖2 − ‖vi −Mt

⋅ yk‖2��
�2

≤
�
�max(M)

�2t
⋅ max
1≤k≤K

‖xk − yk‖22

≤
�
�max(M)

�2t
⋅

K�
k=1

‖xk − yk‖22,

(31)�1 = min
1≤k≤K

�k

�k
⋅
[
�min(M)

]2t
, �2 = min

1≤i≤N
�i,

(32)L1 = N
1

2 ⋅
[
�max(M)

]t
, L2 = 1.

(33)� =
L2
1
⋅ L2

2

�1 ⋅ �2
=

N ⋅ [�(M)]2t

min
1≤k≤K

�k

�k
⋅ min
1≤i≤N

�i

,

(34)[𝜅(M)]t <

⎛
⎜⎜⎜⎝

min
1≤k≤K

𝜏k

𝜂k
⋅ min
1≤i≤N

𝛽i

N

⎞
⎟⎟⎟⎠

1

2

.
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Theorem 2  Let (X∗,P∗) ∈ �K
n
× �N

K
 be the unique minimizer of the potential function 

(19). Then, for the sequences {X̃
�
}
�≥0 and {P̃

�
}
�≥1 it holds:

and

where �1 , �2 , L1 , L2 , and � are given in (31)–(33).

Let us comment on Assumption 5 by elaborating how the model parameters enter 
into the inequality (34): 

Interaction network	� The network structure plays a key role in (34). This is 
reflected by the condition number �(M) . Its large values cause 
instability of manipulation, since small changes regarding 
the aspired states could lead to big changes of optimal start-
ing distributions. In other words, a more predictive pattern of 
network transitions speeds up the convergence. The minimum 
value of the condition number is attained for permutation 
matrices. In this case, the network interaction is obviously 
predictable, i.e. organizations can easily determine how net-
work participants distribute information. For similar reasons, 
the number of interaction periods t has a negative impact on 
possibility of manipulation. More periods hamper the influ-
ence of the starting distribution on the resulting state. Instead, 
if time progresses the state is mainly determined just by the 
network structure independently of the starting distributions.

Agents	� Clearly, more agents N slow down the rate, as organizations 
have to pay attention to more aspired states. Moreover, large 
values of �i , i = 1,… ,N , improve the rate of convergence. In 
order to interpret this fact, we refer to Remark 1. There, it has 
been shown that �i’s, can be viewed as measures that agents are 
still pretty uncertain about their decisions. Due to the duality of 
discrete choice and rational inattention, agents prone to errors 
have high information processing costs. Thus, these agent pay 
less attention to the observable utility, i.e. if their aspired states 
were reached. The fact that imperfect behavior of agents could 
help to faster stabilize economic systems was recently also 
described in Müller et al. (2021b).

(35)‖‖X̃𝓁+1 − X∗‖‖� ≤ 𝜆𝓁+1‖‖X0 − X∗‖‖� + 1 − 𝜆𝓁

1 − 𝜆

[√
2𝛿2

𝜎1
+

L1 ⋅ L2

𝜎1
⋅

√
2𝛿1

𝜎2

]

(36)

‖‖P̃𝓁+1 − P∗‖‖ℍ ≤ 𝜆𝓁

[
‖‖P1 − P∗‖‖ℍ +

√
2𝛿1

𝜎2

]
+

1 − 𝜆𝓁−1

1 − 𝜆

[√
2𝛿1

𝜎2
+

L1 ⋅ L2

𝜎2
⋅

√
2𝛿2

𝜎1

]
,
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Organizations	� The parameters �k , k = 1,… ,K , reflect to which extent organi-
zations take into account their network payoffs. If �k ’s are 
relatively large, the organizations focus mainly on reaching 
the agents’ aspired states. It seems surprising that this would 
not improve the convergence rate of the network manipula-
tion algorithm, but actually worsen it. However, if organiza-
tions do not properly act on the network by maximizing their 
profits, their manipulation power diminishes, since they lose 
their credibility – e.g., their followers may be disappointed by 
getting biased information and leave them. Organizations thus 
become worthless for agents in terms of manipulation and, as 
consequence, the network manipulation algorithm becomes 
less efficient. Hence, the parameter mirrors a certain credibility 
of the organizations. Further, the impact of �k , k = 1,… ,K , on 
the convergence rate becomes clear if we interpret the param-
eters as measures of organizations’ reluctance to change their 
starting distributions. From this point of view, the conservative 
behavior of organizations towards profit maximization makes 
the network manipulation more stable.

Additionally, it is worth to mention that the parameters �i’s, �k’s, and �k’s, which 
reflect the behavior of agents and organizations, also affect the error bounds in (35) 
and (36). The corresponding interpretation is similar to that for the convergence rate. 
Namely, the agents’ imperfect behavior and organizations’ conservatism in profit 
maximization reduce the accumulated errors.

5 � Computational aspects

We discuss the implementation and benefits of the inexact alternating minimization scheme 
applied to the objective function (15). We recall that we have to minimize a strongly con-
vex function �(X,P) over a convex and bounded set �K

n
× �N

K
 . Alternative ways to find a 

solution are therefore minimization via direct methods. The efficiency of these methods 
obviously depends on the properties of the objective function. By applying the alternating 
minimization scheme instead, it is possible to exploit the properties of the components of 
�(X,P) separately, as each iteration consists of solving the two subproblems

Hence, the performance of the alternating scheme crucially depends on how effi-
ciently these subproblems can be solved. Furthermore, the inexact version provides 

(37)P̃
�+1 = arg

𝛿1

min
P∈𝛥N

K

𝛷
(
X̃
�
,P

)
,

(38)X̃
�+1 = arg

𝛿2

min
X∈𝛥K

n

𝛷
(
X, P̃

�+1

)
.
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an opportunity to accelerate the alternating scheme, since we can accept approxi-
mate solutions of the subproblems and thus, stop an optimization method at an ear-
lier iteration. In fact, due to Theorem 2 the impact of these numerical inaccuracies 
on the convergence of the alternating scheme can be controlled by means of the 
model’s parameters.

5.1 � Agent’s subproblem

The complexity of solving the agent’s subproblem (37) depends on the concrete 
specification of the underlying discrete choice model. In order to update the choice 
matrix P̃

�+1 , the following minimization problem has to be inexactly solved:

Notice that this minimization problem is separable, which yields:

The solution of each of these problems is given by the choice probabilities of 
the underlying discrete choice model, cf. Fosgerau et  al. (2020) and Müller et  al. 
(2021a). The challenge of solving problem (39) lies in the concrete specification of 
the function E∗

i
 . In general, the derivation of this convex conjugate of the surplus 

function can be very involved. In fact, for many discrete choice models the convex 
conjugate E∗

i
 is not known yet. This is e.g. the case for the most of the generalized 

nested logit, the probit or the mixed logit models. However, for a large class of dis-
crete choice models we are able to inexactly solve (39), even without the knowledge 
of the functions E∗

i
 . Let us discuss this in more detail:

•	 For a variety of discrete choice models the choice probabilities are given by a 
formula. This is the case for the generalized nested logit models, where the for-
mula is presented in Remark 1. Note that the formulas for multinomial logit and 
nested logit are a special case, see Remark 3. Thus, we are able to solve Problem 
(39) without knowing the concrete specification of the function E∗

i
 . In this case, 

the computational costs of solving the subproblem are determined by the costs of 
evaluating the distance matrix, which can be done in O(KnN) operations, if we 
assume that the costs of computing ‖v −Mt

⋅ x‖2 are O(n).
•	 For general discrete choice models the simulation of the choice probabilities 

can be performed, see Train (2009). This is the case e. g. for multinomial probit 
where the random errors are normally distributed or the mixed logit which can 
approximate any random utility model, see McFadden and Train (2000). Those 
two models are very flexible in terms of modeling substitution, however, simula-
tion of the choice probabilities at each iteration could be computationally expen-
sive. For the multinomial probit it is possible to use analytical approximations of 
the integral. Connors et al. (2014) show that such approximations perform rather 

𝛿1

min
P∈𝛥N

K

⟨G(X̃
�
),P⟩ + h(P).

(39)
𝛿1

min
pi∈𝛥K

⟨gi(X̃�
), pi⟩ + E∗

i
(pi), i = 1,… ,N.
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fast in numerical tests compared to simulation approaches such as the GHK-sim-
ulator by Börsch-Supan and Hajivassiliou (1993).

We stress that for applying inexact alternating minimization method it is sufficient 
to have approximate solutions of the subproblems (39). Exact solutions of (39) are 
desirable, but not needed.

5.2 � Organization’s subproblem

In order to update the manipulation values, we have to inexactly solve the subprob-
lem (38) or, equivalently,

Its decomposable structure enables to solve for any k = 1,…K:

The computational efficiency of a chosen algorithm applied to (40) depends on the 
properties of the payoff functions �k . Note that these functions are allowed to be 
nonsmooth as well as not necessarily simple. In the most general situation, we 
might, hence, have to deal with a strongly convex and nonsmooth objective function 
and have to rely on first-order methods. Under the assumption of Lipschitz-continu-
ity, nonsmooth convex optimization problems can be solved at a rate of O

�
1√
T

�
 , 

where T is the iteration counter. For strongly convex problems this rate can be 
improved to O

(
1

T

)
 , see e.g. Lan (2020). We point out for the evaluation of a subgra-

dient of the objective function in (40), it is necessary to compute the transpose of 
Mt . This explains why the manipulation of organizations is required to influence the 
network. Namely, they likely possess the knowledge of the network’s structure in 
terms of M rather than the agents do.

The total complexity of the subproblems does not only depend on the rate of con-
vergence but also on how efficient each iteration can be computed. Usually, there is 
a trade-off between achieving a better rate in terms of iterations and the numerical 
efficiency per iteration. An advantage of the inexact version is to counteract this 
trade-off, as it enables to stop the algorithm at an earlier stage. By applying the mir-
ror descent with the relative entropy as Bregman divergence, the projection on the 
probability simplex is avoided, since the update steps are then given by a closed-
form expression, see e.g. Beck and Teboulle (2003). For large networks, i. e. with 
large values of n, this is crucial, since in the Euclidean projection on the simplex �n 
comes with the cost of O(n log n) , see Chen and Ye (2011). There is also a variant of 
the mirror descent for strongly convex functions, which achieves O

(
1

T

)
 proposed by 

𝛿2

min
X∈𝛥K

n

f (X) + ⟨G(X), P̃
�+1⟩.

(40)
𝛿2

min
xk∈𝛥n

N�
i=1

p̃
(k)

i
⋅ ‖vi −Mt

⋅ xk‖2 − 1

𝜂k
⋅ 𝜋k

�
Mt

⋅ xk
�
.
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Juditsky and Nemirovski (2011). However, the evaluation of each iteration step 
becomes more involved.

Remark 4  (Entropic mirror descent) We recall the entropic setup of the mirror 
descent method for minimizing a convex function f ∶ �n → ℝ on the probability 
simplex with (sub-)gradients f �(x) an the point x. The update step at iteration � is 
then given by (Beck 2017):

where �
�
 is a suitable chosen stepsize. In practice, a dynamic adaptive stepsize is 

often chosen, while the fixed stepsize turns out to be useful for the complexity anal-
ysis, see for example Beck (2017). In order to control the level of inexactness in the 
alternating minimization scheme, we can therefore rely on the complexity analysis 
of the mirror descent method. More precisely, let the (sub-)gradients be bounded, 
i.  e. ‖f �(x

�
)‖∞ ≤ Mf  for all x ∈ �n and let the fixed stepsize 

�
�
=

√
2 log(n)

Mf

√
L+1

, � = 0,… ,L be selected. Then, after L periods the optimality gap 

reads as

where f best
L

 is the minimal function value so far (Beck 2017). This enables to deter-
mine the maximum number of iterations L for attaining a �-inexact solution, i. e.

The details of applying the mirror descent method to (40) are given in Sect. 6, 
where �k is taken as the squared Euclidean distance. 	�  ◻

The first part of the objective function in (40) consists of a finite sum. If N is 
very large, the efficiency of first-order methods might suffer, since in any iteration 
N gradients must be evaluated. Therefore, it seems reasonable to apply a stochastic 
version of the mirror descent algorithm. However,the stochastic mirror descent for 
composite objectives does not linearize the second part of the objective function, 
see Duchi et al. (2010). Therefore, if �k is not simple, the computation of an iteration 
step might be here too expensive.

Smoothing techniques for nonsmooth functions are commonly used in optimi-
zation for achieving the convergence of order O

(
1

T

)
 , see Nesterov (2005) and 

Beck (2017). There exist several approximations of the norm ‖ ⋅ ‖2 with Lip-
schitz smooth gradients. E.g., it is possible to replace each summand of the first 
term of (40) by the following approximation:

(41)x
(i)

𝓁+1
=

x
(i)

𝓁
⋅ exp

�
−�

𝓁
⋅ f �(x

𝓁
)(i)

�
∑n

j=1
x
(j)

𝓁
⋅ exp

�
−�

𝓁
⋅ f �(x

𝓁
)(j)

� , j = 1, 2,… , n,

f best
L

− f ∗ ≤

√
2 log(n)Mf√

L + 1
,

(42)L >
2 log(n) ⋅M2

f

𝛿2
.
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The function in (43) has [�max(M)]
2t

�k
-smooth gradients, see Beck and Teboulle (2012). 

Note that large values of �k yield a very smooth function but provide a worse approx-
imation. Furthermore, we stress that it is possible to examine the effect of the 
smoothing parameter on the convergence of the inexact alternating minimization 
method. Incorporating these smoothened versions enables to improve the efficiency 
even if the functions �k remain nonsmooth. For simple �k ’s the problem can be 
solved in O

(
log

1

�

)
 iterations by a version of the accelerated gradient method, see 

e.g. Lan (2020). However, at each iteration N gradients have to be evaluated yielding 
a total of O

(
N ⋅ log

1

�

)
 gradient evaluations. Reducing these gradient computations 

can be achieved by applying the random primal–dual gradient method, which has 
been introduced by Lan and Zhou (2018). There, only one component of the sum is 
randomly selected and its gradient is used for the update step. Compared to the 
accelerated gradient version, this can save up to O(

√
N) gradient evaluations, see 

Lan (2020).
Obviously, better properties of the payoff functions increase the possibilities 

to efficiently solve the subproblems (40). If the payoff functions have Lipschitz-
smooth gradients, or can be smoothed, replacing the norm ‖ ⋅ ‖2 by (43) enables 
to apply conditional gradient methods for solving the subproblems. Such algo-
rithms are of the order O

(
1

T

)
 and hence, an �-solution can be found in O

(
1

�

)
 

iterations. From the numerical point of view, it is important to note that the con-
ditional gradient method does not rely on the projection, see Jaggi (2013). This 
facilitates its application in our setting and lowers the per iteration cost for large 
networks. In fact, the alternating structure enables to deal with subproblems on 
the probability simplex. Minimizing a linear function on the simplex is straight-
forward, thus, a dominant factor of each iteration step is to compute the gradi-
ent. Recently, a conditional gradient sliding method has been introduced by Lan 
and Zhou (2016), where the number of calls of the first-order oracle can be 
reduced to O

(
log

1

�

)
 , while the number of iterations remains unchanged. We 

note that stochastic versions of the conditional gradient sliding are available.
The preceding discussions clearly suggest that the alternating minimization 

algorithm simplifies the computation of update steps to optimize objective func-
tions of the form (15). Moreover, the possibility to compute inexact solutions of 
the subproblems turn out to be crucial for an efficient implementation. Popular 
choice models like probit must rely on approximate solutions of the choice prob-
abilities and being able to stop an algorithm earlier automatically saves compu-
tational effort, like gradient evaluations.

(43)
�

‖vi −Mt ⋅ xk‖22 + �2
k
− �k, k = 1,… ,K.
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6 � Numerical examples

We examine the theoretical findings in Theorem 2 by means of numerical examples. 
Due to Theorem 2, we are allowed to solve the subproblems inexactly and still achieve 
convergence up to an error which can be controlled by the model parameters. Note that 
the bounds derived in Theorem 2 are based on a worst-case analysis. In practice, we 
might expect to see improved results. For all numerical tests, we select

where ck is the k-th organization’s targeted network state. For each organization the 
subproblem consists of minimizing a nonsmooth function on the probability sim-
plex, which is solved by the entropic mirror descent, see Remark 4.

Let us provide a simple test example of 2 agents, who choose between 4 credible 
organizations according to the multinomial logit model with parameters

The network is of size n = 20 and is block-diagonal. More precisely, the j-th of, say, 
8 blocks has structure 

(
e ⋅ eT − I

)
⋅

1

(nj−1)
 , where e is the vector of ones and I is the 

identity matrix of dimension nj and size nj × nj , respectively. We choose nj , 
j = 1,… 13 , with

There is only one period of interaction, i.e. t = 1 , and the credibility values of the 
organizations are

The aspired states of the agents v1 , v2 , and v3 are randomly generated. Note that in 
this example it holds:

and

Hence, Assumption 5 is satisfied, since

�k(M
t
⋅ xk) =

1

2
‖‖Mt

⋅ xk − ck
‖‖22, k = 1,… ,K,

�1 = 8.2, �2 = 9.

13∑
j=1

nj = n, 2 ≤ nj ≤ 3.

�1 = 0.95, �2 = 0.81, �3 = 1, �4 = 0.79.

�1 = min
1≤k≤K

�k

�k
⋅
[
�min(M)

]2t
=

1

1
⋅ 0.52, �2 = min

1≤i≤N
�i = 8.2,

L1 = N
1

2 ⋅
[
�max(M)

]t
= 2

1

2 ⋅ 1, L2 = 1.

2 <

( 1

1
⋅ 8.2

2

) 1

2

= 2.02485.
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First, we produce iterates (P∗,X∗) due to the exact version of the alternating mini-
mization algorithm. This is done by solving organizations’ inner subproblems via 
entropic mirror descent with dynamic adaptive stepsize (Beck 2017), where the 
algorithm terminates if no sufficient progress is achieved. The latter is controlled by 
comparing consecutive iterates element-wise and by stopping if this element-wise 
difference is less than 10−10 . Due to the fixed point scheme of the inexact alternating 
minimization algorithm, an element-wise comparison with precision 10−9 is used 
as stopping criterion for the outer iterations. Second, we produce iterates 

(
P̃∗, X̃∗

)
 

due to the inexact version of the alternating minimization algorithm. For comput-
ing the inexact solutions we rely on the entropic mirror descent with fixed stepsize 
discussed in Remark 4. Therefore, a �-level is chosen and the algorithm stops after a 
number of iterations determined by Eq. (42). Figure 1 shows that the gaps between 
exact solutions P⋆,X⋆ and inexact solutions denoted by P̃⋆, X̃⋆ are closing rapidly, 
at least as fast as proportionally to the square root of � . This observation confirms 
our theoretical convergence results in Theorem 2.

However, the inexact algorithm yields a numerical advantage. In Table  1 the 
computational time of the exact method is compared to the computational time of 
different inexact versions of the alternating minimization scheme. Clearly, the com-
putational time can be significantly reduced by applying inexact versions.

From now on, we ignore Assumption 5 and test the performance of the inexact in 
relation to the exact version by running numerical simulations. In order to illustrate 
the numerical performance, we control the number of inner iterations by choosing 
to iterate 10, 50, 100, 1000 times. All subproblems are solved by entropic mirror 
descent with dynamic adaptive stepsize. For that, we focus on agents choosing prob-
abilities according to the nested logit model, implying that their updates can be writ-
ten in closed form. There are 5 organizations to choose from, where the organiza-
tions 1 and 4 are in the first nest, organization 5 is in the third nest, organizations 2 
and 3 are in the second nest. The nest parameters are chosen uniformly at random 
between 0.01 and 0.6. The aspired states as well as the targeted network states of the 
organizations are also randomly initialized. We set

and the network structure is randomly generated. The results are comprised in Fig. 2. 
The computational time is significantly reduced, see Table 2. A higher number of 
agents increases the computational effort, which is summarized in Table 3, while the 
inexact versions yield close approximations at the latest from 100 maximum inner 
iterations, see Fig. 3.

The computation gets noticeably more involved when more periods of interaction 
take place. Setting t = 2 significantly increases the running time in order to compute 
the exact version (Table 4).

The difference between exact and inexact versions are shown in Fig. 4.
Let us increase the network size to n = 100 and randomly initialize a sparse net-

work. As Table 5 shows, the computational effort for an exact version dramatically 

�1 = 1, �2 = 2, �3 = 3, �4 = 0.01, �5 = 2,
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increases. At the same time, the inexact versions can be solved much faster and yield 
reasonable approximations.

Overall, our numerical experiments suggest that the alternating minimization 
algorithm is rather robust if inexactly solving inner subproblems. This feature 
prevails if the number of organizations grows, there are more interactions, the 
network is ill-conditioned or sparse. Thus, the presented computational results 
support our theoretical findings in Theorem 2 and motivate the use of the inexact 
alternating minimization.

Fig. 1   Difference between the exact solutions P⋆,X⋆ and the inexact solutions P̃⋆, X̃⋆ dependent on the 
chosen �-level of the inner optimization problems

Table 1   Computational time 
in seconds for different inexact 
versions

�-level Computa-
tional time 
(s)

Exact 977.2344
0.075 466.7031
0.1 134.5781
0.15 32.3906
0.3 6.5469
0.5 2.3906
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Fig. 2   Difference between exact and inexact solutions for n = 50,N = 10, t = 1

Table 2   Computational time for 
n = 50,N = 10, t = 1

Maximum Inner Iterations Computa-
tional time 
(s)

Exact (1000000) 914.4688
1000 37.8125
100 4.2656
50 1.8438
10 0.4063

Fig. 3   Difference between exact and inexact solutions for n = 50,N = 30, t = 1
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Table 3   Computational time for 
n = 50,N = 30, t = 1

Maximum inner iterations Computational time (s)

Exact (1000000) 2272.2031
1000 80.5313
100 7.7031
50 3.7656
10 0.75

Table 4   Computational time: 
n = 50,N = 30, t = 2

Maximum inner iterations Computational time (s)

Exact (1000000) 8676.9375
1000 53.4688
100 5.2188
50 2.79688
10 0.5313

Fig. 4   Difference between exact and inexact solutions for n = 50,N = 30, t = 2

Table 5   Computational time and errors for n = 100,N = 10 , t = 1 , sparse network

Maximum inner iterations Computational time (s) ‖P̃∗ − P
∗‖

H
‖X̃∗ − X

∗‖
F

Exact (1000000) 4799.1406 − −
1000 133.625 0.000237 0.000236
100 13.1563 0.003663 0.026953
50 5.8594 0.006626 0.042717
10 1.4063 0.019262 0.113434
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