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Conventions

The following conventions are used through the present work:

• the ¬ symbol is used to denote the negation.

• q denotes the number of criteria.

• ej denotes a vector of q components such that the only non null com-
ponent is the jth one and is equal to 1.

• b denotes a bid, i.e., in the context of multicriteria auctions, a vector
of q components. These components are referred to as attributes.

• bj is referred to as the jth attribute of the bid b. If the component's
index is omitted all the attributes are considered. By extension, b−j

denotes all the attributes except the jth one.

• we assume that all the criteria have to be minimized. We will explicitly
warn the reader when a speci�c criterion has to be maximized.

• Let ≺ denotes the Pareto dominance relation i.e. b ≺ b̃ ⇔ bj ≤ b̃j ∀j ∈
{1, . . . , q} and ∃j̃ ∈ {1, . . . , q}|bj̃ < b̃j̃. Additionally, we de�ne ¹ as
follows: b ¹ b̃ ⇔ bj ≤ b̃j ∀j ∈ {1, ..., q}. (The symbol Â and º are
de�ned in a similar way).

• Multicriteria auctions are viewed as successions of o�ers. Consequently,
b(k) denotes the kth bid received by the auctioneer and tk denotes its
related time (we implicitly assume that the auction starts at time 0.
So, for instance, t3 = 10 seconds expresses the fact that the third bid
has been received 10 seconds after the auction beginning). By abuse
of language, we will often refer the index k to as the time the bid was
received (i.e tk). Finally, let us stress that the index k is only speci�ed
when the underlying information is needed.
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• bi denotes a bid proposed by the ith bidder. This index is also speci�ed
only when the underlying information is needed.

• In brief:

� b denotes any bid received in the auction.
� bi denotes a bid proposed by the ith bidder.
� bj denotes the value of the jth attribute of the bid b.
� b(k) denotes the kth bid received during the auction (proposed by

any bidder).
� bj

i denotes the value of the jth attribute of a bid b proposed by the
ith bidder.

� bi(k) denotes the kth bid proposed by the ith bidder.
� bj(k) denotes the value of the jth attribute of the kth bid received

during the auction (proposed by any bidder).
� bj

i (k) denotes the value of the jth attribute of the kth bid proposed
by the ith bidder.

xiv



Introduction

Context and objectives

Nowadays, electronic commerce has almost entered everybody's life. At
�rst, one may think about business to consumer (B2C) applications. A few
years ago, particular web sites like Amazon.com were cited to illustrate this
trend. Today, common brands, local supermarkets, travel agencies, �nancial
institutions, . . . have their own electronic commerce portal and every kind of
products or services are sold in this way, even highly speci�c ones1.

Obviously, electronic commerce cannot be reduced to conduct traditional
commercial activities through new electronic channels. If the technological
aspect is important, other factors play a central role in its successful de-
velopment. Among them, the market design remains crucial. Trading on
the Internet is, in many aspects, di�erent than trading in a classic way.
Therefore, some common practices have to be adapted while new ones have
appeared.

In this context, auctions have received great attention: they have not only
been used for B2C or consumer-to-consumer (C2C) applications (with success
stories such as eBay) but also to model negotiation between computerized
self-interested agents. On the other hand, the emergence of e-Business has
favored extensions of classic auction mechanisms to, for instance, multi-unit
and multi-object auctions.

Among the business-to-business (B2B) applications, e-Procurement re-
mains an active �eld of research. One way to tackle this problem relies on
the use of reverse auctions (i.e. one buyer and several sellers). For instance,

1The famous motorcycles constructor Ducati decided to sell a limited edition (2.000
units) of the MH900e using exclusively the Internet. The sell started on January 1st 2000,
at 00:01 a.m. and �nished 31 minutes later (58)
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in 2000, General Motor, Ford and Daimler-Chrysler joined together to create
an electronic market place based on auctions, called Covisint, for the pro-
curement of basic elements (common plastic parts, bolts, steal,. . . ). Renault
and Nissan joined the group some time later (nowadays Covisint has been in-
tegrated in Ariba (5)) . Another example is the WorldWide Retail Exchange
(126) which is an electronic market place based, among others, on e-auctions
for the sourcing in the retail and consumer goods industry.

However, as stressed by P.Milgrom (79) ... price-only auctions are of little
value if the goods, or their suppliers, have widely varying characteristics,
because the buyer will not normally buy based on a comparison of prices
alone. In the automobile example mentioned above, price-only auctions are
not suited for the procurement of elements requiring detailed technical spe-
ci�cations or an important implication of the supplier in the design.

As a consequence, some researchers started to consider auction mecha-
nisms that support bids characterized by several attributes in addition to
the price (quality of the product, quantity, terms of delivery, quality of the
supplier, . . . ). These are referred to as multidimensional, multi-attribute,
multiple issue or scoring auctions2. In this PhD thesis, we propose a new
contribution to this emerging �eld.

A typical example of such a situation is the procurement of computer
units. A company has to buy a �xed number of desktop computers. There-
fore, it speci�es the minimal requirements and invites bidders to propose
o�ers not only for the price but also on other negotiable attributes (hard
disk or memory capacity, CPU, number of units, warranty terms, . . . ).

Methods involving the simultaneous optimization of several criteria are
not new: they have been developed and tested for about 40 years. Among
them, those proposed within the so-called French school of Multiple Criteria
Decision Aid (MCDA) have the particularity not to impose complete rela-
tions for the comparison of alternatives (i.e. not to force the comparison
between any pair of alternatives). By doing so (i.e. by allowing potential
incomparability between some pairs of alternatives), the preferences of the
decision maker are represented in a more �exible way and distinctive features
of the problem (such as contradictory elements) may be outlined.

In this spirit, the main objective of this PhD thesis is to investigate the use
of partial relations in multi-attribute auctions. In order to avoid ambiguity

2in what follows we will use the word multi-attribute auctions to refer to this speci�c
�eld
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with the latter term, this will be referred to as multicriteria auctions. If
the use of partial relations is still subject to criticism in the multiple criteria
decision making community, it is even harder to justify it in a competitive
context such as auctions where, precisely, all the bids are (have to be ?)
comparable. Through this work, our aim will be to highlight the potential
interest of such an approach. This will lead us both to consider the problem
from an abstract point of view and to develop a speci�c model. Finally,
the context of bidding niches will be presented and formalized in order to
motivate the use of multicriteria auctions.

Thesis structure

Basically, this document is organized in two main parts. The �rst one,
including chapters 1, 2 and 3, is dedicated to the preliminary notions needed
to understand the new developments presented in the second part, i.e. in
chapters 4, 5 and 6.

As already stressed, this PhD thesis is at the cornerstone of two main
�elds: multicriteria decision aid and auctions. Chapter 1 constitutes a
brief introduction to the latter. The emphasis will be put on the basic termi-
nology, on the description of some main auction mechanisms and on recent
developments such as combinatorial auctions or electronic auctions. The aim
of this chapter is not only to introduce auctions but also to make the reader
sensitive to the richness of this research �eld. It also shows that, if auction
theory was at �rst essentially studied by means of statistical and probabilis-
tic tools, it relies nowadays more and more on operational research tools.
Therefore, a link with decision aid tools seems to follow a natural trend.

Chapter 2, dedicated to multicriteria decision aid, further completes the
introduction initiated in the �rst chapter. The multicriteria tools, used in
subsequent chapters, will be presented and criticized. More precisely, our
attention will be focused on the approaches of the so-called French school. If
several authors have already considered extensions of auctions incorporating
traditional multicriteria tools (such as additive linear multi-attribute utility
functions), this work is, to our knowledge, the �rst one to propose extensions
characterized by partial preference relations.

Once the two background �elds have been outlined, we present in chap-
ter 3 some existing contributions related to multi-attribute auctions. Since
the beginning of the 21th century, due to the emergence of electronic market
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places, this �eld has known an impressive evolution. Economists, mathe-
maticians, computer scientists, engineers, . . . , have contributed to its de-
velopment: each of them looking at the problem from a speci�c perspective.
This chapter illustrates a variety of research questions that have already been
addressed.

The second part of this work is dedicated to new developments. In chap-
ter 4, we have decided to investigate the �eld at an abstract level i.e. con-
sidering a general preference structure (P,I,J). This has led us to de�ne what
we call a multicriteria auction, to formalize related notions and to study
their properties. In these sections, a central concern is to study the auction
outcomes. Then extensions to Vickrey and Dutch multicriteria auctions are
sketched and particularizations to existing approaches such as uni-criterion,
dominance based or multi-attribute auctions are presented. The chapter
ends with considerations both about the comparison between multicriteria
auctions and request for quotes and about ex-post versus integrated bid se-
lection. Of course, the fact that two bids could, potentially, be incomparable
is motivated and commented through the chapter.

In chapter 5, we introduce a particular model, referred to as the Butter-
�y model, to apply multicriteria auctions. Inspired both by the Electre and
Promethee approaches, it is distinguishing itself from traditional methods
in the sense that it can be dynamically adapted during the auction. Start-
ing with a very general version of the model (that could be limited to the
dominance relation), the buyer is allowed to progressively re�ne it. These
updates are the consequence of bids comparisons or direct constraints im-
posed by the decision maker. Questions related to preference elicitation, the
role of indi�erence parameters and bidding support tools are discussed. The
formalization of the model, its properties and its distinctive features are then
presented on an illustrative example.

When the bidding space is not homogeneous, the use of partial relations
allows the buyer to manage di�erent bidding niches within the same auction.
Consequently, the auction may end with distinct winning o�ers (that together
are mutually incomparable) each of them characterizing one typical niche.
Chapter 6 is devoted to the formalization of a novel concept: the partition
of the bidding space into bidding niches. First of all, a few examples are
outlined in order to illustrate this idea. Then a model to detect bidding niches
partitions and a related hierarchical algorithm are presented. Finally, several
empirical tests are conducted, among others, to validate the algorithm, to
evaluate its sensitivity to parameters and to study the dynamic aspect of the
problem.
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Many questions are addressed through this thesis. If some answers have
been proposed, some of them remain open while new ones have appeared.
The conclusion of this work will summarize our contribution and list the
numerous directions for future research.

To conclude, let us stress that a number of personal contributions have
directly, or indirectly, inspired the redaction of this work. First of all, many of
the ideas and developments presented in the second part of this document can
be found in the paper Multicriteria auctions without full comparability of the
bids (39). Additionally, some of the introductory ideas presented in chapter
4 can also be found in Multicriteria Auctions: an Introduction (36). The
butter�y model presented in chapter 5 is also discussed in Butter�y auctions:
clustering the bidding space (37). Finally di�erent works about multicriteria
clustering methods (33; 38; 82; 46) are at the root of chapter 6. The proposed
model and the related empirical tests are partially summarized in Clustering
the bidding space into niches: a multicriteria hierarchical approach (40).
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Preliminary notions
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Chapter 1

A brief introduction to Auctions

1.1 Introduction

Auctions are used everyday to buy (or sell) objects, artefacts, services,
commodities, �nancial products, . . .Moreover, their recent application to e-
commerce, with success stories such as eBay (41), has popularized their use
by anybody: from the 7 years old schoolboy to the 77 years old retired man!

The �rst testimonies of the use of auctions date back from the fourth
century BC: the Greek historian Herodotus described the sale of future wives
in Babylon (87) using an auction mechanism. Later, in 197 AC, the whole
Roman Empire was sold using an auction mechanism (67). At that time, the
new emperor had to o�er an accession premium to the Praetorian guards to
buy their protection and, consequently, justify his new position. After the
murder of Pertinax, two candidates came to the Praetorian guards to buy
their services. In order to decide between the two, the soldiers organized an
auction.

Usually, the general public associates, nearly exclusively, the use of auc-
tions to auction houses like Christie's (28) and Sotheby's (107). This view is,
however, a bit reductive. The following examples illustrate the wide variety
of auctions' applications.
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• Rare items, paintings, sculptures, . . . (52)

� The works of Pablo Picasso have been sold at auction no fewer
than 3.579 times for a total value of 1.094.386.813$ (data from
May 1997).

� A volume of nine complete symphonies in Mozart's handwritting
has been sold at Sotheby's on May 22 1987 for a record amount
of 4.100.000$.

� The sculpture "Grande Femme Debout" of Alberto Giacometti
has been sold at Christie's on November 8 2000 for 14.306.000$.

� . . .

• Fish, livestock (113; 108), tobacco (108), . . .
Auctions are used everyday in small, medium and large �sh centers
(108). For instance, Noriega (84) describes in details the local �sh
market in Blanes (Catalonia, Spain). Inspired by this institution, he
has developed a platform to support multi-agent interactions.

• Flowers
In the Netherlands, �ower markets represent an important economic
activity. For instance, in Aalsmeer (15) 1, one sells, everyday, on aver-
age more than 20.000.000 �ower sets and the daily turnover is about
6.000.000 Euros. This activity is based on a particular auction mecha-
nism: the Dutch auction (see section 1.2).

• Wine
The ChicagoWine Company (117) organizes several auctions per month
to sell bottles of wine. For instance, between January 1996 and Feb-
ruary 2004, 1.246.975 bottles of red bordeaux have been sold for an
average price of 117.15$. During that period, the highest price (8.200$)
has been reached for a bottle of Margaux dating back to the year 1900.

• Collectibles
With the emergence of web sites like eBay, the cost to organize auctions
has been impressively lowered. Therefore, lower value items such as ad-
vertising items, comics or baseball cards have been sold using auctions.
If, initially, the famous website eBay (41) was designed to trade col-
lectible Pez dispensers, it hosts, nowadays, around �fty main categories
just for collectibles (29) (each of them being divided in thousands of
subcategories - see section 1.5.1 for more statistics about eBay).

1with about 1.000.000 m2 of �oor space, this auction house is the largest commercial
building in the world.
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• Financial products
In the United States, treasury bonds are regularly sold using sealed bid
auctions: three and six months T-bills are auctioned every Monday (the
total volume of Treasury securities auctioned in 1995 was about 2 tril-
lion dollars) (89). Moreover, �nancial markets, such as for instance the
New York Stock Exchange (NYSE), are based on a particular auction
mechanism: the double auction (see section 1.4).

• Electricity (73)
With the liberalization of the electricity markets, electricity trading
has became a key issue of the sector. The design of markets such as
the Amsterdam Power Exchange (APX) (4) or the European Energy
Exchange (EEX) (44) heavily rely on auctions.

• Telecommunication and Spectrum Auctions (76)
In 1993, the Federal Communication Commission (FCC (45), USA)
used particular auction mechanisms for the sale of more than $20 bil-
lion of spectrum licenses (73). Since the �rst spectrum right auctions
conducted by the New Zealand government in 1990, the related research
has been very active, especially with the development of combinatorial
auctions (see section 1.4 for details).

• Privatization
Auctions have been used by several governments for the privatization
of nationally owned companies (among others in countries from the
former Soviet bloc (51)). For instance, Yukos (131), which is, nowadays,
a leading petroleum company, has been sold in the mid 1990s by the
Russian government to private investors through a series of tenders and
auctions.

• Procurement auctions
Procurement is a key activity for governments, industries, companies,
. . .With the development of electronic commerce, electronic procure-
ment and, more speci�cally, electronic reverse auctions are more and
more common. For instance, Kodak has recently decided to use elec-
tronic reverse auctions for at least 20% of its annual purchase (which
are around $6 billion) (91). Procurement auctions will be further dis-
cussed in chapter 3

Since the works of William Vickrey (124), the literature about auctions
has known a signi�cant expansion. As pointed out by Krishna (67), the
Econ Lit database has more than a thousand entries with the word "auction
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" or "auctions". The impressive review done by Paul Klemperer (64) further
testi�es this activity.

As a consequence, the only ambition of this chapter is to, super�cially,
introduce the �eld and to de�ne the basic vocabulary that will be used in
the subsequent chapters.

This chapter is organized as follows. In section 1.2, the basic terminology
of auction theory will be introduced and the four traditional auction mecha-
nisms will be described. Then, in section 1.3, a classic theoretical model, the
independent private value model, will be brie�y outlined. A few recent exten-
sions of traditional auction theory will be presented in section 1.4 and section
1.5 will be devoted to electronic auctions. Finally, a global classi�cation of
auction mechanisms will be presented in section 1.6.

To conclude, let us stress that the present chapter will be further com-
pleted by chapter 3 which is devoted to multi-attribute auctions.

1.2 Auctions' basics

In this section, we will always consider the following context: several
buyers are competing to buy an unique item from a seller. This is referred
to a forward auction, or simply an auction. The term item will be used to
refer to what's being sold: the object, the service, the contract, . . . A bidder
is a buyer who submits an o�er or a bid (84). The auctioneer is the agent
who, in representation of a seller, conducts an auction.

Basically, an auction is a market institution with an explicit set of rules
determining allocation and prices on the basis of bids from market partici-
pants (75). In traditional auction theory, one usually distinguishes four basic
kinds of auctions:

• English auctions
The auctioneer starts the auction by calling out a low price. Then,
bidders propose o�ers the price of which is higher than the current
best bid. The auction stops as soon as no more bidder outbid the
current best o�er during a prede�ned delay. The one who proposed the
last best bid wins the item and pays a price equal to his bid.
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• Dutch auctions
The auctioneer starts the auction by calling out a su�ciently high
price2. Then, he continuously decreases the price until one bidder re-
acts and decides to buy the item at that price.

• First Price Sealed Bid auctions
Each bidder proposes a sealed o�er to the auctioneer. Once he has
received all the o�ers, the auctioneer ranks them from the best to the
worst. The bidder who proposed the highest bid wins the item and
pays a price equal to his bid.

• Second Price Sealed Bid auctions (also called Vickrey auction)
Second Price Sealed Bid auctions are close to First Price Sealed Bid
auctions. It is still the bidder who proposed the highest o�er who wins
the item but he only has to pay a price equal to the second highest bid.

Analyzing these di�erent auction mechanisms we can make a distinction
regarding the nature of the bids. In sealed bid auctions, the o�ers proposed
to the auctioneer are "secret" (since, as it is pedagogically explained in the
auction literature, they are communicated in sealed envelopes). On the con-
trary, in open auctions, i.e. English and Dutch auctions, the o�ers are public
3.. Moreover, if sealed bid auctions are essentially static, the dynamic na-
ture of English and Dutch auctions has to be stressed. Therefore, English
auctions (respectively Dutch auctions) are often referred to Ascending price
auctions (respectively Descending price auctions).

Of course, many variations of the previous descriptions can be found in
the literature (108). In Japanese auctions all the bids are made at the same
time, orally and publicly. In Candle auctions, bids are accepted as long as
a candle remains lit. For instance, a variant of the English auctions is the
following: the auctioneer starts the auction by calling out a low price. Then
he continuously increases the price. The bidders have their hand raised as
long as they are still interested to buy the item at the current called price.
The auction stops as soon as there is only one bidder with his hand raised
left. As a consequence, the winning bidder pays an amount equal to the price
at which the second-last bidder dropped out (67).

At this point, it is worth noting that the terminology presented in this
2i.e. a price that is high enough to be sure that no bidder wants to buy the item at

that price.
3some authors (115) further distinguish semi-sealed bids if partial information about

the o�ers is communicated to the bidders
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chapter is commonly used in the academic literature. Nevertheless, in prac-
tice, some denominations can vary considerably. For instance, Dutch auctions
are sometimes (41) referred to as multi-unit auctions (see section 1.4).

Furthermore, even when a speci�c type of auction has been chosen, a
number of additional parameters are likely to in�uence its execution and so,
its outcomes. Among them, let us mention:

• Bid increment
A bid increment is the minimum acceptable price di�erence between
two successive bids that is accepted.

• Reserve Price
In many cases, the seller �xes a (public or private) reserve price i.e.
a minimum price that has to be reached at the end of the auction to
proceed with the selling. If the �nal price is lower than the reserve
price, the seller has the right not to sell the item.

• Buyout price
If, during the auction, a bid greater of equal than the buyout price is
received, the auction automatically stops and the item is sold to the
bidder who proposed this o�er.

• Closing rules
Many di�erent closing rules can be considered. For instance, in English
auctions, the description above illustrates a closing rule that is based
on the bidding activity. Another closing rule could be to �x a closing
time, i.e. the auction stops Thursday at noon.

• Entry fee
Bidders have to pay an entry fee in order to be allowed to participate
to the auction. In the same spirit, in some cases, only pre-selected
(or invited) bidders are allowed to participate to the auction (open
participation or by invitation).

• . . .

Regarding all these di�erent types of auctions, two fundamental questions
(75) are raised:

• Why is an auction format used rather than some other selling (or buy-
ing) procedure ?
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• Given the diversity of types of auctions, what determines which parti-
cular auction form is chosen ?

Auctions o�er the possibility to dynamically �x prices on the basis of
(relatively) simple information exchanges: bids from market participants.

First of all, the value of certain goods is highly volatile. The price of
electricity on the Amsterdam Power Exchange (APX), for instance, may
vary considerably with respect to changes in the demand and supply condi-
tions. Perishable goods constitute other examples for which the value rapidly
evolve. In such contexts, the dynamic aspect of auctions o�ers an elegant
way to quickly adjust prices.

Moreover, some products have no standard value (24). Indeed, in some
cases, the price of speci�c goods is di�cult to precisely estimate. The value of
a manuscript form Leornardo Da Vinci 4 is such an example. In privatization
contexts, the value of national company constitute another example. In such
cases, by using an auction, these values will be determined by the market
(i.e. bids from market participants).

To address the second question, researchers working in auction theory
have built theoretical models. One of the them, the independent private
values model, will be brie�y outlined in the next section.

1.3 The Independent Private Values model

When modeling auctions, four basic issues are usually considered (89):

• Are the bidders (or the seller) risk neutral or risk averse ?

• How are the bidders' valuation of the object ? Independent or corre-
lated?
In auction theory, the bidders' valuation of the item are assumed to be
private information: this is the main di�culty associated to the man-
agement of auctions ! The independent values assumption refers to the
case where the valuation of one bidder does not depend on the valuation
of another bidder. This happens, for instance, with consumption goods
(104): the bidder is not willing to pay more (or less) because another

4the so-called codex hammer was sold by Christie's in 1994 for a record amount of
30.802.500 dollars
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bidder values the good di�erently (since, anyway, he will consume the
good). This is, of course, an idealized context. Most of items sold using
auctions such as paintings, �nancial products, . . . do not respect this
assumption. If a bidder si knows that another bidder sj values the item
higher, si is likely to increase his valuation. Anyway he will still realize
a margin if he re-sales the item afterwards. This situation is referred
to as the a�liated values assumption. An extreme case is the common
values assumption: the item sold has a single value denoted V . There-
fore, the bidders valuation are strongly dependent. This happens, for
instance, with the auction of mineral rights.

• Are the bidders identical or heterogeneous ? The �rst case will be
referred to symmetric bidders (versus asymmetric bidders)
In some cases, bidders are not homogeneous. For instance, when a
building contract is auctioned, some foreign contractors have cheaper
labor price than national ones.

• Does the �nal payment depend on other variables than solely the bid ?
In all the mechanisms introduced above, the �nal payment is solely
determined by the bid. However, in some cases, the �nal payment
may depend on other variables. For instance, in auctions of publishing
rights (89), the �nal payment depends both on the �nal bids but also
on royalties based on the realized sales of the book. Another example
based on the building of highways will be presented in chapter 3.

The model of Independent Private Values (IPV) relies on the easiest mod-
eling issues: bidders are assumed to be symmetric and risk neutral. Their
valuation are independent and the �nal payment only depends on the bids
submitted. This model is treated in the literature as a benchmark model.

First of all, let us remark that Dutch auctions are equivalent to �rst price
sealed bid auctions. Indeed, when a bidder participates to a Dutch auction
he has to �x (before the auction beginning) the price level at which he will
react during the auction. This strategy is exactly the same as the one used
in a �rst price sealed bid auction (67).

Moreover, English auctions are equivalent to Second Price Sealed Bid
auctions.

• On the one hand, a dominant strategy 5 for the bidders participating
5intuitively, a strategy that a bidder is better to apply whatever the other bidders'

strategy.
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in an English auction is to continue to bid until they have reached their
valuation. As a consequence, the winning bidder in an English auction
is the bidder with the highest valuation and the winning bid is equal
to the second highest valuation.

• On the other hand, a dominant strategy in a second price sealed bid
auction is to propose a bid equal to the valuation. Indeed, the bid
communicated in a Vickrey auction only in�uences the probability of
winning, the winning bid being determined as being equal to the second
highest bid. Therefore, bidding lower than the valuation decreases the
probability of winning without increasing the margin. On the contrary,
bidding higher than the valuation may lead to situations where the
winning bid is higher than the valuation and thus to negative margins.
As a consequence, the winning bidder in a Vickrey auction is the one
with the highest valuation and the winning bid is equal to the second
highest valuation.

Let us note that, if the valuations are not independent, this equivalence is
not true anymore since, during an English auction, bidders may learn some
information about the others' valuations.

A major result of auction theory is known as the revenue equivalence the-
orem. This gives a �rst answer to the second fundamental question presented
in the previous section.

Theorem 1 Revenue Equivalence Theorem (124; 81; 92; 75)
For the benchmark model, each of the English auction, the Dutch auction,
the �rst-price sealed-bid auction, the second-price sealed bid auction yields
the same price on average.

Of course, the assumptions underlying the benchmark model are rather
restrictive and a number of experimental analyses has shown its limits. We
refer the interested reader to the book of Kagel and Roth (59) which reviews
a number of experimental analysis.

As already stressed, the Independent Private Values model is a benchmark
model in auction theory. Many other traditional models may be considered.
Among others let us cite the common value model (78) or the correlated
values model (75). We refer the interested reader to (64) for their detailed
analysis. On the other hand, more recently, a number of extensions of classic
auction mechanisms have been proposed. Some of them are described in the
next section.
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1.4 A few selected extensions

In traditional auction theory, one basically distinguishes two situations:

• There is one item to sell and several potential buyers in competition.
This situation is referred to as a forward auction.

• There is one item to buy and several potential sellers in competition.
This situation is referred to as a reverse auction

Nevertheless, as shown here after, these situations have been (recently)
extended to more general settings, namely double, multi-unit or multi-object
auctions.

In double auctions (49), both several buyers and several sellers interact.
This kind of situation happens, for instance, in �nancial markets where, si-
multaneously, several bidders propose to sell di�erent quantities of a speci�c
asset for di�erent prices and several bidders propose to buy di�erent quan-
tities of this asset at di�erent prices. The winner determination is based on
the market clearing price, i.e. the price that is at the intersection between
the aggregated supply and demand curves.

In multi-unit auctions, several units of an homogeneous good are sold. A
�rst approach could be to successively sell the di�erent units using a tradi-
tional auction. However, if there are m units to sell, m di�erent auctions
have to be organized! Furthermore, in such a context, the bidders' strategy
is not obvious: at each step, they have to evaluate the chance they have
to acquire one item for a lower price in the remaining auctions. A second
approach is thus to simultaneously sell the m units. When the auction stops,
the winning bidders are those who have proposed the m highest prices. Two
distinct situations can happen concerning the �nal price paid by the winning
bidders. Either each winning bidder pays the amount he proposed (price
discrimination, this is also referred to as Yankee auctions (60)) or all the
winning bidders pay the same price i.e. the one corresponding to the mth

highest bid (or the (m + 1)th highest bid). In multi-unit auctions, bidders
propose o�ers that are characterized by a pair (price,quantity) i.e. the quan-
tity they are ready to buy at a speci�c price. Therefore, they are able to
express their preferences among these couples. As stressed by Klemperer
(64), multi-unit auctions constitute one of the most active research direction
within auction theory. We refer the interested reader to (67) for a detailed
description of the �eld.
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In multi-object auctions 6, several heterogeneous items are simultaneously
sold. Therefore, bidders are allowed to bid, not only on each item, but also
on bundle of items. By doing so, they are able to express synergies and
redundancies between the items (in other words, the bidders can express
their preferences according to di�erent bundles of items, see example 1).

Example 1 FCC spectrum right auctions
When introducing multi-object auctions, most authors refer to the FCC spec-
trum right auctions. It is, indeed, a particularly well-adapted context to il-
lustrate the need for bundle bids.

Let us consider 5 di�erent states, denoted A,B, . . . , E that simultaneously
propose licenses for the third generation of mobile phones (LX denotes the
license of state X). Let bi(S) be the bid proposed by bidder si for a subset
of licenses S. In this case, we will have bi(LA ∪ LB) ≥ bi(LA) + bi(LB),
i.e. bidder si is ready to pay more if he is sure to simultaneously get both
LA and LB than the sum of individual bids. This is due to the fact that A
and B are neighbouring states (see �gure 1.1). On the other hand, bidder si

has no interest to simultaneously get licenses for distant states. Therefore,
bi(LA ∪ LC) ≤ bi(LA) + bi(LC).

Figure 1.1: The selling of UMTS licenses: the example of 5 neighbouring
states.

When using multi-object auctions, a major concern is the determination
of the optimal allocation. This problem is referred to the Combinatorial
Auction Problem (CAP). Let M = {o1, . . . , om} the set of m objects that
are simultaneously sold and let S ⊆ M be a bundle of objects. Let N =
{e1, . . . , en} be the set of bidders participating in the auction. If bj(S) denotes

6also referred as combinatorial auctions (94; 105; 83) or multi-dimensional auctions
(128)
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the best bid o�ered by the jth buyer for S, the CAP can be formalized as
follows:

max
∑
j∈N

∑
S⊆M

bj(S) · y(S, j)

∑

S⊆M |oi∈S

∑
j∈N

y(S, j) ≤ 1,∀oi ∈ M

∑
S⊆M

y(S, j) ≤ 1,∀j ∈ N

y(S, j) ∈ {0, 1},∀S ⊆ M, j ∈ N

where y(S, j) is a binary variable such that y(S, j) = 1 implies that, in
the optimal allocation (i.e. the one maximizing the seller's revenue), the
bundle S is allocated to the jth bidder at a price bj(S). The �rst constraint
imposes that each object is allocated to, at most, one bidder. The second
constraint implies that, at most, one bundle is allocated to each bidder (the
bidders are assumed to propose bids for every bundles of objects). This
problem is known as a set packing problem 7. Several authors have studied
its resolution in the particular context of auctions. We refer the interested
reader to (94; 105; 83) for a detailed analysis. Finally, let us note that if the
bids are divisible i.e. if partial quantities are acceptable, the variable y(S, j)
are not boolean anymore and are interpreted as the proportion of the bid
that is allocated to bidder ej.

Of course, since bidders are allowed to propose bids for every bundles
of objects (i.e. for a total of 2m − 1 di�erent bundles), the expressivity of
the bids is a key issue. Therefore, some authors (83) have studied bidding
languages.

Furthermore, in this context, the cognitive complexity of the bidding
process increases and bidding strategies are di�cult to establish. As pointed
by (115), most of the research done in multi-object auctions has been focused
on the CAP (i.e. a support for the auctioneer). Nevertheless, on the bidders
side, bidding support tools are also needed.

7which is NP-complete
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As shown in chapter 3, combinations of the previous approaches, such
as multi-unit multi-objects auctions, can be considered. Furthermore, addi-
tional constraints can intervene in the model. For instance, in the context of
a reverse multi-unit auction, a constraint could be: the auctioneer must buy
the desired quantity of items from at least three di�erent suppliers (in order
to avoid a too strong dependence to a unique supplier).

These few extensions demonstrate how rich and active is the �eld of auc-
tion theory. This will be further completed with chapter 3 which is about
multi-attribute auctions.

1.5 e-Auctions

Auctions have been recently applied to e-Commerce with success stories
such as eBay (41), Onsale (86) 8, uBid (119), Yahoo auctions (129), Amazon
auctions (2), ... No doubt that these web sites have deeply stimulated the
general public's interest about auctions allowing nearly everybody to use
them to buy or sell things.

Historically, David Lucking-Reiley (70) has been one of �rst authors to
analyze this phenomenon. In the article "Auctions on the Internet: What's
Being Auctioned and How ?", he described the "e-Auctions landscape" in
August 1998 on the basis of 142 web sites. Here after, we summarize some
of his observations. This will be completed by an outline of eBay in section
1.5.1.

e-Auctions web sites are quite diverse in nature. Some of them, such
as AuctionVine (7) are specialized in auctioning a speci�c kind of goods (in
this case wine) while others, such as Yahoo auctions, host a large number of
distinct categories. Some web sites are essentially trading their own goods,
such as Onsale for instance (these are referred to Merchant sites) while others,
like eBay, works as listing-agent sites. Finally, some web sites, such as In-
ternetAuctionList (55), work as auctions portals, i.e. searching for auctions
on di�erent e-Auctions web sites. As for traditional auctions, the English
auction format is the most represented.

e-Auctions, compared to traditional auctions, o�er a number of advan-
tages. First of all, costs related to the organization and management of
auctions are deeply lowered. For instance, in auction houses like Sotheby's,

8which was apparently (70) the �rst e-Auctions web site (opened in May 1995)
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the commission is paid by both the seller (20% of the announced price) and
the buyer (15% of the �nal price). When a seller uses eBay, he only has to
pay between 0.25 and 2 dollars to be allowed to start an auction. Once the
object is sold, he has to pay a commission of approximately 5% on the �nal
price. Moreover, due to the geographic independence (bidders do not have
to gather at the same place) and time �exibility (auctions last usually longer
than classic auctions), a larger public can participate to the auction and a
larger choice of items is available.

Most of e-Auctions last several days. eBay for instance proposes 4 distinct
length: 3, 5, 7 or 10 days. Shorter periods, such as express auctions (60
minutes) or �ash auctions (3 minutes) can also be found. The longest auction
in the survey (70) lasted about 90 days. Most of e-Auctions use a prede�ned
closing rule (i.e. the auction stops, for instance, Thursday at noon). As a
consequence, one observes that the bidders wait the last minutes to send their
bids (this is referred to snipping see below). To counter this behavior, some
web sites use the following rule: if an abnormally high activity is detected
during the last minutes before the auction's end, the length of the auction is
extended with a speci�c delay.

Of course, with the emergence of e-Auctions, a number of new behaviors
have appeared or, at least, have been re-enforced. Among them we can cite
(29):

• snipping: the act of bidding at the very last possible second of an
auction

• bid shielding: an illegal process wherein two bidders work together to
defraud a seller out of high bids by retracting a bid at the last minute
and granting a confederate's low bid the win.

• shill bidding:the practice of placing a bid on an item to arti�cially
in�ate the �nal value.

Finally, from a technological perspective, auctions have also received great
attention within the multi-agent �eld (102; 104; 93): they have been used for
resources and tasks allocation between computerized agents (93) and elec-
tronic auction platforms like AuctionBot (127), eMediator (103) and Fish-
Market (84) have been built with the option to support agents interactions.

20



1.5.1 The case of eBay

Speaking about e-Auctions, without speaking about eBay 9 is probably
like speaking about Physics without citing Newton ! The success of eBay is
worldwide and has overcame most of analysts' expectations. For instance,
nowadays in the USA, a car is sold on eBay every minute (on average) (42).
Selling or buying on eBay is, for some people, a full-time professional ac-
tivity. The so-called eBay PowerSellers have a gross monthly volume at
least greater than 1.000$ (Bronze level), 3.000$ (Silver), 10.000$ (Gold level),
25.000$ (Platinum level) or 50.000$ (Titanium level) (29). Furthermore, fa-
mous brands such as Nike, HP or Motorola have their o�cial eBay stores.
Finally, searching on Amazon.com about books on eBay leads to more than
350 titles (most of them explaining the best strategy to win in online auc-
tions).

Q2 2004 Q2 2005 Evolution
Consolidated net revenues 773.4$ 1.086 billion $ +40%

Active users 48 million 64.6 million +34%
Gross Merchandise volume 8 billion $ 10.9 billion $ billion +36%

Listings 332.3 million 440.1 million +32%

Table 1.1: Statistics and recent evolution of eBay - Second Quarter 2004 and
2005 (41)

Since the creation of eBay in September 1995, the number of users, listed
items and other related activity factors haven't stopped increasing. Table
1.1 further illustrates this assertion. Nowadays, eBay o�ers a wide variety of
services to its clients. Two of them are outlined hereafter.

First of all, when trading on the Internet, your interlocutors are humans
beings (or at least software agents that represent human beings) that hide
themselves behind an ID or a nickname. Even if a nickname sounds great,
you never know if the person behind it will behave as a reliable commer-
cial partner or not. To reduce the uncertainty related to encounters, eBay
proposes a feedback program that gives information about the buyer or the
seller behavior (number of bid retractions during the past 6 months, positive,
neutral or negative feedbacks about previous trades, ...).

Moreover, since e-Auctions last several days, and that buyers cannot stay
9If eBay is mainly focused on e-Auctions, it also proposes live auctions (43) or �xed-

price sales
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online the whole day to follow the auctions they participate, eBay proposes
that an arti�cial agents bids on behalf of the user. This is referred to proxy
bidding. In practice, the user speci�es the maximum amount he is ready to
pay for the considered item and the agent automatically outbids o�ers from
other buyers until he reaches this amount.

To conclude, let us stress that eBay remains an evolving web site that is
more and more analyzed by the academic world (54; 90; 61).

1.6 A global perspective

As shown in the previous sections, auction theory is a rich research sector
that is in constant evolution. In order to give the reader a global perspective
of the �eld, we present, here below, a classi�cation of auction situations
based on their characteristics (see table 1.2) that has been recently proposed
by Teich et al. (115). Most of the characteristics listed in table 1.2 have been
introduced in the previous sections. Some others (4, 13, 14 and 15) are related
to multi-attribute auctions and so will be introduced or further explained in
chapter 3.

1.7 Conclusion

In this chapter, our aim was both to introduce the basic vocabulary re-
lated to auction theory and to illustrate the richness of this �eld. This will
be further completed by chapter 3 which is about multi-attribute auctions.

If the �rst works on traditional auctions were essentially studied by means
of probabilistic and statistical tools, extensions such as multi-unit or multi-
object auctions rely more and more on operations research tools. This trend
will be further marked with multi-attribute auctions.
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Characteristic Range
1. Number of items of a certain good One to many
2. Number of goods auctioned One to many
3. Nature of goods Homogeneous to heterogeneous
4. Attributes One to many
5. Type of auction Reverse vs forward
6. Nature of auction One round vs progressive
7. English versus Dutch auction Ascending, descending price
8. Participation By invitation vs open
9. Use of agents Agent mediated vs manual mode
10. Price paid by winner First price vs second price vs nth price
11. Price discrimination Yes, no
12. Constraint exist Implicitly, explicitly
13. Follow-up negotiation Yes, no
14. Value function elicitation Yes, no
15. Nature of bids Open cry vs semi-sealed vs sealed
16. Bid vector 1,2, or n-dimensional
17. Bids divisible Yes, no
18. Bundle bids allowed Yes, no

Table 1.2: Classi�cation of auction situations based on their characteristics
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Chapter 2

Multicriteria Decision Aid

2.1 Introduction and motivations

Multicriteria Decision Aid (MCDA) has been an active �eld of research for
more than 30 years. Summarizing it in a few pages is, of course, impossible.
Consequently, the only ambition of this chapter is to constitute a rough
introduction to the subject.

As shown here after, a brief analysis of the terms "multicriteria decision
aid" already allows the novice to understand the underlying motivations of
this research area (35). It is, �rst of all, a decision aid activity (versus
decision making) that has its root in the multicriteria paradigm. These
statements will be further commented in the next two subsections. We re-
fer the interested reader to (99; 98; 122; 8; 120; 17; 106; 35) for detailed
discussions.

The rest of the chapter is organized as follows. In section 2.2, we will
introduce the basic terminology and notions related to multicriteria decision
aid. This will lead us to de�ne multicriteria problems. Then, two distinct
multicriteria approaches will be outlined: multi-attribute utility functions
(in section 2.3.1) and outranking methods (in section 2.3.2). In the latter
subsection, both the Electre and Promethee methods will be outlined. Then,
a few selected modeling issues will be presented in section 2.3.3. Finally,
general additional comments and concluding remarks will end this chapter.

At last, in order to illustrate the notions that are introduced in the fol-
lowing sections, we will constantly refer to the following example (taken from
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the �eld of multi-attribute auctions):

Example 2 The cafeteria problem.
A company wants to sub-contract the activities related to her cafeteria. There-
fore, it decides to organize a procurement auction. The potential suppliers
are invited to submit o�ers for a one-year contract (250 working days - 500
meals a day).

2.1.1 Decision aid

Selecting an investment project, appointing a new employee, choosing a
site to establish a garbage dump, diagnosing a disease, . . . All these exam-
ples show that deciding is a complex activity that, in many cases, can have
important consequences.

A decision is, �rst of all, the result of a more or less time consuming
process that is made up partial decisions, negotiations and learning phases,
search for (additional) information, . . . During this process, new potential so-
lutions can appear while others become not topical anymore. The context of
the problem can be such that the evaluation of the potential solutions has to
be made according to several con�icting point of views (eventually integrat-
ing subjective elements). The related data are often imprecise, uncertain
or simply not available. Social, economic and political constraints further
increase the complexity of the decision process. Finally, most of decisions
involve di�erent actors with di�erent value systems.

Facing the complexity of this activity, one may try to build a model, i.e.
an abstraction of the reality that will be used, during the decision process, as
a support for the investigations and communications. The limited, approx-
imate and imperfect nature of this model has to remind us of his modesty.
This observation has led Bernard Roy (99) to de�ne decision aid as follows:

De�nition 1 Decision aiding is the activity of the person who, through the
use of explicit but not necessary completely formalized models, helps obtain
elements of responses to the questions posed by a stakeholder 1 in a decision
process. These elements work towards clarifying the decision and usually to-
wards recommending, or simply favoring, a behavior that will increase the

1here, the term stakeholder refers to any individual or entity that intervene in the
decision making process.
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consistency between the evolution of the process and this stakeholder's objec-
tives and value system.

2.1.2 The multicriteria paradigm

In the �fties, the pioneers of operational research were convinced of the
natural and promising applicability of their models. Twenty years later,
the reality was somewhat di�erent: some problems had been successively
treated by using classic operational research tools while, in other cases, their
application had disappointed.

As remarked by Schärlig (106), the success stories were essentially related
to situations where the decision problem could have been isolated from their
context: the search for optimal mixtures, an optimal traveling problem, an
optimal stock management, . . . In the other cases, the underlying assumptions
of classic OR models appeared to be too restrictive to constitute an adequate
model of the reality.

Indeed, most of unicriterion optimization approaches rely on the following
(implicit) assumptions (106):

• stable set of actions: the set of alternatives is assumed to be known prior
to the analysis and to remain unchanged during the decision process.
On contrary, in most decision problems, new alternatives can appear
during the analysis while others become not topical anymore.

• exclusive actions: every alternative is assumed to perfectly re�ect all
the facets of the problem.

• transitivity assumption: the preferences of the decision maker are as-
sumed to be transitive. This hypothesis has been severely criticized
(see below). In many real life problems, nor the (strict) preference nor
the indi�erence relations are transitive.

Among the critics listed above, the one related to the non-transitivity of
preferences is de�nitively the most crucial. This distinctive feature comes (at
least partially) from the fact that most of decision problems involve several
con�icting criteria (while the classic OR models are built to optimize a unique
criterion under several constraints). As a consequence, the notion of optimal
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solution 2 is not meaningful anymore. Therefore, in multicriteria contexts,
researchers will rather consider compromise solutions, i.e. solutions that are
"globally good" according to the di�erent criteria (without necessarily being
the best for a given criterion) and that are not too bad for any given criterion.

In unicriterion optimization models, the apparent universality of the op-
timal solution concept leads the analyst 3 to search for an hidden truth
(106; 123; 35; 99). On the contrary, the arguments presented above (and
in the previous subsection) lead to acknowledge that the objectives of multi-
criteria decision aid are much more modest. It is, �rst of all, a structuring
process that leads to search for satisfactory solutions with respect to the
decision maker's values.

2.2 Basic terminology and problem's formula-
tion

Facing the complexity of a decision problem, the Decision Maker (DM)
tries to rationalize it. Therefore, he has to identify the key elements that
will intervene in the decision process, i.e. the object of the decision, the set
of potential solutions, a way to evaluate and compare them, the factors that
can in�uence the decision(s), . . . This structuration phase is at the core of
the multicriteria decision aid activity.

In this section, we will introduce the basic terminology that is used within
the MCDA community and, consequently, increase the reader's awareness of
the MCDA problem's formulation.

2.2.1 The set of actions and their consequences

At �rst, let us introduce the notion of an action. Intuitively, the actions
are the set of objects, alternatives, items, candidates, projects, potential
decisions, . . . on which the decision is based. More formally,

2In most cases, an alternative that is optimal for a speci�c criteria will not be optimal
for another criteria (on the contrary, it is likely to be a bad solution according to this
second point of view). In fact, most of people interpret the term optimal solution in an
erroneous way because they assign it a global meaning. On the contrary, in practice, one
should ask the question optimal with respect to which criteria ?

3i.e. the person that helps the decision maker during the decision process
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De�nition 2 (100) An action is a generic term used to designate that which
constitutes the object of the decision, or that which decision aiding is directed
towards.

In what follows, we will denote the set of actions A = {a1, . . . , ap}. As
stressed by Vincke (123), A can be:

• stable: if A can be de�ned a priori and is not likely to change during
the decision process

• evolutive: if, on the contrary, A is likely to change during the decision
process. Indeed, the decision process being an dynamic activity, inter-
mediary results and / or the potential evolution of the decision context
can lead to consider new actions while others are not topical anymore.

Furthermore, let us stress that A is said to be globalized, if each element
of A excludes any others, and fragmented if it is not the case i.e. if combi-
nations of elements from A constitute possible issues of the decision process.
Finally, one generally distinguishes contexts where A can be de�ned by ex-
tension (the cardinal of A is �nite and relatively small. As a consequence,
its elements can be enumerated) and situations where it is de�ned by com-
prehension (the cardinal of A is in�nite or relatively high. The elements of
A are identi�ed as those satisfying a set of speci�c constraints).

Once the set A has been determined, one has to characterize the actions
(according to di�erent points of views). This is formalized by the criterion's
notion.

De�nition 3 (123) A criterion is a function ξ, de�ned on A taking its value
in a totally ordered set and representing the decision maker's preferences
according to some point of view.

ξ : A → E where E is a totally ordered set

Let us remind the reader that, in the present work, we will assume that
all the criteria have to be minimized. Let ξj(ai) denote the evaluation of
action ai according to the criterion ξj. Let us assume that q distinct criteria
are involved in the decision problem. In what follows, we will alternatively
use the term criterion or attribute.
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At this point of the analysis, the only objective information that can
be extracted from the decision problem is based on the Pareto dominance
relation:

De�nition 4 Let ≺ denotes the Pareto dominance relation i.e. b ≺ b̃ ⇔
ξ(b)j ≤ ξ(b̃)j ∀j ∈ {1, . . . , q} and ∃j̃ ∈ {1, . . . , q}|ξ(b)j̃ < ξ(b̃)j̃. Similarly, we
de�ne ¹ as follows: b ¹ b̃ ⇔ ξ(b)j ≤ ξ(b̃)j ∀j ∈ {1, ..., q}

The exploitation of this relation leads to distinguish e�cient and domi-
nated actions from A.

De�nition 5 An action a is said to be e�cient if @ ã ∈ A : ã ≺ a

Nevertheless, most of the time, once the dominated actions have been
removed from A, the number of remaining e�cient actions is still important
since, most of the time, there is no action that is simultaneously the best for
all the criteria. On the other hand, one can explicitly build a virtual action,
called ideal point, that satis�es the aforementioned condition:

De�nition 6 The ideal point, i(A), associated to A is the point the coordi-
nates of which are (i(A)1, . . . , i(A)q) where:

i(A)j = min
a∈A

ξj(a)

Since the ideal point (or assimilated actions, i.e. that are the best for
all criteria) does not usually belong to A, the notion of optimal solution is
not adapted to multicriteria problems. On the contrary, in most cases, the
presence of con�icting criteria will lead the decision maker to rather focus
on compromises solutions. Therefore, the preferences of the decision maker
have to be modelled and exploited.

Example 3 The cafeteria problem.
The buyer, i.e. the manager of the company who is in charge of the procure-
ment, decides to evaluate the o�ers according to 3 criteria:

• ξ1: the price of the yearly contract. The reserve price for a daily meal
being equal to 12, 5 Euros, the value of ξ1 will never exceed 1.562.500
Euros (= 12, 5 · 250 · 500). In other words, E1 = [0 1.562.000].
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• ξ2: the meals variety. This criterion expresses the number of distinct
meals a day that are proposed to the employees. The values of this
criterion range from 1 to 3.

• ξ3: the meals quality. In addition to ξ2, the buyer decides to distinguish
the o�ers in terms of the meal quality. Therefore, the buyer de�nes
three quality levels A,B, C (A being better than B and B being better
than C). For instance, the quality level A correspond to meals that are
composed of a starter, main dish and dessert while meals corresponding
to level B are only composed of a soup and a main dish, . . . .

During the auction, the buyer will receive a succession of o�ers from the
suppliers that will constitute the set of actions. Consequently, in this context,
A is evolutive and de�ned by extension. The �rst o�er received by the buyer
is (685.000 1 C); i.e. a low price, low quality bid.

Once the set of actions and the set of criteria have been determined, one
still has to analyze the decision maker's preferences. This step will permit to
build a model that will, as much as possible, correctly represent his decision
behavior.

2.2.2 Preference modelling

When modelling the decision maker's preferences, one usually distin-
guishes the three following binary relations 4: Preference (P), Indi�erence
(I), and Incomparability (J), which result from the comparison between two
actions ai and aj ∈ A





aiPaj if ai is preferred to aj

aiIaj if ai is indi�erent to aj

aiJaj if ai is incomparable to aj

Indeed, these relations translate situations of preference, indi�erence and
incomparability and it can be assumed that they satisfy the following re-
quirements:

4R is a binary relation on A ⇔ R ⊆ {(ai, aj)|ai, aj ∈ A}
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∀ai, aj ∈ A





aiPaj =⇒ ai¬Paj : P is asymmetric
aiIai : I is re�exive
aiIaj =⇒ ajIai : I is symmetric
ai¬Jai : J is irre�exive
aiJaj =⇒ ajJai : J is symmetric

De�nition 7 ((123))The three relations {P, I, J} make up a preference struc-
ture on A if they satisfy the above conditions and if, given any two el-
ements ai, aj of A, one and only one of the following properties is true:
aiPaj, ajPai, aiIaj, aiJaj.

Intuitively (99):

• aPb corresponds to the existence of clear and positive reasons that
justify signi�cant preference in favor of a;

• aIb corresponds to the existence of clear and positive reasons that jus-
tify equivalence between the two actions;

• aJb corresponds to an absence of clear and positive reasons that justify
any of the two preceding relations.

In the classic unicriterion optimization models, the pair wise comparisons
of actions can only lead to two situations: preference or indi�erence. In
the same way, many multicriteria methods, such as multi-attribute utility
functions for instance, aggregate all the criteria into a unique (arti�cial)
value and, therefore, transform the multicriteria problem into a unicriterion
optimization problem. In these contexts, both the indi�erence and preference
relations are assumed to be transitive. These hypothesis have, nevertheless,
been criticized by several authors. For example, Luce (69) illustrates the
non-transitivity of the indi�erence relation with the following example: let
us consider 401 cups of co�ee noted C0, C1, . . . , C400. One assume that the
cup Ci contains exactly (1+ i

100
) grams of sugar. In this context, any normal

person is unable to di�erentiate two successive cups. Therefore, we have:
COIC1, C1IC2, C2IC3, . . . , C399IC400. Nevertheless, it is obvious that nobody
will state C0IC400. In the same way, the next example illustrates a situation
where the preference relation is not transitive.

Example 4 The cafeteria problem
As already stressed, preferences are not always transitive. In order to illus-
trate this phenomenon let us consider the following context: the manager
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estimates that all the criteria are equally important and doesn't want to base
his decision on a complex model. On the contrary, he assumes that an o�er
b1 is preferred to another o�er b2 as soon as b1 is better than b2 for at least a
majority of the criteria (i.e. for at least 2 criteria - we assume here that the
criteria are equally important). Applying this rule to the data listed in table
2.1, leads to b1Pb2, b2Pb3 and b3Pb1 (this is also referred to as the condorcet
e�ect (47)).

Table 2.1: Example of condorcet e�ect.

Bids Variety Quality Price
b1 2 C 1.000.000
b2 1 A 1.150.000
b3 3 B 1.300.000

Let us note that some authors (99) further enriches the previous structure
by a Q relation which stands for a weak preference relation (versus the strict
preference relation P ). In other words, if aiQaj, the decision maker knows
that aj¬Pai but cannot clearly choose between aiIaj or aiPaj. This speci�c
relation will not be considered in the present work.

The presence of potential incomparability is a distinctive feature of the
so-called French school of multicriteria decision aid. As already stressed, aJb
is stated when the decision maker cannot clearly choose among the three
following possibilities: aPb, bPa or aIb. This can happen, for instance, due
to (47) a lack of information, uncertainty or con�icting preferences (see (99)
for illustrative examples).

Finally, in what follows, we will often use the relation S = (P ∪ I). Thus,
aiSaj will stand for ai is at least as good as aj. A direct consequence of this
de�nition is:

∀ai, aj ∈ A





aiPaj ⇔ aiSaj, aj¬Sai

aiIaj ⇔ aiSaj, ajSai

aiJaj ⇔ ai¬Saj, aj¬Sai

We refer the interested reader to (16) for a detailed introduction about
binary relations and preference modeling.

Until now, we have restricted ourselves on binary relations for preference
modelling. Let us note that another important trend relies on valued rela-
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tions. This will be illustrated in section 2.3.2.2 which is about the Promethee
method.

2.2.3 Consistent family of criteria

A fundamental problem in multicriteria decision aid is to represent the
decision maker's preferences on the basis of the evaluations of the actions,
ai ∈ A, according to the di�erent criteria involved in the problem. The
selection of these criteria is thus a crucial �rst step of the modeling activity.
One way to formalize this selection is to require certain properties such as
exhaustivity, cohesion and non redundancy. Intuitively:

• exhaustivity: if ai and aj are two actions that are identical with
respect to all criteria, then one cannot have aiPaj or ajPai. If it is the
case then there exists another criterion di�erentiating ai from aj that
has not been considered. This criterion should then be added to the
family of criteria.

• cohesion: let us assume that ai and aj are indi�erent (aiIaj). Weak-
ening ai and reinforcing aj on one criterion (di�erent or the same) lead
to ai(P ∪ I)aj. This condition ensures some coherence between the
criteria and the global preferences.

• non redundancy: the family of criteria ξ = {ξ1, ξ2, . . . , ξq} does not
contain any redundant criteria in the sense that the family obtained by
removing any single criterion from ξ would violate at least one of the
two previous properties.

These three properties put together de�ne a cosistent family of crite-
ria. We refer the interested reader to (99) for formal de�nitions.

Example 5 The cafeteria problem.
Let us illustrate the condition of exhaustivity and cohesion in the context of
the cafeteria problem:

• Two sellers si and sj propose bids that are identical with respect to all
the three criteria: bi = bj = (685.000 C 1). Nevertheless, the manager
states biPbj. This statement is due to the fact that the manager has
already had a successful contract with supplier si in the past. Therefore,
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he's more likely to trust si than an unknown supplier sj. In order to
correctly represent the preferences of the manager, one should consider
an additional criteria related to the supplier's quality (this will be re-
ferred in chapter 3 to a bidder attribute). This example illustrates a
case where the exhaustivity condition is not respected.

• Let us now assume that, instead of a �xed price for a yearly contract of
500 meals a day, the manager asks a daily price for one meal (which
is, now, ξ1). At the end of the year, the total price is calculated on
the basis of the number of meals that have really been sold. Supplier si

proposes bi = (8 B 3); the manager estimates that, if 3 di�erent meals
of quality B are proposed to the employees, approximately 60% of them
will frequent the cafeteria. As a consequence, the estimated yearly cost
for the company is equal to 487.000 Euros (= (8−1, 5)∗500∗250∗0.6).
Supplier sj proposes bj = (8 A 2). With this bid, the expectation of the
manager about the employees' frequentation is the same. Therefore, he
states that biIbj. Now a third supplier sk proposes bk = (8 A 3). In
this case, the employees' frequentation is expected to be equal to 80%.
Therefore, the estimated yearly cost raises to 650.000 Euros and thus,
the manager states biPbk even if criterion ξ3 has been reinforced. This
example illustrates a case where the cohesion condition is not respected.

2.2.4 The multicriteria decision aid problems

Now that the basic multicriteria terminology and notions have been in-
troduced we are ready to de�ne what is a multicriteria decision problem.

De�nition 8 (123) A multicriteria decision problem can be de�ned as a
situation where given a set of actions A and a consistent family of criteria
F over A, we want to solve one of the following problems:

• determine a subset of actions considered as the best considering F
(choice problem - α),

• partition A in subsets with respect to pre-established norms (sorting
problem - β), or

• rank order the set of actions A from best to worst (ranking problem -
γ).
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Of course, a lot of real problems involve a mixture of these three main
issues. Moreover, additional considerations may be cited:

• The description problem: help to describe actions and their conse-
quences in a formalized and systematic manner to develop a cognitive
procedure (99).

• Choosing k among m actions (8). This problematic can be viewed
as a mixed of choice and ranking problematics.

• The design problem: to search for, identify or create new decision
alternatives to meet the goals and aspirations revealed through the
MCDA process (10).

• The porfolio problem: to choose a subset of alternatives from a
larger set of possibilities, taking into account not only of the charac-
teristics of the individual alternatives, but also of the manner in which
they interact and their positive and negatives synergies (10).

Example 6 The cafeteria problem.
In this context, the manager is confronted with a suppliers' selection problem,
i.e. a choice problematic. Let us note that, at the end of the negotiation, the
manager has to select a unique supplier. Nevertheless, due to the diversity
of o�ers, the auction might end with a set of good o�ers (and not necessarily
a unique supplier). Consequently, the manager will have, for instance, to
conduct one-to-one negotiations with the winning suppliers in order to select
the unique winner. In this case, the auction is viewed as a �rst competitive
step of the negotiation process (see also section 3.2).

2.3 Methods

The multicriteria problematic has inspired many authors and, therefore
has bene�ted from an important number of theoretical contributions. Among
the methods that are commonly used within the MCDA community, we will
brie�y introduce, here below, two major trends: the multiple attribute utility
theory and the outranking methods.

This limitation is, of course, related to the minimal needs for a good
understanding of the developments presented in future chapters. Of course,
other approaches such as, for instance, interactive methods (77) or the ana-
lytical hierarchical process (AHP) (101) may deserve greater attention.
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2.3.1 Multiple attribute utility theory

Multi-Attribute Utility Theory (MAUT) (48; 62) is an extension of the
well-established utility theory to the multicriteria framework. In what fol-
lows, we will restrict ourselves to the context of certainty (even if this only
constitutes a sub-part of MAUT). In this context, let us note that some
authors (47) prefer to use the term value function instead of utility function.

The underlying idea of MAUT is that the decision maker's preferences
can be represented by some function U = U(ξ1, ξ2, . . . , ξq) that aggregates all
the criteria into values expressed on an arti�cial scale: the utility (123; 20).
Researchers working in the �eld of MAUT have been mainly focused on two
distinct problems:

• what are the conditions under which the preferences of a decision maker
can be represented by a speci�c utility function ?

• how to assess this function (and its related parameters) ?

Of course, di�erent explicit forms of U have been proposed and studied
in the literature. Among them, the most popular one is referred as the the
additive model:

U(a) =

q∑

k=1

Uk(ξ
k(a))

where the marginal utility 5, Uk, is a non increasing function of ξk. Let
us note that the weighted sum U(a) =

∑q
k=1 ωk · ξk(a) is a particular case of

the additive model.

In order to apply an additive model a necessary condition is the prefer-
ence independence assumption. Intuitively, two criteria are said to be pref-
erentially independent if the trade-o�s between them are independent of all
the other attributes (47). More formally:

De�nition 9 (47) Let I ⊂ {1, . . . , q} be a subset of attribute indices and let
XI represent the subset of the attributes designated by the subscripts in I.
Let X̄I be the complementary subset of the q attributes. Then,

5The use of marginal utility functions permits to transform the values of the di�erent
criteria ξk into a common abstract scale. Therefore, problems related to di�erent units
are avoided and the sum of every marginal contributions is meaningful.
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• XI is preference independent of X̄I if (wI , w̄I)S(xi, w̄I) for any wI , xI ∈
XI and w̄I ∈ X̄I implies (wI , x̄I)S(xI , x̄I) for all x̄I ∈ X̄I .

• The attributes X1, . . . , Xq are mutually preference independent if for
every subset I ⊆ {1, . . . , q} the set XI of these attributes is preference
independent of X̄I .

The following example illustrates a case where the preference indepen-
dence assumption is violated.

Example 7 The cafeteria problem
In order to illustrate a situation of preferential dependence, let us consider
the data listed in table 2.2. The manager will state that b2Pb1 since, for a
meal of quality B, he prefers to pay 150.000 Euros more to be able to o�er
more variety to the employees. On the contrary, when comparing b3 and b4

he will state b3Pb4: since for a meal of quality A, he considers that a variety
equal to 2 meals a day is already su�cient and, therefore he prefers to save
150.000 Euros. Nevertheless, both b1 and b3, and b2 and b4 have the same
evaluation according to the variety and price criteria - only the quality varies.
As a consequence, the criterion {quality} is not preferentially independent to
the criteria {variety,price}.

Table 2.2: Example of 4 bids leading to a preferential dependence situation.

Bids Variety Quality Price
b1 2 B 1.000.000
b2 3 B 1.150.000
b3 2 A 1.000.000
b4 3 A 1.150.000

Of course, even if the decision maker is assumed to react according to the
additive model (and consequently his preferences are assumed to be com-
patible with this model), the problem is only half-solved since the marginal
utility functions still have to be determined. To perform this task, di�erent
approaches have been proposed. Among them, we can cite:

• Direct methods
Direct methods permit to evaluate the parameters characterizing the
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multi-attribute utility function by questioning the decision maker about
his preferences. Of course, di�erent questioning procedures exist (123).
For the illustrative purpose of this section, let us outline the Pricing Out
Technique (62). To apply this technique, at least one price attribute
must be involved in the decision problem. Let us assume that ξ1 is
the price and ξ2, . . . , ξq are non-priced attributes. The aim of this
technique is to price out all the non price attributes, i.e. to transform
their values into monetary values. Once this step has been done, all the
criteria can be aggregated into a monetary scale (in other words, in this
case, utility is money). To assess the monetary value of the di�erent
attributes values, one presents to the decision maker two actions:

� x = (px, x
1, x2, . . . , xq−1)

� x̃ = (?, x̃1, x̃2, . . . , x̃q−1

Then, one asks the decision maker the price of x̃ such that he would
be indi�erent between x and x̃. If he answers px̃, this is interpreted as
follows: the decision maker is ready to pay px̃ − px to transform the
bundle of non price attributes of x into the bundle non price attributes
of x̃.

• Indirect methods
With indirect methods, the analyst tries to assess the multi-attribute
utility function from global judgements expressed by the decision maker
on A. For instance, the decision maker gives a ranking of the alter-
natives belonging to A. Then the analyst tries to �t the parameters
of a speci�c multi-attribute function in order to respect this ranking.
An example of such a method is the UTA method (56). In this case, a
linear program is used to �nd the most accurate parameters' �tting.

Example 8 The cafeteria problem.
The manager decides to base the bids'selection on the following multi-attribute
linear utility function:

U(b) = ω1 · U1(b1) + ω2 · U2(b2) + ω3 · U3(b3)

where the marginal utility functions are de�ned as follows:

• U1(b1) = 1− (b1− 187.500)/1.375.000. It has been decided that the em-
ployees will pay their daily lunch 1, 5 Euros: the company supplies the
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di�erence between the meal price and this �xed price. Therefore, the
company's contribution is equal to the yearly price minus the employ-
ees'contribution (187.500 = 1, 5 ∗ 500 ∗ 250). Finally, since the reserve
price for a daily meal has been �xed to 12, 5 Euros, the maximum contri-
bution of the company is equal to 1.375.000(= 12, 5 ·250 ·500−187.500)
which is used as a normalization factor.

• U2(1) = 0, U2(2) = 0.5, U3(3) = 1

• U3(C) = 0, U3(B) = 0.5, U3(A) = 1

After a detailed analysis of the buyer's preferences, the weights (ω1 ω2 ω3)
have been �xed to (0, 654473349 0, 143981769 0, 201544881) 6. Consequently,
the utility assigned to the �rst o�er b(1) = (685.000 C 1) is equal to:

U [b(1)] = 0, 6544 · [1− 685.000− 187.500

1.375.000
] + 0, 1439 · 0 + 0, 2015 · 0 = 0, 418

In many multi-attribute auctions, the buyer is not willing to communicate
his utility function to the sellers (since this information is often private).
On the other hand, suppliers need some information to know how to improve
their bids. One solution is to provide them a bidding support system: the
seller propose a bid the components of which are all determined except the
jth one. Then, the system (based on the buyer's utility function) determine
the maximal value of this attribute (if the criterion has to be minimized) such
that the resulting bid satis�es the auction rule (this approach will be further
described in section 5.4.3).

To illustrate this, let us consider that another supplier decides to propose
a new o�er. In order to be accepted, this bid must satisfy the auction rule,
i.e. its utility must be at least 0, 05 7 higher than the current best utility
(0.418). The buyer uses the bidding support system in order to determine
the components of di�erent potential bids. Therefore, he considers di�erent
con�gurations for quality and variety attributes and let the system determine
the minimal price in order to reach a 0.423 utility score. The results are
presented in table 2.3.

6A major critic about multi-attribute linear utility functions concerns the di�culty to
correctly interpret the weights. The present example perfectly illustrates this assertion

7This parameter is �xed before the auction.
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Table 2.3: Bidding support system. Di�erent bid con�gurations. Utility
scores

Variety Quality Determined price Utility Score
3 3 1.400.000 0.423
2 2 1.037.500 0.423
2 1 825.000 0.423

2.3.2 Outranking methods

The objective information that can be extracted from a multicriteria deci-
sion problem is relatively poor: the dominance relation can help the decision
maker to detect (and eliminate) dominated actions but, in most cases, an im-
portant number of e�cient alternatives remain. On the contrary, the results
obtained using a multi-attribute utility approach are excessively rich since
every pair of actions are comparable. Nevertheless, this complete pre-order8
is obtained at the expense of restrictive assumptions and, sometimes, undue
subjective information asked to the decision maker (20).

A number of arguments plead in favor of methods that are based on more
�exible assumptions. Indeed, the quest for complete pre-orders is not always
justi�ed (122):

• since, in some cases, partial pre-orders do not put a brake on the de-
cision process. For instance, if aPb, aPc and bJc, one does not have
to force the comparison between b and c to conclude that a is the best
alternative:

• since the existence of potential incomparability between two actions
may highlight singularities of the decision problem:

• since, due to the dynamic of the decision process, holding some incom-
parability between alternatives might be meaningful.

In reaction to these arguments, outranking methods have been developed:
they can be intuitively viewed as compromises between the poor objective
dominance relation and the rich subjective multi-attribute utility functions.
More formally:

8a complete pre-order is a binary relation R that is complete (i.e. a R b or b R a
∀a, b ∈ A), re�exive and transitive. If the relation is not complete, it is referred to as a
partial pre-order.
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De�nition 10 (99) An outranking relation is a binary relation S de�ned
in A such that aiSaj if, given what is known about the decision maker's
preferences and given the quality of the valuations of the actions and the
nature of the problem, there are enough arguments to decide that ai is at least
as good as aj, while there is no essential reason to refuse that statement.

In order to illustrate this de�nition, we will outline, in the next sub-
sections, two outranking methods: the Electre I and Promethee I and II
methods.

2.3.2.1 The Electre I method

The Electre I 9 (95) method has been designed to manage multicriteria
choice problems (α problematic). As shown below, the building of the S
relation perfectly illustrates the de�nition of an outranking relation.

In what follows, we will assume that a weight ωj has been assigned to
each criterion ξj (ωj ≥ 0,

∑q
j=1 ωj = 1).

When comparing two actions ai and aj, two indexes will be computed: a
concordance index and a discordance index. The concordance index quanti-
�es the fact that ai is at least as good as aj: it is "percentage" of the weights
related to criteria such that ξk(ai) ≤ ξk(aj). More formally:

C(ai, aj) =
∑

k|ξk(ai)≤ξk(aj)

ωk

On the other hand, the discordance index quanti�es if there is an essential
reason to refuse to state that ai is at least as good as aj. In other words, if
aj is much better than ai on at least one criterion. More formally:

d(ai, aj) =
1

δ
max

k
{ξk(ai)− ξk(aj), 0}

where δ = maxai,aj ,k{ξk(ai) − ξk(aj)}. Intuitively, if d(ai, aj) = 0 ⇔
ξk(ai) ≤ ξk(aj), ∀k and thus there is no reason to refuse to state that ai is
at least as good as aj. Whenever, ∃k|ξk(aj) ≤ ξk(ai) the discordance index
becomes positive. Once this index exceeds a level d̃ de�ned by the decision

9ELECTRE is the acronym for ELemination Et Choix Traduisant la REalité
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maker, one may assume that there is enough reason to state that ai is not at
least good as aj.

The combination of these two indexes permits to de�ne the outranking
relation S:

aiSaj ⇔ C(ai, aj) ≥ c̃, d(a, b) ≤ d̃

where the parameters c̃ and d̃ are �xed by the decision maker. Let us note
that, since the �rst version of Electre I, many variations have been proposed
to formalize the concept of discordance. Among others, most of the authors
consider a discordance parameters d̃k for each criterion. As a consequence,
the previous rule becomes:

aiSaj ⇔ C(ai, aj) ≥ c̃, ξk(a)− ξk(b) ≤ d̃k, ∀k

Once the outranking relation S has been setup, one need to exploit it in
the choice context. Therefore, the notion of kernel has been proposed.

De�nition 11 (123) The kernel N is a subset of the set of actions A such
that ∀aj ∈ A \N, ∃ai ∈ N : aiSaj and ∀ai, aj ∈ N : ai¬Saj

The kernel represents the subset of actions considered to be the best with
respect to A and ξ. Indeed, every action outside the kernel is outranked by at
least one action of the kernel and actions within the kernel are incomparable.
Let us note that, as a direct corollary, some actions belonging to the kernel
could be outranked by actions outside the kernel. To illustrate this purpose,
let us consider the following case: bSc, bSa and cSd. In this case, N = {b, d}
while cSd. Additionally, let us stress that the kernel is not always unique
(which is the case when the outranking relation contains circuits).

The Electre I dates back from 1968 (95). Since this �rst publication, a
number of evolutions have been made. Among others:

• Electre II (96) is an extension of the Electre I developed for ranking
problems (problematic γ);

• Electre III (97) is an extension of Electre II based on pseudo-criteria
(123);
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• �nally Electre TRI (130) has been designed to manage sorting prob-
lems.

We refer the interested reader to (99; 123; 47; 74) for a detailed analysis
of the Electre methodology. Finally, let us stress that a detailed example
illustrating the Electre I will be presented in chapter 4.

2.3.2.2 The Promethee methods

The Promethee 10 methods (19; 22; 23) have been developped in order
to manage ranking problematics. In this subsection, we sketch an outline of
this methodology.

Just as the Electre methods, the Promethee methods are based on pair
wise comparisons. When comparing two actions ai and aj on criterion ξk

the di�erence of evaluations between these two actions should be taken into
account. Assuming that ξk(ai) ≤ ξk(aj) this di�erence can be stated as
follows,

dk(ai, aj) = ξk(aj)− ξk(ai)

When the di�erence dk(ai, aj) is small and the DM can neglect it, there
is no reason to say that ai is preferred to aj and consequently the actions
are indi�erent (for the speci�c criteria ξk). The higher the value of dk, the
larger the preference Pk(ai, aj) in favor of ai over aj, on criterion ξk. This
preference can be de�ned through a preference function in the following way,

Pk(ai, aj) = fk(dk(ai, aj)), ∀ ai, aj ∈ A

and we can assume that Pk(ai, aj) ∈ [0, 1] (if Pk(ai, aj) > 0, then Pk(aj, ai) =
0).

The pair (ξk, Pk(ai, aj)) is called a generalized criterion associated with
criterion ξk, for all k ∈ {1, . . . , q}. Only 6 types of generalized criteria are
considered in the Decision Lab software (125). Generalized criterion of type
5 requires the de�nition of both qk and pk (see Figure 1).

10PROMETHEE is the acronym of Preference Ranking Organisation METHod for En-
richment Evaluations

43



qk pk dk(ai, aj)

1

Pk(ai, aj)

Figure 2.1: Generalized criterion of type 5

Once the preference degrees between two actions ai and aj have been
computed for every criterion, one need to aggregate these marginal contri-
bution to obtain P (ai, aj) i.e. a global measure of the preference of ai on
aj. This is performed using a classic weighted sum (ωk is assumed to be the
weight associated to criterion ξk):

P (ai, aj) =

q∑

k=1

ωk · Pk(ai, aj)

The fundamental idea underlying the PROMETHEEmethods is the quan-
ti�cation of how an action a outranks all the remaining (p − 1) actions and
how a is outranked by the other (p − 1) actions. This idea leads to the
de�nition of the positive φ+(a) and negative φ−(a) outranking �ows. More
formally:

φ+(ai) =
1

p− 1

∑

aj∈A,i6=j

P (ai, aj)

φ−(ai) =
1

p− 1

∑

aj∈A,i6=j

P (aj, ai)

Given these two measures, two total pre-order of A can be obtained (one
associated to the values of φ+ and another associated to the values of φ−).
The intersection of these two pre-order lead to a partial pre-order called
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the Promethee I ranking. In this context, two actions ai and aj will be
judged to be incomparable if φ+(ai) > φ+(aj) and φ−(ai) > φ−(aj) or of
φ+(ai) < φ+(aj) and φ−(ai) < φ−(aj).

On the other hand, the complete pre-order obtained with the Promethee
II method is based on the net �ow φ(ai) assigned to each a action ai ∈ A.

φ(ai) = φ+(ai)− φ−(aj)

Let us note that,

φ(ai) =
1

n− 1

q∑

k=1

∑
a∈A

{Pk(ai, a)− Pk(a, ai)} · ωk =

q∑

k=1

φk(ai) · ωk

where φk(ai) is called the kth unicriterion net �ow assigned to action ai.
Intuitively, these values allow to better locate action ai, according to criteria
ξk, with respect to all the other actions in A.

In addition to these rankings, Mareschal and Brans (71) have proposed a
geometrical tool that helps the decision maker both to interactively explore
and structure the decision problem and to better understand the results
provided by the Promethee rankings. This is referred to as the Gaia plane.
The underlying idea of this approach is to perform a principal components
analysis on the unicriterion net �ows assigned to each action (23).

A number of applications have been treated using the Promethee methods
(see (23) for detailed references). Both the Promethee I and II rankings and
the Gaia plane are implemented in Decision Lab (125). Moreover, the soft-
ware o�ers interesting functionalities regarding the exploration and structur-
ing of the problem, the sensitivity analysis of the results or the management
of group decision problems.

Of course, since the �rst contributions, the Promethee methodology has
known a number of improvements. Among others, let us mention:

• Promethee III (23): an extension of Promethee II that is based on a
more careful de�nition of indi�erence and preference relations (the net
�ow is enriched by a standard deviation).

• Promethee V (21): an extension to Promethee I and II to address the
Portfolio problematic.
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• Promethee TRI and Promethee CLUSTER (46). The aim of this work
is to extend the Promethee method to multicriteria classi�cation prob-
lems: sorting and clustering problems (see also (33)).

Finally, let us stress that critics on the use of the Promethee method can
be found in (32). Among them, the most commonly cited one is related to
the third alternative dependence (the relative ranking of two alternatives can
be swapped due to the adding or deleting of a third alternative11. Let us note
that this e�ect is also present in other methods.

Example 9 The cafeteria problem.
Facing the 3 potential bid con�gurations listed in table 2.3, supplier si decides
to use the Promethee method to select the bid he will propose.

First of all, he decides to compute the margin he will realize for each bid
con�guration (see table 2.4). The (daily) cost related to one meal character-
ized by a quality Q and a variety V is equal to 5 + 1, 5 · (Q− 1) + (V − 1).

Table 2.4: Bidding support system. Di�erent bid con�gurations. Margin for
supplier si.

Variety Quality Price Margin for supplier si

3 3 1.400.000 150.000
2 2 1.037.500 100.000
2 1 825.000 75.000

Naturally, si wants to maximize his margin. On the other hand, in order
to limit the risk associated to the stock management, he prefers to minimize
the meals'variety. Finally, his marketing strategy (i.e. his public image) leads
him to maximize the meal quality. Figure 2.2 summarizes his preferences :

• the realized margin is as important as the two non-price attributes. An
di�erence lower than 5.000 Euros is to small to be taken into account.
On the other hand, as soon as it exceeds 25.000 Euros, a strict prefer-
ence is set. Between these two values, a linear interpolation is done.

• concerning the variety attribute, a di�erence of 1 unit is su�cient to
have a strict preference

11even if this one is dominated by all the other actions
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• on the contrary, the quality attribute is interpreted using a level pref-
erence function. A di�erence of two levels, lead to a strict preference
(i.e. the preference degree is equal to 1), while a di�erence of 1 level
is judged to be too small to be quanti�ed (i.e. the preference degree is
equal to 0).

These settings lead to a partial ranking with two interesting bids: b1 and b2.
Indeed, b3 is outranked since it has the lower margin and the lower quality
(see �gure 2.2).

Figure 2.2: Promethee I partial ranking

In order to illustrate the fact that the Promethee rankings are a�ected by
the number of actions, let us, temporarily, focus on bids b1 and b2 (we do
not consider anymore b3 in the analysis). As shown on �gure 2.3, b1 appears
to be the best bid while these two bids were incomparable before (let us note
that this result is, however, compatible with the �rst Promethee II ranking
obtained).
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Figure 2.3: Promethee I partial ranking, when bid b3 is not considered any-
more.

2.3.3 A few selected modeling issues

Of course, when applying multicriteria methods, many modeling issues
have to be considered. Among them, we will sketch a few of them that seem
to us to be particularly relevant:

• Criterion's scale
As already stressed, a criterion is, basically, an application from the
set of actions A into an ordered set E. Nevertheless, the elements of
E can be belong to di�erent scales (100):

� ordinal scale: the gap between two degrees does not have a clear
meaning in terms of preference di�erences.

� ratio scale: a numerical scale whose degrees are de�ned by ref-
erence to a clearly de�ned unit in a way that gives meaning, on
the one hand, to the absence of quantity (degree 0) and, on the
other hand, to the ratio of the numbers which characterize them,
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each of them being interpretable as the addition of a given number
(integer of fractional) of units of the quantity considered.

� interval scale: the ratio of numbers which characterize two de-
grees are not signi�cant while the ratio between di�erences in num-
bers associated with two pairs of distinct degrees is signi�cant.

Example 10 With reference to the illustration of the Promethee method
(see �gure 2.2), the {margin} has been associated to a ratio scale, the
{variety} has been associated to an ordinal scale while the {quality} has
been associated to an interval scale.

Di�erent scales mean di�erent things, even if the information coding is
the same. Therefore, this distinctive feature has to be carefully man-
aged during the modeling activity (to avoid, for instance, the abusive
aggregation of heterogeneous scales into a ratio scale).

• Inter-criteria information
An intrinsic problem related to multicriteria decision aid is to be able
to identify and, eventually, to quantify the relative importance between
the criteria.
In this context, the weakest information needed is a ranking of the
criteria. This ordinal information is, for instance, exploited in the lex-
icographic method and in Argus (31). If one looks to quantify this
relative importance, the notion of weight appears.

� Weights
The term weight sounds familiar and basic. Nevertheless, it hides
a wide variety of distinct interpretations. Among them, let us cite
(27):
∗ marginal contributions per unit of ξj;
∗ indi�erence trade-o�s or rates of substitution;
∗ gradient of an overal value function;
∗ discriminating power of the criteria on the alternatives;
∗ parameters used in interactive optimization;
∗ scaling factors converting into commensurate overall value;
∗ . . .

For instance, in the classic weighted sum, the weights have to
be interpreted as scaling factors converting the evaluations into
a commensurate overall value and, as a consequence, naturally

49



depend of the criterion's scale (if the scale changes, the weight
has to be changed (122)). Therefore, they cannot be interpreted
as the relative importance of the criteria (unless all the criteria
already belong to the same scale). On the other hand, the weights
used in the Electre I method (which is not compensatory) have
to be interpreted as the number of votes in a voting procedure.
These two examples illustrate perfectly the fact that the notion of
weights has to be carefully managed when using a speci�c model.

� Preferential dependence
As already stressed in section 2.3.1, preferential independence is
a necessary condition to be able to model the decision maker's
preferences using a multi-attribute linear utility function (or as-
sociated approaches). However, a number of situations do not
satisfy this assumption.
Recent works (80; 50; 72) nevertheless o�er an elegant solution
to this problem. They rely on the use of the choquet integral as
aggregation operator. In these works, the notion of weights per
criterion are extended to weights for coalitions of criteria. As a
consequence of the sub or sur-additivity of these weights, synergies
and redundancies between set of criteria can be taken into account
in the model.

• Parameters �tting
As already stressed, a number of parameters are involved in multicrite-
ria methods: inter-criteria parameters, such as weights or discordance
thresholds, or intra-criteria parameters, such as indi�erence of prefer-
ence thresholds. Of course, the �tting of these parameters is a crucial
step in the modeling process. Moreover, their clear interpretation by
the decision maker remains another di�culty.

2.4 Conclusion

This chapter constitutes a rough introduction to multicriteria decision
aid. Our aim was to introduce the basic vocabulary and notions that will be
used in the next chapters. Moreover, the Promethee I and II and Electre I
methods have been outlined. These approaches have inspired us to develop
the butter�y model presented in chapter 5.

Of course, Multicriteria Decision Aid cannot be (naively) reduced to the
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application of a given mathematical method to an idealized problem. It is,
�rst of all, a complex activity where the problem structuring is vital. This
aspect has nevertheless been under represented in the previous pages. We
invite the interested reader to consult the book written by Bernard Roy (99)
for such a discussion and the recent state of the art surveys (47) for a detailed
analysis of the �eld.
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Chapter 3

Multi-attribute auctions

3.1 Introduction

Procurement is a key issue for any company and has a deep impact on the
supply chain management. Therefore, e-Procurement solutions have received
great attention and, are more and more used, replacing traditional practices.
According to the Aberdeen Group (1), revenues related to e-Sourcing activ-
ities will exceed $3 billion by 2005.

One way to conduct e-Procurement rely on the use of reverse auctions.
For instance, in 2000, General Motor, Ford and Daimler-Chrysler joined to-
gether to create an electronic market place based on auctions, called Covisint,
for the procurement of basic elements (common plastic parts, bolts, steal,. . . ).
Renault and Nissan joined the group some time later (nowadays Covisint has
been integrated in Ariba (5)) . Another example is the WorldWide Retail
Exchange (126) which is an electronic market place based, among others, on
e-auctions for the sourcing in the retail and consumer goods industry. Busi-
ness to Government (B2G) constitutes another application �eld for reverse
auctions. For instance, the O�ce of Government Commerce (85) reports
recent successful implementations in the U.K.

The use of traditional reverse auctions is particularly well adapted when
the items (objects, services, . . . ) are commodity-like (i.e. more or less ho-
mogeneous). Stocks, electricity, bolts, metal constitute such examples. How-
ever, as stressed by Milgrom (79), ... price-only auctions are of little value if
the goods, or their suppliers, have widely varying characteristics, because the
buyer will not normally buy based on a comparison of prices alone. In the
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automobile example mentioned above, price-only auctions are not suited for
the procurement of elements requiring detailed technical speci�cations or an
important implication of the supplier in the design.

In practice, when items to be purchased are heterogenous, Request for
Quotes (RFQ)1 are used: the buyer speci�es the minimal requirements for
the item, lists a number of negotiable attributes and invite the suppliers to
submit o�ers. Once the bids have been collected, the buyer ranks and selects
the winning supplier. Of course, this task is time consuming and relatively
tricky: o�ers may di�er considerably among the suppliers (in terms of variety
but also due to their (detailed) contents). As a consequence, most of the time,
only a restricted number of suppliers are contacted in practice. Finally, such
processes are often regularly conducted. An attempt to automated such an
activity is to develop auctions mechanisms that support bids with several
attributes.

Multi-attribute auctions are relatively new. Early works date from the
beginning of the nineties and most of the contributions on the subject have
less than �ve years old. At the same time, researchers, with di�erent back-
grounds, such as economy, computer science, mathematics, ... have devel-
oped models to solve the same problem but by using di�erent terminolo-
gies. That's the reason why we now speak about multidimensional auctions
(25; 18; 118; 66), multi-attribute auctions (12; 11; 112; 111), scoring auctions
(6) or multiple issue auctions (114).

To our knowledge, the �rst contributions on the subject (118; 25) have
used the term multidimensional auctions. However this designation has been
used in di�erent contexts. Some authors (128) use it to refer to 'classic' multi-
objects auctions while others use it to refer to auctions combining multi-unit,
multi-objects and multi-attribute features (see section 3.7). To avoid any
ambiguity we have decided to use the term multi-attribute auctions in the
present work. Furthermore, this choice seems to be a common trend in the
�eld.

As pointed out by Teich et al. (115), a further distinction must be made
between the terms 'issues' and 'attributes'. Many researchers use the term
attribute to refer to the characteristics of a bid such as, for instance, price,
quality, terms of delivery, . . . Teich et al. rather use the term Negotiable
Bid Issues (NBI) while the term Bidder Attribute (BA) is related to the
bidder himself: Is he ISO certi�ed ? Has the auctioneer historical business

1in what follows, we will not distinguish Request for Quotes, Request for Bids or
Request for Proposals
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relationship with the considered bidder ? . . . This distinction is important,
especially when the auctioneer wants to discriminate the bidders. In the
present work, this distinctive feature is not the center of interest and the
word attribute will be used.

Until now, we have exclusively motivated the use of multi-attribute auc-
tions as a consequence of the intrinsic complexity and variety of the items
traded (forcing the simultaneous consideration of several criteria). As stressed
by Bichler (13), another cause lies in the fact that suppliers are often tempted
to explicitly di�erentiate their products even if a priori they are relatively
homogeneous (in order to avoid the fatal direct and easy comparisons). For
instance, Airlines company o�er discounts for frequent �yers, week-end ta-
ri�s, for early registration . . . Therefore, automating the search for the best
deal related to a trip between Brussels and New York next Monday is not
easy.

A number of examples have been cited in the literature to motivate bids
characterized by several attributes. Here are some of them:

• Stark (110) analyzes the context of highway building contracts. In
such context, the buyer estimates the quantities related to the di�erent
elements needed for the building (number of tons of asphalt, . . . ). Then,
each bidder provides a multidimensional bid characterizing the unit
price for these elements. The winning supplier is the one who proposed
the cheapest expected contract however he is paid according to the true
quantities used.

• Cripps and Ireland (30) consider the context of UK television fran-
chise; in addition to the price a quality level (incorporating likely share
of viewers, live programs, . . . ) is considered

• Che (25) mention the case of Department of Defense procurements.
Typically, in such situations, the non-price attributes are at least as
important as the price itself.

• Bichler (13; 12; 11; 14) uses the example of OTC derivatives trading
to empirically test multi-attribute auctions. In another contribution
he describes an electronic market place for the procurement of large
food retailers. Applications for the procurement of computers and
in the Tourism sector are also considered . . .

• Teich et al. illustrate their system, NegotiAuction, for the procurement
of non-defective chemical weapons protection suits.
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On the other hand, Teich et al. (115) cite a few web sites managing
multi-attribute RFQ or reverse auctions. Among others, FreeMarkets, Ariba,
Perfect, Ebreviate, CombineNet, . . . As stressed by the authors, it is often
di�cult to know to which extend the technology incorporates multi-attribute
tools (since this information is often disclosed).

A few authors have studied multi-attribute auctions from an economical
perspective. The description of their works goes beyond the scope of this
chapter and we refer the interested reader to Thiel (118), Che (25), Branco
(18) and Asker et al. (6) for details.

This chapter is organized as follows. The next section is dedicated to pre-
liminary observations. Then, in section 3.3, we will describe di�erent ways
that have been proposed to manage several attributes. Then, a common
framework proposed by Teich et al. (115) will be presented in section 3.4
and will be completed in section 3.5 with the presentation of a few evalua-
tion criteria. Experimental studies will be outlined in section 3.6 and a few
selected research questions will be presented in section 3.7.

Finally, we invite the interested reader to consult the recent review Emerg-
ing multiple issue e-auctions (115) for further details. Some considerations
presented here after have been inspired by this paper.

3.2 A few �rst observations

First of all, as stressed by Koppius and van Heck (66), let us point out
that . . . a multidimensional auction moves beyond the purely distributive as-
pects of traditional auctions where a bidder's loss is the bid taker's gain, to
incorporate integrative aspects that can capture the "money left on the ta-
ble". The following example, inspired from these authors, illustrates such
assertion.

Example: Illustration of the potential integrative nature
of multi-attribute auctions.
Let us consider the procurement of 90 laptops conducted by
a middle-sized company. The auctioneer �rst speci�es the re-
quested characteristics of the computer units and then starts a
single-dimensional auction. To simplify the example, let us as-
sume that these characteristics can be evaluated according to an
ordinal scale noted {A, B, C} (A being better than B and B be-
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ing better than C). Within this scheme, the minimal requested
characteristic is B and the auction ends with a price of 2.000 eu-
ros per unit. Let us assume now that the auctioneer was ready to
pay an extra 500 euros per unit for a quality A instead of a quality
B. On the other hand, the winning bidder's cost for producing
quality A instead of B is 200 euros per unit. In a multi-attribute
context, the bid characterized by 90 laptops at quality A and at
a price of 2.350 euros per unit is better for both parties. Let us
assume now that, due to production costs, the winning bidder
can deliver 100 laptops (A), instead of 90, at a price of 2.000
euros per unit. The auctioneer acknowledges that 10 additional
computers could be needed on the short term but doesn't want
to pay more than 5 percent on the total amount he agreed for
the 90 computers, i.e., 2.350 · 90 · 1, 05/100 = 2.220, 075 euros per
unit. With such settings, a bid for 100 computer units (A) at
a price of 2.110 euros will be preferred by both parties. These
improvements are a consequence of the fact that the parties in-
volved in the auction have di�erent preferences regarding certain
dimensions of the product sold.

A second observation, stressed by Kersten et al. (63), is that the presence
of two or more issues begins to blur the di�erence between auctions and ne-
gotiations. Indeed, distinctive features of negotiation mechanisms such as for
instance logrolling are now supported by multi-attribute auctions. (The �rst
observation about the potential integrative aspect of multi-attribute auctions
is another common aspect). Of course, negotiations o�er much more possi-
bilities than auctions do. Nevertheless, the two �elds can be complementary.
Basically, two main approaches can be identi�ed:

• Combinations
In these settings, auction and negotiation mechanisms are separately
conducted. One may �rst, for instance, imagine a negotiation step,
with a selected subset of bidders, in order to establish the �rst bids,
the issues to be considered, . . . followed by the auction itself.
On the opposite, an auction could �rst be played in order to narrow the
list of bidders and then be followed by bilateral negotiations with the
remaining participants. According to us, this approach is particularly
attractive since the negotiation step following the auction permits to
choose the �nal o�er in a more �exible way than by using solely the auc-
tion. We are convinced of the fact that, even if auctions are supporting
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several attributes, they are not adapted to face the entire complexity
of a procurement situation. On the other hand, they o�er competitive
features that are of the uttermost importance in these situations. It is
in this setting that we place our contribution.
These considerations are further completed by Anderson and Frohlich
(3) clients do not normally make award decisions on bid days. In the
days and weeks that follow the bidding event, buyers examine bid re-
sults, review supplier information (such as supplier capability, quality
certi�cations, and manufacturing processes), and sometimes conduct a
buyer audit before making �nal decision. The client does not have to
select the lowest bidder. Additionally, Jap. (57) notes that the vast ma-
jority of (FreeMarkets procurement) auctions used in the marketplace
today do not determine a winner ... and the buyer reserve the right to
select a winner on any basis.

• Hybrid forms
Hybrid forms integrate simultaneously auctions and negotiations. An
example of such approach is NegotiAuction (116). The underlying mo-
tivation of this system is to be able to take into account, at the same
time, the �exibility of negotiations and the competitiveness of auctions.

Finally, the simultaneous management of several attributes increases the
cognitive complexity of the bidding process. Improvements of o�ers can be
conducted on several attributes and compensations between these attributes
have to be considered. Additionally, the bidders have to know, at least
partially, when and how to improve their o�ers. These questions, related
to information revelation (about the buyer preferences, about the status of
submitted bids, ...) are, more than ever, topical in this context.

3.3 Playing with several attributes: di�erent
approaches

Playing with several attributes, instead of the price only, inevitably leads
to model the buyer's preferences2. In this section we will illustrate a few
approaches that have been proposed to deal with these questions.

2let us stress that, in an auction context, considering the buyer's preferences is not
new. Multi-unit (respectively multi-object) auction already integrates buyer's preferences
between price quantity pairs (respectively bundle of items).
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Figure 3.1: The Leap Frog method: example of a potential outcome

Before considering elaborated models that take into account the prefer-
ences of the buyer, let us consider two basic extensions of classic auction
mechanisms that, precisely, do not rely on these preferences: the leap frog
method and what we have called dominance based auctions. Such approaches
are, of course, unrealistic since the exploitation of the auctioneer's preferences
is at the core of the problem.

The leap frog method (114) is based on the principle that any new bid
must be better than the previous one on at least one attribute (each new bid
must strictly dominate the previous one). Figure 3.1 illustrates a two dimen-
sional example of such an approach. As already mentioned, the auctioneer's
preferences do not intervene in the leap frog method and the winning bid is
entirely determined by the bidders. If the simplicity of such mechanism is
seducing, it could, however lead to ine�cient outcomes.

What we call dominance based multicriteria auctions rely on the principle
that any new bid must not be dominated by the previous ones. Conceptually,
even if this kind of mechanism seems to be close to the last approach, it relies
on a rule that is at the exact opposite. A direct consequence of this framework
is that, most of the time, the auction does not end with a single bid, but
with a whole set of Pareto Optimal bids. This phenomenon is illustrated in
�gure 3.2.

As stressed by Teich et al. (114), a �rst attempt to incorporate the buyer's
preferences is to ask him to provide an auction owner speci�ed bid path that
the bidders will follow. Of course, the side e�ect of such an approach is that
it is rather constraining for the bidders. To our knowledge, this method has
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Figure 3.2: Dominance based auction: example of a potential outcome

never been implemented.

In most papers, authors consider multi-attribute utility function to rep-
resent the buyer preferences. Usually quasi-linear utility functions are used.
In this case, the utility of the buyer is derived as the di�erence between the
price the buyer values the technical speci�cations of the bid, i.e. all the non-
price attributes (b−1), referred to as v(b−1) and the price p = b1 that he has
to pay to acquire the bid. More formally:

U(b) = b1 − v(b−1)

where v is assumed to be monotonically decreasing in all bj. Similarly,
when modeling the utility of supplier si, one will assume the following ex-
pression:

Ui(b) = b1 − c(b−1, θi)

i.e. the di�erence between price of the bid and the cost to produce its
related technical speci�cations b−1, c(b−1, θi) (θi being a parameter charac-
terizing the cost function assigned to supplier si).

Of course, a subcase of the previous expressions is the linear additive
utility function; U(b) =

∑q
j=1 U j(bj) where U j(bj) represents the marginal

utility associated the jth attribute and ωj its related weight.

Approaches based on multi-attribute utility functions have been recently
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criticized by Bellosta et al. (9). In reaction, the authors rather plead for
an approach based on reference points. At the beginning of the auction,
the buyer is assumed to communicate to the suppliers two particular bids:
an aspiration point and a reservation point. The aspiration point re�ects
the desired values for the di�erent attributes, while, on the contrary, the
reservation point expresses the reserve values for all the attributes. By doing
so, the preference information and relative importance of criteria are directly
expressed in terms of required values on the criteria.

At the end of each bidding round, only bids that dominate the current
reservation point are considered as acceptable bids. Then the best bid (of
the round) is determined as the one minimizing the maximum (normalized)
deviation 3 from the aspiration point. Then, the reservation point is updated
according to the submitted bids. We refer the interested reader to (9) for the
details regarding the dynamic property of their mechanisms.

Finally, Teich et al. (116) have adopted the pricing out approach to model
the preferences of the buyer in the NegotiAuction system. As stressed by the
authors, this method is particularly well-adapted in the context of multi-
attribute auctions since there is a natural monetary attribute. Furthermore,
its relative simplicity makes it easy to understand by the suppliers.

3.4 A common framework

The previous section has illustrated a number of distinct approaches to
model the buyer's preferences. Of course, the various forms of multi-attribute
auctions are distinguishing themselves through a number of points of views.
This diversity could make the �eld of multi-attribute auctions hard to grasp.
In a recent review, Teich et al. (115) propose a generic description of multi-
attribute auctions. In order to clarify the �eld, we summarize, here below,
the six important points they consider:

• Auction Rules
Before the auction's beginning, the auctioneer has to reveal the auction
rules. Is it a one round, multi-rounds or progressive auction ? Is the
auction opened to all potential suppliers or do they have, �rst, to satisfy

3To our knowledge, this min max rule constitutes the �rst non compensatory approach
to multi-attribute auctions.
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a quali�cation criteria ? Are the price discriminatory or not ? Is there
any withdrawal policy ? . . .

• Product and Issue/attribute Description, Speci�cation of Quan-
tity Demanded, Reservation Price(s) and Bid Decrement

• Representing Buyer's Preferences over Multiple Attributes
How to represent the buyer's preferences is a fundamental question in
multi-attribute auctions. The various approaches enumerated in sec-
tion 3.3 have illustrated the diversity of the answers that have already
been proposed.

• Winner Determination
In many auctions, the winner determination can be reduced to detect
the seller who o�ered the bid with the highest utility. Nevertheless, the
winner determination problem can become more complex, especially in
the case of multiple sourcing (see section 3.7). On the other hand, the
winning bid determination constitute another problem; the winning
seller may deliver the bid he proposed, a bid characterized by the same
utility, . . .

• Information architecture
Information architecture is referred to as what kind of information is
available to whom, or when and how it becomes available to whom dur-
ing the market process (65). Information regarding the current winning
bid(s), the buyer's preferences, the number of suppliers taking part in
the auction, . . . can have impacts on the auction's performances (see
section 3.6) and therefore, have to be carefully �xed. For instance,
regarding the feedback information the suppliers receive, we can dis-
tinguish the following options (ordered according to the underlying
information's richness):

� the suppliers receive binary responses saying if their bids belong
to the set of winning bids or not.

� the current winning bid is communicated to the sellers
� the submitted bids are ranked according to the buyer's preferences

and this ranking is communicated to the suppliers.
� partial information regarding the scoring function (its gradient for

instance) used by the buyer is communicated to the sellers.
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� the scoring function used by the buyer is public to the sellers (it
could nevertheless be di�erent that the buyer's utility function
since misrepresentation may be pro�table (65))

• Closing Rules
Traditionally, two closing rules are considered. The �rst one states that
the auction ends as soon as no new bid is received during a speci�c
waiting period (for instance, 120” in (112)). The second rule imposes
a prede�ned time limit. However, as already stressed in chapter 1, this
rule su�ers from the snipping e�ect and therefore, the time limit is
often extended if an abnormal high bidding activity is detected during
the last few minutes (or the last hour) before the auction's end.

3.5 How to characterize the mechanisms ?

Facing the variety of multi-attribute auctions, a fundamental concern is
to be able to compare and characterize them. Here below, we present a
non-exhaustive list of evaluation criteria4.

• Total cost to the buyer / buyer's surplus
As stressed by Teich et al. (115), total cost to the buyer is not a measure
that is well-adapted to the context of multi-attribute auctions; since the
non-price attributes may vary considerably from one bid to the other,
comparing di�erent values of the total cost is not really meaningful.
When using a pricing out approach this argument is somewhat sof-
tened since the cost is corrected by the value of the non-price attribute.
Finally, another option is to measure the buyer surplus, i.e. v(b−1)− b1

(111).

• Revenue / pro�t to the winning seller
Similarly to the arguments presented in the previous point, the revenue
of the winning seller is not an adapted measure to evaluate multi-
attribute auctions. In such contexts, we will rather use the seller's
surplus b1 − c(b−1, θi). However, from a practical point of view, these
costs, being a private information of the supplier, are often unknown
to the person in charge of evaluating the auction.

4To illustrate them, we will consider that both the utility of the buyer and the winning
seller si are quasi-linear multi-attribute utility function (see section 3.3)

62



• Pareto Optimality
An outcome is Pareto Optimal if and only if no other deal exists, which
is preferred by at least one of the two agents, either the buyer or the
selected winning supplier, and for which the other agent is at least
indi�erent (121).

• Social welfare and Allocative e�ciency
Social welfare is measured as the total of the buyer and winning sup-
plier's surplus:

(v(b−1)− b1) + (b1 − c(b−1, θi)) = v(b−1)− c(b−1, θi)

Let us note that this measure is independent of the price of the winning
bid b1. Allocative e�ciency evaluates if the considered mechanism leads
to an outcome that maximizes the social welfare.

• Incentive compatibility
In the context of multi-attribute auctions, one may wonder if the bid-
ders or the buyer could derive bene�ts from misrepresenting their pref-
erences. If it can be theoretically proven that it is not the case, the
mechanism proposed will be judged as incentive compatible.

• Speed of convergence
Parameters such as the decrement step(s) strongly in�uence the dura-
tion (and the outcomes) of the auction. Therefore, their tuning is a
critical step.

• Computational e�ciency
Contrary to traditional auctions, multi-attribute auctions may involve
complex tools that are likely to in�uence the auction. For instance,
due to the cognitive complexity of bidding in a multi-attribute auc-
tions, bidding support systems have been proposed. Another problem
that is commonly cited is related to the winning bid selection. In an
auction context, where the dynamical aspect is crucial, the computa-
tional e�ciency of these approaches is of the uttermost importance.

• . . .

Of course, other aspects, such as for instance fairness or simplicity have
to be considered.
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3.6 A few experimental results

As already stressed, multi-attribute auctions have been theoretically stud-
ied by a few authors. These contributions will not be detailed in this work
and we refer the interested reader to (112; 12; 65; 26) for a detailed analysis.
Parallel to these �ndings, some researchers have chosen to experimentally
study the subject. In this section, we outline some of their works (based
on the chronological order of their publication). To our point of view, the
question they address illustrate the variety of research directions attached
to this �eld. Besides their empirical results, we will also summarize the ex-
periments' settings; this will illustrate a number of points presented in the
previous sections.

Experiments conducted by Bichler

Martin Bichler (12) seems to be the �rst one to have studied multi-
attribute auctions experimentally; he considered the use of three di�erent
multi-attribute auction formats (�rst score sealed bid, second score sealed
bid 5 and multi-attribute English auctions) in the context of OTC �nancial
derivatives trading.

The experiments were conducted in May and October 1999 at the Vi-
enna University of Economics and Business Administration (participant were
MBA students). Financial derivatives were evaluated according to their strike
price and implied volatility. Both single and multi-attribute auctions were
conducted. In the multi-attribute context, the bidders could simultaneously
play on both attributes. The preferences of the auctioneer were represented
by a linear two-attribute function (this function was public to the partici-
pants). In single attribute auctions, the strike price was held constant and
the bidders could only play on the implied volatility. We refer the interested
reader to (12) for a detailed description of the experimental settings.

The aim of these tests was to answer the following questions:

1. Are the equilibrium values achieved in a multi-attribute auction higher
compared to single-attribute auctions with respect to the underlying

5In the case of second score sealed bid auctions, the winning bidder is the one who
proposed the bid with the highest score. However, he only has to supply the buyer with
a bid the score of which is equal to the second highest score. Practically, Bichler proposes
to transform the gap S(b(1))− S(b(2)) into monetary units
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scoring function of the bid taker ?

2. Are all multi-attribute auction formats payo� equivalent ?

3. Are multi-attribute and single-attribute auctions e�cient ?

As expected the answer to the �rst question was positive; multi-attribute
auctions achieved higher scores than single-attribute auctions. As stressed
by Bichler, one explanation for this result is that in a multi-attribute auction,
a bidder has more possibilities for improving the value of a bid for the bid
taker, sometimes even without increasing her own costs. Furthermore, the
obtained results have led to reject the revenue equivalence assumption; �rst
score sealed bid auctions achieved higher revenue than multi-attribute Eng-
lish auctions and multi-attribute English auctions achieved higher revenue
than second score sealed bid auctions (let us note that the same order ap-
peared in single-attribute auctions). Additionally, the strategic equivalence
between second score sealed bid auctions and multi-attribute auctions had
to be rejected (and was also rejected in the single-attribute context). The
distinctive features of the experiment can partially explain these outcomes
(see (12) for a detailed discussion). Finally, no signi�cant di�erence between
single-attribute and multi-attribute e�ciency could be found (over the three
auction formats).

Experiments conducted by Koppius and van Heck

The works of Koppius and van Heck (66) address another fundamental
question: how parameters like the length of the auction and the information
architecture6 can a�ect the performance (in terms of pareto optimality and
winner e�ciency) of multi-attribute auctions ?

To perform the tests, the authors consider the chemical industry context;
4 suppliers of hydrochloric acid are competing by means of multi-attribute
bids in a multi-round English multi-attribute auction. Three attributes are
considered; the price, the delivery time t and the contamination percentage
c. The preference of the auctioneer are represented by the following multi-
attribute function: U(b) = v1e

−c + v2e
−t − p2.

In order to model the two aforementioned e�ects, they consider:
6Koppius (65) de�nes information architecture as what kind of information is available

to whom, or when and how it becomes available to whom during the market process
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1. auctions of 2 rounds versus auctions of 4 rounds

2. restricted information architecture versus unrestricted information ar-
chitecture.
In the restricted information architecture, the bidders only know the
overall highest bid and bidder at the end of each round. On the con-
trary, in the unrestricted information architecture setting, bidders ad-
ditionally know all the bids submitted during the last round as well as
their relative utility compared to the highest one.

E�ciency is measured by two indices: the number of e�cient bid and
the distance between the winning bid and the e�cient bid. Similarly, Pareto
optimality is measured both by the number of pareto optimal bids and by
the number of pareto-improving bids that existed at the end of the auction.
The analysis of these measures leads to the following conclusions:

• unrestricted information architecture increases the pareto optimality
and winner e�ciency

• playing the auction in 4 round instead of 2 improves the pareto opti-
mality but has no signi�cant e�ect on e�ciency

• the combination of the two e�ects does not lead to signi�cant market
improvements.

The two �rst results presented here after are intuitive. However the fact
that the combination of the factor does not lead to signi�cant market im-
provements is surprising. The authors claim that this suggests that there may
be a phenomenon of information saturation at work: beyond a certain point,
more information does not improve market performance further.

Experiments conducted by Chen-Ritzo et al.

The experiments conducted by Chen-Ritzo et al. (26) further complete
the previous analysis. The authors compare the results of English multi-
attribute auctions with those of traditional English auctions and, addition-
ally, measure the e�ect of the bidder's experience on the outcomes.

Therefore they consider the procurement of an abstract object charac-
terized by three attributes: price, quality and lead time. Both the buyer's
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utility (which is represented by a computer) and the (human) bidder's pro�t
are assumed to be quasi-linear in price. The bidders who participated to the
experiment where undergraduate and graduate students from the Pennsylva-
nia State University. In order to measure the e�ect of the bidder's experience
on the auction's outcome, a distinction has been made between inexperienced
and experienced bidders. Inexperienced bidders were students who had not
previously participated to the experience. On the contrary, experienced bid-
ders were students who had already previously participated to the experience.
For each setting, nine auctions with 3 bidders were organized.

In the traditional English auction setting, reservation levels for the di�er-
ent attributes are �rst communicated to the bidders. Then the competition
is restricted to the price. At each time, the bidders are informed of the time
remaining in the auction, the current best bid and their bid status.

In the English multi-attribute auction setting, the buyer's utility function
is not directly communicated to the bidders (the authors, indeed, criticizes
this way of doing since this information can be private or can evolve during
the auction). On the contrary, the following information is provided to the
bidder:

• the last price di�erence, i.e. the amount by which the bidder needs to
reduce the price of his last bid in order to beat the current best bid

• the marginal quality, i.e. the buyer's marginal utility for improvement
in quality at the bidder's most recently placed bid

• the marginal lead time, i.e. the buyer's marginal utility for improve-
ment in lead time at the bidder's most recently placed bid

Additionally, due to the complexity of the bidding process, a bidding support
tool was at the bidder disposal. Finally, the auction outcomes were quanti�ed
in terms of buyer utility and seller pro�t.

These experiences have led to the following main conclusions: the use of
multi-attribute auctions increases buyer utility and does not degrade (and
occasionally increases) seller pro�ts. Furthermore, performance in the multi-
attribute auction improves with experience.
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Experiments conducted by Strecker

Recently, Strecker (111) has studied the impact of preference revelation
in multi-attribute auctions. Therefore, he considered the procurement of an
abstract object characterized by three negotiable attributes: the price and 2
abstract qualitative, non price attributes (with 6 di�erent levels). Both buyer
and supplier utilities are quasi-linear in price. Contrary to other approaches,
Strecker consider real-time bid submission (versus multi-round bid submis-
sion). The auction ends after 120” of inactivity. Participants are undergrad-
uate and graduate students (mainly from the Department of Economics and
Business Engineering) from the Universitaet Karlsruhe (Germany). Every
participants will play both role: supplier and buyer (in each auction, there
are exactly 4 suppliers and 1 buyer). At each time, buyers know the current
best bid and the time remaining before the end of the auction.

Strecker study one main e�ect: the impact of preference revelation. There-
fore, he consider two distinct scenario:

• Full disclosure: the buyer reveals his scoring rule

• Non disclosure: the buyer does not reveal his scoring rule. Instead very
general information is communicated to the bidder (111):

� given identical qualitative attributes, the buyer prefers the bid
with the lower price

� the buyer prefers a higher quality level to a lower quality level
within a a qualitative attribute all over attributes being equal

� a lower quality level in one qualitative attribute can be compen-
sated by a higher quality level in the other qualitative attribute

� likewise it is possible to compensate a lower quality level by a a
lower price and vice versa

The performance of the auction outcome is measured in terms of alloca-
tional and pareto e�ciency (see (111) for details). Tests have led the author
to the following conclusions:

• In a multi-attribute English auction, e�ciency is higher if the buyer's
preferences are known by the suppliers prior to the auction. If pref-
erences are revealed, the average e�ciency is close to the theoretical
maximum. Independent of the preference revelation, e�ciency is quite
high in both treatments.
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• Suppliers successfully use the additional information about buyer pref-
erences and make (partly signi�cantly) more pro�ts, but not at the
expense of the buyer, whose utility does increase slightly yet non-
signi�cantly with preference revelation.

• In a multi-attribute English auction, Pareto e�ciency is higher if the
buyer's preferences are known by the supplier prior to the auction
(Pareto e�ciency depends on the performance of individual bidders).

3.7 A few selected additional research questions

As shown in the previous sections, multi-attribute auctions constitute
an active research �eld. In order to complete our presentation, here are a
selection of research directions:

• Bidding support systems
In multi-attribute auctions, bidding is much more complex than the
simple beat the quote rule used in traditional auctions. Therefore, sev-
eral authors (26; 111) have already stressed the need of adequate bid-
ding support systems to insure a proper development of multi-attribute
auctions. For instance, in NegotiAuction, Teich et al. (116) have inte-
grated a module referred to as 'Suggested price' to support the bidders.

• Generalization of auction mechanisms
As pointed out in chapter 1, auction mechanisms have deeply evolved.
Nowadays, we speak about multi-unit, multi-item (i.e. multi-object or
combinatorial) or multi-attribute auctions. Nevertheless, the potential
combinations of these recent extensions open even more new research
directions.
In this context, Bichler et al. (14) have recently proposed a global
overview of the �eld. The authors proposed to classify auction mecha-
nisms according to three criteria:

� number of di�erent items (single or multiple heterogenenous items)
� number of negotiable attributes (single or multiple attributes)
� quantity for each item (single or multiple units)
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Table 3.1: Multidimensional auctions

nb di�. items nb. attr. quantity Description
single single single Traditional auctions.
single single multiple Multi-unit auctions.

multiple single single Combinatorial auctions.
single multiple single Multi-attribute auctions.

multiple multiple single Multi-attribute comb. auctions.
single multiple multiple Multi-item multi-attribute auctions.

multiple single multiple Multi-item comb. auctions.
multiple multiple multiple Multidimensional auctions.

Table 3.1 summarizes these (23) combinations. The four �rst instances
are well-known auction formats.
Multi-attribute combinatorial auctions constitute a �rst extension to
multi-attribute auctions. In this context, several heterogeneous items,
characterized by several attributes, are simultaneously purchased.
Multi-item multi-attribute auctions address the problem of multiple
sourcing where (indivisible) bids are characterized by multiple attributes7.
In this context, a fundamental problem is the winners determination.
One solution has been recently proposed by Bichler et al. (14):

max
∑
si∈S

∑

bij

(q(bij · S(bij) · xij

dmin ≤
∑
si∈S

∑

bij

q(bij) · xij ≤ dmax

∑
si∈S

∑

bij

q(bij)p(bij)xij ≤ R

∑
j

xij ≤ 1,∀si

7Until very recently, research on multi-attribute auctions has been exclusively focused
on the sole sourcing problem. This is due to the fact that, in procurement contexts,
the contracts negotiated are characterized by a high asset-speci�city (DoD contracts for
instance). Nowadays, multi-attribute auctions are used for the purchase of less speci�c
products, which are traded for larger quantities.
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xij ∈ {0, 1}

where si denotes the ith supplier, bij is the jth bid proposed by supplier
si, q(bij) represents the quantity of bid bij and S(b) is the score asso-
ciated to bid b. The objective function of this integer program ensures
that the overall score is maximized under the following constraints; the
demand is satis�ed (�rst constraint), the reserve price R is not exceeded
(second constraint) and at most one bid per supplier can be selected
(third constraint).
Multi-item combinatorial auctions combines the distinctive features of
multi-unit and combinatorial auctions. Finally multidimensional auc-
tions constitute the most general case; all dimensions are negotiable.

• Bidding languages
The need of adequate bidding languages has been emphasized in the
context of combinatorial auctions. Similarly, during multi-attribute
auctions, bidders may also be confronted with the problem of the bids
expressivity.
To illustrate this purpose let us consider the following example (in-
spired from (14)): a company is organizing a multi-attribute auction
to purchase 50 computers. Four attributes are considered: the price,
the size of the hard disk, the processor's speed and the warranty. A
famous computer's dealer decides to participate to the auction; he can
o�er three di�erent sizes for the hard disk (20 GB, 30 GB or 40 GB),
three di�erent processor's speed (1 MHz, 1.5 MHz or 2 MHz) and two
warranty conditions (1 year warranty or 3 years warranty). Conse-
quently, this supplier can propose 18 distinct con�gurations. In order
to facilitate the bidding process, Bichler et al. (14) proposes to model
o�ers using the following formulation:

p̃(bi) = q(bi)(p(bi, q(bi)) +
∑

j

fij(vij))

In other words, the price p̃(bi) related to a speci�c con�guration bi is
equal to the o�ered quantity q(bi) multiplied by the base price per unit
(as a function of the quantity) p(bi, q(bi)) plus a premium related to
the values of the di�erent attributes vij.
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3.8 Conclusion

In this chapter, we have presented some of the recent developments and
research questions attached to the �eld of multi-attribute auctions. More
than ever, topics such as information revelation, preferences elicitation or
bidding support systems are of the uttermost importance.

As already stressed, most of the related contributions have less than �ve
years old. Nevertheless, the increasing number of (academic or industrial)
papers and talks show that it is likely to remain an active �eld of research
within the next years.

Multi-attribute auctions constitute an interesting tool for the automation
of procurement activities. Nevertheless, to our point of view, they cannot
replace the whole sourcing process. On the contrary, they must be viewed as
a �rst competitive step followed by a more detailed negotiation. It is in this
spirit that we have explored the �eld of multicriteria auctions.
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Part II

New developments
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Chapter 4

Multicriteria auctions: a
theoretical framework

4.1 Introduction

As stressed in chapter 3, several authors have, recently, proposed and
studied auction mechanisms supporting multidimensional bids. These ap-
proaches rely on a variety of distinct models for bids comparison.

In this chapter, our motivation is somewhat di�erent; we want to analyze
such mechanisms without making an explicit reference to a speci�c prefe-
rence structure. On the contrary, our starting point will be to state that,
when comparing two bids, only 3 situations can happen: one of the bids
is preferred to the other, the two bids are indi�erent or the two bids are
incomparable. By working with a general preference structure (P, I, J), our
aim is to study the �eld at a more abstract level. Of course, due to the
poverty of our assumptions, we do not expect to obtain re�ned results, but
rather to get a global picture of the problem.

The consideration of a general preference structure (P, I, J) is, of course,
motivated by the works done within the so-called French school of multicri-
teria decision aid. The fact that two bids might be incomparable is, however,
not obvious since all existing auction mechanisms are precisely based on the
total comparability assumption; any pair of bids is comparable. This dis-
tinctive feature is peculiar to our approach and certainly constitutes its main
originality. Consequently, this point will be thoroughly discussed in the next
section.
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Furthermore, from a multicriteria decision aid point of view, this chapter
o�ers an interesting perspective since it integrates a dynamical component
to the classic choice problematic (99). Yet, it is worth noting that there ex-
ists a fundamental di�erence between the bid selection in an auction context
and the selection of alternatives in a multicriteria decision aid problem. In
an auction context, the competition between the sellers is at the core of the
problem, the set of bids received by the auctioneer evolves during the auc-
tion and the bids selection is likely to accentuate the competition. On the
contrary, in a multicriteria decision aid context, the analysis of the decision
is at the core of the problem (preferences learning / tuning, problem struc-
turing, ...), the set of potential alternatives is, in many cases, �xed (or, at
least will not change too much) and the selection of alternatives is related
to an exploration phase where good compromises alternatives are outlined.
These two positions are not always compatible and the auction perspective
will be predominant in this work.

Of course, the proposed framework relies on a variety of (explicit or im-
plicit) hypothesis that will be outlined in the next pages. Among them, the
following assumption has fundamentally in�uenced our approach:

Assumption 1 Once a bid has been beaten, it remains beaten until the auc-
tion's end.

From an auction perspective this requirement seems to be natural. Nev-
ertheless, from a multicriteria decision aid point of view this constraint is
less intuitive since, as already stressed, the emphasis is laid on the problem
exploration / understanding. In an auction context, we claim that it is hard
to justify to a potential seller that one of his bid - that has been beaten
before - is, once again, considered as a potential winning bid. Especially if,
meanwhile, he has been pushed to propose other bids1.

This chapter is organized as follows: the second section is dedicated to the
motivation of the existence of potential incomparability between multidimen-
sional bids. Then, the third section will be devoted to the problem's formal-
ization. The main ideas, on which relies our theoretical framework, will be
introduced, then the bids comparison problem will be discussed to, �nally,
be able to de�ne the notion of multicriteria auction and its related concepts.
In the end, the framework will be criticized and its distinctive features will
be outlined. The fourth section is devoted to the theoretical properties of

1here we do not consider bids' withdrawal policy.
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the winning bids. Our attention will, here, be focused both on the winning
set, on the competition between the sellers and its impact on the winning
bids. Section 4.5 will present a pedagogical example of a procurement auc-
tion based on the Electre I method. The notions, previously introduced, will,
there, be widely illustrated. Extensions of multicriteria auctions to other auc-
tion formats, such as Vickrey and Dutch auctions, will then be discussed in
section 4.6. These considerations will be followed by particularizations of our
framework to existing approaches in section 4.7. In this way, unicriterion,
dominance based and multi-attribute auctions will be outlined. In section 4.8
general questions related to the use of multicriteria auctions will be treated
. Finally, a conclusion will summarize our results and present directions for
future researches.

To conclude, let us stress that this chapter is an extended version of the
papers "Multicriteria Auctions without full comparability of bids" (39) and
"Multicriteria Auctions: an introduction" (36).

4.2 The management of incomparability between
multidimensional bids

The management of incomparability between multidimensional bids con-
stitutes the main originality of our contribution. However, this distinctive
feature is rather surprising for most people involved in auction theory. In-
deed, in such a context, all pairs of bids are assumed to be comparable.
As a consequence, every new o�er can be compared to previous ones and,
consequently, winning bids can be univocally determined.

In�uenced by the research done within the so-called French school of
the multicriteria decision aid community, we have been pushed to consider
such an idea. Of course, we will not re-explain, here, all the motivations
that have convinced us not to limit ourselves to the preference and indi�er-
ence relations. Nevertheless, a number of arguments seem to be particularly
meaningful within this auction context.

First of all, the compensatory nature of aggregation methods such as those
based on a multi-attribute utility function is a critical point. In this context,
the details of the bids are 'hidden' by an aggregated value. Therefore, a bid
b can be indi�erent or, worst, be preferred by b̃ even if these two bids have
totally di�erent natures. Within a competitive context, such situations can
be hard to justify to potential sellers.

76



In the same spirit, one may also stress that slightly changes in the pref-
erences of the auctioneer can lead to �nally select winning bids that are
diametrically opposed. This e�ect is illustrated on �gure 4.1. Using a multi-
attribute linear utility function leads to choose b1 as the winning bid (the
continuous line representing the set of iso-utility points). However, a slightly
change in the weights of the utility function leads to choose b2 instead of b1

(these two bids are, nevertheless, structurally opposed). Finally, no weight
instance can lead to consider b3 as a winning bid - even if this bid is not
dominated.

Moreover, due to the complexity of the items traded, one can imagine that
the auctioneer does not want to restrict himself to a unique 'best' winning
bid, but, on the contrary, wants to get several good o�ers. In this way, the
�nal winning bid selection is not con�ded to an idealized theoretical model
and the auctioneer may negotiate with a subset of selected sellers in order to
point out the winner and to �x the terms of the contract. By doing so, the
multicriteria auction is viewed as a �rst competitive step which is followed by
one-to-one negotiations. This point will be further studied in section 4.3.4.

Finally, in some problems (see examples in chapter 6), the bids are not
homogeneously distributed in the bidding space. On the contrary, several
"zones" characterized by a high bidding activity can be identi�ed. In what
follows, these "zones" will be referred to as bidding niches (this notion will
be formalized in chapter 6. The use of partial pre-orders for the pair-wise
comparison of o�ers will permit us to manage di�erent bidding niches during
the same auction. As a consequence, at the end, several winning bids may be
proposed to the buyer; one for each niche. Figure 4.1 illustrates a situation
were two bids b1 and b2 characterize two bidding niches.

To conclude, let us underline that we do not claim that incomparability
must be taken into account in any auction; this is above all depending on the
auctioneer preferences. Anyway, in our framework, we let this door open.

4.3 Problem's formalization

In this section, we will introduce the main concepts and de�nitions that
will be used thorough the present chapter. In �ne, this will lead us to for-
malize the notion of multicriteria auction.
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¾?
Attribute 1

Attribute 2

b1

b3

b2

Figure 4.1: Example of a 2-attributes context with two bidding niches.

4.3.1 Main concepts and de�nitions

As already stressed in the previous chapter, we will consider here the
context of a reverse auction: p sellers are competing together to sell an object,
service, contract, . . . to a unique buyer. This situation is not restrictive
and the following formalism can easily be adapted to cover other situations.
Furthermore, to avoid any ambiguity we will use, from now on, the term item
to refer to what is being sold.

Let B denote the buyer, let S = {s1, s2, ..., sp} be the set of the p sellers
participating to the auction and let I be the set of items corresponding to
the buyer's speci�cations.

B decides to evaluate the bids on q criteria noted {ξ1, ξ2, ..., ξq}, ξj :
I → Ej (These criteria are, of course, public to the sellers). Without loss
of generality, we may assume that all these criteria have to be minimized.
Right now, no further assumptions are made about the nature of the sets Ej.

For simplicity reasons, each seller si is assumed to have a single item
vi(∈ I) to propose to B (this assumption will be later relaxed). Let us note
ξ(vi) = {ξ1(vi), ξ

2, (vi), ..., ξ
q(vi)} its evaluation according to the di�erent

criteria. By extension, ξ(vi) will be referred as the valuation of seller si.
Intuitively, ξj(vi) represents the lowest value that seller si could propose for
the attribute j. Of course, si will o�er bids that are dominated by ξ(vi) or
eventually equal to it (bi ¹ ξ(vi)) (In this way, he could realize a positive
margin). Otherwise, if si wins the auction, he will not be able to provide the
item corresponding to the winning bid.
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De�nition 12 Let δi = δ(ξ(vi)) = {bi ∈
∏q

j=1 Ej|bi º ξ(vi)} be the bidding
set of si.

Intuitively, δi represents all the bids that seller si could o�er. Of course,
we assume here that any bid bi ∈ δi has an economic meaning. Let us note
δ =

⋃p
i=1 δi the set of all bids that could be o�ered by any seller participating

to the auction. By abuse of language, δ will be referred as the bidding space.
Let us remark that, since each bidder si only knows his own evaluation ξ(vi)
and the buyer does not know any evaluation, the bidding space remains a
theoretical notion that will practically never be observed by any auction
participant.

4.3.2 Bids comparison

As motivated in chapter 2, comparing alternatives that have a multi-
criteria nature leads to consider, at least, three situations: preference (P ),
indi�erence (I) or incomparability (J). Despite the fact that many models
do not take into account potential incomparabilities between alternatives, we
already have argued in favor of outranking approaches that, on the contrary,
support this distinctive feature.

Even if we try to keep the preference structure (P, I, J) as general as
possible, some assumptions have to be imposed in order to remain consistent
with the auction context.

Assumption 2 Mixed transitivity assumption: a(P ∪ I)b, b ¹ c ⇒
a(P ∪ I)c

First of all, let us note that a direct consequence of this assumption is
that a ¹ b ⇒ a(P ∪ I)b, i.e. any improvement on at least one criterion leads
to an o�er a that is at least as good as b. Furthermore, as it is frequently
done in the multicriteria decision aid community, we will note S = (P ∪ I).

The mixed transitivity assumption insures some consistence between the
preference and indi�erence relations and the natural dominance relation. A
direct corollary of this constraint is that if an o�er bi is such that bi(P ∪
I)ξ(vj), bi will be preferred or indi�erent to any o�er that seller sj could
propose. As illustrated in the next example, this assumption is not always
satis�ed.
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Example 11 A preference structure combining the dominance relation with
aspects of multi-attribute linear utility approaches.

Let us consider the following preference structure:

• aPb ⇔ a ≺ b or L1(a, b) ≤ k, U(a) =
∑q

k=1 wk · ak <
∑q

k=1 wk · bk =
U(b)

• aIb ⇔ L1(a, b) ≤ k, U(a) =
∑q

k=1 wk · ak =
∑q

k=1 wk · bk = U(b)

• aJb otherwise

Intuitively, this is nothing else than the "classic" dominance relation en-
riched by a multi-attribute linear utility function de�ned on the neighborhood
of the considered point. (See �gure 4.2)

Even if such an approach could be motivated within an auction context, it
violates the aforementioned property. To illustrate this statement let us con-
sider the following example: k = 3, w1 = w2 = 0.5, ξ(v1) = (10, 10), ξ(v2) =
(11, 9.5). It is easy to verify that ξ(v1)Pξ(v2) since L1(ξ(v1), ξ(v2)) = 2.5 ≤ 3
and U(ξ(v1)) = 10 < 10.25 = U(ξ(v2). On the other hand, s2 could propose
b2 = (13, 9.5) ∈ δ2 such that ξ(v1)Jb2 and b2 could not be beaten even if
it is the case for ξ(v2). Consequently, ξ(v1)(P ∪ I)ξ(v2), ξ(v2) ¹ b2 but
ξ(v2)¬(P ∪ I)b2.

¥

In what follows, we will assume that the preference structure (P, I, J)
is public to the sellers. This assumption relies on the fact that any seller
involved in the auction must know how to improve his bids. Weaker assump-
tions may be considered, but this goes behind this theoretical framework.

4.3.3 Multicriteria auction

With reference to classic English auctions, we will de�ne a multicriteria
auction as a succession of o�ers such that each new bid may not be preferred
or indi�erent to a bid that has already been proposed (for simplicity, we will
assume that bids are received one by one). More rigorously:
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¾?
ξ1

ξ2

(10, 10)

(11, 9.5)
(13, 9.5)

Figure 4.2: Example of an auction context where the mixed transitivity
assumption is not satis�ed

De�nition 13 Let O be a succession of o�ers: O : N → δ : k → b(k)
and HO(k) its history at time k: HO(k) = ∪k

l=0b(l). A multicriteria Auction
(MA) is a succession of o�ers satisfying the following bidding rule: at each
time k, bids b such that ∃b̃ ∈ HMA(k − 1) : b̃(P ∪ I)b are not accepted.

This rule seems to be the weakest requirement we can impose on the
succession of o�ers to represent a multicriteria auction (MA) (since in a
classic unicriterion auction the price of any new bid must be, at least, lower
or equal than the current price minus a decrement step. The parallel between
indi�erence situation and decrement step will be further analyzed in the next
chapter).

Let us note that, by de�nition, no pair of indi�erent bids will appear
during the auction process. Another direct corollary of the auction rule
is that no bid cycles (b(1)Sb(2)S . . .Sb(n)Sb(1)) can appear in the auction
history (even if the underlying S relation is not acyclic). Finally, let us
note that we have de�ned a multicriteria auction as being an extension of
a classic English auction. Using the term English multicriteria auction is
more rigorous but, as it is often the case in classic auction theory, we will
voluntarily maintain the analogy between the terms Auction and English
Auction.

Finally, we will state that a multicriteria auction will end when no more
seller proposes new bids. Let H̄MA(k) be de�ned as follows:
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H̄MA(k) =

{
HMA(k) if b(k) exists
H̄MA(k − 1) otherwise

A multicriteria auction ends when no seller proposes any new bids:

De�nition 14 A multicriteria auction MA ends at time K if ∀k ≥ K, H̄MA(k) =
H̄MA(K)

Intuitively no time limit is imposed here: neither on the length of the
auction, nor on the time separating two bids. On the contrary, we implicitly
assume that every bidder si continue to o�er new bids bi until he is among the
winning bidders or he has reached ξ(vi). (This assumption will be explicitly
studied in section 4.4.2). Therefore, the auction will end whenever all the
bidders have stopped o�ering new bids. This idealized statement is of course
related to the theoretical nature of this framework. In practice, time limits
have to be considered.

Due to the fact that the S relation might be a partial pre-order, the
selection of the winning bids is not obvious. In an auction context, we argue
the whole set of non-preferred bids from the auction history has to be taken
into account:

De�nition 15 At each time k, the winning set of bids associated to the mul-
ticriteria auction MA, noted WSMA(k) is de�ned by:

WSMA(k) = {b ∈ HMA(k)| @ b̃ ∈ HMA(k) : b̃P b} = NPS(HMA(k))

The winning set WSMA(k) of a multicriteria auction MA at time k, is the
set of non preferred bids from its history, also noted NPS(HMA(k)). A direct
corollary of both this de�nition and the one of a Multicriteria auction is that
all bids belonging to WSMA(k) are mutually incomparable. By convention,
we will say that a bidder is in the winning set if, at least, one of its o�er is
in it. Moreover, if MA is a multicriteria auction and K its time of end, we
note WSMA = WSMA(K)

4.3.4 Discussion

Having presented the main concepts and de�nitions on which relies our
theoretical framework, it is now appropriate to comment some of its distinc-
tive features.
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• Item's valuation: private, interdependent or common values.
A central distinction that is made in "classic" auction theory refers to
the item's valuation of the bidders. This point is, �rst of all, strongly
linked to the probabilistic and game theoretical aspects of the studied
mechanisms and can have important e�ects on the related theoretical
results.
In our framework, since we have assumed that every bidder si knows
ξ(vi) before the auction's beginning and that this value does not depend
on the other bidders' valuations, we refer ourselves to the private values
model. Of course, this assumption has been motivated for simplicity.
However, from a practical point of view, the particular nature of the
items sold and the procurement situation rather plead for correlated or
common values assumptions. Extensions of the present framework to
these situations go nevertheless beyond the goals of this chapter.

• Information revelation.
As stressed in the previous chapter, information revelation is a key
question related to multi-attribute auctions. In our context, we have
assumed that the preference structure of the auctioneer is public to the
sellers. On the one hand, bidders need to know how to improve their
bids. On the other hand, most of the time, the auctioneer doesn't want
to reveal his preferences. In this context, the strongest assumption
has been chosen for simplicity reasons. Similarly, we assume perfect
feedback information; every bidder knows the attribute values of all
the o�ered bids and can identify which of them belong to the winning
set. These modeling assumptions are the simpliest ones, and of course
can be criticized.

• The preference structure is assumed to remain stable during
the auction.
The preference structure used within this framework is assumed to be
stable: the (P, I, J) relations do not evolve during the auction. On the
other hand, one can imagine that, due to the bids' comparison, the auc-
tioneer could further learn about his preference structure and so may
want to re�ne it during the auction. In such context, we should con-
sider (P, I, J) relations that depend on the time, i.e. (P (k), I(k), J(k))
relations. In order to keep some consistence with our framework, we
should impose, at least, the following restriction:

P (k) ∪ I(k) ⊆ P (k + 1) ∪ I(k + 1)
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This constraint insures that a bid that has been "beaten" at time k
will remain beaten at time k + 1. A direct corollary is that J(k + 1) ⊆
J(k), i.e. the incomparability relation is weakened during the auction.
Dynamic preference structure will be thoroughly discussed in the next
chapter.

• The Leap Frog method is not a multicriteria auction.
The de�nition of a multicriteria auction does not encompass every auc-
tion formats considered up-to-now. The Leap Frog method, presented
in the previous chapter, is based on the classic dominance relation.
However it imposes a much more restrictive rule than the one consid-
ered here since every new bid must be preferred to the previous one.
On the contrary, if we consider the classic dominance relation as the
preference structure, our rule leads to what we have called dominance
based multicriteria auctions.

• Application of the auction rule: computational issue.
The multicriteria auction's de�nition imposes that each new bid must
not be preferred or indi�erent to a bid that has already been accepted.
So, at time k, in order to be accepted, the kth bid b(k) must be com-
pared to the k − 1 former bids (in the worst case). Furthermore, if we
count the total number of comparisons done since the auction's begin-
ning, we have:

∑k
i=1(i− 1) = 1

2
· k · (k − 1). This distinctive feature is

due to the fact that our assumptions about the (P, I, J) relations are
relatively poor. A number of particular preference structures, compat-
ible with our framework, reduce drastically this bound. For instance, if
the auctioneer chooses to use a multi-attribute linear utility function,
only (k− 1) comparisons are needed. Moreover, due to the assumption
a(P ∪ I)b, b ¹ c ⇒ a(P ∪ I)c, the 1

2
· k · (k − 1) iterations are rarely

reached; a number of dominated bids can appear during the auction
and so must no be taken into account for the comparisons. In the most
optimistic scenario the bids are such that b(1) Â b(2) Â b(3)... and only
(k − 1) have to be performed.

• A �rst consequence of the auction rule: each new bid is in�u-
enced by the entire auction history
When the concept of bidding set has been introduced we have intu-
itively commented it as the set of all the bids that seller si could o�er.
With the aforementioned auction rule, no seller si is sure to be able
to propose any bid bi ∈ δi since this depends on the bids previously
proposed by the other sellers: if sj proposes, at �rst, bj such that
bj(P ∪ I)bi, si will not be allowed to later propose bi. An example
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illustrating this phenomenon and its consequences will be discussed in
section 4.5.

• A second consequence of the auction rule: the competitive-
ness increases with the number of bids
A direct consequence of the auction principle is that the competitive-
ness increases with the number of sellers. In this speci�c context, the
competitiveness may also increase with the number of bids. To illus-
trate this distinctive feature let us consider the following example: two
sellers s1 and s2 participate to a multicriteria auction. We assume that
ξ(v1)Pξ(v2), so s1 is the unique winning bidder. Let us consider two
di�erent scenarios. In the �rst scenario, we assume that s2 directly pro-
poses b2(1) = ξ(v2). In response, s1 only has to propose any bid b1 such
that b1Pξ(v2) (such bid always exist since ξ(v1)Pξ(v2)). In the second
scenario, at time k, s1 has already proposed k1 bids (b1(1), .., b1(k1) and
s2 has proposed k2 = k − k1 bids (b2(1), .., b2(k2). Then, let us assume
that s2 has no other choice than proposing b2(k2 + 1) = ξ(v2). Now,
s2 must propose a bid b2 that simultaneously beats ξ(v2) and is not
preferred or indi�erent to the previous bids (including his own bids).
Each bid present in the auction history reduces the possibilities, for
a seller, to o�er new bids, and so increase the competitiveness of the
auction. This distinctive feature will also be illustrated on an example
in section 4.5 . Finally, let us notice that this e�ect is mainly due to
the fact that the preference structure considered here is relatively poor.
Consequently opportunities exist to propose bids that, for instance, do
not beat all the previous bids. If the (P, I, J) relations are enriched
(we may for instance require that the S relation is transitive) such
opportunities are reduced and this phenomenon disappear.

• A third consequence of the auction rule: a bid acceptance
does not imply a bid rejection
In most auction contexts, when a new bid is accepted, i.e. if it satis-
�es the auction rules, another bid is automatically rejected. In classic
English auctions, for instance, when a new bid is accepted, i.e. when
the di�erence between the new price and the current one is greater or
equal to the bid decrement, the current winning bid is rejected. In our
context, this implication is not true anymore since a new bid can just
be incomparable to all the bids from the winning set. In such settings
the new bid will enter the winning set but no bid from the winning set
will be eliminated.
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• Seller's bidding behavior
Our approach is essentially oriented towards the auctioneer's perspec-
tive; his preference structure is explicitly taken into account while the
seller's are assumed to follow an idealized - basic - behavior (referred
as the aggressive bidding behavior - this point will be detailed in the
next section). Nevertheless, even with this simplistic position, the an-
alyze of the present framework is far from being obvious. A number
of potential extensions can be envisaged. Among them, an interesting
direction for future researches is certainly the explicit consideration of
the sellers' preferences.

• The winning set is not always reduced to one single bid.
Due to the potential incomparabilities between bids the winning set is,
most of the time, not reduced to one single bid. As already mentioned,
when the preference relation is a complete pre-order, the winning bid
is univocally determined. If it is not the case, several incomparable
bids might belong to the winning set. This distinctive feature may be
shocking for researchers involved in auction theory since, at the end
of the auction, the winning seller is not determined. On the contrary,
several winning bids have been selected as 'potential' candidates and
the auctioneer has still to decide which one will be chosen. This last
phase is conducted for instance with one-to-one negotiations. This
perspective is close to what Kersten et al. (63) calls combinations
between auctions and negotiations. In this context, auctions are viewed
as a �rst competitive step which is, then, completed with negotiations.

• Why not using the kernel to select the winning bids ?
The winning set has been de�ned as the set of non preferred bids from
the auction history. Other de�nitions can, of course, be considered.
Among them the notion of kernel is widely used within the multicriteria
decision aid community. Nevertheless the following example illustrates
why, according to us, this notion is not appropriate to the auction
context.
Let us consider a multicriteria auction MA with three bidders s1, s2, s3

competing together. Initially, s1 o�ers b1. s2 reacts by submitting b2

such that b2Pb1. Using the kernel notion leads to consider b2 as being
the winning bid and b1 is beaten. Now, s3 enters the game with a bid
b3 such that b3Pb2 and b3Jb1. Now applying the kernel notion leads
to the set {b1, b3} and b1 reappears in the 'winning set' even it has
been beaten before. Furthermore, this e�ect is not a consequence of s1

strategy but due to a third party strategy.
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• Cognitive complexity of the bidding process
Even if we have assumed that the preference structure chosen by the
auctioneer is public to the sellers, the bidding process, itself, can be
particularly complex. It is, indeed, far di�erent from the simple "beat
the quote" rule used in classic auctions. On the contrary, complex
trade-o�s can be considered and the distinctive features of the (P, I, J)
relations have to be exploited. Confronted with these di�culties most
of the sellers will not participate to the multicriteria auction unless
they are supported by adequate decision tools. "Multicriteria bidding
support tools" are thus of the uttermost importance in order to insure
the development and the good use of these mechanisms. This statement
has already been stressed by Teich (116).

• Reservation levels and bid increments / decrements
Due to the abstract nature of this chapter, practical considerations
such as bid decrements (increments) and reservation levels have not
been studied up to now. Their impacts on the auction results must,
nevertheless, not be neglected. In a multicriteria auction context, we
claim that the extension of these notions is not obvious. The question
related to bid decrements will be explicitly deepened in the next chap-
ter. On the other hand, extending the notion of reservation 'price' could
appear to be straightforward: one need to de�ne for each criteria Ej

a level rj over which the bids are not accepted. However, by doing so,
we do not consider the multidimensional nature of the problem and so,
ignore a number of di�erent reserve con�gurations such as reservation
constraints integrating several attributes. To illustrate this point, let
us consider a procurement situation characterized by two attributes:
the price p ∈ [0, 100] and the delay for delivery t ∈ [0, 10]. In such
context, the auctioneer may want to state that the maximum price is
equal to 100 minus a penalty for every delivery days. More rigorously;
p ≤ 100− 5 ∗ t. Only bids satisfying this reservation constraint will be
accepted.
On the other hand, the nature of the attributes has also to be taken into
account. In classic auctions, the only attribute considered is the price.
In such context, only one reservation level has to be �xed. Nobody
will imagine to �x a second reservation level if the price would become
too low. Nevertheless, for other attributes, two distinct reservation
levels are meaningful. The delay for delivery is, for instance, such an
attribute. One could, indeed, imagine that the auctioneer only accepts
values in the range [2, 7]. Over 7 days the delay is considered to be too
important. Below 2 days the delay is too short.
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Consequently, the question related to reservation levels is far from being
obvious and certainly constitutes a direction for future researches.

• Questions related to the criteria
Within this framework, few assumptions have been made regarding the
criteria. This is, above all, due to the fact that we want to remain as
general as possible. If further assumptions are needed in the subsequent
developments they will be, each time, clari�ed.
Nevertheless, a fundamental question that is addressed in many mo-
dels, such as those based on a multi-attribute linear utility function,
is to wonder if the criteria are preferentially independent. In case of
dependence, works based on the Choquet integral (50; 72; 80), for
instance, o�er an elegant solution and their application to the multi-
attribute auction context should not lead to too many problems. In
the same spirit, the following example illustrates an approach where
the dependence between criteria is taken into account.

Example 12 A link between multi-objects and multi-attribute
auctions
Let us consider a combinatorial auction context where items are sup-
posed only to present synergies. As already stressed, once the auction-
eer has received all the bids, he has to face the CAP (Combinatorial
Auction Problem), i.e. �nding the partition of items that maximizes
his revenue. More formally, he has to solve the following optimization
problem:

Max b · y
A · y ≤ I

where b is a vector representing the highest bids for each subset of items,
y is a boolean vector such that yk = 1 ⇔ the kth subset belong to the
optimal partition and A is a boolean matrix such that Aij = 1 ⇔ item
i belongs to subset j. The previous formulation intuitively means that
the auctioneer is trying to maximizes his revenue under the constraint
that a same object may not be assigned to more than one bidder. The
dual form of this integer program may be written as follows:

Min x · I
x · A ≥ b
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where x ∈ R+(q). This formulation may be interpreted as the problem an
auctioneer is facing in a particular multi-attribute auction. The item
sold is evaluated on q criteria noted {x1, x2, . . . , xq} . Due to the nature
of A, the constraints have the form xi + xj + . . . + xk ≥ bi,j,...,k. Let us
note I = {1, 2, . . . , q}. Moreover, ∀A,B ⊂ I : bA∪B ≥ bA + bB (if some
constraints do not verify this condition, they are, anyway, redundant
with the other constraints). In order to interpret this, let us examine a
practical example:

min x1 + x2 + x3

st : x1 ≥ 3
x2 ≥ 3

x3 ≥ 3
x1 + x2 ≥ 7
x1 + x3 ≥ 8

In the spirit of goal programming approaches, the bound of the con-
straints denotes the desired values for the di�erent attributes (and coali-
tion of attributes). So imposing x1 ≥ 3 leads to consider that the value
x1 = 3 is the ideal value for x1. Moreover, the constraint x1 + x2 ≥ 7
expresses the fact that the attributes x1 and x2 are dependent since the
auctioneer is already satis�ed with a sum equal to 7 instead of imposing
a more restrictive bound, i.e. equal to 6 (since each attribute taken sep-
arately must be greater or equal to 3). Of course, we implicitly assume,
here, that the attributes are commensurable. This formulation can thus
be interpreted as a goal programming approach where the ideal's de�n-
ition takes into account dependencies between attributes.

To conclude, let us point out that number of these points will be illus-
trated on the pedagogical example in section 4.5.

4.4 Properties

In this section, our attention will be focused on the properties of the
winning set and the winning bids.
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4.4.1 Properties related to the winning set

A direct corollary of the previous de�nitions leads to:

Proposition 1 Let MA be a multicriteria auction, we have ∀b ∈ HMA(k) \
WSMA(k) : b /∈ WSMA(k̃),∀k̃ ≥ k

This property insures that a bid that has been excluded from the winning
set at time k, will never re-appear later in the winning set. As already
mentioned, this property is not obvious for other possible de�nitions of the
winning set.

Another interesting property of the winning set is that its determination
only depends on the previous winning set and the last bid proposed. This is
especially important for computational issues.

Proposition 2 Let MA be a multicriteria auction, we have WSMA(k) =
NPS(WSMA(k − 1) ∪ b(k))

Proof: Let b ∈ HMA(k).

• Let us assume that b /∈ NPS(WSMA(k−1)∪b(k)) ⇒ ∃b̃ ∈ HMA(k)|b̃(P∪
I)b ⇒ b /∈ WSMA(k).

• Let us assume that b /∈ WSMA(k) = NPS(HMA(k)) ⇒ ∃b̃ ∈ HMA(k)|b̃(P∪
I)b. Futhermore HMA(k) = (HMA(k−1)\WSMA(k−1))∪ (WSMA(k−
1)∪b(k)). If b̃ ∈ WSMA(k−1)∪b(k) ⇒ b /∈ NPS(WSMA(k−1)∪b(k)).
If b̃ ∈ HMA(k − 1)\WSMA(k − 1), the auction rules imply that b /∈
WSMA(k − 1) ∪ b(k) ⇒ b /∈ NPS(WSMA(k − 1) ∪ b(k)).

¥

4.4.2 Characterization of the winning bids

This subsection is devoted to the characterization of the winning bids.
As described in chapter 1, a fundamental result of auction theory is that the
winning bid in a 'traditional' English auction is equal to the second highest
valuation. Such statement is of the uttermost importance since it facilitates
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the comparison between di�erent auction formats. In the same spirit, the
following developments help to locate, within the bidding space, where is
lying the winning set of a multicriteria auction.

At �rst, we still need to introduce the notion of competitive set and to
specify a theoretical behavior for the bidders.

De�nition 16 Let χi = χ(ξ(vi)) = {b ∈ ∏q
j=1 Ej|∃bi ∈ δ(ξ(vi)) : bi(P ∪ I)b}

be the competitive set of si.

Intuitively, χi is the set of all bids that could be beaten by an o�er
proposed by seller si. A direct corollary of this de�nition is that δi ⊆ χi. Let
us remind the reader that by 'beaten' we mean either to be explicitly preferred
by another bid or being unable to propose an o�er since an indi�erent bid is
already present in the auction history. Furthermore thanks to the restrictions
imposed on the relation S by the mixed transitivity assumption, we have the
next property:

Proposition 3 ξ(vj) ∈ χi ⇒ ∀bj ∈ δj : bj ∈ χi.

This property insures that if an o�er is preferred or indi�erent to the
valuation of a seller then this o�er will be preferred or indi�erent to any bid
proposed by this seller.

Let us �nally note that the de�nition of χi may not be reduced to {b ∈∏q
j=1 Ej|ξ(vi)(P ∪ I)b} since we haven't imposed the property a ¹ b, b(P ∪

I)c ⇒ a(P ∪ I)c ! In other words, some bids bi proposed by seller si are
preferred of indi�erent to a particular bid b̃ while ξ(vi)¬(P ∪ I)b̃. Example
13 illustrates such a preference structure.

Example 13 An extension of the classic dominance relation.
Let us consider an auction characterized by 2 commensurable criteria (of
which the values are supposed to be positive). The auctioneer decides to base
the bids comparison on the following preference structure.

bS b̃ ⇔ bi − b̃i ≤ minkb
k, ∀i ⇔ maxi(b

i − b̃i) ≤ minkb
k

In other words, bS b̃ ⇔ bi ≤ b̃i + τ, ∀i ∈ {1, 2} (where the 'tolerance'
parameter τ = minkb

k). Obviously, this de�nition can be interpreted as an
extension of the classic dominance relation.
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It is trivial to verify that this preference structure satis�es the mixed tran-
sitivity assumption b1 ¹ b2 ⇒ b1Sb2 since in this case bi

1−bi
2 ≤ 0 ≤ mink{bk}.

Furthermore, if b1(P ∪ I)b2 and b2 ¹ b3 then bi
1 − bi

3 ≤ bi
1 − bi

2 ≤ mink{bk
1}.

Consequently, we have b1(P ∪ I)b2.

On the other hand, let us consider the three next bids: b1 = (1, 3), b2 =
(4, 4) and b3 = (5, 1). b1 ≺ b2. b2Sb3 since b1

2 − b1
3 = 4 − 5 ≤ mini(b

i
2) = 4

and b2
2− b2

3 = 4− 1 = 3 < 4. Unfortunately, we cannot state that b1(P ∪ I)b3

since b2
1 − b2

3 = 3− 1 = 2 > 1 = mini(b
i
1).

¥

Finally, the next assumption speci�es a theoretical behavior for the bid-
ders.

De�nition 17 Aggressive Bidding Behavior: while the auction rules allow
him to continue, at each time k, any seller si o�ers new bids unless he
has reached his valuation or he's currently in the winning set and ∀bj ∈
WSMA(k − 1), j 6= i : bj /∈ χi

In other words, at each time k, any bidder si who is not in WSMA(k−1), is
supposed to o�er new bids to enter it. If a bidder si is already in WMA(k−1),
he will continue to submit new o�ers in order to rule out bids, proposed by
other bidders, from WMA(k − 1). Consequently, this assumption imposes a
high competition level between the sellers.

Of course, weaker assumptions can be considered. One could, for instance,
argue that a seller could stop o�ering new bids as soon as he is in the winning
set. With reference to the previous assumption, this could be called the
passive bidding behavior. Unfortunately, it is easy to see that, in this context,
we could have the following result: ∃bk, bj ∈ WSMA while ξ(vk) ∈ δj. Let
us consider an auction involving two bidders s1 and s2, such that ξ(v1) ∈ δ2

and two bids b1 ∈ δ1 and b2 ∈ δ2 such that b1Jb2. At a certain time k, the
winning set could be WSMA(k) = {b1, b2}. The two bidders being in the
winning set, they stop o�ering new bids while ξ(v1) ∈ δ2. E�ciency is not
respected in the sense that a bid from the winning set could be beaten by a
potential bid o�ered by another seller.

All these statements are, of course, subject to the auction rule, i.e. the fact
that a bid proposed is accepted or not, according to the auction history. This
distinctive feature is of the uttermost importance since it could have deep
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consequences on the auction results as shown on the following illustrative
example.

Example 14 Let us consider 3 sellers s1, s2 and s3 competing together in
a 2 criteria auction. For simplicity, E1 = E2 = {0, 1, . . . , 5}. ξ(v1) =
(4, 1), ξ(v2) = (3, 3) and ξ(v3) = (2, 5). The auctioneer decides to base the
bids comparison on the following preference structure:

bS b̃ ⇔ bi − b̃i ≤ 1(i ∈ {1, 2}), b1 + b2 ≤ b̃1 + b̃2

First of all, it is obvious to verify that this de�nition is compatible with
assumption 2. Furthermore, we have ξ(v1)Sξ(v2) and ξ(v2)Sξ(v3). One could
thus expect that the only winning bidder of this multicriteria auction should
be s1. Let us now imagine the following scenario. At time 1, s1 proposes
b1(1) = ξ(v1) (WS(1) = {b1(1)}). Then, s3 reacts by o�ering b3(1) = ξ(v3).
As b3(1)Jb1(1) we have WS(2) = {b1(1), b3(1)}. Unfortunately, s2 cannot
react since, even if b2(1) = ξ(v2)Sb3(1), there is a bid from the auction
history b1(1) such that b1(1)Sb2(1) and consequently b2(1) = ξ(v2) is rejected
by the auction rule and the auction ends with s3 being in the winning set.

¥

The previous example, even if quite particular, has demonstrated how the
bids history can a�ect the auction results. As expected, when characterizing
the winning bids, this distinctive feature is particularly di�cult to manage.
Consequently, we will voluntary neglect it in the subsequent developments.
The following results can, thus, be criticized with respect to this choice and
correspond to an idealized theoretical context.

First observations lead us to note that only sellers whose valuations are
not preferred or indi�erent by other bids may win the auction. Final bids are
thus restricted to the sub-space constituted by the bidding sets correspond-
ing to these particular sellers. This argument is formalized in the following
proposition.

Proposition 4 Let MA be a multicriteria auction and let K be the time of
its end. Under the assumption of aggressive bidding behavior, we have:

WSMA(K) ⊂ Ω =
⋃
i∈W

δi

where W = {si ∈ S|@j 6= i ξ(vi) ∈ χj}.
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Proof:
It is easy to see that if si ∈ S is such that ∃j 6= i, ξ(vi) ∈ χj, si will never win
the auction. Indeed, under the assumption of aggressive bidding behavior,
sellers sj (∀j 6= i) will compete against him until si has reached his valuation.

¥

Furthermore, as a consequence of the competition between sellers, one
may exclude bids that are beaten during the auction process.

Proposition 5 Let MA be a multicriteria auction and let K be the time of
its end. Under the assumption of aggressive bidding behavior, we have:

WSMA(K) ⊂ Ω\Γ
where Γ =

⋃
i,j∈S,i6=j(δi ∩ χj)

Proof:
⋃

i,j∈S,i6=j

(δi ∩ χj) = {
⋃
i∈W

⋃

j∈S,j 6=i

(δi ∩ χj)}
⋃
{

⋃

i∈W̄

⋃

j∈S,j 6=i

(δi ∩ χj)}

where W̄ = S\W . Let us note that:
⋃

i∈W

⋃
j∈S,j 6=i(δi ∩ χj) = {⋃i∈W

⋃
j∈W,j 6=i(δi ∩ χj)}

⋃{⋃i∈W

⋃
j∈W̄ (δi ∩ χj)}

= {⋃i∈W

⋃
j∈W,j 6=i(δi ∩ χj)}

⋃{⋃j∈W̄ χj

⋂
(
⋃

i∈W δi)}

= {⋃i∈W

⋃
j∈W,j 6=i(δi ∩ χj)}

⋃{⋃j∈W̄ χj} (because

we limit ourselves to Ω)

⋃
i∈W̄

⋃
j∈S,j 6=i(δi ∩ χj) =

⋃
i∈W̄ δi ∩ {

⋃
j∈S,j 6=i χj}

=
⋃

i∈W̄ δi (by definition of W̄ )

Finally,
⋃

i,j∈S,i6=j

(δi ∩ χj) = {
⋃

i,j∈W,i6=j

(δi ∩ χj)}
⋃
{

⋃

j∈W̄

χj}

As already mentioned, loosing bidders, i.e. bidders sj belonging to W̄ ,
are competing until they reach their valuation. So, any bid that may be
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preferred by, or indi�erent with bj must be removed from the set of potential
winning bids. This argument is translated by the second term of the last
expression. Furthermore, winning bidders, i.e. bidders si belonging to W
are competing together. Let si1 , si2 ∈ W . All the bids in δi1 ∩ χi2 are bids
proposed by si1 that could be preferred by or indi�erent with a bid proposed
by si2 . According to the aggressive bidding behavior assumption these bids
must be removed from the set of potential �nal bids. This distinctive feature
is taken into account by the �rst term of the last expression.

¥

Until now, we have always assumed that each seller si had only one eval-
uation ξ(vi). This choice has been made both for simplicity reasons and in
order to keep the notations simple enough. However the results presented in
this chapter may be directly extended to the case where each seller si has ni

di�erent items to propose vi1 , vi2 , . . . , vini
. In this case, the previous result is

naturally extended as follows:

Γ =
⋃

i,j∈S,i6=j

{[
ni⋃

l=1

δ(vil)]
⋂

[

nj⋃

l=1

χ(vjl
)]}

Finally it is worth noting that, under the aggressive bidding behavior
assumption, winning sellers stop o�ering new bids as soon as they are in
the winning set and that they can't exclude any other bid from the winning
set by submitting new o�ers. One may thus exclude, from the winning set,
excessive o�ers, i.e., o�ers that were not necessary to win the auction. The
set of what we call excessive o�ers is implicitly de�ned as follows.

De�nition 18 The set of excessive o�ers, noted ∆, is de�ned as follows:
let a ∈ Ω\Γ, a ∈ ∆ if ∃A = {a1, . . . , al |ai ∈ δ(a)\Γ} such that χ(a) ∩ Γ ⊆⋃l

i=1(χ(ai) ∩ Γ)

In other words, a bid is said to be in ∆ if it can be replaced by a �nite
set of o�ers that are strictly better from the seller point of view while they
do not reduce the competitive information of the bid. One more time, let us
stress that we neglect, here, the e�ects outlined in example 14. Of course, the
previous de�nition is rather di�cult to exploit with general preference struc-
tures. This notion will nevertheless be illustrated in section 4.7 in particular
preference contexts.
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Finally these �ndings lead us to the following result:

Theorem 2 Let MA be a multicriteria auction and let K be the time of its
end. Under the assumption of aggressive bidding behavior we have:

WSMA(K) ⊂ Ω\{∆ ∪ Γ}

This result is a direct corollary of the previous propositions and the de�-
nition of ∆.

The winning set of a multicriteria auction is, thus, constituted by mutu-
ally incomparable o�ers coming from Ω, that, together, 'beat' all the o�ers
included in Γ, without su�ering from unnecessary improvements.

Given these results, it is obvious that the winning set, and so, the winning
bids are not unique. Moreover each winning bidder may have several bids
in the winning set. These distinctive features will be illustrated in the next
section.

Before the forthcoming numerical analysis, a central question will retain
all our attention: if di�erent winning sets can appear during two distinct
instances of the same multicriteria auction, could one of them be better from
the auctioneer point of view ?

More rigorously, let WS = {b1, . . . , bm} and W̃S = {b̃1, . . . , b̃n} be two
winning sets resulting from two distinct instances of the same multicrite-
ria auction. Do we have ∃i ∈ {1, . . . , m}, j ∈ {1, . . . , n}|biP b̃j and bk(P ∪
I)b̃l, ∀k ∈ {1, . . . , m}, l ∈ {1, . . . , n}. As demonstrated in example 15, the
answer is positive !

Example 15 Let us consider a multicriteria auction characterized by two
criteria. Let us assume that E1 = E2 = {0, 1, 2, . . . , 5}. The auctioneer
decides to use the following preference structure:

bS b̃ ⇔ b ¹ b̃ or b + (1,−1) ¹ b̃

First of all, let us verify that this relation satis�es the mixed transitivity
assumption. If aSb two cases need to be considered. If a ¹ b the condition
aSb, b ¹ c ⇒ a ¹ b, b ¹ c ⇒ a ¹ c ⇒ aSc. On the other hand, if a +
(1,−1) ¹ b we have aSb, b ¹ c ⇒ a+(1,−1) ¹ b, b ¹ c ⇒ a+(1,−1) ¹ c ⇒
aSc.
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¾?
ξ1

ξ2

ξ(v2) = (4, 4)

ξ(v1) = (2, 2)

(3, 5)

Figure 4.3: Illustration of a 2 criteria auction context with 2 distinct winning
sets. WS1 = {b1 = (4, 4)},WS2 = {b̃1 = (3, 5)}. However b̃1Pb1.

Two bidders s1 and s2 are competing together. ξ(v1) = (2, 2) and ξ(v2) =
(4, 4). Figure 4.3 illustrates this example. In such context, it is easy to
remark that the only winning bidder is s1. One potential winning set is
WS = {b1 = (4, 4)}. Another potential winning set is W̃S = {b̃1 = (3, 5)}.
However b̃1Pb1.

¥

This distinctive feature is related to the particular auction rule and the
fact that the auction outcomes depend on the auction history.

With reference to this observation, we are pushed to characterize the
winning sets in terms of pareto optimality. More formally:

De�nition 19 Let MA be a multicriteria auction. A winning set WS =
{b1, . . . , bm} is said to be pareto optimal if there is no other potential winning
set W̃S = {b̃1, . . . , b̃n} such that ∃i ∈ {1, . . . , m}, j ∈ {1, . . . , n}|biP b̃j and
bk(P ∪ I)b̃l,∀k ∈ {1, . . . , m}, l ∈ {1, . . . , n}.

Of course, it is rather di�cult to characterize pareto optimal winning sets
with reference to general (P, I, J) relations. This notion will be illustrated
in section 4.7 where particular preference structure are considered.
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4.5 An illustrative example based on the Elec-
tre I method

In this section, we will apply the concepts and results presented up-to-
now on a pedagogical example. Our aim is, of course, purely illustrative and
we do not claim that the data and criteria used here below are representative.

Let us consider the case of a company that wants to subscribe mobile
phone contracts for her managers. Each of the 20 managers concerned uses,
on average, his mobile phone 5 hours a month. The company wants to engage
a procurement auction to select which telecommunication operators will be
selected.

In this context, the company is the buyer B. Their are three telecommu-
nication operators on the market noted s1, s2 and s3 who are competing to
get the contract. The item being sold is a mobile phone contract supporting
20 di�erent users. A common volume of 100 hours a month is shared by the
managers at a �xed price per minute noted p1(on average 5 hours a month
per manager). At the end of the month, if the total communication time
exceeds the 100 hours, the extra telecommunication hours are charged at
price per minute p2(≥ p1). Otherwise, the remaining hours are reported to
the next month.

B decides to evaluate the bids on three criteria: ξ1 = p1, ξ2 = p2 and ξ3

is the extra time (expressed in hours) o�ered by the operator each month
(no charge) if the total communication time exceeds 100 hours. To illustrate
the meaning of ξ3 let us consider the following case. We assume here that
ξ3 = 5. If the total communication time is equal to 103, the company will
pay 100 · p1 instead of 100 · p1 + 3 · p2. If it is equal to 112 the company will
pay 100 · p1 + 7 · p2.

Each seller si has one potential contract, noted vi, to propose and its
valuation according to these three criteria is presented in table 4.1.

Seller s1 is the operator able to provide the lowest value for p1. However
he has the highest value of p2 and he cannot o�er any extra time. He's the
best of the three operators if the company is sure that the communication
package will not exceed 100 hours a month. s2 is the best operator for p2

and has the biggest extra time to o�er. With reference to the value of these
parameters, he's the best operator if the communication time exceed the
package of 100 hours. Finally, operator s3 can propose a good price for p1

and a small extra-time but the value of p2 remains high. The results listed
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Table 4.1: Seller's best contract evaluated according to the 3 criteria

p1 (ξ1) p2 (ξ2) extra time (ξ3)
ξ(v1) 0.125 0.25 0
ξ(v2) 0.135 0.15 20
ξ(v3) 0.13 0.2 10

Table 4.2: Mobile phone contract procurement auction. Total cost, for each
seller, evaluated on three particular scenarios.

Tot. communication time s1 s2 s3

100h 750 810 780
115h 975 810 840
130h 1200 900 1020

in table 4.2 con�rm theses statements.

We suppose here that the operators are able to propose any bid such that
bi º ξ(vi). This assumption is, of course, excessive since the cost parameters
depend on the value taken by the other parameters. However, for the purpose
of simplicity, we will ignore this distinctive feature. Here are examples of
potential bids: b1 = (0.135, 0.28, 0) ∈ δ1, b2 = (0.15, 0.15, 10) ∈ δ2 or b3 =
(0.15, 0.25, 5) ∈ δ3

B decides to base the bids comparison of the ELECTRE I method (122).
The parameters characterizing his preferences are �xed as follows: w1 =
0.35, w2 = 0.35 and w3 = 0.3 for the weights and φ1 = φ2 = 0.1 and φ3 = 15
for the discordance levels (discordance happens whenever the di�erence is
greater (respect. lower) or equal to φj). Finally, the concordance threshold
γ is �xed to 4/3. Furthermore, it is easy to verify that the Electre I method
satis�es the mixed transitivity assumption. These parameters and the choice
of the method is public to the sellers.

The auctioneer states that the minimum bid increment for each criteria
are 0.005 for ξ1 and ξ2 and 5 for ξ3. Table 4.3 illustrates one potential history
of the auction.

The auction history listed in table 4.3 presents a number of distinctive
features that need to be commented. First of all, let us remark that, due to
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Table 4.3: Mobile phone contract procurement auction. Application of the
Electre I. Illustration of one potential auction realization.

Step Bid id. ξ1 ξ2 ξ3 WS
1 b1(1) 0.18 0.3 0 {b1(1)}
2 b2(1) 0.18 0.28 0 {b2(1)}
3 b3(1) 0.18 0.28 5 {b3(1)}
4 b1(2) 0.17 0.26 0 {b1(2)}
5 b3(2) 0.16 0.27 5 {b3(2)}
6 b2(2) 0.20 0.25 10 {b2(2)}
7 b3(3) 0.15 0.24 0 {b3(3)}
8 b2(3) 0.20 0.25 15 {b2(3), b3(3)}
9 b3(4) 0.15 0.24 10 {b3(4)}
10 b2(4) 0.145 0.23 0 {b2(4)}
11 b3(5) 0.14 0.22 10 {b3(5)}
12 b2(5) 0.15 0.18 15 {b2(5)}

the particular choice of the parameters characterizing the Electre I method,
a bid b outranks b̃ as soon as b is strictly better for at least two of the three
attributes than b̃ (and of course satis�es the (strict) discordance constraint).
Furthermore due to the values listed in table 4.1, we have ξ(v2)Pξ(v1) and
ξ(v2)Pξ(v1). Consequently, s2 is expected to be the unique winning seller of
this auction.

Let us now take a close look at the auction's history. The �rst three
bids are basic in the sense that b1(1) Â b2(1) Â b3(1). Naturally, at time
3, b3(1) is the only bid present in the winning set. Then, seller s1 reacts
by improving its latest bid b1(1) and propose b1(2). b1(2)Pb3(1) since it is
strictly better than b3(1), for ξ1 and ξ2, and only worst for ξ3. Furthermore,
it respects the discordance constraints. It is easy to verify that b1(2) can
be accepted as a new bid since it is not preferred or indi�erent to a bid
from HMA(3) (this constraint is, of course, satis�ed for all subsequent bids).
Similar comments justify step 5. At time 6, seller s2 decides to propose
b2(2). This is particularly interesting since it is the �rst time, within this
auction, that a bidder does not improve one of its previous bids (in the classic
dominance meaning). b2(2) is, indeed, strictly better than b2(1) for ξ2 and ξ3

but worst for ξ1. b2(2) is now the only bid in the winning set. Furthermore,
the nature of b2(2) is such that s1 leaves the auction consequently b2(2)Sξ(v1)
and so ∀b1 ∈ δ1 : b2(2)(P ∪ I)b1. At time 7, s3 outbids s2. Then, at time
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Table 4.4: Mobile phone contract procurement auction. Application of the
Electre I. Illustration of a second auction realization.

Step Bid id. ξ1 ξ2 ξ3 WS
1 b1(1) 0.13 0.26 0 {b1(1)}
2 b3(1) 0.22 0.25 5 {b3(1)}
3 b2(1) 0.18 0.19 10 {b2(1)}

8, another interesting phenomenon happens: s2 o�ers a bid b2(3) that is
strictly worst than the current winning bid b3(3) for attributes ξ1 and ξ2,
but is strictly better for ξ3. Moreover, the di�erence on this last attribute is
important enough to state that b2(3)Jb3(3) and both bids are in the winning
set. s2 and s3 continue to compete until s2 proposes b2(5) = (0.15, 0.18, 15).
At this time (k = 12), s3 quits the auction since b2(5)Sξ(v3). Finally, s2 wins
the auction with the bid b2(5). This outcome is conform with the fact that
s2 is the only seller belonging to W .

An important point to notice is that, due to the particular auction rule,
each new bid is in�uenced by the whole auction history. At time 6, for
instance, seller s2 could propose b̃2(2) = (0.20, 0.26, 10) instead of b2(2) =
(0.20, 0.25, 10) in order to beat b3(2) = (0.16, 0.27, 5) since b̃2(2)Sb3(2). How-
ever b̃2(2) being indi�erent to b1(2) it is not accepted as a valid new bid.

As already mentioned, the winning set is not unique. In this speci�c
example, s2 being the only bidder in Ω, he will be the only winning seller.
However, the winning bid(s), which depends on the auction history, may
be di�erent from one auction realization to the other. Table 4.4 illustrates
another auction realization which ends with a di�erent bid.

In this example, seller s1 begins the auction with an aggressive bid (i.e.
a bid that is close to its valuation). At time 2, s3 reacts by submitting b3(1).
b3(1) being indi�erent to ξ(v1), s1 quits the auction. Finally, s2 proposes
b2(1) (b2(1)Pb3(1) and b2(1)Iξ(v3)) and wins the auction. The �nal bid is,
here, di�erent than the winning bid in the �rst realization of the auction.
Furthermore,we have that (0.15, 0.18, 15)P (0.18, 0.19, 10) ! This is mainly
due to the fact the second realization of the auction contains less bids than
the �rst one. As already commented, the competitiveness of the auction
increases with the number of bids in the auction history. Here is striking
example of this e�ect.
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Table 4.5: Electre I based multicriteria auction- continued

Step Bid id. ξ1 ξ2 ξ3 WS
12 b2(5) 0.15 0.18 20 {b2(5)}
13 b4(1) 0.135 0.17 0 {b2(5), b4(1)}
14 b2(6) 0.135 0.16 5 {b2(5), b2(6)}

Another distinctive feature is that the parameters characterizing the Elec-
tre I method have an impact on the auction's results. At time 8, for in-
stance, seller s2 proposes a bid b2(3) = (0.20, 0.25, 15) that is incomparable
to b3(3) = (0.15, 0.24, 0). This situation is due to the discordance level re-
lated to ξ3 that has been �xed to 15. If the auctioneer had �xed it to 20,
seller s2 should have proposed b̃2(3) = (0.20, 0.25, 20) to obtain the same out-
come. A number of authors have already cited and commented the impact
of bid increments on the auction's results. Within this particular context,
we note that the parameters of the method itself - in this case discordance
levels - could also impact these results. Consequently, this is certainly a way
for future research.

To further analyze this example, let us now imagine that a 4th seller
s4 enters the game and ξ(v4) = (0.13, 0.16, 0). Let us also assume that
b̃2(5) = (0.15, 0.18, 20) instead of b2(5) = (0.15, 0.18, 15). Table 4.5 resumes
the end of the auction with this new conditions.

At time 13, s4 proposes an o�er b4(1) that is incomparable with the
current best bid b2(5). s2 reacts by o�ering b2(6)Pb4(1). s4 cannot outbid
since b2(6)(P ∪ I)ξ(v4). s2 being the only bidder in W , he's the only winning
bidder. On the other hand, in this case, the �nal winning set is not reduced
to a single o�er but to two o�ers both proposed by seller s2.

As already stressed, the previous example has only a pedagogical purpose
and a number of important issues have been neglected. Among them we
can cite what Teich (116) calls the bidder attributes, i.e. characteristics of
the operators themselves. Is the operator reliable ? Is he a major market
operator ? How is the quality of his network ? ... Moreover the cost structure
is, of course, oversimpli�ed since no distinction is made according to the call
destination (same operator or not) and the time of the call (peak versus o�-
peak hours). Finally, the choice of the Electre I method has been motivated
by simplicity reasons. From a practical point of view other methods could also
be considered. Besides these simpli�cations, this example has permitted us

102



to illustrate a number of distinctive features related to multicriteria auctions.

4.6 Extensions to other auction formats

Until now, our attention has been concentrated on English multicriteria
auctions. This is mainly due to the fact that this auction format is the most
popular and probably the most suited for procurement situations. Neverthe-
less, other kinds of auction will be discussed within this section. Yet, our aim
is more to sketch potential extensions than to provide a detailed analysis of
this problem. This will certainly constitute directions for future researches.

First of all, let us note that extending �rst price sealed bid auctions to
the multicriteria framework is straightforward. It is, indeed, close to what
Roy (99) calls an α problematic, and a wide range of methods have been
developed to tackle this problem. In this section our attention will rather be
focused on the Dutch and Vickrey versions of the multicriteria auction.

4.6.1 Vickrey multicriteria auctions

Extending Vickrey auctions to the multicriteria framework is certainly
a perilous task since this kind of mechanisms is characterized by desirable
theoretical properties.

Our approach is based on the principle that, in a uni-criterion context,
Vickrey auctions are static mechanisms that lead to the same outcome, if
the bidders submit their valuations, than the one of an English auction (at
least if the assumption of private values is considered). However, as shown
in section 4.4.2, the results of a multicriteria auction are not obvious to
determine. Even under restrictive assumptions, we can only delimit an area
Ω \ {∆ ∪ Γ} where the winning bids are located. Yet, we will base the
extension of Vickrey auctions on this area as show here below:

1. Each seller si participating to the auction submits one single sealed bid
bi. Let us note B = {bi, i = 1, . . . , q} the set of o�ers received by the
auctioneer.

2. The auctioneer B collects all the bids and computes:

(a) Ω̃ = ∪i∈W̃ δ(bi) where W̃ = {si ∈ S|@bj ∈ B \ bi : bjPbi}
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(b) Γ̃ = ∪i,j∈S,i6=j(δ(bi) ∩ χ(bj))

(c) ∆̃ the set of excessive o�ers based on Γ̃.

3. The auctioneer selects his preferred o�er b | b ∈ Ω̃ \ (∆̃ ∪ Γ̃)

W̃ denotes the set of potential winning sellers and is de�ned with reference
to the strict preference relation P (and not with reference to S = (P ∪ I) as
it was the case before). This distinctive feature has been motivated in order
to insure that W̃ will never be empty. On the contrary, if the S relation was
used, two sellers s1 and s2 participating to a Vickrey multicriteria auction,
could propose respectively b1 and b2 such that b1Sb2 and b2Sb1. In this case,
the set of winning sellers would be empty. With the aforementioned de�nition
we have Ω̃ = {s1, s2}.

It is obvious that, by construction, if every seller si submit bi = ξ(vi)
we have Ω̃ = Ω (at least if the winning sellers have not proposed indi�erent
bids), Γ̃ = Γ and ∆̃ = ∆. Consequently the area where the winning bids
are located is the same as the one estimated with multicriteria auctions. On
the other hand, at step 3, we let, here, the auctioneer choose his preferred
o�er among all those satisfying the previous constraints. So, the results of
a Vickrey multicriteria auction are expected to be at least as good as those
obtained with a multicriteria auction (since in the latter case only a subset of
Ω\(∆∪Γ) is highlighted at the end of the multicriteria auction). If a winning
bid b can be proposed by several potential winning sellers, we assume than
the winning seller is randomly chosen.

Unfortunately, in this context, we cannot state that a dominant strategy
for the seller is to o�er bi = ξ(vi). If si increases his chance to be in Ω̃ by
o�ering a bid close to ξ(vi), his winning bid (if it is chosen by the auctioneer)
is not completely determined by the bids from the other sellers (as it is
case with a classic Vickrey auction). This distinctive feature - that happens
with particular preference structures - is illustrated in the next example.
Consequently, by o�ering bids bi Â ξ(vi), seller si may expect to gain more
than if he had proposed bi = ξ(vi).

Example 16 Illustration of Vickrey multicriteria auctions.
Two sellers are competing in a Vickrey multicriteria auction based on the

dominance relation. Both decide to submit their valuation i.e. b1 = ξ(v1) and
b2 = ξ(v2). In such context W̃ = {s1, s2} and Ω̃\ (Γ̃∪ ∆̃) = Ω\ (Γ∪∆) which
is represented on �gure 4.4 by continuous lines (see section 4.7.2 for details).
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ξ(v2)

ξ(v1)

b̃ = [ξ1(v2), ξ
2(v1)]

Figure 4.4: Illustration of a Vickrey multicriteria auction based on the dom-
inance relation.

The auctioneer naturally chooses b̃ as the winning bid. Since this bid can be
proposed by both sellers, the winning seller is randomly determined. However,
the structure of b̃ = [ξ1(v2), ξ

2(v1)] is such that it is in�uenced by both bids.
If s2 propose b2 = (ξ1(v2), b

2
2) (b2

2 ∈ [ξ2(v2), ξ
2(v1)]), he remains a potential

winner and the winning bid b̃ is una�ected (nevertheless ξ(v2) ¹ b2).

4.6.2 Dutch multicriteria auctions

Even if such mechanisms are less common in procurement settings, we
will propose here below an extension of Dutch auctions to the multicriteria
framework.

Our approach is based on the statement that, in classic Dutch auctions,
the main actor is the auctioneer: he is the only one lowering the price while
the bidders can only react when they agree with its current level. Starting
with these observations, we will de�ne a Dutch multicriteria auction (DMA)
in this way:

De�nition 20 A Dutch Multicriteria Auction (DMA) is a succession of of-
fers, proposed by the auctioneer, satisfying the following bidding rule: at time
k, bids b such that ∃b̃ ∈ HDMA(k − 1) : b(P ∪ I)b̃ or ∃b̃ ∈ ADMA(k − 1) :
b̃(P ∪ I)b may not be proposed. ADMA denotes the set of o�ers that have
already been accepted by one seller at time k.
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Practically, the auctioneer starts with an arbitrarily 'low' bid (since the
criteria have to be minimized). Then he successively proposes bids that
are not preferred or indi�erent to bids previously o�ered, i.e. bids that are
incomparable with, or at least not better than the bids from the history.
At each time, any seller may accept the current bid b. All the bids that
have already been accepted at time k belongs to ADMA(k) (In this context,
ADMA plays the role of the winning set). Of course, the auctioneer may
not propose bids b such that ∃b̃ ∈ ADMA : b̃(P ∪ I)b since b̃ has already
been accepted. As a consequence of ADMA(k) ⊆ HDMA(k) the condition
∃b̃ ∈ HDMA(k − 1) : b(P ∪ I)b̃ implicitly applies to ADMA as well. The
example 17 presented here below will illustrate how a dutch multicriteria
auction takes place.

The nature of ADMA needs to be further discussed. With reference to
the previous de�nition, the seller can only accepts bids proposed by the
auctioneer. Once a bid has been accepted it is included in ADMA. In this
framework, we will be a little more �exible and allow sellers to accept bids
that are indi�erent to bids they could propose. This distinctive feature will
be further explained in section 4.7.3.

Another distinctive feature related to the previous de�nition is the fact
that the preferences of the auctioneer are explicitly token into account. On
the other hand, one could, for instance, only consider the natural dominance
relation in the auction rules. Since the auctioneer is the main actor of the
auction and the sellers can only accept or not bids proposed by B one may
criticize the necessity to respect rules based on this preference structure. This
point will be further analyzed in section 4.7.2 and 4.7.3.

The Dutch Multicriteria auction naturally ends when the auctioneer can-
not propose any new o�er, i.e. when ∀b ∈ ∏q

j=1 Ej ∃b̃ ∈ HDMA(k) : b(P ∪ I)b̃

or ∃b̃ ∈ ADMA(k) : b̃(P ∪ I)b. However the auctioneer may decide to stop
the auction before, as soon as he judges he has enough bids in ADMA. Of
course in this setting, it is hard to specify in advance the time that the Dutch
Multicriteria Auction will last. This is essentially due to the fact that this
parameter depends on the way the auctioneer explores

∏q
j=1 Ej.

On the other hand, the fact that the auctioneer is guiding the bids evo-
lution gives him the possibility to give greater importance to speci�c bid
structures. This distinctive feature will be illustrated in example 17.

Finally a last point that need to be stressed is that, contrary to classic
(uni-criterion) Dutch auctions, the aforementioned de�nition do not impose
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Table 4.6: Mobile phone contract procurement auction. Illustration of Dutch
multicriteria auctions based on the Electre I. realization.

Step ξ1 ξ2 ξ3 ADMA(k − 1)
1 0.12 0.14 30 −
2 0.12 0.14 15 −
3 0.12 0.14 0 −
4 0.12 0.15 0 −
5 0.12 0.16 0 −
6 0.12 0.17 0 −
7 0.13 0.2 15 −
8 0.13 0.2 5 {b3(1)}
9 0.13 0.14 0 {b3(1)}
10 0.13 0.16 0 {b3(1)}
11 0.14 0.17 5 {b3(1), b2(1)}

that the attributes have to be continuously increased. In the present context,
the auctioneer may decide, in one step, to impose a signi�cant increase to one
or several attributes (this point is also related to the presence of indi�erence
thresholds - see next chapter).

Example 17 Illustration of Dutch multicriteria auctions.
In order to illustrate the use of Dutch multicriteria auctions let us con-

sider the problem of mobile phone contracts studied in section 4.5. The auc-
tioneer is essentially interested in two contract pro�les. The �rst one is
characterized by a low price p1 while the two other attributes are less impor-
tant. This corresponds to the ideal contract if the auctioneer is sure that the
communication time will not exceed 100 hours a month. The second contract
pro�le is oriented towards a more pessimistic scenario i.e. where the total
communication time do exceed the limit imposed on p1. In order to avoid
useless illustrative bids, let us consider that the starting bid is (0.12 0.14 30).
Moreover due to the pedagogical nature of this example, we will - each time
- voluntary increase the attributes in a subsequent way. In practice more
bids are expected to appear in the auction history. Table 4.6 illustrates one
realization of the auction.

As already stressed, �rst of all, the auctioneer wants to get the best con-
tract with respect to p1. He starts the auction with the bid (0.12, 0.14, 30)
and progressively degrades the values of ξ2 and ξ3. Steps 1 to 6 illustrates,
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�rst, the decrease of the extra time o�ered by the operator and then the in-
crease of p2. As consequence of the fact that no seller has reacted to the bid
(0.12, 0.17, 0), the auctioneer starts to believe that the value of p1 is too low.
So, at time 7, he decides to increase this value to 0.13. Simultaneously, B
plays on the two other attributes: he increases subsequently p2 but on the
counterpart asks for an extra time o�ered by the operator. Since no reaction
happens, he decides to decrease the extra-time o�ered by the operator. Seller
3 accepts the current bid and b3(1) = (0.13, 0.2, 5) enters the set of accepted
o�ers. With respect the valuations listed in table 4.1 one may remark that it
is not the seller with the lowest value for p1, i.e. s1, who has won the auction.
This is essentially due to the fact that s1 is characterized by a high value for
p2 which was not considered by the auctioneer in this auction. Furthermore,
the di�erence between s1 and s3 with respect to p1 is not signi�cant. As il-
lustrated, each time the auctioneer has proposed o�ers that are not preferred
of indi�erent to the previous bids.

Now that a �rst o�er has been accepted, the auctioneer wonders what
would be the contract if he considers that the communication is likely to be
higher than the limit of 100 hours. Consequently, he decides to be less de-
manding with respect to the value of p1 (in order to maintain relatively low
values for p2). From now, he has to propose bids b such that @b̃ ∈ HDMA(k) :
bS b̃ and b3(1)¬Sb. In particular, b is such that b3(1)¬Sb and b¬Sb3(1)
(b3(1)Jb). Steps 9,10 and 11 illustrate such bids. As already stressed, the
structure of these bids is such that the emphasis is put on attributes ξ2 and
ξ3. Finally, B is pushed to propose b(11) and seller s2 accepts it. Now, B
has a bid for each of the two scenarios he had considered at �rst. Yet, he's
not interested in a third scenario and so decides to stop the auction. Let us
remind the reader that the use of Electre I has only been motivated for illus-
trative purpose. Other methods are, of course, more suited to manage such
procurement situations.

As shown in the previous example, the rules of the Dutch multicriteria
auctions are not always easy to satisfy. In this context, the development of
adequate tools to support the auctioneer certainly constitutes a direction for
future researches.
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4.7 Particularizations to existing approaches

In order to validate our approach, we will apply the previous formalism on
three particular mechanisms. By doing so, uni-criterion auctions, dominance
based multicriteria auctions and multi-attribute auctions will be considered.

4.7.1 Uni-criterion auctions

In this subsection, we will focus ourselves on classic (uni-criterion) Eng-
lish auctions. In this case the number of criteria q = 1, ξ(vi) = {ξ1(vi)}
is the price of vi and the comparison of o�ers is based on the ≤ relation.
Consequently, χi = δi. The ≤ relation being transitive, all the information
contained in the auction history at time k may be summarized by the current
best price b̂(k).

According to the de�nition of multicriteria auctions, each new bid b is
such that @b̃ ∈ HO(k) : b̃ ≤ b, in other words; at time k + 1 any bid b is
such that b < b̂(k). The Winning set is reduced to the current best price
and consequently is unique. The aggressive bidding behavior assumption
expresses the fact that any bidder continues to o�er new bids until he's the
winner of the auction or he has reached his valuation. It is easy to verify
that the ≤ relation respects the constraints imposed by the mixed transitivity
assumption.

Let s(1) and s(2) be the sellers with respectively the lowest and the second
lowest valuation. W = {s(1)} since ∀k 6= (1) : δk ⊆ χ(1), (ξ

1(v(1)) ≤ ξ1(vk))
while @k| δ(1) ⊆ χk (otherwise s(1) would not have the lowest valuation).
Consequently, Ω = δ(1) = [ξ1(v(1)),∞[.

As a consequence, Γ =
⋃

i,j∈S,i6=j(δi ∩ χj) =
⋃

i,j∈S,i6=j(δi ∩ δj) = δ(2)

(since δi ⊂ δ(1)∀i 6= (1)). On the other hand, it is easy to show that ∆ =
[ξ(v(1), ξ(v(2))− ε[ since ∀a ∈ [ξ(v(1), ξ(v(2))− ε[, ∃ξ(v(2))− ε such that χ(a)∩
δ(2) = δ(2) = χ(ξ(v(2)) − ε) ∩ δ(2). If ε is assumed to be arbitrarily low
WS = {ξ(v(2)} which is a classic theoretical result of auction theory.

It is straightforward to verify that the restrictions of Vickrey and Dutch
multicriteria auctions, proposed in section 4.6, to this speci�c context lead
to the classic versions of these mechanisms.

Let us, �rst, consider the case of Vickrey auctions. Once the auctioneer
has collected the (uni-criterion) sealed bids, he determines W̃ which is, here,
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reduced to a single seller s(1), i.e. the one who has proposed the lowest
bid. Then he computes Ω̃ \ (∆̃ ∪ Γ̃) which is, with respect to the previous
developments, equal to the second lowest bid. Consequently, the seller with
the lowest bid wins the auction but only has to 'pay' a bid equal to the second
lowest bid.

Finally, the de�nition of Dutch multicriteria auctions leads, in this con-
text, to a succession of o�ers proposed by the auctioneer such that each new
o�er may not be lower of equal, i.e. preferred or indi�erent, to a bid that
has been previously proposed. Consequently every new o�er proposed by
the auctioneer must be strictly greater than the previous ones. Furthermore,
once a seller accepts the current o�er b, the auctioneer stops the auction
since no bid b̃ is such that b̃ > b and b > b̃. As a direct corollary, the set of
accepted bids AADM is, at the end of the Dutch auction, reduced to a single
o�er.

4.7.2 Dominance based multicriteria auctions

Let us consider now the case of what we have called dominance based
multicriteria auctions (DBMA) (see chapter 3).

In this case biSbj ⇔ bi ¹ bj and we have χi = δi,∀i. The preference
structure induced is such that ¹ is transitive and it is straightforward to
verify that S respects the restrictions imposed by the mixed transitivity
assumption. Furthermore, it is obvious to verify that Ω =

⋃
i∈W δi where

W = {si ∈ S|@j 6= i : δi ⊆ δj} and Γ =
⋃

i,j∈S,i6=j(δi ∩ δj).

Proposition 6 Let DBMA be a dominance based multicriteria auction, we
have ∆ = Ω \ Γ.

Proof: Let us show that ∀a ∈ Ω \ Γ,∃A = {a1, . . . , al |ai ∈ δ(a)\Γ} such
that χ(a)∩Γ =

⋃l
i=1(χ(ai)∩Γ). In this context, χ(a)∩Γ = δ(a)∩ (∪i6=j(δi∩

δj)).

Let T = {tij(a)|tij(a)k = max{ξk(vi), ξ
k(vj), a

k},∀i 6= j} and let T̃ =
{t̃k, k = 1, . . . , l} be the subset of pareto optimum points from T . By con-
struction, a ¹ t̃l,∀l = 1, . . . , m, δ(a) ∩ (∪i6=j(δi ∩ δj) = ∪l

k=1δ(t̃l) and t̃l ∈ Γ.
If we de�ne ai = a+t̃i

2
, the aforementioned constraints are satis�ed.

¥
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Figure 4.5: Dominance based multicriteria auctions.

Figure 4.5 illustrates the subspace Ω \ (∆ ∩ Γ) in a two criteria context.
Consequently, one may expect that the dominance based multicriteria auc-
tion will end with a winning set constituted by (mutually incomparable) bids
lying on the bold line. Furthermore, it is easy to verify that, in this case, the
unique pareto optimal winning set is constituted by the circles lying on the
bold line.

Let us now consider the application of this speci�c preference structure
to Vickrey multicriteria auctions. One more time, once the auctioneer has
collected the sealed bids, he has to determine the set of winning bidders W̃
and the set of potential winning bids Ω̃\ (∆̃∪ Γ̃). With respect to this set, he
�nally chooses the winning bids. With reference to �gure 4.5, if the bidders
reveal truthfully their valuation, we have Ω \ (Γ∪∆) = Ω̃ \ (∆̃∪ Γ̃) and one
may expect that, among all the potential winning bids delimited by the bold
line, the auctioneer will choose the encircled ones. However, the equivalence
between winning bid and winning seller is not obvious. b̃, for instance, is a
winning bid that could be proposed by s1 or s2. In such case, we plead to
randomly choose the winning seller.

Finally, let us consider dominance based Dutch multicriteria auctions. In
this context, the auctioneer is supposed to o�er a succession of bids b such
that @b̃ ∈ HDMA(k) : b ¹ b̃ and @b̃ ∈ AADM(k) : b̃ ¹ b. Each time the sellers
have the opportunity to accept the current o�er. On the other hand, while the
auctioneer respects the aforementioned rules, he is free to explore the bidding
space the way he wants (and so implicitly uses his preference structure). As
already stressed, these kinds of mechanisms are goal-oriented since B will
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probably privilege some bidding area. Furthermore, the auctioneer may stop
the auction whenever he judges he has su�cient bids in AADM(k) (these
distinctive features have been illustrated on example 4.6). With respect
to these observations, one could conclude that Dutch multicriteria auctions
could be de�ned only on the basis of the natural dominance relation and
thus, the explicit consideration of the preference structure in the de�nition
presented in section 4.6.2 could be criticized. As a direct corollary, this will
have the advantage that the auctioneer will not have to reveal his preference
structure. Finally, one may also criticize the fact that the auctioneer will
truthfully reveal a preference structure that will limit him in the exploration
process (since the rules are based on it). All these critics are grounded and
we do think that dominance based Dutch multicriteria auctions are certainly
to be considered as a potential extension to classic Dutch auctions such as
Dutch multicriteria auctions presented in section 4.6.2. Nevertheless, in the
next section, we will illustrate the impact of an explicit consideration of the
preference structure in Dutch multicriteria auctions.

4.7.3 Multi-attribute auctions

Let us consider the case of a multicriteria auction based on an additive
multi-attribute linear utility function U(b) =

∑q
j=1 ωj · bj (48) (Let us note

that to be able to apply such multi-attribute linear utility function, the cri-
teria must verify the preferential independence assumption (48)). We have
biSbj ⇔ U(bi) ≤ U(bj). The preference structure induced is such that S
is transitive and J = ∅. Furthermore it is easy to see that if a S b and
b ¹ c ⇒ a S c. Indeed, a S b ⇒ U(a) ≤ U(b), b ¹ c ⇒ U(b) ≤ U(c) which
leads to U(a) ≤ U(b) ≤ U(c) ⇒ a S c (Consequently the mixed transitivity
assumption is satis�ed). Within this framework, sellers are competing on
the values of U(b). This structure is close to a classic English auction. The
winner is the seller si such that U(ξ(vi)) ≤ U(ξ(vj)),∀j 6= i. Let ξ(vj) be the
second lowest valuation in terms of U . si wins the auction with an o�er bi such
that U(bi) = U(ξ(vj)). In such situation, W = {si}, Ω = δi and χk ⊆ χi ∀k.
Furthermore, due to the transitivity of S, we have ∪k∈S\si

χk = χj.

Proposition 7 Let MA be a multicriteria auction based on an additive multi-
attribute linear utility function, we have Γ = χj.
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Proof:
Γ =

⋃
l,p∈S,l 6=p(δl ∩ χp) =

⋃
l∈S[δl ∩ (

⋃
p∈S,p6=l χp)]

= [δi ∩ (
⋃

p∈S,p6=i χp)] ∪ [
⋃

l∈S,l 6=i δl ∩ (
⋃

p∈S,p6=l χp)]

= (δi ∩ χj) ∪ [
⋃

l∈S,l 6=i(δl ∩ χi)] = (δi ∩ χj) ∪ (
⋃

l∈S,l 6=i δl)

= (δi ∩ χj) ∪ (
⋃

l∈S,l 6=i(δl ∩ χj))

=
⋃

l∈S(δl ∩ χj) = χj ∩ (
⋃

l∈S δl) = χj

¥

Proposition 8 Let MA be a multicriteria auction based on an additive multi-
attribute linear utility function, we have ∆ = δi \ χj.

Proof:
∀a ∈ δi \χj ∃ã = a + ε such that χ(a)∩χj = χ(ã)∩χj. Let us note that it is
always possible to �nd such ã ∈ δi\χj since ε is a positive vector of arbitrarily
low values. Furthermore, χ(ã) ≤ U(ξ(vj))) since if it is not the case we have:
U(a) ≤ U(ξ(vj))) ≤ U(a + ε),∀ε. In other words, U(a) = U(ξ(vj)) which is
in contradiction with the fact that a ∈ δi \ χj.

¥

As expected, the two previous results lead us to state that WSMA ⊆
Ω \ (∆ ∪ Γ) = U(ξ(vj)) ∩ δi. Moreover, let us note, as shown in �gure 4.6,
that the set of potential winning bids is limited to a speci�c local area. By
de�nition, all the bids lying on this local area are indi�erent. Consequently,
the winning set, in a multi-attribute auction, is constituted by a unique bid
and every potential winning set is pareto optimal.

By using a multi-attribute utility function, we de�ne "a virtual currency
for the negotiation that expresses the overall utility of a bid to the buyer"
(11). The induced multicriteria auction is thus close to a classic auction.
Actually, bidders are competing on a virtual price built by means of this
utility function. Extending English and First Price Sealed Bid auctions is
thus straightforward.
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Figure 4.6: Illustration of a multi-attribute auctions.

Applying this particular preference structure to Vickrey multicriteria auc-
tions is straightforward. W̃ is the bidder with the lowest bid in terms of utility
and he has to propose a bid that is characterized by an utility value equal to
the second lowest utility. To extend Vickrey auctions, Bichler (12) proposes
to transform the gap U(b(1))−U(b(2)) into values of one attribute: in the case
of �nancial derivatives trading (12), the gap is transformed into monetary
value and so the winning bidder may charge a higher price for its �nancial
product. With reference to our de�nition of Vickrey multicriteria auctions,
the auctioneer may choose any o�er in U(b(2) ∩ δi).

Let us, now, consider the application of linear multi-attribute utility func-
tions to Dutch multicriteria auctions. In this case, the de�nition proposed
in section 4.6.2 imposes that the auctioneer proposes a succession of o�ers
such that each new bid is characterized by a higher utility than the previous
ones. By incorporating the preference structure in the auction de�nition, we
remark that the bidding space is explored in a faster way than if the classic
dominance relation was used. This is a direct consequence of the fact that the
set of bids that are preferred or indi�erent to a bid b, if the classic dominance
relation is used, is included in the one obtained when using a multi-attribute
utility function. This distinctive feature constitutes the main advantage or
incorporating the preference structure in the auction de�nition. Finally, it is
obvious to note that the auction stops as soon as an o�er b has been accepted
by a seller. In such a case, the auctioneer may not propose new bids since
there are no bids b̃ such that U(b̃) ≤ U(b) and U(b̃) > U(b). A last comment
that still need to be addressed is the fact that sellers may accept a bid that
is indi�erent to a bid they could propose. If this rule is not considered one
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could imagine that the auctioneer could propose a bid b such that ∃bi with
U(bi) = U(b). However, due to the fact that b /∈ δi, seller si cannot accept
the current bid. The application of this rule permits to reason on the values
of the utility function and not only speci�c bids.

4.8 Related questions

This section is dedicated to two questions regarding the interest of using
multicriteria (or multi-attributte) auctions. First of all, we will motivate the
use of multicriteria auctions with respect to the classic request for quote
alternative. Then the question related to integrated versus ex-post bids se-
lection will be addressed.

4.8.1 Multicriteria auctions versus RFQ

When pleading for the use of auction mechanisms that supports multi-
dimensional bids, a natural question is to compare them to classic Request
For Quote approaches (RFQ).

The main di�erence between these two approaches lies in the preference
revelation. In a RFQ context, the buyer has to reveal (at least partially) his
preferences in order to "guide" the sellers in their submission. This phase
is performed before the bidding process and so is independent from the bids
submitted.

In multicriteria auctions, one can imagine that the buyer �rst de�nes
(weak) preferences that he will re�ne then, during the auction, based on the
bids he will receive. This distinctive feature has already been stressed in
section 4.3.4 and will be further analyzed in the next chapter.

The important point to emphasize on is that, in an auction context, a
number of di�erent preference structures can lead to choose the same bidder
as the winning seller. This comment is illustrated on �gure 4.7. In this case,
a linear multi-attribute utility function is used to represent the auctioneer's
preferences. b1 is selected to be the winning bid (the continuous line rep-
resenting the set of iso-utility points related to the true preferences of the
auctioneer). However, any iso-utility curve belonging to the arbitrary cone
de�ned by the dashed lines could have led to the same conclusion. Con-
sequently, even if the auctioneer does not fully reveal his preferences, the
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Figure 4.7: Multi-attribute auctions: di�erent set of weights can lead to
select the same winning bid.

conclusion is the same.

This statement leads to wonder how much the auctioneer has to reveal to
achieve the same selection. This question is at the origin of the forthcoming
empirical tests.

Of course, for simplicity reasons, we have considered here a classic linear
multi-attribute utility function to de�ne the preferences. The empirical tests
have been conducted according to algorithm 1 in a 2 attributes context.

Intuitively this algorithm functions as follows. Let us assume that p
sellers are participating to the auction. Firstly the parameters characteriz-
ing the multi-attribute auction are randomly chosen according to a uniform
distribution: the set of weights w̃ de�ning the linear multi-attribute utility
function and the set of evaluations ξ(v) characterizing the sellers. Once the
auction context is established, the winning seller sk is determined; he's the
bidder with lowest valuation in terms of utility. Moreover, the utility score
of the winning bid bk is computed. As already explained, this is equal to the
second lowest multi-attribute utility score. This value will later serve as a
benchmark for the analysis. From now on, we will focus on the preference
revelation needed to select the same bidder as the winner. Let W be the set
of weights leading to select sk as the winning bidder:

W =

{
0 < w < 1
w · ξ1(vk) + (1− w) · ξ2(vk) ≤ w · ξ1(vi) + (1− w) · ξ2(vi), ∀i 6= k
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Intuitively the second constraint imposes that the weights are such that
the utility score assigned to the evaluation of sk are lower or equal than the
score assigned to all the other evaluations. Consequently, sk remains the
winning bidder.

Of course, the size of W gives an indication of the preference revelation
needed to maintain sk as the winning bidder. Let w = min{W} and w =
max{W}. The percentage of preferences revealed will be given by 1−(w−w).

An important point to emphasize on is that this statistic corresponds to
an optimistic scenario: the set W is estimated directly with reference to the
evaluations of the bidders and does not take into account the auction history.
In reality, the auctioneer is expected to reveal more about his preferences
since he will have to decide between bids o�ered during the auction (the
number of comparisons is likely to be higher than the one considered here
before and their nature is likely to be more restrictive). So, the results
presented here after have to be considered as an optimistic bound.

Finally, we will compute the utility score of the winning bid in the auction
context {ξ(v),W}. This value will then be compared to Uw̃(bk). First of all,
as a consequence of W de�nition and under the aggressive bidding behavior
assumption it is easy to remark that the winning bid will always be equal to
ξ(vk). Otherwise bids that could be beaten by ξ(vk) could lie in the winning
set. Consequently, we will consider here another bidding behavior (referred
as the moderate bidding behavior): a bidder stops o�ering new bids as soon
as his valuation do not permit him to beat (for all instances of the weights
w ∈ W ) a bid that has been proposed before . The set of bids Dk proposed
by sk that satisfy this constraint is given by:

Dk = {b ∈ δk|w · b ≤ w · ξ(vj)∀j 6= k, w ∈ W}

To conclude, the (true) utility of the winning bid (Max w̃ · b, b ∈ Dk) is
estimated and related to utility �rst computed.

These tests have been conducted for a number of sellers that ranges from
2 to 100. Each time, 1000 tests have been run and the average results have
been computed.

Figure 4.8 illustrates the mean preference revelation when the number
of sellers varies from 2 to 100. As expected the mean preference revelation
increases with the number of sellers since more information is needed to
discriminate them. This e�ect if particularly pronounced between 2 and 20
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Algorithm 1 Preferences revelation in a 2-attributes auction.
Inputs : p the number of sellers
Randomly de�nes the weights w̃ for the multi-attribute utility function and
the evaluation ξ(vi) for each seller si according to a uniform distribution
In the auction context {w̃, ξ(v)}, determine the winning seller sk and com-
pute the utility score of his winning bid bk

Determine W = {w|0 ≤ w ≤ 1, w · ξ1(vk) + (1− w) · ξ2(vk) ≤ w · ξ1(vi) +
(1− w) · ξ2(vi),∀i 6= k
Determine Dk = {b ∈ δk|w · b ≤ w · ξ(vj)∀j 6= k, w ∈ W}
Compute Max{w̃ · b} where b ∈ D

sellers. After this limit, it remains around 0.4.

Figure 4.8: Mean percentage of preferences revealed when the number of
sellers varies from 2 to 100.

Of course, even if sk remains the winning seller for any instance of the
weights w ∈ W , the nature of the winning bid is a�ected by the degree
of preference revelation. If the auctioneer fully reveals his preferences, i.e.,
if he reveals w̃, the winning bid is an o�er from δk of which the utility is
equal to the second lowest valuation utility score. On the other hand, if the
auctioneer does not reveal more than W , as already noticed, the winning
bid is equal to ξ(vk). Figure 4.9 illustrates the mean utilities obtained for
the �rst and second preferred bids and mean utilities obtained under the
moderate bidding behavior. As expected the mean utilities decrease with
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the number of bidders. On the other hand, �gure 4.10 presents the evolution
of the utility gap rate (the di�erence between the moderate bidding score
and the �rst score divided by the di�erence between the second and the �rst
score).

Figure 4.9: Mean utilities for �rst and second preferred bids (continuous
lines). The dots represents mean utilities under the moderate bidding be-
havior.

Figure 4.8 exhibits an interesting e�ect: even if the preference revelation
increases with a number of bidders varying from 2 to 20 - which is con�rmed
by the intuition - it seems, nevertheless, to remain stable around the value 0.4
for greater values of this parameter. This distinctive feature can be explained
on the basis of �gure 4.11. In this example, we consider a �xed utility function
U(b) = 1

2
· b1 + 1

2
· b2. Let us assume that the point b = (u, u) is the winning

bid. Consequently, we implicitly assume that the probability to have a bid in
the triangle {(0, 2 ·u), (0, 0), (2 ·u, 0)}, 2 ·k2 ,is negligible. Let us remark that
only bids present in the area (1) and (2) will force the auctioneer to further
reveal his preferences (since the other bids are simply dominated by b). In
what follows we will focus ourselves to the area (1) (the same arguments
applies in the case of area (2)). In this context, w ∈ [1/2 1]. In this case the
probability that a bid appears in the triangle {(0, u

1−w
), (0, 2 · u), (u, u)} is

equal to 2 ·u2 · {2·w−1
2−2·w}. Consequently, one may state that the auctioneer has

to reveal enough preference information in order to make the aforementioned
probability small enough. In other words:
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Figure 4.10: Evolution of the utility gap rate: di�erence between the mod-
erate bidding score and the �rst score divided by the di�erence between the
second and the �rst score when the number of sellers varies from 2 to 100.

1

2
· 2 · w − 1

1− w
≤ 1 ⇔≤ 3

4

When applying the same argument to area (2) we get w ≥ 1
4
. Conse-

quently we have 1
4
≤ w ≤ 3

4
and the preference revelation is ≈ 0.5. Of course

these arguments are based on idealized symmetric example. Nevertheless,
they permit to better understand this bound.

4.8.2 Ex-post versus integrated bids selection

A second question related to the use of multicriteria auctions is about the
di�erence between ex-post and integrated bids selection.

In the present framework, the preference structure is used during the
auction for the bids selection. This will be referred as the integrated bids
selection. By doing so, the auctioneer has to reveal (at least partially) his
preferences in order to guide the bidders. On the other hand, one may
imagine a situation where the bids comparison is only based on the natural
dominance relation. Once the auction is �nished, the buyer selects, with re-
spect to his preference structure, the winning bid(s) among the o�ers present
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Figure 4.11: Preference revelation scheme

in the winning set (in this case, the auctioneer does not have to reveal his
preferences at all). Consequently, this scenario will be referred as the ex post
bids selection.

As illustrated on �gure 4.12, it is easy to understand that the integrated
bids selection will lead to better winning bids (from the auctioneer's point
of view) than the ex post bids selection. The setting is the same as the
one of �gure 4.5 or 4.6. The bold continuous line corresponding to U ex post

denotes potential winning bids (i.e. bids proposed by s1 of which the utility
is equal to U(b̃)) in the most optimistic scenario i.e. if b̃ is proposed during
the dominance based multicriteria auction preceding the bids selection. On
the other hand, the bold line corresponding to U(ξ(v2))) denotes potential
winning bids in case of integrated bids selection. As illustrated, the latter case
leads to a lower utility than the �rst one. This intuitive result is con�rmed
by the following proposition:

Proposition 9 Let MA be a multicriteria auction and DBMA its associated
dominance based auction. Every bid that is eliminated during DBMA is also
eliminated during MA. More formally, Γ¹ ⊆ Γ(P,I,J).

The proof of this proposition is a direct corollary of the mixed transitivity
assumption.

In this section we propose to compare these two scenarios. For simplicity,
we assume, in the following tests, that the preference structure of the auc-
tioneer is represented by a linear multi-attribute utility function noted U .
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Figure 4.12: Integrated versus ex post bids selection in a 2-attributes auction.

As already explained, the utility associated to the winning bid, in the case
of integrated bids selection UIBS is lower or equal to the one achieved in the
case of ex post bid selection UEPBS. The goal of the following empirical tests
is to evaluate the gain in terms of utility UEPBS−UIBS with reference to the
number of bidders and the number of attributes associated to the auction.

These empirical tests have been run for a number of attributes varying
from 2 to 5 and a number of bidders varying from 2 to 50. Each time
100 random tests have been computed. Algorithm 2 outlines the scheme
followed for these experiments. Let us note that, one more time, a random
uniform [0, 1] distribution has been used to generate the random set of weights
characterizing the multi-attribute utility function and the evaluations of the
bidders. Moreover, one more time, let us stress the fact that the results
associated to the ex-post scenario are optimistic since we have selected the
lowest utility among all potential outcomes of the dominance based auction.
These results must be considered as a lower bound for the utility.

Concerning the results showed on �gure 4.13, several comments can be
done. First of all, let us note that the evolution of the utility scores, in the in-
tegrated bids selection scenario, is coherent with the intuition: they decrease
when the number of sellers increases and, for a same number of sellers, they
decrease when the number of attributes increases. However, when comparing
them to the results associated to the "ex post scenario" utilities, a particular
phenomenon appears: the ratio U

(1)

e /U
(2)

i remains more or less stable for each
setting of the attributes. These ratios are, respectively, (on average) equal
to 110%, 115%, 118% and 120% when the number of attributes evolve from
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Algorithm 2 Ex-post versus integrated bid selection simulations.
Inputs : p the number of sellers, q the number of attributes, n the number
of iterations to compute
for all i = 2 : p do
for all j = 1 : n do

Generate a random weight and i random valuations vi (in a q dimen-
sional context).
Compute the second lowest utility score associated to the valuations
U

(2)
i

Compute the set Γ = ∪k 6=lδ(vk) ∩ δ(vl)

Compute the lowest utility score associated to Γ : U
(1)
e

end for
Compute the means of U

(2)
i and U

(1)
e

end for

Figure 4.13: Ex-post versus integrated bids selection. Evolution of the mean
(winning) utility in these two scenarios when the number of bidders range
from 2 to 50 and the number of attributes varies from 2 to 5.

2 to 5.

In order to explain why these ratios remain more or less stable when the
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number of bidders ranges from 2 to 50 we will analyze the illustrative example
given on �gure 4.14. We consider here a 2 attributes context. At �rst,
10 bids have been randomly drawn using a bi-uniform distribution [0, 1] ×
[0, 1]. For simplicity, the weights characterizing the multi-attribute linear
utility function are equal to w1 = w2 = 1

2
. The two bold continuous line

represents the second lowest utility in the integrated bid selection scenario
U2 and the lowest utility in the ex post bid selection scenario U expost

(1) . Now, let
us consider the points that are lying in the dashed square: these �ve points
are distributed according to a uniform distribution [0, s]× [0, s]. This context
is similar to the one previously studied up to an homothetic tranformation
of ratio s. In other words, if we apply the inverse transformation to the
coordinates of each of these points, i.e. an homothetic transformation of
ratio 1

s
, we will obtain a potential realization for 5 bids (i.e. in the square

[0 1] × [0 1]). Of course, the levels of the utilities are also a�ected by this
transformation. Nevertheless, the ratio remain the same.

¾?
ξ1

ξ2

s

U(2)

U expost
(1)

)

Figure 4.14: Ex-post versus integrated bid selection. The ratio U expost
(1) /U(2)

remains stable if we consider all the bids or only the bids lying in the dashed
square.

On the other hand, the fact that these ratios increase with the number of
attributes is intuitive. Indeed, if we have a close look to the utility calculated
in the ex-post scenario, we have:

U expost
(1) = minvl 6=vk

q∑
j=1

wj ·max{ξj(vk), ξ
j(vl)}

Consequently, when the number of attributes increases from q to q +
1 the term max{ξq+1(vk), ξ

q+1(vl)} is taken into account in the (ex-post)
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utility calculation. If only two sellers s1 and s2 participate to the auction
the term ξq+1(v1) (respectively ξq+1(v2)) is integrated in U integrated(ξ(v1))
(respectively U integrated(ξ(v2))). On the contrary, in the ex-post scenario,
the term max{ξq+1(vk), ξ

q+1(vl)} is added to utility. In this way, the utility
associated to the ex-post bids selection is expected to increase faster than the
one associated to the integrated bids selection when the number of attributes
increase.

Finally, with respect to the previous results, one may conclude that the
ex-post bids selection do not lead to outcomes that are much worst than those
obtained with the integrated bids selection (while no preference revelation is
needed).However, this statement can be criticized since, as already explained,
we have considered, in this analysis, optimist results for the dominance based
multicriteria auction. Furthermore, the number of bids present in the winning
set associated to DBMA is likely to be much bigger than in the integrated
bid selection.

4.9 Conclusion

In the past few years, di�erent approaches have been proposed to deal
with auction mechanisms that support multidimensional bids. Each contribu-
tion is referred to an underlying speci�c model to deal with the multicriteria
nature of the problem.

Inspired by the multicriteria decision aid works, we have decided, in this
chapter, to study the �eld at a more abstract level i.e. by considering a
su�ciently general preference structure (P, I, J) to manage the bids com-
parisons. This idea has led us to study potential incomparability relations
between bids. This distinctive feature has been motivated and constitutes
the main originality of our approach.

Within this context, we have been led to formalize the notions related
to the idea of multicriteria auction and to discuss its related distinctive fea-
tures. The properties of the winning set and the winning bids have also deeply
retained our attention. Before considering particularizations of our frame-
work to existing approaches such as dominance based multicriteria auctions,
multi-attribute auctions or simply classic uni-criterion English auctions, we
have illustrated these concepts on a pedagogical example based on the Elec-
tre I model. Moreover extensions of multicriteria auctions to Vickrey and
Dutch multicriteria auctions have been sketched. Finally general questions

125



regarding the use of multicriteria auctions have been treated.

Of course, the analysis performed in the present chapter rely on a variety
of particular choices and assumptions. Most of them can be criticized (see,
for instance, section 4.3.4) and the potential extensions of our work resulting
from weaker assumptions and / or more general choices constitute as many
directions for future researches. Nevertheless, among them, we can remind
the reader of few ones that seem to us to be crucial:

• The explicit consideration of the sellers'preferences is certainly a fruitful
way to explore. In the present work, we have, mainly for simplicity
reasons, limited ourselves to a naive bidding behavior.

• The question of information revelation and its impact on the aforemen-
tioned results is another question that should receive more attention.

• The development of adequate Bidding support tools is intrinsic to the
proper use of multicriteria auctions (due to the cognitive complexity of
the bidding process).

• A detailed analysis of the extensions proposed for Dutch and Vickrey
multicriteria auctions should be further explored.

To conclude, this chapter constitutes, �rst of all, a theoretical approach
to multi-attribute auctions (in the general meaning of this term), performed
with the typical tools of the multicriteria decision aid community. In this
way a bridge is set between these two �elds.
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Chapter 5

Butter�y auctions

5.1 Introduction and motivations

This chapter is, �rst of all, dedicated to the presentation and analysis of a
particular multicriteria auction model. Due to its particular appearance, this
will be referred to as the butter�y model. By extension, butter�y auctions
are multicriteria auctions based on a butter�y model.

Mainly two motivations have pushed us to develop this new approach:
the management of incomparability between multi-dimensional bids and the
dynamic nature of the auctioneer's preference structure.

The management of potential incomparability between multi-dimensional
bids has already been motivated in the previous chapter (at least with respect
to an abstract (P, I, J) preference structure). Moreover, this distinctive fea-
ture will lead us to consider new auction contexts such as auctions composed
of di�erent bidding niches. These notions will be formalized and empirically
tested in the next chapter. The model presented in the next sections has
been developed in order to be able to manage such situations.

On the other hand, as already stressed in the previous chapter, the pref-
erence structure of the auctioneer is likely to evolve during the auction. This
point is related to the fact that, by comparing bids received during the auc-
tion, the buyer will probably learn about his preferences. Consequently, he
may want to have the opportunity to re�ne his preference structure dur-
ing the auction. This characteristic will be thoroughly discussed within this
chapter.
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Finally, a number of questions related to the practical use of the butter�y
model will retain our attention. Among others, the notion of bid increment
(decrement) will be studied and related to the notion of indi�erence threshold
which is a widespread concept in the multicriteria decision aid community.
Furthermore, the problem of 'multicriteria bidding support tools' will be
considered.

The present chapter is organized as follows: the next section is dedicated
to the presentation of the model itself. The way the preference degrees per
criterion are built will be detailed as well as their aggregation. Then, an
outranking relation S, incorporating discordance levels, will be introduced.
To conclude this section, a number of distinctive features of the butter�y
model will be discussed in subsection 5.2.4. In the third section, we will
present some of its theoretical properties. Then related questions will be
considered in section 5.4. In this way, we will tackle problems related to the
preference elicitation, to bid decrements, to bidding support tool as well as
some robustness considerations. In order to illustrate all these developments
a pedagogical example will be described in section 5.5. Finally, a conclusion
will summarize our work.

To conclude, let us stress that this chapter is inspired by the paper "But-
ter�y auctions: clustering the bidding space" (37).

5.2 The model

The model presented in this section is inspired from both the Promethee
and the Electre methodologies. It is based on pairwise comparisons between
multi-dimensional bids and allows (constrained) preferences tuning during
the auction process.

The next subsections will detail the building of the outranking relation
S(k) = (P (k) ∪ I(k)) that will lead us to state that a bid b is at least as
good as another bid b̃ at time k: bS(k) b̃. One more time, let us stress the
presence of the parameter k which indicates that the relation S(k) is likely
to be re�ned during the auction. Finally, as already stressed in the previous
chapter, let us insist on the fact that this evolution may not be arbitrary. On
the contrary, we will impose, at least, that S(k) ⊆ S(k + 1). Furthermore,
additional conditions imposed on S(k + 1) (see section 5.2.3.1) will insure
that a bid that has been 'beaten' at time k will remain 'beaten' until the
auction's end.
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As it is done in the Promethee method, we will base our model on the
di�erences between the two bids for each criterion. These values will then be
transformed into preference degrees (per criterion) to, �nally, be aggregated
using a weighted sum. In this way, we will obtain a "global" measure to
evaluate if the bid b is at least as good as b̃. Additionally, as it is done in the
Electre methods, we will consider discordance levels which will act as veto
thresholds in the comparisons.

However, unlike what is done in the Promethee or Electre methods, we
will not restrict ourselves to �xed parameters. Consequently, we will not
consider, here, a unique instance of the weights in the aggregation rule but
rather a (constrained) set of weights that are compatible with the auctioneer
preferences. Moreover, both the discordance levels and this set of weights
are likely to evolve during the auction. These points constitute the main
distinctive features of our approach.

5.2.1 Di�erences and preference degrees per criterion

As already stressed, we will base the pairwise comparisons between the
bids on their di�erences on each criterion. These rough values will constitute
the basis of the model proposed. More formally, the di�erence between bids
b and b̃ on criterion j is de�ned as follows:

dj(b, b̃) = b̃j − bj

Under the assumption that all the criteria have to be minimized, a value
dj(b, b̃) ≥ 0 indicates that b is not worse than b̃ on criterion j.

If the values dj(b, b̃) will help us to �gure out if a speci�c bid b is at least
as good as b̃, they cannot directly be used since their interpretation is not
obvious ! As it is commonly done in the multicriteria decision aid community,
we will �rst transform these rough data into preference degrees. This phase
will be performed using a general linear preference function (see �gure 5.1).
Two parameters are characterizing this transformation:

• an indi�erence threshold, noted qj, below which the di�erence dj(b, b̃) is
so small than the two bids are considered to be indi�erent on criterion
j.

• a preference threshold pj under which the di�erence dj(b, b̃) is big
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enough to state that b is, de�nitely, better than b̃ on criterion j.

When the di�erence dj(b, b̃) ∈ [qj, pj] a linear interpolation is performed
(see �gure 5.1). The parameters qj and pj are �xed by the auctioneer before
the auction and we assume that they remain unchanged.

-

6

dj(b, b̃)

Pj(dj(b, b̃))

qj pj

1

Figure 5.1: Linear preference function transforming di�erences between two
bids according to a speci�c criterion into preference degrees for this criterion.

Once this step has been performed, we get, for each criterion, prefer-
ence degrees between b and b̃ (that are independent from the unity of the
considered criterion).

5.2.2 Preference degrees aggregation

Once the preference degrees per criterion have been evaluated, one needs
to aggregate them in order to get a global measure to evaluate if b is at least
as good as b̃. In accordance with the Promethee method, we have chosen to
aggregate them using a classic weighted sum:

Pw(b, b̃) =

q∑
j=1

wj · Pj(dj(b, b̃))

where w = {w1, w2, . . . , wq} represent weights compatible with the auc-
tioneer's preferences.
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However, unlike the Promethee and Electre method, we do not assume
here that these parameters are �xed by the auctioneer prior to the auction.
On the contrary, we will rather assume that they belong to a subset of ad-
missible weights, noted AW (k), that is likely to evolve during the auction.
When considering Pw(b, b̃), the subscript w is of the uttermost importance
since it emphasizes the fact that the aggregated preference is rarely equal to
a �xed value but rather belongs to a set of potential values.

Intuitively, AW (k) represents a set of weights compatible with the auc-
tioneer's preferences. The index k indicates that this set will evolve during
the auction due to constraints added by the buyer as a consequence of the
learning process. More formally, AW (k) = {(w1, . . . , wq)} such that:

1. wl > 0, l = 1, .., q

2.
∑q

l=1 wl = 1

3. ai1 · w1 + . . . + aiq · wq ≤ ci, i = 1, .., mk

4.
∑q

l=1 wl · (Pl(bi, bj)− Pl(bj, bi)) ≥ 0,∀bi, bj|bi S(k) bj

The �rst two constraints considered here above are natural, well-known
restrictions for weights used within this context. The third constraint rep-
resents direct restrictions imposed by the buyer. An example of such a con-
straint could be w1(k) − 2 · w2(k) ≥ 0; at time k, the weight associated to
criterion 1 is at least twice more important than the weight associated to
criterion 2. Let us note that at time k, there might be mk di�erent "direct"
constraints imposed on the weights. Finally the last constraint takes into
account non trivial comparisons imposed by the buyer; for any pair (bi, bj) if
the auctioneer states, at time k, that bi is at least as good as bj, i.e. biS(k)bj,
(while it was not the case before) the admissible weights are updated such
that Pw(bi, bj) ≥ Pw(bj, bi), ∀w ∈ AW (k). Furthermore, once a constraint
has been considered at time k, it will be considered for any time k̃ ≥ k, such
that AW (k̃) ⊆ AW (k). This expresses the fact that the auctioneer is re�ning
his preferences during the auction. No backward move is allowed.

5.2.3 The outranking relation S

In accordance with the Electre I method, we will choose to restrict the
comparisons to a limited neighborhood, either explicitly or implicitly de�ned
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by the auctioneer. Let φl de�ne the comparability window for each criterion.
Intuitively, φl represents a value (related to criterion l) below which the
di�erence between b and b̃ is too high (in favor of b̃) to state that b is at least
as good as b̃ whatever the values on the other criteria. More formally, φl(k)
is de�ned as follows (∀l = 1, . . . , q):

Minφl(k)





φl(k) ≥ 0
λl(k) ≤ φl(k)
φl(k − 1) ≤ λl(k)
dl(bi, bj) ≥ −φl(k),∀bi, bj|bi S(k) bj

As requested, it is natural to restrict the thresholds to be positive. The
constraint λl(k) ≤ φl(k) expresses the fact that at each time k, the parame-
ter φl(k) must be greater than or equal to a bound λl(k) that the auctioneer
may choose to �x himself. If λl(k) is not �xed by the auctioneer it is anyway
greater than or equal to φl(k−1). This expresses the fact that the "compara-
bility window" must not be reduced during the auction process, i.e. if some
pairs of bids were judged to be comparable at some time k, then they will
remain comparable at any time k̃ ≥ k. In order to remain consistent with the
parameters introduced in section 5.2.1, we will assume φl(0) = ql. Finally
the last constraint takes into account additional information provided by the
auctioneer, i.e., if the auctioneer states that bi and bj are comparable then
the thresholds φl(k) are updated to satisfy this constraint.

With these de�nitions, we will say that bS(k) b̃ ⇔ dl(b̃, b) ≥ −φl(k),∀l =
1, . . . , q and Pw(b, b̃) ≥ Pw(b̃, b),∀w ∈ AW (k). In other words, bid b will be
considered as good as b̃ i� the two bids are comparable and if the preference
degree of b over b̃ is greater than or equal to the preference degree of b̃ over
b for any instance of the admissible weights. More practically, Pw(b, b̃) ≥
Pw(b̃, b), ∀w ∈ AW (k) ⇔ T (b, b̃) ≥ 0, where T (b, b̃) = min w · (Pw(b, b̃) −
Pw(b̃, b)), w ∈ AW (k).

A 2-dimensional graphic interpretation of the previous parameters is given
in �gure 5.2. Due to its particular form, S(k) will be called a butter�y
at time k. For simplicity reasons, we only consider points located in the
subspace [−1, 1] × [−1, 1]. Both the preference functions are assumed to be
characterized by the parameters q1 = q2 = 0 and p1 = p2 = 1. By doing
so, Pj(dj(b, b̃)) = max(0, dj(b, b̃)) and consequently we are able to represent
on the same graph the set of admissible weights (de�ned on Pj) and the φj
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−φ1

−φ2

b1

b5

b2
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−1 1

−1

1

Figure 5.2: Illustration of a 2-dimensional butter�y model.

thresholds (de�ned on dj). For simplicity reasons, these assumptions will be
implicitly considered in the remaining �gures.

The interpretation of �gure 5.2 leads to state that b1Sb2 since b1 ¹
b2. Moreover b1Sb3 since b3 lies in the comparability window of b1 and
Pw(b1, b3) ≥ Pw(b3, b1),∀w ∈ AW . On the other hand, b1¬Sb4 since ∃w, w̃ ∈
AW such that Pw(b1, b4) > Pw(b4, b1) while Pw̃(b1, b4) < Pw̃(b4, b1). Finally,
b1¬Sb5 since the value b2

5 is much better than b2
1 - in other words b5 does not

lie in the comparability window of b1.

As stated before, it is important to stress the fact that admissible weights
and comparability thresholds may be dynamically �tted during the auction
process. These adjustments may be based on information provided by the
auctioneer himself or deduced by the potential comparisons of submitted
o�ers. Such a potential evolution is illustrated in �gure 5.3.

5.2.3.1 Constraints consistency for the set of admissible weights

The set of admissible weights is either explicitly or implicitly de�ned (see
subsection 5.2.2). When the auctioneer adds constraints in order to re�ne his
preferences one may insure that no contradiction appears. If contradictory
constraints are added to AW (k), the set of admissible weights would be
empty and no more comparisons could be computed. However, the following
intuitive result permits to relativize this statement.
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Figure 5.3: Potential evolution of a 2-dimensional Butter�y: the compara-
bility window is progressively extended while the set of admissible weights is
re�ned.

Proposition 10 At time k, if the only new constraints accepted are those
induced by bids comparisons between o�ers from WSMA(k), no contradictory
constraint will be added to AW (k).

This result is intuitive since bids belonging to the winning set at time k
are, by de�nition, incomparable. In other words, the preference structure at
time k is not rich enough to decide between them.

More formally, let b, b̃ ∈ WSMA(k) such that dj(b, b̃) ≥ −φl(k),∀l =
1, . . . , q. If the auctioneer decides to state that bS(k)b̃, the constraint

∑q
l=1 wl·

(Pl(b, b̃) − Pl(b̃, b)) ≥ 0 is added to AW (k). Let us note the resulting set of
admissible weights ˜AW (k). If ˜AW (k) was empty, a direct corollary would
be:

AW (k) ⊆




∑q
l=1 wl = 1

wl > 0, l = 1, .., q∑q
l=1 wl · (Pl(b̃,b)− Pl(b, b̃)) ≥ 0

Consequently b̃S(k)b and b would not be in the winning set at time k.

Of course the previous argument is only valid if the constraints are added
one by one to AW (k) since, one constraint imposed on the pair (b, b̃) can
have e�ects on other bids from the winning set.
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For the same reasons, it is easy to see that no contradiction will appear
during the update of the parameters φl(k) while the constraints only concerns
bids from the winning set.

Consequently, only comparisons between bids from WSMA(k) will be al-
lowed, in practice, to re�ne the preference structure.

5.2.4 Discussion

The model presented in the previous subsections exhibits a number of
distinctive features that need to be discussed. Among them, we can cite the
following points:

• Some considerations about incomparability situations.
Two bids are judged to be incomparable i� b¬S b̃ and b̃¬Sb. With
respect to the model introduced in the previous subsections, the as-
sertion b¬S b̃ can be the consequence of two (not necessarily exclusive)
situations.
First of all, there might exist an index j such that b̃j − bj < −φj. In
this way, b¬S b̃ since, for at least one criterion, b̃ is much better than b.
As a consequence of the fact that the auctioneer may directly increase
the values of the parameters φj, these kinds of situations are easy to
manage explicitly.
The second situation that leads to state b¬S b̃ is ∃w, w̃ ∈ AW such that
Pw(a, b) > Pw(b, a) and Pw̃(b, a) > Pw̃(a, b). In this case, the assertion
b¬S b̃ is stated since the auctioneer's preferences are not precise enough;
two weights instances, compatible with the current auctioneer's pref-
erences, lead to con�icting conclusions. Such situations will become
less common whenever the auctioneer learns about his preferences and
consequently reduces the uncertainty related to AW .

• Dynamic versus �xed parameters.
Our model is characterized by a number of parameters. Among them,
we can distinguish those that are �xed before the auction and those
that are likely to evolve during the bids submission.

� Fixed parameters: qj, pj∀j = 1, .., q. These parameters, related
to the intra-criterion information, are assumed to be �xed at the
auction setup and to remain stable afterwards. By doing so, we
assume that the auctioneer perfectly knows how to interpret the
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di�erences on each criterion and that the impact of the learning
process (resulting from the bids comparison) on these parameters
is marginal. Of course this point of view can be criticized and
extensions of the present model to dynamic versions of qj and
pj may be considered. However, for simplicity reasons, we will
restrict ourselves to the aforementioned assumption.

� Dynamic parameters: φj, wj ∀j = 1, .., q. First of all, the para-
meters related to the inter-criteria information (i.e. the weights)
are likely to be tuned during the auction. As already stressed,
this is related to the fact that the auctioneer will probably learn
about his preferences during the auction as a consequence of the
bids comparisons. Furthermore, this distinctive feature is more
than welcome since the parameters related to the inter-criteria in-
formation are certainly those that are the most delicate to �x a
priori. Finally, the discordance levels φj may be progressively in-
creased during auction. This is related to a caution approach. At
�rst the discordance levels are assumed to be quite low, leading
to a number of discordance events and consequently a number of
incomparability relations. Then, with respect to these situations,
the auctioneer may decide to increase the discordance levels, lead-
ing to a model that is more compensatory.

• A model inspired by both the Promethee and the Electre
methods
Subsections 5.2.1 and 5.2.2 are deeply inspired by the Promethee method-
ology. The building of preference degrees is, indeed, very similar to
what is done in (19), which is, by the way, similar to the preference
modeling performed in the Electre III method (at least up to a linear
transformation). Nevertheless, our approach di�ers by the fact that,
during the preference aggregation step, we do not restrict ourselves to
a speci�c instance of the weights but, on the contrary, we consider a
whole set of admissible weights.
Another similarity with the Electre I method is the use of discordance
levels per criterion noted φj. Let us note that, in the context of Electre
I, the use of such parameters may be criticized since their boolean
nature a�ects the results sensitivity. However, in the present context,
this phenomenon is reduced since the φj may be adapted during the
auction.

• Events a�ecting the winning set
In most auction contexts, only new bids can a�ect the winning set. In
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the present framework, the possibility, for the auctioneer, to update his
preferences during the auction constitutes another particular event that
may a�ect the winning set too. This consitutes a distinctive feature of
our model.
A side e�ect of such a property is that two bids being in the auction
history at time k could become indi�erent as a consequence of the
preferences tuning. So, indi�erent bids can appear during the auction
while it was not the case in the theoretical framework presented in the
previous chapter.
This will, nevertheless, not a�ect the winning set since its de�nition is
based on the strict preference relation. If the winning set is constituted
at time k by two bids b and b̃ and if the preference tuning leads to
bS(k)b̃ and b̃S(k)b both bids remains in the WS(k) and are stated to
be indi�erent. If, on the contrary, the WS de�nition was based on the
S relation, it would have become empty.

• The butter�y model is not transitive
As in a number of multicriteria models, the butter�y model does not
ful�ll the transitivity property. This distinctive feature is essentially
due to the use of the comparability window. To illustrate this ef-
fect, let us consider the following particular two dimensional butter�y
model: φ1 = 3

2
, φ2 = 0, w1 = w2 = 1

2
(no uncertainty on the weights).

With these settings it is easy to verify that (3, 1)S(2, 3), (2, 3)S(1, 5)
but (3, 1)¬S(1, 5).

• The butter�y model is not acyclic
As illustrated in example 18, the use of indi�erence and preference
(qj, pj) thresholds leads to a relation S that is not acyclic. Nevertheless,
due to particular auction rule, no bid cycle will appear in practice.
Finally, as shown in section 5.3, when qj = 0 and pj is big enough, the
relation S is acyclic.

Example 18 Let us consider the three following bids: b1 = (2, 3), b2 =
(4, 2) and b3 = (6, 1). In this context, we will assume φj = ∞, j = 1, 2.
d1(b1, b2) = 2, d2(b1, b2) = −1, d1(b2, b3) = 2, d2(b2, b3) = −1, d1(b3, b1) =
−4 and d2(b3, b1) = 2.
At �rst, we will assume w1 = 1

4
, w2 = 3

4
, qj = 1 and pj = 3, j = 1, 2.

It is easy to verify that Pw(b1, b2) = 1
8

> 0 = Pw(b2, b1). Similarly, we
have Pw(b2, b3) = 1

8
> 0 = Pw(b3, b2). Consequently, b1Pb2 and b2Pb3.

Nevertheless, Pw(b3, b1) = 3
8

> 1
4

= Pw(b1, b3). So b3Pb1. This result
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is related to the presence of an indi�erence threshold associated to an
important weight (for criterion 2). In other words, while the di�erence
on criterion 2 is low, it is not taken into account. As soon as this
di�erence is greater than q2 it is taken into account and its related
weight is quite important.
Even if no indi�erence thresholds are considered, the problem remains
due to the presence of pj. Let us now consider that w1 = 2

5
, w2 = 3

5
, qj =

0, pj = 2. In this case, we have: Pw(b1, b2) = 2
5

> 3
10

= Pw(b2, b1) and
Pw(b2, b3) = 2

5
> 3

10
= Pw(b2, b3). Consequently, b1Pb2 and b2Pb3.

Nevertheless, b3Pb1 since Pw(b3, b1) = 3
5

> 2
5

= Pw(b1, b3).

• Partially closed nature of the system
Finally a distinctive feature of the model that needs to be underlined is
its partially closed nature. As mentioned before, the parameters of our
model are partially �tted during the auction as a consequence of the
bids comparison. When the auctioneer states that bi S(k) bj the model
is updated in such a way that the previous constraint is satis�ed. This
learning process permits him to �t his preference structure dynamically.
On the other hand, this �tting is dependent from the bids proposed
by the sellers, who are (explicitly or implicitly) using the preference
structure available at time k to select the bid(s) they will propose at
time (k + 1). It is in that sense that we speak of the partially closed
nature of the process: the bids serve to �t the preference structure of
the auctioneer while the sellers use this preference structure to propose
their bids. In such context, one may ask the question to compare the
butter�y models obtained trough two instances of the same auction. If
both of them will be compatible with the preferences of the auctioneer,
the auction's outcomes may be a�ected by their nature. More formally,
let S denote the best butter�y that is compatible with the auctioneer's
preferences, i.e. the butter�y with the biggest comparability window
and the smallest set of admissible weights that can be obtained. Let
S̃ be a butter�y obtained through one speci�c auction. The question
raised here is to compare WSS̃ and WSS, i.e. the �nal bids obtained
when the auction is based on S or on S̃. This will be partially addressed
in section 5.4.
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5.3 Properties of the butter�y model

Now that the butter�y model has been described and criticized, we will
study, in this section, its related theoretical properties.

First of all, in order to remain consistent with the theoretical framework
introduced in the previous chapter, let us verify that the butter�y model
respects the mixed transitivity assumption.

Proposition 11 Let S be a butter�y model. We have aSb, b ¹ c ⇒ aSc

Proof:
If aS(k)b and b ¹ c ⇒ dj(a, c) = cj−aj = (cj−bj)+(bj−aj) ≥ −φj(k), ∀j =
1, ..q. As a consequence, the constraints related to the discordance levels are
satis�ed.

Now, let us prove that Pw(a, c) ≥ Pw(c, a), ∀w ∈ AW (k). By contradic-
tion, let us assume that ∃w̃|Pw̃(c, a) > Pw̃(a, c).

• dj(a, c) = cj − aj = (cj − bj) + (bj − aj) = dj(b, c) + dj(a, b) ≥
dj(a, b). Consequently, Pw̃(a, c) =

∑q
j=1 w̃j · Pj(dj(a, c)) ≥ ∑q

j=1 w̃j ·
Pj(dj(a, b)) = Pw̃(a, b).

• dj(c, a) = aj − cj = (aj − bj) + (bj − cj) = dj(b, a) + dj(c, b) ≤
dj(b, a). Consequently, Pw̃(c, a) =

∑q
j=1 w̃j · Pj(dj(c, a)) ≤ ∑q

j=1 w̃j ·
Pj(dj(b, a)) = Pw̃(b, a).

Since, by assumption, aSb ⇒ Pw(a, b) ≥ Pw(b, a),∀w ∈ AW (k) which
contradicts the fact that Pw̃(b, a) ≥ Pw̃(c, a) > Pw̃(a, c) ≥ Pw̃(a, b).

¥

Additionally, let us note that a very similar proof leads to state that if S
represents a butter�y model, we have a ¹ b, bSc ⇒ aSc.

As already explained, the way the butter�y has been built ensures some
consistency of the comparisons; if an o�er bi is at least as good as another
bid bj at time k, biS(k)bj, it will remain preferred or indi�erent during the
rest of the auction. This statement is formalized in the next proposition:
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Proposition 12 bi S(k) bj ⇒ bi S(k̃) bj, ∀k̃ ≥ k.

Proof: If bi S(k) bj ⇒ dl(bi, bj) ≥ −φl(k) ≥ −φl(k̃),∀k̃ ≥ k. bi is
thus comparable to bj. Furthermore, as stated before, AW (k̃) ⊆ AW (k) ⇒
Tk̃(bi, bj) ≥ Tk(bi, bj) ≥ 0.

¥

An interesting feature of the model introduced is that it is both compat-
ible with the "natural" dominance relation and the weighted sum. These
constitute two extreme cases within the family of butter�y models.

Proposition 13 The dominance relation is a particular case of the butter�y
model.

Proof: Let AW (0) = {wl|wl > 0,
∑q

l=1 wl = 1}.Let us assume that
φj(k) = 0, qj = 0, pj = max{Ej}, ∀j = 1, .., q, ∀k. If b ¹ b̃ ⇒ dj(b, b̃) ≥
0∀j = 1, .., q ⇒ Pw(b, b̃) ≥ Pw(b̃, b)∀w ∈ AW (k).

Let us now assume T (b, b̃) ≥ 0 and ∃j|bj > b̃j. It is easy to see that ej ∈
AW (0). Furthermore, T (b, b̃) ≤ 1j ·(Pj(dj(b, b̃))−Pj(dj(b̃, b))) ≤ (max(0, b̃j−
bj)−max(0, bj − b̃j)) ≤ −(bj − b̃j) < O.

¥

Proposition 14 The weighted sum is a particular case of the butter�y model.

Proof: Let us consider k such that ∀l = 1, . . . , q φl(k) = ∞, qj = 0, pj =
max{Ej} and AW (k) = {wl(k) = λl} where λl are parameters �xed by the
auctioneer such that λl > 0 and

∑q
l=1 λl = 1.

If bS(k)b̃ ⇔ ∑q
j=1 λj·(Pj(dj(b, b̃)−Pj(dj(b̃, b)) ≥ 0 ⇔ ∑q

j=1 λj·(max{0, b̃j−bj

pj
}−

max{0, bj−b̃j

pj
}) ≥ 0 ⇔ ∑

j|b̃j≥bj( b̃j−bj

pj
) · λj +

∑
j|bj≥b̃j( b̃j−bj

pj
) · λj ≥ 0 ⇔

∑q
j=1(

b̃j−bj

pj
) · λj ≥ 0 ⇔ ∑q

j=1 λ̃j · b̃j ≥ ∑q
j=1 λ̃j · bj where λ̃j =

λj/pjPq
k=1 λk/pk

.

¥
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In section 5.2.4, we have already argued that relation S was not acyclic
due to the use of preference and indi�erence thresholds. The following propo-
sition illustrates that the asymmetric part of S is nevertheless acyclic under
speci�c assumptions.

Proposition 15 If qj = 0 and pj = max{Ej}, relation P is acyclic.

Proof: Let b1Pb2Pb3P . . . P bn. Let us assume that bnPb1. Of course, we
have bj

1 − bj
n ≥ −φj, otherwise this assumption is meaningless. Under these

assumptions, we have already shown that bP b̃ ⇔ ∑q
j=1 wj · bj

pj
<

∑q
j=1 wj · b̃j

pj

∀w ∈ AW . Consequently,
∑q

j=1 wj · b
j
1

pj
<

∑q
j=1 wj · b

j
2

pj
< . . . <

∑q
j=1 wj · b

j
n−1

pj
<

∑q
j=1 wj · bj

n

pj
∀w ∈ AW which is in contradiction with the aforementioned

property.

¥

Finally, let us show that the convexity of the set of admissible weights
AW induces the convexity of the set of the values Pw(a, b). Let P (a, b) =
maxwPw(a, b) =

∑q
j=1 wj·Pj(dj(a, b)) and P (a, b) = minwPw(a, b) =

∑q
j=1 wj·

Pj(dj(a, b)).

Proposition 16 ∀p ∈ [P (a, b), P (a, b)],∃w̃ ∈ AW (k) such that p = Pw̃(a,b)

Proof: Let p = α ·P (a, b)+ (1−α) ·P (a, b) = α ·∑q
j=1 wj ·Pj(dj(a, b))+

(1− α) ·∑q
j=1 wj · Pj(dj(a, b)) =

∑q
j=1(α · wj + (1− α) · wj) · Pj(dj(a, b)) =∑q

j=1 w̃j · Pj(dj(a, b)), where w̃ = α · w + (1 − α) · w which is an admissible
weight due to the convexity of AW .

¥

5.4 Related questions

This section is devoted to general questions regarding the model studied in
this chapter. Therefore, problems related to preference elicitation, decrement
steps and indi�erence thresholds, multicriteria bidding support tools and
winning bids'robustness will be addressed in the next subsections.
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5.4.1 Bids submitted and preference elicitation

In the previous sections, we have argued that the auctioneer was able to
update his preference structure during the auction thanks to bids compar-
isons. A critical question, related to this distinctive feature, is to evaluate if
the model empirically obtained is close or not to the real preference struc-
ture of the auctioneer. This question will be the center of interest of this
subsection.

Let us assume that the preferences of the auctioneer are perfectly repre-
sented by a butter�y model S, and let S̃(k) be the butter�y model at time k
that is built during the auction as a consequence of the bids comparison (in
this context we will assume that the auctioneer doesn't impose direct con-
straints). The question raised in this section is to evaluate if S̃(k) is close to
S, depending on the dimension space and the number of bids, k, submitted
up to now. Algorithm 3 gives an outline of the procedure that was used
to conduct these experiments. Note that, for simplicity reasons, we assume
qj = 0 and pj = 1 for each criterion.

Algorithm 3 Preference elicitation - outline of the simulation
Inputs : d dimension space, n size of the training set
Randomly generate a butter�y model β = {AW,φ}
Randomly generate TRS(n, d): training set of size n
Compute P (TRS, β) = {b ∈ TRS(n, d)|T β(0, b) ≤ 0} (the set of points
from TRS that are preferred when the comparison is based on β)
De�ne the observed butter�y model β̃ = {P (TRS, β), φ̃} where φ̃j =
min{0,miniP (TRS, β)ij}.
Randomly generate TS(100, d) a test set constitued by 100 points.
Compute P (TS, β) and P (TS, β̃).
Compare P (TS, β) and P (TS, β̃)

The test starts with a given value d for the dimension space and a given
size n for the training set. All points generated during the simulation are
drawn from a multivariate uniform distribution on [−1; 1]n. The origin 0 is
considered to be the reference point (for the comparisons); i.e. the butter-
�y model is centered on it. This assumption is not restrictive and can be
easily extended to other points. Points that are dominating the origin or
that dominate it, i.e. the positive and the negative orthant, are removed
since their comparison with 0 is obvious. When generating training or test
sets such points will never be considered. The �rst step of the algorithm is
the random generation of a butter�y model. β = {AW,φ} represents the
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auctioneer's preferences, i.e. the most precise butter�y that can represent
his preferences. To build this butter�y, we have assumed that φj ∼ U[0,1],
i.e. φj is a random variable drawn from a uniform distribution on [0, 1]. The
set of admissible weights AW is de�ned by 2d−2 vectors representing points
that are preferred by 0. Each point must be in a di�erent orthant. (One
more time, we do not consider points that dominate or are dominated by
0. Eliminating these 2 orthants leads to 2d − 2 di�erent points) Once the
butter�y model is generated, a training set of size n, noted TRS(n, d), is
built. P (TRS, β) represents the set of points that are preferred by 0 when
the comparison is based on β. During the bids comparison, the auctioneer
has been reacting according to β (we have assumed that his preferences were
compatible with β). However, he does not know the explicit form of β. The
observed butter�y β̃ is nothing else but the butter�y model that can be de-
duced from the comparisons done on the training set. In this case both the
set of admissible weights ˜AW and the comparability window φ̃ are deduced
from the bids from TRS(n, d) that were preferred by 0. To compare β and β̃,
a test set constituted by 100 points is randomly generated. Finally, P (TS, β)
and P (TS, β̃) are generated and compared.

We have run simulations for values of d ranging from 2 to 5 and for val-
ues of n ranging from 2 to 30. At �rst, the comparison was based on the
similarity between both results: this means that we were looking for points
of the test set that were classi�ed in the same way (preferred by 0 or not)
by β and β̃. Figure 5.4 illustrates the mean percentage of correctly classi�ed
points (i.e. the number of correctly classi�ed points divided by the total
number of points=100) when the size of the training set evolves from 2 to 30.
(For each combination of the parameters n and d, 100 simulations have been
run). As expected the bigger the training set, the higher this percentage.
Nevertheless, it's interesting to remark that even if the size of the training
set is small, the percentage remains relatively high (around 0.75). This seems
counterintuitive at �rst sight, since β̃ is �tted on a relatively poor informa-
tion. However, this e�ect is explained by the fact that we are considering
similarities between the two models without considering the status of the
classi�ed point; points rejected in both models are also taken into account
in our measure. However, due to the simulation assumptions (φ ∼ U[0,1]), on
average 50 percent of the points generated will lie outside of the compara-
bility window. On the other hand, by default, β̃ is initially de�ned using a
comparability window restricted to the dominated points. If no further in-
formation regarding the preferred points is provided, any other points will be
considered as incomparable. As already mentioned, on average, 50 percent
of the points will lie in this area.
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Figure 5.4: Evolution of the mean percentage of good "classi�cations" when
the size of the training set evolves from 2 to 30. The di�erent curves corre-
spond to values of d ranging from 2 to 5.

In order to criticize the results shown on �gure 5.4, we have computed the
number of preferred points, when β was used, that were e�ectively preferred
when β̃ was used. As shown on �gure 5.5, these results are inline with what
was expected for 2 or 3 dimensions. However when the dimension increases to
4 or 5, the evolution is less signi�cant and it seems that the size of the training
set needs to be greater to get a good picture of the preference structure. This
e�ect is due to the fact the number of orthants to consider is exponential in
the dimension.

Finally, it is worth noting that, as expected, in both simulations, the
variance of the results is decreasing when the size of the training set increases.

5.4.2 Bid decrement and indi�erence thresholds

A question that has not yet been addressed in the present work is related
to bid decrements (bid increment in forward auctions). As stressed in chapter
1, it is nevertheless a fundamental point in the analysis of auctions.

Usually, the bid decrement is �xed with reference to a total cost or the
level of a multi-attribute utility function. By doing so, the auctioneer may
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Figure 5.5: Evolution of the mean percentage of points that were classi�ed as
preferred by both models (β and β̃) when the size of the training set evolves
from 2 to 30. The di�erent curves correspond to values of d ranging from 2
to 5.

state, for instance, that the di�erence between a new bid and any bid from
the auction history, in terms of utility, must be greater or equal to a �xed
utility step, noted ε (see �gure 5.6). From a practical point of view, the
interpretation of this parameter by the auctioneer is, nevertheless, not al-
ways intuitive (however, this critic is less signi�cant when using a total cost
approach).

In our context, this way of doing is not well-suited since the auction-
eer's preferences may evolve during the auction. Imposing, for instance, that
bS(k)b̃ i� Pw(b, b̃) ≥ Pw(b̃, b) + ε is, in our view, not meaningful since the
weights w are not �xed prior to the auction. With these settings, the in-
terpretation of the ε parameter would not be obvious. Moreover the use of
indi�erence thresholds in the computation of the preference degrees per cri-
terion, implicitly leads us to take into account a "minimum bid decrement"
per criterion.

The relation between the notion of bid decrement and indi�erence thresh-
olds will be the core of this section. This comparison is far from obvious since
the intrinsic nature of these two notions is quite di�erent. On the one hand,
indi�erence thresholds are commonly used in the multicriteria decision aid
community to establish levels below which the di�erence between two alter-
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ξ1

ξ2

b̃

U(b̃)

U(b̃)− ε

Figure 5.6: Illustration of a decrement step ε in a multi-attribute utility
auction.

natives (on a speci�c criterion) is too small to be taken into account in the
pairwise comparisons process. On the other hand, in an auction context, bid
decrements (increment) are used to determine if a new bid is acceptable or
not, i.e. if the di�erence between this o�er and the previously submitted
ones is greater than or equal to it.

In the context of multicriteria auctions, the acceptation rule requires that
any new bid b must not be preferred or indi�erent to bids b̃ that have been pre-
viously accepted. Consequently, when using a butter�y model, indi�erence
thresholds implicitly intervene in the acceptation rule. The next proposition
clari�es this point.

Proposition 17 Let BA be a butter�y auction. A necessary condition for
a bid b to be an acceptable o�er at time k is that:

∀b̃ ∈ HMA(k) ∃j ∈ {1, .., q} |b̃j − bj > qj

Proof: Let us assume that ∃b̃ ∈ HMA(k)|∀j ∈ {1, .., q} : b̃j − bj ≤ qj →
dj(b, b̃) = 0 ∀j → Pw(b, b̃) = 0 ∀w. Moreover, since qj ≤ φj(k), we have
bj − b̃j ≥ −qj ≥ −φj. Consequently, b̃S(k)b and b is not an acceptable bid.

¥

With respect to the previous result, the interpretation of indi�erence
thresholds in terms of bid decrements is somewhat clearer. Moreover, due
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ξ1

ξ2

b̃

q1

q2

Figure 5.7: Illustration of indi�erence thresholds in a particular butter�y
model.

to their uni-criterion nature, their practical use is less abstract than a global
(multi-attribute utility) bid decrement.

To further illustrate the relation between indi�erence threshold and decre-
ment step let us consider �gure 5.7. The settings are the same as in �gure
5.6; w1 = w2 = 1

2
. The continuous line delimits the set of points that are

preferred or indi�erent to b̃ while the dashed line reminds the multi-attribute
iso-utility of �gure 5.6.

5.4.3 Multicriteria bidding support tool

In the context of multi-attribute auctions, the cognitive complexity of the
bidding process remains a fundamental problem to manage. Both the number
and the nature of the parameters characterizing the aforementioned model
and the rules de�ning multicriteria auctions move the �eld away from the
simple beat the quote rule characterizing classic auctions. Without adapted
bidding support tools, bidders are likely to avoid using these kinds of mech-
anisms. In this section, we present an algorithm to support the bidder in his
bidding activity.

Let us consider a butter�y auction BA at time k. Seller si wants to
submit a new bid bi. We assume, here, that si has already speci�ed the levels
of all attributes except the jth one. For convenience this will be referred to
as b−j

i . The question, asked in this context, is to determine the maximum
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level bj
i ∈ Ej such that bi satis�es the multicriteria auction rule (i.e. is not

outranked by any bid in HBA(k)).

First of all, let us remark that the level bj
i is only in�uenced by the bids

b̃ ∈ HBA(k) such that dj(b̃, b) ≥ −φj(k),∀j 6= i. On the contrary, if ∃j such
that dj(b̃, b) < −φj(k), i.e. bj − b̃j < −φj(k) we will have b̃¬Sb whatever the
values bj

i . The subset of bids b̃ ∈ HBA(k) that are likely to in�uence the level
bj
i will be denoted by C(b−j

i , HBA(k)). More formally,

De�nition 21 C(b−j
i , HBA(k)) = {b̃ ∈ HBA(k)|dj(b̃, b) ≥ −φj(k),∀j 6= i}.

Of course, if C(b−j
i , HBA(k)) = ∅ the solution of the problem is obvious

and bj
i = max(Ej). Let us further assume that:

• if bj
i = min(Ej), @b̃ ∈ C(b−j

i , HBA(k))|b̃S(k)b. If this is not the case, no
value of bj

i will lead to an acceptable o�er.

• if bj
i = max(Ej), ∃b̃ ∈ C(b−j

i , HBA(k))|b̃S(k)b. If this is not the case,
the solution of the problem is obvious and we choose bj

i = max(Ej).

Under these assumptions, we will apply a dichotomic search in order to
determine the level bj

i to propose to si. This approach is sketched in algorithm
4. This choice is motivated by the following property:

Proposition 18 If ∃bj ∈ [min(Ej),max(Ej)] such that when bj
i = bj, @b̃ ∈

C(b−j
i , HBA(k)) |b̃S(k)bi then ∀bj

i ≤ bj, @b̃ ∈ C(b−j
i , HBA(k))|b̃S(k)bi.

Proof:
Let us assume that ∃bj

i such that @b̃ ∈ C(b−j
i , HBA(k))|b̃S(k)bi. Let us con-

sider b̃j
i ≤ bj

i and b̃i denotes the bid proposed by si, i.e. b−j
i where the jth

component is b̃j
i . Of course, b̃i ¹ bi. By contradiction, let us assume that

∃b̃ ∈ C(b−j
i , HBA(k)) such that b̃S(k)b̃i. As a corollary of the mixed transitiv-

ity assumption, we have b̃S(k)b̃i, b̃i ¹ bi ⇒ b̃S(k)bi which is in contradiction
with the aforementioned assumption.

¥
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Algorithm 4 Dichotomic search
Inputs: b−j

i , HBA(k),S(k)
Compute C(b−j

i , HBA(k))
Let v = min(Ej) and v = max(Ej)
while v − v > ε do

bj
i = v+v

2

if ∃b̃ ∈ C(b−j
i , HBA(k))|b̃S(k)b then

v = bj
i

else
v = bj

i

end if
end while

In other words, the interval [min(Ej),max(Ej)] may be split into two
distinct parts: values bj

i such that @b̃ ∈ C(b−j
i , HBA(k))|b̃S(k)b and values bj

i

and values bj
i such that ∃b̃ ∈ C(b−j

i , HBA(k))|b̃S(k)b.

The parameter ε, used in the convergence condition, can be interpreted as
the maximum bid increment between the value b̂−j

i obtained by the algorithm
and the optimal value b−j

i . This value is set by the bidder.

Let us note that the algorithm will propose a value for b−j
i without tak-

ing into account the nature of Ej (since the values of Ej are treated as a
numerical scale). Moreover, when Ej is a discrete set the value returned by
the algorithm is not necessarily an acceptable value. In such a situation, the
biggest acceptable value that is strictly lower than the one returned by the
algorithm has to be considered.

To conclude, let us stress that the previous developments are not pecu-
liar to the butter�y model and remain valid within the general theoretical
framework studied in the previous chapter. Finally, an illustration of this
algorithm will be outlined in section 5.5.

5.4.4 Some re�ections about robustness

As already stressed, one of the main distinctive features of our approach
relies on the fact that the auctioneer may re�ne his preference structure dur-
ing the auction. With respect to the comments presented in section 5.2.4, he
may state, for instance that biSbj while bi, bj ∈ WSMA(k) (and consequently
bi, bj were considered to be incomparable). This assertion will then be taken
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into account in the butter�y model; both the set of admissible weights and
the discordance levels will be updated and the winning set will be reduced.
Therefore, such events (caused by the auctioneer) do have impacts on the
auction progress and on the auction results. Evaluating the consequences
of these actions and identifying the (related) sensitive components of the
auction is at the core of the section.

Let us remind the reader that, at time k, the auctioneer can only state
propositions in the form biSbj where bi, bj ∈ WSMA(k). If |WSMA(k)| = n,
there are n·(n−1)

2
di�erent statements. From the bidder perspective biSbj will

be referred to as a potential scenario noted scl (i.e. the lth scenario).

First of all, let us, one more time, stress that a direct consequence of
the way the outranking relation S has been built is that, once a bid is out-
ranked at time k, it remains outranked whatever the forthcoming scenario
scl. Consequently, the nature of "beaten" bids is not a�ected by the di�erent
potential scenarios.

From now on, our attention will be focused on the evolution of the winning
set subject to the various scenarios. Let us assume that at time k, the
winning set contains n distinct o�ers WSMA(k) = {b1, b2, . . . , bn}. Let A be
a n× n·(n−1)

2
binary matrix. Aij = 1 denotes that bi remains in the winning

set if scenario scj occurs (on the contrary if Aij = 0, bi is no longer in the
winning set if scenario scj occurs).

It is obvious that the analysis of the matrix A permits to extract crucial
information regarding the evolution of the o�ers belonging to WSMA(k). The
following de�nition helps to further characterize these bids.

De�nition 22 bi ∈ WSMA(k) is a non implicitly preferred bid i�
∑Cn

2
j=1 Aij =

Cn
2 − (n− 1)

Intuitively, a non implicitly preferred bid is a bid that cannot be elimi-
nated from the winning set unless the auctioneer explicitly states it. On the
contrary, implicitly preferred bids are bids that could be implicitly eliminated
from the winning set as a consequence of a statement de�ned on other bids.

Let ni = n·(n−1)
2

−∑Cn
2

j=1 Aij be the number of scenarios where bi is not in
the winning set anymore. Due to the fact that we explicitly consider all the
possible pairwise comparisons between o�ers from the winning set, we have:
ni ≥ (n− 1), ∀i = 1, . . . , n. Moreover, ni = (n− 1) only for bids bi that are
non implicitly preferred.
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As already argued, our aim, here, will be to detect bids that are too
sensitive with respect to the various scenarios. One way to detect such bids
is to verify if the following constraint is satis�ed or not:

ni ≥ K

Of course, there are many ways to de�ne the bound K. One could, for
instance, imagine that K = α · Cn

2 , i.e. a certain percentage, noted α, of
all the potential scenarios. On the other hand, K could be �xed whatever
the number of potential scenarios. In the following developments, we will
consider an approach based on con�dence intervals.

If we assume that the probability of being eliminated from the winning set
in a speci�c scenario scl is a Bernoulli distribution of parameter p̂l =

Pn
i=1 Ail

n

and if we apply the central limit theorem, we get the following rule: bi is
judged to be too sensitive with respect to the potential scenarios if

Cn
2∑

j=1

Aij >

Cn
2∑

j=1

p̂j + µε

√√√√
Cn

2∑
j=1

p̂j(1− p̂j)

where µε represents the 95% or 90% percentile of a Normal distribution.

Moreover, let us note that the values p̂j permit to characterize the di�er-
ent scenarios. The higher the value p̂j the higher the number of implicitly
preferred bids in this scenario.

Of course, all the previous developments rely on the assumption that the
matrix A is available. The computation of this matrix is nevertheless time
consuming (especially when the number of bids in the winning set is large)
and this delay has to be related to the time separating two bids.

5.5 An illustrative example

The last section is devoted to an example. Our aim is, �rst of all, to illus-
trate the model discussed in the present chapter and its distinctive features.
Consequently, a number of simpli�cations have been made in the following
developments.
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Table 5.1: Seller's best contract evaluated according to the 2 criteria

p1 (ξ1) p2 (ξ2)
ξ(v1) 0.125 0.25
ξ(v2) 0.135 0.15
ξ(v3) 0.13 0.2

Table 5.2: Mobile phone contract procurement auction. Application of the
butter�y model. Illustration of one potential auction realization.

Step Bid id. ξ1 ξ2 WS
1 b1(1) 0.18 0.3 {b1(1)}
2 b2(1) 0.18 0.28 {b2(1)}
3 b3(1) 0.18 0.26 {b3(1)}
4 b1(2) 0.16 0.26 {b1(2)}
5 b2(2) 0.18 0.24 {b1(2), b2(2)}
6 b2(3) 0.14 0.26 {b2(3)}
7 b3(2) 0.13 0.24 {b3(2)}
8 b2(4) 0.16875 0.2 {b2(4), b3(2)}
9 b2(5) 0.14 0.2 {b2(5)}

Let us consider, once again, the example of the mobile phone contract
procurement introduced in the previous chapter. In what follows, we will
even simplify the problem by considering only two criteria: the price p1 per
minute paid while the total communication time does not exceed 100 hours
a month and p2 the price per minute paid if this time limit is exceeded (with
respect to the aforementioned example, the extra communication time o�ered
by the operators is not taken into account anymore). The valuations of the
three sellers participating to the auction are reminded in table 5.1.

The auctioneer states that the intra-criterion information is the same for
both criteria: qi = 0.01 and pi = 0.05, i ∈ {1, 2}. In other words, B expresses
the fact that a di�erence lower than or equal to 0.6 euros per hour (0.01 per
minute) is negligible while a di�erence greater than or equal to 3 euros per
hour leads to a strict preference on the related criterion. To remain consistent
with the previous subsections, φj = 0.01, j ∈ {1, 2}. Table 5.2 illustrates a
potential auction realization.
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When the auction starts, the auctioneer hasn't speci�ed values for the
weights; w1 ∈ [0, 1] (w2 = 1− w1) and, as already mentioned, φj = 0.01, j ∈
{1, 2}. Seller s1 is the �rst one to propose a bid. Seller s2 reacts and decide to
propose a new bid by improving the value of p2. Since q2 = 0.01, this value
must be strictly lower than 0.29. Otherwise, the bid would be outranked
by b1(1). Consequently, he proposes b2(1) = (0.18, 0.28). (This illustrates
the parallel between indi�erence thresholds and decrement steps). Until step
4, no extra-information is needed since the o�ers are improved according to
a strict dominance relation. Then, at time 5, seller s2 propose a bid b2(2)
that is better than the current winning bid b1(2) regarding the value of p2

but worse for p1. Both bids are present WS(5) and B decides to choose
between them; he states b1(2)Sb2(2) and the model is re�ned. It is obvious
to verify that the parameter of the model are now: φ1 = 0.01, φ2 = 0.02 and
w1 ∈ [0.5, 1]. Even if he has just been excluded from the winning set, seller
s2 o�ers a new bid b2(3) at time 6 and �nally beat b1(2). At time 7, seller s3

reacts and o�er b3(2) = [0.13, 0.24]. Compared with b2(3), this last o�er is
strictly better for both criteria and exceeds the indi�erence threshold for at
least one criterion: consequently it remains the unique bid in WS(7). Now,
s1 cannot propose any new bids since b3(2)Sξ(v1) and so, quits the auction.
At time 8, s2 does not know which bid to propose. He decides to improve
the value of p2 to 0.2 and uses the decision support tool described in section
5.4.3 to determine the value of p1 (this step will be further discussed here
below). Finally, he proposes b2(4) = [0.16875, 0.2] and enters the winning set.
B decides between these two bids and states b3(2)Sb2(4). As a consequence
the parameters of the model are updated and we have: φ1 = 0.01, φ2 = 0.02
and w1 ∈ [24

47
, 1]. At step 9, seller s2 proposes b2(5) = [0.14, 0.2] and, since s3

cannot propose any new bid, wins the auction.

Let us, now, consider the detail of step 8. As already said, seller s2

decides to use the bidding support tool to o�er a new bid. He decides to �x
the value of p2 to 0.20 and wonders what would be the higher value of p1

that still allows the resulting bid to satisfy the auction rule (we assume that
the precision degree ε is set to 0.01). First of all, it is easy to verify that,
in this case, C(b−j

i , HBA(k)) = {b2(2), b3(2)} since for all the others bids in
HBA(k) discordance happens regarding p2.

Table 5.3 illustrates the progress of algorithm 4. For simplicity, we as-
sume, here, that E1 = [0.1, 0.2]. If p1 = 0.1 the resulting bid satis�es the
auction's rules while it is not the case when p1 = 0.2. Consequently, the
value 0.1+0.2

2
= 0.15 is tested. If p1 = 0.15 the resulting bid is accepted. So,

the research interval is reduced to [0.15, 0.2]. Subsequent steps use the same
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Table 5.3: Mobile phone contract procurement auction. Illustration of algo-
rithm 4.

Iteration Lower bound Upper bound Tested point Test result
1 0.10 0.20 0.15 1
2 0.15 0.20 0.175 0
3 0.15 0.175 0.1625 1
4 0.1625 0.175 0.16875 1
5 0.16875 0.175 - -

logic. Finally, the algorithm stops whenever the interval length is lower than
or equal to ε and the lower bound is proposed to the seller: 0.16875.

5.6 Conclusion

This chapter has been dedicated to the presentation and analysis of a par-
ticular auction model. Besides the management of potential incomparability
between bids, the butter�y model allows the auctioneer to, progressively, re-
�ne his preference structure during the auction rather than to impose him
to �x it before the auction. A number of speci�c issues related to this model
have been discussed, its theoretical properties have been outlined and speci�c
related questions have been treated. Finally, an example has permitted us
to summarize and illustrate the previous points.

As already stressed (among others in section 5.2.4), a number of open
questions remain and constitute as many directions for future researches.
Nevertheless, a question that has not yet received much attention is the
problem related to the time component of the problem. Indeed, in multicri-
teria auctions, the time separating two bids can be relatively low, leading to
situations where the o�ers are received faster than the time needed to:

- select the winning o�ers

- (and / or) update the model

- (and / or) use the bidding support tool

- (and / or) study the robustness of the winning bids.
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Therefore, one may consider to proceed by using bidding rounds (during
which the bids are (only) collected and between which the aforementioned
computations are performed). Both the way these rounds are de�ned (i.e.
their respective duration and the time separating two successive rounds) and
their impact on the multicriteria auction results remain a subject to explore.

To conclude, let us stress that the present model will lead us to manage
new auction contexts such as those constituted by di�erent bidding niches.
This notions will be formalized and empirically tested in the next chapter.
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Chapter 6

Bidding Niches

6.1 Introduction

In this chapter, our attention will be focused on the structure of the
bidding space itself. More precisely, we will be interested in contexts where
the bidding space is far from being homogeneous and, on the contrary, is
shared within several bidding niches. In other words, submitted o�ers are
concentrated in sub-regions of the bidding space while no bid exist for some
combinations of the attributes1. To illustrate such situations, let us consider
the three next examples:

• The transport problem.
Let us consider the case of a company that needs to import several
containers of raw materials from a foreign country and decides to sub-
contract their transport. To select the subcontractor she organizes a
multicriteria auction. Two criteria are considered to be relevant in this
context: the total delay (expressed in days) and the price associated to
the transport. Let us note that the total delay not only represents the
duration of the transport but also the number of days to wait before
the transport occurs. Figure 6.1 illustrates a potential realization of the
auction. Clearly, the bidding space is not homogeneous and two areas
can be identi�ed: one characterized by a low price and an important
delay and another characterized by a high price and a short delay. (see
�gure 6.1). This structure is a direct consequence of the fact that the

1as a consequence of production constraint for instance
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Figure 6.1: The transport problem: illustration of 2 bidding niches (delimited
by the dashed lines).

transport can be conducted by trucks (short delays but expensive) or
by barge (less expensive but more important delays).

• The problem of the advertisement compain
Let us consider the case of a company that decides to start an advertise-
ment compain. In order to select the most appropriate advertisement
option, she organizes a RFQ. For the sake of simplicity, let us assume
that the o�ers are only evaluated on two criteria: the cost related to
the advertisement (to be minimized) and an impact factor (to be maxi-
mized). The latter may be, for instance, the number of persons exposed
to the advertisement that still remember the name of the company after
a speci�c delay. In this context, distinct bidders are competing; televi-
sion or radio operators, magazine managers, events organizers,... and
provide di�erent o�ers. Once all the bids have been collected, the com-
pany faces a situation illustrated on �gure 6.2. Clearly, three distinctive
sub-regions of the bidding space are outlined; low cost, low impact of-
fers, medium cost, medium impact o�ers and high cost, high impact
o�ers (these bidding niches correspond, roughly, to advertisements in
magazine or during events, on radio and on television - nevertheless, let
us note that advertisement in a major magazine may be competitive if
compared to advertisement on television outside peak hours).

• The cleaning contract problem
A company desires to subcontract the cleaning of its o�ces. Therefore,
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Figure 6.2: The advertisement problem: illustration of 3 bidding niches.
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Fixed price per month

Term of the contract

b̃

Figure 6.3: The procurement of a company's cleaning contract: illustration
of outlying bids.

a procurement auction is organized. The buyer (i.e. the manager of
the company who is in charge of the procurement) considers that two
criteria have to be taken into account; the �xed price per month to
pay for an everyday cleaning and the term of the contract. Figure 6.3
illustrates a potential realization of the auction. Clearly, the price de-
creases when the term of the contract increases and bid b̃ is an outlying
bid. In other words, all the bids belong to the same bidding niche (de-
noted by the dashed line) except b̃. This situation results from the fact
that nearly all the sellers are local companies; s̃ is the only foreign en-
terprise. Having cheaper labor costs, s̃ is able to propose lower prices.
However, this company will not start a business in a new country unless
a contract of minimum 5 years is guaranteed.
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In procurement contexts, the elicitation of bidding niches may be of great
informational interest; particular structures may help to highlights produc-
tion constraints or outlying bids. Furthermore, when the niches are clearly
distinct, the procurer may prefer to select one competitive (and typical) o�er
for every niche rather to get a unique o�er. For instance, in the advertise-
ment problem, the bid taker is better of selecting both o�ers b1 and b2 than
b3. Indeed, the cost related to the simultaneous selection of b1 and b2 is lower
than the cost of b3 while this combination achieves a higher impact factor2.

Finally, in the context of Butter�y auctions, the detection of bidding
niches may help the buyer to re�ne the model used. As shown in the previous
chapter, one way to perform this task is to explicitly state bS b̃ among two bids
b and b̃ that belong to the winning set. Of course, the comparison between
every pair of bids in the winning set is often tedius and time consuming. To
guide the buyer in this process, information about the bidding niches can
be proposed. As a consequence, he will be able to limit the comparisons
between bids belonging to the same niches.

Detecting groups structure within data sets is at the core of traditional
clustering techniques. Therefore, a number of methods have already been
proposed and analyzed in the literature. However, the problem considered in
this paper is characterized by two distinctive features that have encouraged
us to develop a new method rather than apply an existing one.

First of all, the o�ers are evaluated according to criteria (that have to
be optimised). Traditional clustering techniques do not take into account
this optimization constraint. Therefore, some methods have been developed
to tackle this problem. They are referenced to as multicriteria clustering
techniques (38; 46; 82).

Secondly, the context considered in this contribution is related to pro-
curement situations. As a consequence, the notion of competition between
o�ers and groups of o�ers is crucial. Therefore, our aim will rather be �to
detect groups of bids characterized by a high competition degree and that
are not too competitive between themselves� than the traditional �detecting
homogeneous groups of data that are heterogeneous between themselves�.

In order to illustrate these assertions, let us remind the transport problem.
Applying a traditional clustering technique to the o�ers illustrated on �gure
6.4 will certainly lead to a unique cluster, even if 2 bidding niches co-exist (let

2let us note that this example illustrates an application to combinatorial multicriteria
auctions.
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Figure 6.5: Illustration of a unique bidding niche.

us remind �gure 6.1). In the same spirit, applying a traditional clustering
algorithm to the bids illustrated on �gure 6.5 will certainly lead to detect two
clusters even if only one bidding niche is present. Indeed, if o�er b is slightly
improved it will beat all the o�ers. Therefore, from the competitiveness point
of view, some homogeneity remains and one cannot distinguish two distinct
sets.

This chapter is organized as follows: section 6.2 is devoted to the for-
malization of the problem. The notions of competition between o�ers, cone
partitions and IS partitions will be introduced and will allow us to further
de�ne bidding niches partitions. Then, in section 6.3, a hierarchical algo-
rithm will be proposed for the detection of bidding niches partitions. The

160



results of several empirical tests will be presented in section 6.4. Finally, we
will end this chapter with some directions for future research in section 6.5.

To conclude this introduction, let us stress that this chapter is an ex-
tended version of the paper "Clustering the bidding space into niches: a
hierarchical multicriteria clustering approach" (40).

6.2 Formalization

Until now, we have repeatedly (and maybe excessively) used the notion
of partition of the bidding space into bidding niches without any formal
de�nition. If the term bidding niche is explicit enough to give the reader
an intuitive idea of what it depicts, we will, at last, formalize it in the next
subsections.

As already stressed, the concept of competition between o�ers is at the
core of the present chapter. This will be formalized in the next sections and
then will allow us to de�ne the notion of IS partitions and bidding niches
partitions.

In what follows, B will denote a set of non dominated o�ers and i(O) (O ⊆
B) will represent the ideal point associated to the set O. Intuitively, i(O) is
the (virtual) bid that dominates (and thus beats) all the o�ers belonging to
O.

6.2.1 Improvements'quanti�cation

Let us consider an o�er b ∈ B and one improvement of b noted b̃ = b− d
where d = (d1, . . . , dq) (this non-negative vector indicates the improvement
of b̃ over b for each attribute). Of course, b̃ ≺ b. In what follows, we will
quantify to what extend an o�er b̃ dominates b. In order to obtain a global
measure of these local improvements, we need to aggregate the components
of d3:

ι : E1 × . . .× Eq → R
3let us note that, in this context, we restrict ourselves to improvements. In no way, we

will compensate the degradation on one criterion by the improvement on another one.
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Figure 6.6: Additivity of the ι function

A reasonable property of ι is the addititivity. Indeed, if d =
∑s

p=1 dp, the
expression ι(d) = ι(

∑s
p=1 dp) =

∑d
p=1 ι(dp) where d =

∑s
p=1 dp (dj

p ≥ 0,∀j, p,
d may be viewed as a succession of smaller improvements dp). The additivity
property expresses the fact that quantifying the global improvement can be
decomposed into the sum of the quanti�cation of smaller improvements (see
�gure 6.6).

A further issue that has to be taken into account when de�ning the ι
function is related to the di�erent natures of the scales Ej (di�erent units
and / or di�erent ranges). Therefore, we will consider a normalization factor
δ = (δ1, . . . , δp) such that ι(δ · ej) = 1, ∀j = 1, . . . , p4. Intuitively, δj repre-
sents a standardized incremental step for the jth attribute. In other words,
measuring an improvement of a quantity δj on the jth attribute is equivalent
to measuring an improvement of a quantity δk on the kth attribute.

A direct consequence of the previous statements is ι(d) =
∑q

j=1
dj

δj =∑q
j=1

bj

δj − b̃j

δj =
∑q

j=1 | b̃
j

δj − bj

δj | = L1(b̃
δ, bδ), where bδ = ( b1

δ1 , . . . ,
bq

δq ).

In what follows, ι will be at the core of the formalization of the notion of
competition.

6.2.2 The notion of competition and related issues

At �rst, we will de�ne the competition between one o�er and a subset of
o�ers.

De�nition 23 Let b ∈ B and O ⊆ B. The competition γ(b,O) is de�ned by
4This information is assumed to be provided by the buyer. No other information about

his preferences is requested.
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Figure 6.7: The competition of an o�er b with respect to a subset of o�ers O

γ(b,O) = ι({b, i({b} ∪ O)).

Intuitively, γ(b,O) quanti�es the minimal improvement needed for o�er
b to dominate all the o�ers belonging to O. Consequently, if b dominates all
the o�ers in O then γ(b,O) = 0. The more γ(b,O) increases the less b is
competitive with respect to the o�ers in O.

Now that the competition notion has been introduced, we are ready to
de�ne what we will call a intra-set competition.

De�nition 24 Let O ⊆ B, we call intra-set competition:

IS(O) = min
b∈O

γ(b,O)

.

In other words, the intra-set competition quanti�es the minimum number
of improvements that one o�er belonging to O needs to do in order to beat
all the other o�ers of O. Consequently, if b̃ ∈ O is such that b̃ ¹ b, ∀b ∈ O
we have IS(O) = 0. The more IS(O) increases the less competititive is O.

6.2.3 IS partitions

As already stressed, our aim is to partition the set of bids B into bidding
niches. First we will restrict ourselves to cone partitions :

163



De�nition 25 A k cone partition of B, noted CPk, is a partition {C1, . . . , Ck}
of B such that Ci = N(Ci) where N(O) = {b ∈ B|i(O) ¹ b}, (O ⊆ B).

Considering cone partitions ensures that the bidding space is divided into
non overlapping subsets. In other words, if one o�er b ∈ Ci is improved up to
exactly dominate all the other o�ers in Ci (i.e. up to i(Ci)), it will not beat
o�ers outside Ci. Furthermore, partitioning a subset of m elements leads
to a combinatorial explosion of possibilities, known as the Bell number. In
our context, restricting ourselves to cone partitions reduces the number of
options as shown in section 6.4.2. In what follows, the family of all k cone
partitions will be denoted CPk.

Of course, to each element Ci of a k cone partition CPk an intra-set
competition IS(Ci) can be assigned. Globally, the competition of the k
cone partition, noted ISmax(CPk) is evaluated as being the largest intra-set
competition of its constitutive elements. More formally;

ISmax(CPk) = max
Ci∈CPk

IS(Ci)

This choice is motivated by the fact that a k cone partition is considered
to be competitive (i.e. if ISmax(CPk) is low) only if all the intra-set com-
petitions of its elements are low. To our point of view, when evaluating the
intra set competitions of a k cone partition, a good score of one constitutive
element can, in no way, compensate the bad score of another element.

Among all the possible k cone partitions CPk we will focus on the most
competitive ones. These will be referred to IS partitions.

De�nition 26 A k cone partition CP ∗
k is said to be a IS partition if:

CP ∗
k = arg min

CPk∈CPk

ISmax(CPk)

6.2.4 Bidding niches partitions

So far, given a value for k, a IS partition allows us to split the o�ers into k
sets such that each of them has a high competition degree. In order to obtain
what we call a partition in bidding niches we further require that these sets
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are not too competitive between themselves5. To quantify this aspect we
introduce the extra-set competition.

De�nition 27 Let O ⊂ B, we call extra-set competition:

ES(O) = min
b 6∈O

γ(b,O)

.

The extra-set competition quanti�es the minimum number of improve-
ments that one o�er outside O needs to do in order to beat all the o�ers of
O. Consequently, if b̃ 6∈ O is such that b̃ ¹ b,∀b ∈ O we have ES(O) = 0.
The more ES(O) increases, the less O is likely to be beaten from a o�er
b 6∈ O. Finally, let us stress that ES is not de�ned for the entire set of o�ers
B.

In the same way ISmax has been introduced, we will globally character-
ize the extra-set competition of the elements of a given IS partition, noted
ESmin(CP ∗

k ) as follows:

ESmin(CP ∗
k ) = min

Ci∈CPk

ES(Ci)

This choice is motivated by the fact that a IS partition is considered to
be a partition in bidding niches only if all the extra set competitions of its
constitutive elements are low.

Among all the IS partitions (for k = 2, . . . , m) we will retain the one
with, simultaneously, a high ESmin and a low ISmax. These two objectives
can be aggregated to denote the quality of a given IS partition Q(CP ∗

k ) =
ESmin(CP ∗

k ) − ISmax(CP ∗
k ). Therefore, what we call a partition of B into

bidding niches, noted BNP , will be de�ned as follows:

BNP = arg max
k=2...,m

{ESmin(CP ∗
k )− ISmax(CP ∗

k )}

5these considerations can be related to traditional classi�cation problems where the
aim is to �nd homogenous groups that are heterogeneous between themselves.
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6.3 Hierarchical algorithm

The total number of cone partitions that can be built, for a given num-
ber of criteria and a given number of o�ers, is such that, in most cases, a
complete enumeration is impossible (see section 6.4.2). Therefore, heuristics
are needed to �nd bidding niches partitions. Among them, we have adopted
a hierarchical scheme presented here after (see algorithm 5).

Algorithm 5 A hierarchical algorithm to �nd bidding niches partitions
Input : B
Let CP (m) = {(b1), (b2), . . . , (bm)} be the singletons' partition
t=0
while |CP (m− t)| ≥ 2 do

t=t+1
Determine (C∗

i , C
∗
j ) = arg min(Ci,Cj)|Ci,Cj∈CP (m−t+1) IS(Ci ∪ Cj)

N = {C ∈ CP (m− t + 1) : C ⊆ N(Ci ∪ Cj)}
CP (m− t) = (CP (m− t + 1) \ ∪C∈NC) ∪N(Ci ∪ Cj)

end while
CP ∗ = arg max0≤t≤m−2(ESmin(CP (m− t))− ISmax(CP (m− t))

At each step of the algorithm, two niches are merged such that the worst
intra-set competition of the resulting partition is minimal. Starting with
the partition where each o�er is considered to form a niche on its own, the
number of niches of the partition is then iteratively reduced.

Of course, even if the simplicity of hierarchical approaches is appealing, a
number bottlenecks have been stressed in the literature. Among them, once
two niches have been merged, they can never be split again. Hence, a locally
optimal merge may mislead the algorithm.

In the present context, another distinctive feature needs to be stressed;
the cone obtained by merging two niches Ni and Nj of a partition CP (t −
1) may contain other niches. For instance, consider the three o�ers b1 =
(1, 0, 0), b2 = (0, 1, 0) and b3 = (0, 0, 1). By merging the two o�ers b1 and b2

the third o�er b3 belongs to the cone formed by the two �rst o�ers. Since,
at each step of the algorithm, we want to have a feasable solution, i.e. a
cone partition, CP will consist, on the one hand, of the cone N(Ni ∪ Nj)
obtained by merging Ni and Nj and, on the other hand, of the remaining
niches Np, where Np ∈ CP (t − 1), but Nk 6⊆ N(Ni ∪ Nj). For this reason,
the hierarchical algorithm will not necessarily �nd a partition into k bidding
niches for each k = 2, . . . , m.
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In practice, the buyer often wants to obtain a partition with only a few
niches. Therefore, the last constraint can be adapted in order to restrict the
selection among the partitions with at most m niches. In what follows, we
will assume that the buyer further speci�es that the number of niches in the
partition is lower than or equal to q + 2 (which is, to our point of view, a
reasonable choice). On the other hand, one can imagine that the buyer may
want to obtain a partition characterized by a �xed number of M niches. In
this case, the last step is not necessary anymore and the solution is directly
available among those that have been iteratively built.

6.4 Empirical tests

This section is devoted to the empirical analysis of the model and the
algorithm proposed in the previous sections. More precisely, we will investi-
gate:

1. the average number of cone partitions that can be enumerated for a
given number of criteria and o�ers (in section 6.4.2);

2. the assignments provided by our algorithm when applied on arti�cial
data sets (in section 6.4.3);

3. the assignment's sensitivity with respect to the value of the δ parame-
ters (in section 6.4.4);

4. the assignment's sensitivity with respect to the improvement of several
o�ers (in section 6.4.5);

5. and, �nally, the di�erence between simultaneous versus distinct man-
agement of bidding niches (in section 6.4.6).

Therefore, a number of assumptions have been considered (see table 6.1
for a global perspective):

1. the number of criteria, q, could vary from 2 to 5; to our point of view,
considering more criteria is, in practice, arti�cial.

2. the number of niches, k, could vary from 2 to q + 1; limiting the maxi-
mum number of niches with respect to the number of criteria was, to
our perspective, a reasonable assumption.
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3. the number of observations in a given niche is equal to 5 and all the
niches contain the same number of observations. Of course, this as-
sumption may open criticism. In preliminary tests, we have rather
used a random number of o�ers given by q + b4 · U · qe where U ∼ U[0,1]

but the results were more di�cult to interpret. Therefore, for clarity
and simplicity reasons, we have decided to use the same number of
o�ers whatever the number of criteria and niches. The arbitrary value
of 5 o�ers per niche was, according to us, a reasonable choice. Indeed,
choosing less o�ers was not representative. If the bidding space only
contains 4 o�ers (i.e. for instance 2 'niches' containing 2 o�ers each)
there is few need of analyzing it in terms of bidding niches. On the con-
trary, if more o�ers were chosen the total number of bids in the bidding
could explode leading to an unrealistic situation (5 niches containing
15 o�ers each lead to a total of 75 o�ers).

nb criteria nb niches total number o�ers
2 2 10
2 3 15
3 2 10
3 3 15
3 4 20
4 2 10
4 3 15
4 4 20
4 5 25
5 2 10
5 3 15
5 4 20
5 5 25
5 6 30

Table 6.1: Structure of the tests performed.

In what follows, we will often need to compare partitions. Therefore, we
have chosen to use the Rand index (88). Intuitively, the Rand index between
two partitions P and Q, noted R(P,Q), is the percentage of pairs for which
there is an agreement. More formally, let A(P ) be the assignment matrix
associated to a partition P 6, the R(P, Q) is given by:

6i.e. A(P )ij = 1 is bi and bj are assigned to the same subset in P , A(P )ij = 0 if bi and
bj are assigned to di�erent subsets in P
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R(P,Q) =
|A(P ) ∧ A(Q)| − n

n·(n−1)
2

Obviously, if R(P, Q) = 1 the two partitions are identical. On the
other hand, when assignment di�erences exist between P and Q, we have
R(P, Q) < 1. Several authors have criticized the use of the Rand index 7 and
other measures such as the Jaccard index, the Wallace index or the normal-
ized Lerman index are also commonly used in the literature. Nevertheless,
the simplicity of the Rand index has retained our attention. Due to its na-
ture, the interpretation of its value will, at �rst, be limited to the higher the
better. Additionally, in order to further enrich our results, we will test the
hypothesis H0 of random assignments. Therefore, we have empirically esti-
mated the 95% percentile Rand index between two random partitions for a
given number of observations (see appendix 7 for details about the algorithm
and the related values).

To study questions related to sections 6.4.3, 6.4.4 and 6.4.5, one need to
generate data sets describing bidding niches. This phase is not obvious and,
therefore, is commented in section 6.4.1.

6.4.1 A few words about the generation of arti�cial data
sets

Following the model introduced in section 6.2, creating a bidding niches
partition imposes to create a data set and a related assignment that is optimal
for the quality criterion. Until now, we haven't found a way to perform this
task. Therefore, we will limit ourselves to data sets generated as explained
here after. To our point of view, these examples constitute good candidates
to test our model and algorithm (even tough we have no guarantee about
the optimality of the assignment). As a consequence, the application of the
hierarchical algorithm will, sometimes, lead to a better assignment than the
one initially proposed.

Basically, the arti�cial data sets generation rely on two assumptions:

1. the bidding niches are created successively such that the ideal point
related to the mth bidding niche, noted i(N(m)), is not dominated
and does not dominate the ideal points related to the niches that have

7since it is not equal to zero for two random partitions
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already been created. Furthermore, the vector i(N(m))− i(N(m− 1))
contains only two non-null elements, the value of which are respectively
α and −α and the positions (in the vector) of which are random (as
a consequence, the L1 distance between two succession ideal points is
equal to 2 · α).

2. once the ideal point of every niche has been determined, the pareto
optimal bids within each niche are generated in such a way that their
L1 distance to the ideal point of the niche is distributed according to
U[0,1].

Figure 6.8 illustrates such a data set. As a consequence of the previous
assumptions, for all niches N , we have IS(N) ≤ 1 8 and ES(N) ≥ α. As soon
of α ≥ 1 no overlapping between the niches can happen. In what follows, we
will both use the value α = 1 and α = 0.75. The latter expresses cases where
overlappings between niches may occur. See table 6.2 for illustration.

Figure 6.8: Example of a data set with 2 niches of 5 observations.

8Moreover as a consequence of uniform distribution of the distances to the ideal point
we can state that IS(N) ∼ n · (1− FU )(n−1) · fU
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5 obs. 7 obs.
nb. crit. nb. niches Min. Dist. Overlapping Min. Dist. Overlapping

2 2 0,0141 79,80% 0,0035 92,00%
2 3 0,0028 95,00% 0,0008 99,00%
3 2 0,2548 4,80% 0,2007 6,40%
3 3 0,1598 9,60% 0,1127 17,40%
3 4 0,1162 15,20% 0,0781 22,60%
4 2 0,399 0,00% 0,3561 0,20%
4 3 0,3247 0,60% 0,2804 0,40%
4 4 0,281 0,40% 0,2455 0,00%
4 5 0,2483 1,60% 0,2097 1,00%
5 2 0,4842 0,00% 0,4618 0,00%
5 3 0,4249 0,00% 0,3919 0,00%
5 4 0,3878 0,00% 0,3626 0,00%
5 5 0,3656 0,00% 0,3357 0,00%
5 6 0,3546 0,00% 0,3205 0,00%

Table 6.2: Minimal distance between two niches and percentage of overlap-
ping niches for data sets generated with α = 0.75

6.4.2 Estimation of the number of cone partitions

Partitioning a set of n elements into k subsets leads to a combinatorial
number of possibilities. In the literature, this is referred as the Stirling num-
ber of the second kind, noted S(n, k), while the Bell number, noted B(n),
represents the total number of potential partitions9. In the present work, we
restrict ourselves to cone partitions, i.e. a subset of all the potential parti-
tions. Therefore, a natural question is to wonder how many cone partitions
can be built for a given number of elements. This will be at the core of the
present section.

At �rst, let us remark that, as a consequence of the cone partitions' de�n-
ition, their total number, noted NCP (n, q), is likely to be in�uenced both by
the number of pareto optimal elements and by the related number of criteria.
Morevover, when only 2 criteria are considered, we have NCP (n, 2) = 2(n−1).

Table 6.3 presents the average number of cone partitions, noted ¯NCP ,
for di�erent combinations of q and n. These statistics results from explicit

9whatever the number of subsets
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enumeration 10. For each instance of the parameters, 1.000 instances have
been generated. Additionally, these results have been normalized by the
related Bell number. The last three columns show that the average number
of cone partitions increases slower than the Bell number.

n B(n) ¯NCP (n, 3) ¯NCP (n, 4) ¯NCP (n, 5)
¯NCP (n,3)
B(n)

¯NCP (n,4)
B(n)

¯NCP (n,5)
B(n)

2 2 2 2 2 100, 00% 100, 00% 100, 00%
3 5 4,48 4,69 4,7 89, 60% 93, 80% 94, 00%
4 15 10,22 11,54 12,15 68, 13% 76, 93% 81, 00%
5 52 10,22 11,54 12,15 19, 65% 22, 19% 23, 37%
6 203 54,85 77,98 98,25 27, 02% 38, 41% 48, 40%
7 877 127,85 213,88 275,05 14, 58% 24, 39% 31, 36%
8 4 140 311,86 601,63 1 023,75 7, 53% 14, 53% 24, 73%
9 21 147 695,51 1 551,3 2 690,93 3, 29% 7, 34% 12, 72%
10 115 975 1 762,5 4 591,95 8 972,96 1, 52% 3, 96% 7, 74%

Table 6.3: Average number of cone partitions for di�erent combinations of
the number of observations and criteria.

To further explore how ¯NCP (n, q) evolves with respect to n (for a given
q), we have tried to �t the data according to the following model ¯NCP (n, q) =
an · b. Table 6.4 summarizes the results obtained for the di�erent values of q.

q a b R2

2 2 0.5 1
3 2.331599 0.350902 0.999786
4 2.63902 0.251895 0.999178
5 2.887754 0.192029 0.997897

Table 6.4: Parameters of model ¯NCP = an · b.

Finally, the following model 11 gives a rough idea about the global behav-
ior of ¯NCP (n, q).

¯NCP (n, q) =
(2 + log 2 · (q − 2))n

q

10which was still reasonable since the number of elements was lower than 10. Pareto
optimal observations were generated using a uniform distribution.

11R2 = 0.995394
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6.4.3 Testing the hierarchical algorithm on arti�cial data
sets

In this section, we investigate the assignments provided by the hierarchical
algorithm when applied on arti�cial data sets (see section 6.4.1). In addition
to the benchmark con�guration, i.e. n = 5 and α = 1, we have ran tests
for n = 7 and α = 0.75. For every considered combination (α, n, q) we have
simulated 500 iterations. Related results are listed in table 6.5 and 6.6.

First of all, let us stress that, in a number of cases, the hierarchical
algorithm has stopped with a quality index higher than the quality index of
the initial data set (see row Qobs ≥ Qth in table 6.5 and 6.6). As already
stressed, this e�ect is due to the fact that it is not easy to build a data set and
a related assignment that is optimal for the quality criterion. The way the
test sets have been generated does not guarantee that another assignment
could no lead to a better quality. In these cases, the comparison of the
hierarchical assignment and the initial one is not meaningful. Therefore,
these instances will not be taken into account in the average Rand index.

Let us note that for data sets where Qobs ≥ Qth, the HO hypothesis, that
the Rand index between the initial partition and the one found by the hier-
archical algorithm is random, is always rejected. This is not surprising, given
the average Rand indexes listed in table 6.5 and 6.6, which show that the
assignments are similar whatever the values n, q, α. As soon as the number
of criteria is greater of equal to 3 these statistics are excellent. When only 2
criteria are considered, the results remains good but are less striking. This
is due to the fact that the number of bids is big regarding the number of
criteria leading to a higher bids'density.

In order to further characterize the behavior of the rand index with re-
spect to the couples (n, q) we have limited ourselves to 2 niches and 5, 7 and
10 bids per niches. See results in table 6.7.

6.4.4 Testing the assignment'sensitivity with respect to
the δ parameters

As already stressed in section 6.2, the normalization role of the δ parame-
ters is essential. Indeed, it allows to manage the improvements on di�erent
criteria characterized by di�erent units.
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α = 1
5 obs. 7 obs.

nb. crit. nb. niches R average Qobs ≥ Qth R average Qobs ≥ Qth

2 2 0,963 12,20% 0,9769 11,20%
2 3 0,9591 15,00% 0,9722 8,80%
3 2 0,9972 0,40% 0,9974 0,40%
3 3 0,9934 2,00% 0,9976 1,80%
3 4 0,9928 37,20% 0,9967 34,40%
4 2 1 0,00% 0,9997 0,00%
4 3 0,9998 0,20% 0,9998 0,20%
4 4 0,9984 44,20% 0,9992 46,20%
4 5 0,9993 18,00% 0,9998 17,80%
5 2 1 0,00% 1 0,00%
5 3 0,9998 0,60% 1 0,00%
5 4 0,9998 45,60% 1 47,00%
5 5 0,9992 17,00% 1 14,80%
5 6 0,9998 36,40% 1 35,00%

Table 6.5: Average R and percentage of cases with a lower or equal quality
than the expected quality for data sets with α = 1
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α = 0.75
5 obs. 7 obs.

nb. crit. nb. niches R average Qobs ≥ Qth R average Qobs ≥ Qth

2 2 0,8376 63,40% 0,8426 72,40%
2 3 0,8279 57,00% 0,8238 55,00%
3 2 0,9797 11,00% 0,9858 14,00%
3 3 0,9773 20,20% 0,9757 22,20%
3 4 0,9683 51,20% 0,9698 53,40%
4 2 0,9978 3,20% 0,9981 2,00%
4 3 0,997 6,80% 0,9968 4,20%
4 4 0,989 46,60% 0,9964 45,80%
4 5 0,993 25,60% 0,9955 23,60%
5 2 0,9977 0,60% 1 0,60%
5 3 0,9985 3,60% 0,9998 2,00%
5 4 0,9991 52,60% 0,9992 46,60%
5 5 0,9997 19,60% 0,9995 16,40%
5 6 0,9979 38,60% 0,9998 39,40%

Table 6.6: Average R and percentage of cases with a lower or equal quality
than the expected quality for data sets with α = 0.75

nb. crit. 5 obs. 7 obs. 10 obs.
2 0.963 0.9769 0.9786
3 0.9972 0.9974 0.9992
4 1 0.9997 0.9996
5 1 1 1

Table 6.7: R average for 2 niches.
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Of course, a natural question that arises is to wonder wether the assign-
ments provided by our approach are very sensible to these variations. There-
fore, we have conducted simulations the results of which are summarized in
table 6.8. These tests follow the scheme described here after (see algorithm
6). For every combination of the number of niches n and the number of
criteria q, we have ran 500 tests.

At �rst, i.e. when TS(n, q) is generated, all the δj parameters are assumed
to be equal to one. Then , these parameters are perturbed such that δj =
1 − e + e · U where U ∼ U[0,1]. Two values of e are considered in the tests;
either e = 0.1, either e = 0.2. As a consequence, when e = 0.1 (resp. e = 0.2)
we have δj

δi ∈ [0.818 1.222] (resp. [0.666 1.5]). In other words, a maximal
relative error 12 of, approximately, 40% (resp. 85%) is accepted between any
pairs of δ parameters. This constraint allows us to model hesitations of the
buyer about the values of δ.

Algorithm 6 Testing the assignment's sensitivity with respect to the δ pa-
rameters

Inputs: n, q, e
Generate a test set TS(n, q)
Let P be the partition obtained when applying the hierarchical algorithm
on TS(n, q)
Compute A(P )
Let δj = 1− e + e · U where U ∼ U[0,1]

TS ′(n, q) = {b′|b′j = bj · δj,∀b ∈ TS(n, q)}
Let P ′ be the partition obtained when applying the hierarchical algorithm
on TS ′(n, q)
Compute I = R(A(P ), A(P ′))

As shown in table 6.8, assignments provided by the algorithm are not too
sensible to reasonable variations of the parameters δ. Moreover, the number
of cases where the comparison of the ex-ante and ex-post assignments can be
considered as random is limited.

6.4.5 Testing the assignment's sensitivity with respect
to the improvement of o�ers

Up to now, our analyzes have been limited to a static context while,
during an auction, o�ers are regularly improved. In this section, we empiri-

12over estimating or under estimating
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e=10 % e=20 %
nb. crit. nb. niches R average H0 accepted R average HO accepted

2 2 0,9952 0,80% 0,9902 0,80%
2 3 0,9962 0,20% 0,9913 0,00%
3 2 0,9935 0,00% 0,998 0,00%
3 3 0,9952 0,20% 0,9971 0,00%
3 4 0,9582 0,60% 0,934 0,60%
4 2 0,9968 0,00% 0,9996 0,00%
4 3 0,999 0,00% 0,9936 0,00%
4 4 0,9316 1,60% 0,933 1,60%
4 5 0,9618 0,40% 0,9509 0,40%
5 2 0,9988 0,00% 1 0,00%
5 3 0,9961 0,00% 0,9986 0,00%
5 4 0,922 3,00% 0,9239 3,00%
5 5 0,9743 0,40% 0,9649 0,40%
5 6 0,935 1,60% 0,932 2,20%

Table 6.8: Sensitivity analysis for data sets with α = 1 and 5 observations

cally study the impact of such improvements on the assignment provided by
the hierarchical algorithm. The tests we have performed follow the scheme
described in algorithm 7. The related results are listed in tables 6.9 and 6.10.

Of course, there are many ways to model the improvements of o�ers. First
of all, not all the o�ers are improved simultaneously. In what follows, an o�er
b is improved (respectively not improved) with a probability p (respectively
1−p). In this case, the minimal improvement in order to dominate (at least)
another o�er is applied to b. Figure 6.9 illustrate such improvement. In
the following tests, two values of p have been considered; either p = 0.2 (on
average 1 bid per niche is improved) either p = 0.4 (on average two bids per
niche are improved).

Table 6.9 and 6.10 show that, on average, assignments do not vary sensibly
as a consequence of bid improvements. The column labeled R == 1 speci�es
the percentage of cases where the assignment is the same before and after the
improvements. On the other hand, as show on the last column, in particular
cases, they can lead to very di�erent assignments.
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Algorithm 7 Testing the assignment's sensitivity with to the improvement
of some o�ers

Inputs: n, q, p
Generate a test set TS(n, q)
Let P be the partition obtained when applying the hierarchical algorithm
on TS(n, q)
TS ′(n, q) = TS(n, q)
for b′ ∈ TS ′(n, q) do
if U < p then

Improve b'
end if

end for
Delete dominated o�ers from TS ′(n, q)
Let P ′ be the partition obtained when applying the hierarchical algorithm
on TS ′(n, q)
Compute A(P ′)
Compute Ar(P ) the assignment matrix related to P restricted to the ele-
ments still present in P ′.
Compute R = R(Ar(p), A(p′))

p = 0.2
nb. crit. nb. niches R average R == 1 min R

2 2 0,972 88,20% 0,6667
2 3 0,9761 79,60% 0,6727
3 2 0,993 97,00% 0,7143
3 3 0,9955 96,60% 0,7091
3 4 0,9891 89,60% 0,675
4 2 0,9955 99,60% 0,85713
4 3 0,9985 98,80% 0,7802
4 4 0,992 96,60% 0,4667
4 5 0,9948 98,00% 0,655
5 2 0,995 99,80% 0,75
5 3 0,996 99,80% 0,7818
5 4 0,9946 97,80% 0,7238
5 5 0,9958 98,40% 0,6147
5 6 0,9931 97,00% 0,6449

Table 6.9: Dynamic evolution (p = 0.2) for data sets with α = 1 and 5
observations
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Figure 6.9: Example of o�ers'improvement. Initial o�ers are represented by
dots.

6.4.6 Simultaneous versus distinct management of bid-
ding niches

The three examples presented in the introduction of this chapter have
showed that the bidding space is not always homogeneous. In particular cases
such as, for instance, in the transport problem, the presence of distinct bidding
areas was expected a priori 13. Therefore, one could have decided to organize
two distinct multicriteria auctions; one related to the transport by trucks and
the other related to the transport by barge, instead of a common multicriteria
auction. Afterwards, the best �nal o�er could be selected between the two
winning bids (related to these distinct auctions).

First of all, considering distinct auctions (instead of a common one) in-
creases the bidding complexity. Indeed, if the auctions are conducted se-
quentially, bidders have to continuously evaluate their winning probability
in subsequent auctions. Moreover the procurement is likely to last longer
than in a simultaneous multicriteria auction. On the other hand, if the auc-

13on the other hand, such assertion was not obvious for the two other examples
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p = 0.4
nb. crit. nb. niches I average I == 1 min R

2 2 0,9629 85,80% 0,6
2 3 0,9572 69,60% 0,6071
3 2 0,9885 95,20% 0,6
3 3 0,9882 90,20% 0,697
3 4 0,966 80,80% 0,6364
4 2 1 100,00% 1
4 3 0,9984 98,80% 0,7333
4 4 0,9824 93,80% 0,4546
4 5 0,9867 93,80% 0,5167
5 2 1 100,00% 1
5 3 0,998 99,00% 0,7436
5 4 0,9882 95,80% 0,4667
5 5 0,9967 98,80% 0,6491
5 6 0,9854 94,00% 0,615

Table 6.10: Dynamic evolution (p = 0.4) for data sets with α = 1 and 5
observations

tions are conducted in parallel, the bidders have to be present simultaneously
in several sessions.

Last but not least, a consequence of conducting several auctions instead
of a common one, is a competition decrease. In order to quantify this e�ect,
we have ran simulations the results of which are listed in tables 6.11 and
6.12. Basically, the competition decrease was measured in terms of the ratio
between the best utility among the best utilities obtained within each single
niches and the best utility for the global set of bids. In other words;

mini=1,...,k(minb∈Ci
U(b))

minb∈BU(b

Therefore, a traditional additive utility was used: U(b) =
∑q

j=1 wj ·bj (the
weights wj being randomly generated, at each simulation, using a uniform
distribution). For each combination of the number of criteria and the number
of niches, 5.000 iterations have been executed.
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Nb criteria Nb niches Same utility % Avg comp. decrease max comp.
(di�erent utilities)% decrease %

2 2 87,08 7,54 41,94
2 3 84,68 3,90 18,97
3 2 87,28 7,11 50,63
3 3 83,00 4,80 52,50
3 4 81,68 3,75 103,74
4 2 86,46 7,14 80,77
4 3 82,88 5,32 273,10
4 4 80,06 3,82 34,73
4 5 79,70 3,27 32,69
5 2 84,90 8,25 104,20
5 3 81,02 5,62 84,65
5 4 79,06 4,40 336,15
5 5 78,10 3,17 32,88
5 6 77,04 2,90 77,04

Table 6.11: Competition decrease - 5 observations per niche

Nb criteria Nb niches Same utility % Avg comp. decrease max comp.
(di�erent utilities)% decrease %

2 2 88,84 5,68 33,32
2 3 87,40 2,95 12,83
3 2 90,04 5,63 45,05
3 3 87,06 4,11 105,03
3 4 84,56 3,21 123,42
4 2 90,46 5,85 44,49
4 3 86,40 4,20 65,02
4 4 84,24 2,87 30,69
4 5 83,88 2,72 43,47
5 2 88,50 7,08 224,04
5 3 85,92 4,50 127,54
5 4 83,78 2,95 88,90
5 5 82,58 2,61 70,05
5 6 83,66 2,09 30,01

Table 6.12: Competition decrease - 7 observations per niche

6.5 Conclusion and directions for future research

In this chapter, we have motivated and formalized the notion of bidding
niche partitions. To our knowledge, this kind of problem is new and this181



chapter only constitutes a �rst attempt to explore it.

The model proposed still needs to be completed. More precisely, careful
attention should be paid to the evaluation of bidding niches partitions. In
this work we have considered the di�erence between maximum intra-set and
minimal extra-set competition indices. However, other aggregation opera-
tors could be considered and should be tested. Extensions of the present
model to characterize single bidding niches (without necessarily belonging
to a partition in bidding niches) and outlying bids constitute other research
directions.

As pointed out, the choice of using a hierarchical algorithm to �nd bid-
ding niches may have consequences on the partitions detection. Even if this
scheme remain simple, it becomes time consuming when the number of pareto
optimal bids increases. Other approaches could be tested and, for instance,
integrate the dynamical aspect of the problem. Since the structure of the
bidding space do not completely change from one instant to the other (see
section 6.4.5), the structure obtained at time k could be exploited to obtain
the one at time k + 1.

If �rst empirical tests seem to be encouraging, one have to keep in mind
that the generation of bidding niche partitions remain an open problem. The
good results may have been in�uenced by the data generation and the model
should be tested on more di�cult test sets.

Finally, the application of bidding niches partitions as a support system
to re�ne a Butter�y model has just been stressed in the beginning of this
chapter. A complete analysis still needs to be done.
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Conclusion

Multi-attribute auctions constitute an emerging research �eld. When I
engaged in this PhD thesis, in 2000, only a few contributions were related to
it. Nowadays, typing the words Multi-attribute auctions on Google leads to
plenty of results including academic and industrial papers, conference talks,
web applications, . . .

Being at the boundary between multicriteria analysis and auction theo-
ries, this �eld has attracted researchers with di�erent backgrounds and di�er-
ent research interests: from theoretical and experimental economics to web
application design.

From the multicriteria perspective, most of the approaches that have
been proposed are based on traditional tools such as linear or quasi-linear
multi-attribute utility functions, pricing out methods, . . . These models in-
duce complete relations when comparing pairs of o�ers.

In this work, our aim was to investigate the �eld by means of less res-
trictive tools, allowing partial relations for the pair-wise comparison of the
bids. If this distinctive feature has already been motivated in Decision Aid
(in the so-called French school of Multicriteria Decision Aid), it has, to our
knowledge, not yet been considered in an auction context.

This idea has led us to, �rst, analyze the �eld from an abstract level
and, then, to consider a particular model referred to as the butter�y model.
Finally, the notion of bidding niches partitions has been presented in order to
motivate the use of partial relations. The next section further completes the
description of our contribution and presents some of its limitations. Then,
some directions for future research are outlined.

183



Work summary and critics

The main contributions of the PhD thesis are presented in the second
part of this work. At �rst, we have studied the problem from an abstract
perspective. Starting with a general preference structure (P, I, J), we have
formalized the notion of multicriteria auction and related concepts. This
theoretical framework has allowed us to characterize the auction outcomes,
to outline potential extensions to Vickrey and Dutch multicriteria auctions
and to present restrictions to existing formats. Finally, questions related
to ex-post versus integrated bid selection and multicriteria auctions versus
RFQ have been addressed. A number of distinctive features and limitations
of the model have already been discussed in section 4.3.4. Among them, let
us remind the reader about issues concerning information revelation, com-
putational e�ciency, the consequences of the auction rules and the cognitive
complexity of the bidding process. In addition to these points, a major critic
that can be opposed to our approach is that it is nearly exclusively focused on
the buyer side: the bidding behavior of the sellers, referred to as the aggres-
sive bidding behavior, may appear too simple in practice (but was necessary
to be able to derive theoretical results).

In chapter 5, we have proposed a speci�c model to conduct multicriteria
auctions: the butter�y model. A distinctive feature of this model is that it
may be re�ned during the auction. Starting from a general model (that may
be equivalent to a dominance relation), the buyer is allowed to progressively
adjust it. A critic that may be opposed to the model is directly related to this
aspect. Since the model may evolve during the auction, a seller that enters
the auction has no guarantee that the buyer will not favor somebody else by
adjusting his model in a biased way14. Of course, the model itself restricts
the kind of preferences that can be correctly represented. Finally, in order
to insure some consistency in the winning bids sequence, the buyer is not
allowed to withdraw or modify a re�nement that has already been impacted
in the model. Therefore, each update restricts future evolutions. Once more,
let us remind the reader that a number of distinctive features have already
been discussed in section 5.2.4.

Finally, in chapter 6, we have formalized the notion of partition of the
bidding space into niches. Such a context o�ers a nice application for multi-
criteria auctions. If the model proposed and the related algorithm have been
tested on arti�cial data sets according to di�erent scenarios, the good results

14let us note that in other models discount rates are sometimes applied to speci�c bidders
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that have been obtained may be criticized. Indeed, due to the intrinsic di�-
culty of building test sets characterized by a given optimal allocation, those
that have been generated may appear to be too ideal to test the algorithm.

Directions for future research

According to us, two main contributions will substantially complete the
present work. First of all, the development of a web-based interface sup-
porting butter�y auctions will allow us to illustrate and analyze their use.
Thanks to this tool, practical questions related to the information revelation
and to the cognitive complexity of the bidding process could be addressed
through experiments.

Secondly, if the link between the use of partial relations for the pair-wise
comparison of o�ers (in particular the use of the butter�y model) and bidding
niches has been outlined, it still requires a thorough analysis. Two aspects
have essentially to be considered. On the one hand, the butter�y model could
be used in order to maintain at least one winning o�er for every niches. Of
course, this condition further constraints the evolution of the model. On
the other hand, as already stressed, the presence of bidding niches can be
exploited to support the buyer for the re�nement of the butter�y model
(bids belonging to the same niche being compared �rst). Of course, due to
the dynamics of the bidding process, the structure of bidding niches itself is
likely to evolve. Managing this aspect adds a further di�culty.

Additionally, a number of speci�c points that have been outlined in this
thesis deserve more attention. Among them, we can cite:

• concerning the theoretical framework: the consideration of more elabo-
rate bidding behaviors for the sellers, their impact on the theoretical
results presented in chapter 4 and a thorough analysis of Vickrey and
Dutch multicriteria auctions.

• concerning the butter�y model: the testing of the proposed multicrite-
ria bidding support tool, the analysis of the convergence property and
the robustness of re�nements proposed by the buyer.

• �nally, concerning the bidding niches: other stopping rules for the hi-
erarchical algorithm may be considered and the way the arti�cial data
sets on which the tests have been performed can be improved.
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Among the extensions that can be envisaged, multicriteria combinato-
rial auctions certainly constitute a fruitful research direction. The link be-
tween multi-attribute auctions and combinatorial auctions, presented in sec-
tion 4.3.4, has already put a bridge between these two �elds. Additionally,
the example of the advertisement problem presented in section 6.1, has illus-
trated a �rst interesting link with bidding niches.

To conclude, let us stress that some research questions go beyond the
scope of multi-attribute auctions. First of all, the problem of detecting bid-
ding niches partitions can be viewed as a particular example of multicriteria
clustering problems and, therefore, o�er new challenges. Finally, the auction
perspective brings some interest to the potential dynamic aspect of classic
MCDA problem such as the choice problematic.
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Chapter 7

Rand index testing

Algorithm 8 Estimation of the 95 % percentile Rand index between two
random partitions
for n = 2 to 100 do

max_nb_niches=min(n,6)
for iter=1 to 5000 do

nb1 = 1 + brand ·max_nb_nichesc
nb2 = 1 + brand ·max_nb_nichesc
v1 = (1, 2, . . . , n)
v2 = (1, 2, . . . , n)
Randomly permute v1

Randomly permute v2

Randomly split v1 into nb1 non-empty arrays vj
1 (j = 1, . . . , nb1)

Partition P1 contains classes Cj (constituted by the elements of array
vj

1)
Randomly split v2 into nb2 arrays vk

2 (k = 1, . . . , nb2)
Partition P2 contains classes Ck (constituted by the elements of array
vk

2)
Compute the rand index R(P1, P2)

end for
Compute 95 % percentile Rand index between two partitions of n ele-
ments

end for
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nb obs R95%

2 1
3 1
4 1
5 1
6 0.93333
7 0.90476
8 0.82143
9 0.80556
10 0.77778
11 0.76364
12 0.74242
13 0.73077
14 0.72527
15 0.71429
16 0.70833
17 0.69853
18 0.69281
19 0.68421
20 0.67895
21 0.67619
22 0.67532
23 0.67194
24 0.66667
25 0.66667
26 0.66462
27 0.65812
28 0.66138
29 0.65764
30 0.65057
31 0.65376
32 0.64919
33 0.65152
34 0.64706
35 0.64622

nb obs R95%

36 0.64921
37 0.64715
38 0.64296
39 0.64507
40 0.64231
41 0.64024
42 0.64228
43 0.63898
44 0.64165
45 0.63939
46 0.63623
47 0.63969
48 0.63697
49 0.6352
50 0.63918
51 0.63216
52 0.63499
53 0.63353
54 0.63208
55 0.63232
56 0.63442
57 0.63221
58 0.63279
59 0.63296
60 0.63107
61 0.62923
62 0.63485
63 0.62724
64 0.63244
65 0.62957
66 0.62844
67 0.63184
68 0.6306
69 0.63171

nb obs R95%

70 0.62733
71 0.62938
72 0.6295
73 0.63033
74 0.62736
75 0.62739
76 0.62702
77 0.62697
78 0.62737
79 0.62723
80 0.6269
81 0.62932
82 0.62632
83 0.6293
84 0.62823
85 0.62815
86 0.62763
87 0.6231
88 0.62591
89 0.62513
90 0.62559
91 0.62576
92 0.62434
93 0.62564
94 0.62617
95 0.62486
96 0.62215
97 0.62736
98 0.62434
99 0.62307
100 0.62354

Table 7.1: Estimated 95% percentile Rand index between two random par-
titions
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