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Abstract

This thesis focusses on combinatorial auctions. These are auctions where

multiple items are for sale simultaneously to a set of buyers. Furthermore,

in a combinatorial auction, a buyer is allowed to place bids on subsets of

the available items. When multiple items are considered, it is often the case

that the value of a set of items is higher or lower than the sum of the values

of the individual items. These so-called complementarity or substitution-

effects, respectively, may be bidder specific and of considerable importance.

A combinatorial auction offers the bidders a way to express these effects in

their bids, which may also benefit the auctioneer. This thesis mainly deals

with the so-called winner determination problem, which consists of deciding

which bids to accept and which to turn down, in order to maximize the

total winning bid value. Each winning bidder thus pays his bid for the set

of items he wins. In general, however, this problem is NP -hard and difficult

to approximate. Numerous attempts to cope with this computational com-

plexity can be found in literature. One approach is to impose limitations on

what a bidder can bid for a set. This thesis can be divided into two parts,

each dealing with a special kind of combinatorial auction, in which bidder’s

preferences are restricted in some way.

The first part of this thesis deals with the so-called total quantity discount

auction. In this auction, the bidders are sellers and a bid corresponds to an

offer to sell a set of items at some price. On behalf of a buyer, the auction-

eer’s task is to accept bids such that given amounts of different items can be
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purchased at a minimal total cost. Furthermore, with his bids, each bidder

grants a discount that depends on the total amount of units the buyer pur-

chases from that bidder. More precisely, with each bid, a volume interval

is specified in which the total amount of purchased items should lie if this

bid is to be accepted. Furthermore, each bid has a unit price for each item.

Obviously, per bidder, a bid with a higher volume interval should have lower

prices, in order to result in a discount.

One theoretical result is that the winner determination problem of this auc-

tion is NP -hard. This result remains valid for some variants of this problem.

Even more, our results show that the existence of a constant-factor approx-

imation algorithm would imply P = NP . Another theoretical result is that

the LP-relaxation of a formulation for this problem can be solved by solving

a min-cost flow problem. We use this property to develop a branch-and-

bound algorithm that solves a min-cost flow problem in every node of its

search tree. This algorithm can also be used in four variants of the total

quantity discount auction. In a first variant, the market share that one or

more suppliers can obtain is constrained. Another variant allows the buyer

to procure more units than strictly needed, in order to reach a lower total

cost. In a third variant, the number of winning suppliers is limited, both in

general and per item. Finally, we investigate a multi-period variant, where

the buyer not only needs to decide what items to buy from what supplier,

but also when to do this, while considering the inventory costs.

Our empirical results are based on computational experiments on instances

involving up to 50 suppliers and 100 items. We compare the performance of

the min-cost flow based algorithm with two other algorithms: an LP-based

branch-and-bound algorithm and a branch-and-cut algorithm. It turns out

that even the large instances of the basic problem are solved to optimality

within a limited amount of time. We find that what algorithm performs

best depends on the variant and the size of the problem.
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To conclude the first part, we study so-called exclusionary side constraints.

In the total quantity discount auction, this type of constraint enforces that

only one bid per supplier can be the winning bid. We try to gain insight

in how these constraints add to the complexity by studying them in the

context of the transportation problem. In this context, an exclusionary side

constraint on a pair of supply nodes imposes that at most one of these nodes

can be used to supply a demand node. Three special cases of the transporta-

tion problem with exclusionary side constraints are considered, of which one

particularly resembles the winner determination problem of the total quan-

tity discount auction. We settle the computational complexity for all cases

considered.

In the second part of this thesis, we study the so-called matrix bid auction.

This auction limits a bidder in expressing his preferences, in the sense that

the extra value an item adds to a bid on a set is determined only by the

number of items in this set outranking this item, according to an ordering of

the items expressed by the bidder. We show how it can be verified whether

a matrix bid satisfies economic properties as free disposal, complement free-

ness, decreasing marginal valuations, and the gross substitutes property.

Moreover, we provide a procedure to check whether a given collection of

bids can be represented by a matrix bid. If this is not the case, we present

a method to approximate these bids with a matrix bid.

We also show that the winner determination problem of the matrix bid auc-

tion is NP -hard even for the special case where all bidders have an identical

ranking of the items. We present two formulations for the winner determina-

tion problem, and prove that their LP-relaxations are equally strong. One

formulation is used to develop two branch-and-price algorithms for which

the pricing problem is a shortest path problem. These algorithms are tested

on instances with up to 50 items and 100 bidders. All instances can be solved

within a reasonable amount of time, and the branch-and-price algorithms

withstand the comparison with a state-of-the-art branch-and-cut approach.
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Samenvatting

Dit proefschrift richt zich op combinatorische veilingen. Een combinatorische

veiling is een veiling waar meerdere goederen tegelijk geveild worden, en waar

het de bieders is toegestaan om biedingen uit te brengen op willekeurige

deelverzamelingen van de aangeboden goederen. Wanneer meerdere goede-

ren in beschouwing genomen worden, is het vaak het geval dat de waarde-

ring voor een verzameling van items hoger of lager is dan de som van de

waarderingen voor de individuele items. Dit noemt men respectievelijk een

complementariteits- of een substitutie-effect. Deze soms aanzienlijke effecten

kunnen verschillen van bieder tot bieder. Een combinatorische veiling laat

bieders toe deze effecten in hun biedingen uit te drukken, wat ook de vei-

lingmeester ten goede kan komen. Dit proefschrift is vooral gericht op het

zogenaamde winnaar determinatie probleem, wat erin bestaat te beslissen

welke biedingen aanvaard en welke afgewezen moeten worden zodat de to-

tale waarde van winnende biedingen gemaximaliseerd wordt. Elke winnende

bieder betaalt dan hetgeen hij geboden heeft voor de goederen die hij wint.

In het algemeen is dit probleem echter NP -lastig en is de optimale oplos-

sing ook moeilijk te benaderen. In de literatuur vindt men vele pogingen

om met die complexiteit om te gaan. Eén benadering is om beperkingen op

te leggen omtrent hetgeen een bieder kan bieden. Dit proefschrift kan wor-

den onderverdeeld in twee delen, waarin telkens een speciaal geval van een

combinatorisch veiling behandeld wordt waar de voorkeuren van de bieders

telkens op een bepaalde manier gelimiteerd worden.
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Het eerste deel van dit proefschrift handelt over de zogenaamde veiling met

totale hoeveelheidskorting. In deze veiling zijn de bieders verkopers en komt

een bieding overeen met een aanbod om een verzameling van goederen te

verkopen tegen een zekere prijs. In opdracht van een koper is het dan de

taak van de veilingmeester om een aantal biedingen te aanvaarden zodat

opgelegde hoeveelheden van die goederen gekocht kunnen worden tegen een

minimale totale kost. Verder verleent elke bieder in zijn biedingen een kor-

ting die afhangt van het totale aantal goederen dat de koper aankoopt bij

die bieder. Meer specifiek wordt er bij elk bod een volume interval gespeci-

ficeerd waarin de totale hoeveelheid goederen (die bij die bieder gekocht

wordt) moet liggen, vooraleer het bod aanvaard kan worden. Verder heeft

elk bod ook een eenheidsprijs voor elk goed dat door de betreffende bieder

wordt aangeboden. Om tot een korting te komen is het dan natuurlijk de

bedoeling dat bieders hun prijzen laten zakken in biedingen met een hoger

volume interval.

Een theoretisch resultaat bestaat erin dat het winnaar determinatie pro-

bleem van deze veiling NP -lastig is. Dit resultaat blijft geldig voor een aan-

tal varianten van dit probleem. Meer zelfs, onze resultaten tonen ook aan

dat het bestaan van een algoritme dat een benadering binnen een constante

factor garandeert zou impliceren dat P = NP . Een ander theoretisch resul-

taat is dat de LP-relaxatie van een formulering voor dit probleem opgelost

kan worden door een minimale kosten stroom probleem op te lossen. We

gebruiken dit resultaat om een branch-and-bound (vertak en begrens) algo-

ritme te ontwikkelen dat een minimale kosten stroom probleem oplost in elke

knoop van de corresponderende zoekboom. Dit algoritme kan ook gebruikt

worden voor vier varianten van de veiling met totale hoeveelheidskorting. In

een eerste variant is het marktaandeel dat één of meerdere bieders kunnen

behalen beperkt. Een andere variant laat toe dat de koper meer goederen

koopt dat oorspronkelijk voorzien, om op die manier een lagere totale kost

te bereiken. In een derde variant wordt het aantal winnende bieders geli-

miteerd, zowel in het algemeen als per goed. Tenslotte bestuderen we ook
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een variant die over meerdere perioden loopt en waarin de koper niet alleen

moet beslissen welke items hij bij welke bieder koopt, maar ook wanneer hij

dit moet doen, rekening houdend met voorraadkosten.

Onze empirische resultaten zijn gebaseerd op experimenten op instanties

met tot 50 bieders en 100 goederen. We vergelijken de prestaties van het

algoritme dat gebaseerd is op het minimale kosten stroom probleem met

twee andere algoritmes: een branch-and-bound algoritme gebaseerd op li-

neair programmeren en een branch-and-cut (vertak en snij) algoritme. Het

blijkt dat zelfs de grote instanties van de basisversie van het probleem op-

timaal opgelost kunnen worden in een beperkte tijd. Het is bovendien zo

dat het beste algoritme in termen van rekentijd afhangt van de variant en

de probleemgrootte.

Tot slot van het eerste deel bestuderen we de zogenaamde uitsluitings-

beperkingen. In de veiling met totale hoeveelheidskorting dwingt dit type

beperking af dat er ten hoogste één bod per bieder een winning bod kan

zijn. We proberen inzicht te krijgen in hoe deze beperkingen bijdragen tot

de complexiteit door ze te bestuderen in het kader van een transport pro-

bleem. In deze context impliceert een uitsluitingsbeperking op een paar van

aanbodknopen dat ten hoogste één van deze knopen gebruikt kan worden

om een vraagknoop te bevoorraden. Drie speciale gevallen van het trans-

portprobleem met uitsluitingsbeperkingen worden beschouwd, waarvan er

één in het bijzonder goed lijkt op het winnaar determinatie probleem van

de veiling met totale hoeveelheidskorting. We bepalen de complexiteit van

elk van deze speciale gevallen.

In het tweede deel van dit proefschrift bestuderen we de zogenaamde ma-

trix bod veiling. Deze veiling beperkt de bieder in het uitdrukken van zijn

voorkeuren in die zin dat de waarde dat een item toevoegt aan een bod

op een verzameling van goederen enkel mag afhangen van het aantal hoger

gerangschikte goederen in die verzameling. Die rangschikking van de goede-
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ren is door de bieder vastgelegd, en kan dus variëren van bieder tot bieder.

We tonen aan hoe kan worden nagegaan of een matrix bod voldoet aan

economische eigenschappen zoals free disposal, complement freeness, afne-

mende marginale waarderingen, en de bruto substituten eigenschap. Verder

voorzien we een procedure om na te gaan of een gegeven verzameling biedin-

gen kan voorgesteld worden door een matrix bod. Voor het geval waarin dat

niet kan, presenteren we een methode om deze biedingen te benaderen via

een matrix bod.

We tonen ook aan dat het winnaar determinatie probleem van de matrix bod

veiling nog steeds NP -lastig is in het speciale geval waar elke bieder dezelfde

rangschikking van de goederen gebruikt. We presenteren twee formuleringen

voor het winnaar determinatie probleem, en bewijzen dat hun LP-relaxaties

even sterk zijn. Eén formulering wordt gebruikt om twee branch-and-price

(vertak en prijs) algoritmes te ontwikkelen waarvan het pricing probleem

een kortste pad probleem is. Deze algoritmes worden getest op instanties

met tot 50 goederen en 100 bieders. Alle instanties worden opgelost in een

redelijke tijd, en de branch-and-price algoritmes doorstaan de vergelijking

met een actuele branch-and-cut aanpak.
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Chapter 1

Introduction

A combinatorial auction is an auction where multiple items are for sale

simultaneously to a set of buyers. In a combinatorial auction a buyer is

allowed to place bids on subsets of the items. These subsets are sometimes

called bundles. The auctioneer decides – after one or more rounds or after

a certain amount of time depending upon the design – to accept some of

the bids and to allocate the items accordingly to the bidders. This thesis

mainly deals with this decision: which bids to accept, in order to optimize

a given objective. We investigate how this problem for particular settings

can be solved.

This introductory chapter is organized in three sections. Section 1.1 provides

a general introduction to the realm of combinatorial auctions. In section 1.2,

we focus on one of the most challenging problems in this field, namely the

winner determination problem. Finally, in section 1.3, we present an outline

of the remainder of this thesis.
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2 1.1. Combinatorial auctions

1.1 Combinatorial auctions

The main advantage of a combinatorial auction is that it allows a bidder

to express his1 preferences to a greater extent. Indeed, it may occur that

a bidder values a set of items higher than the sum of his valuations for the

individual items of this set. If this is the case, we say that these items are

complements to this bidder; if the converse is true we say these items are

substitutes. Notice that these complementarity or substitution-effects may

be bidder-specific. In a traditional auction, where items are auctioned se-

quentially, the presence of complementarity or substitution-effects can be

problematic for the bidder. Suppose for instance that a bidder is willing to

pay a price of �10 for items A and B together. The items individually are

worth far less to this bidder, say �2 per item. Suppose this bidder wins

the auction for item A, paying �4. The auction for item B however turns

out unfavorable, since some other bidder is willing to pay �7, which is more

than what our bidder had in mind. Eventually, our bidder ends up paying

�4 for item A, which he valued at no more than �2. This problem is known

as the exposure problem. This problem could also have repercussions for

the auctioneer, since in future auctions, our bidder will probably drop out

earlier in a similar situation, to limit his loss. Thus, it is important for the

auctioneer not to neglect these effects. A combinatorial auction offers a way

to make use of complementarity or substitution-effects.

The popularity of combinatorial auctions (and corresponding research) has

increased in recent years. As a result, there are many examples where com-

binatorial auctions prove to be a successful way to market items. The

first steps toward implementing a combinatorial auction in practice were

taken by the Federal Communications Commission (FCC) when auctioning

U.S. spectrum rights. A spectrum right is the right to use a specific band-

width of the electromagnetic spectrum for wireless communication devices

(cell phones, pagers, etc.). Obviously, sets of spectrum rights can be seen

1his can be replaced by her (and he by she)
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as complements, for instance if they cover geographically adjacent regions.

An overview of the considerations in designing the FCC spectrum auctions

over the years can be found in Cramton (2002). The airline sector also of-

fers possibilities for combinatorial auctions: landing slots (Ball, Donohue &

Hoffman 2005, Rassenti, Smith & Bulfin 1982), seats (Eso 2001) and flights

(Bleischwitz & Kliewer 2005). We also find applications of combinatorial

auctions in truckload transportation (Caplice & Sheffi 2005, Ledyard, Ol-

son, Porter, Swanson & Torma 2002, Sheffi 2004) and allocating bus routes

(Cantillon & Pesendorfer 2005). We conclude this non-exhaustive overview

by mentioning Epstein, Henŕıquez, Catalán, Weintraub & Mart́ınez (2002),

who use a combinatorial auction to assign catering contracts for meals in

Chilean schools.

Years of research have produced a long list of combinatorial auction mech-

anisms, containing e.g. the ascending proxy auction (Ausubel & Milgrom

2002), the primal-dual auction (de Vries, Schummer & Vohra in press),

iBundle (Parkes & Ungar 2000), PAUSE (Kelly & Steinberg 2000), and the

clock-proxy auction (Ausubel & Milgrom 2005). The most famous combi-

natorial auction is undoubtedly the Vickrey-Clarke-Groves (VCG) auction,

which is a generalization of the Vickrey auction to a setting with multiple

items. In the Vickrey auction, bidders submit a sealed bid for the item that

is being auctioned. The highest bidder wins the item, and pays the amount

of the second highest bid. This setting gives each bidder the incentive to bid

his true valuation of the item (Vickrey 1961). In the VCG auction, bidders

must report a bid function and items are subsequently allocated in order

to maximize the total winning bid value. Each winning bidder then pays

the opportunity cost of his participation in the auction: the maximal total

winning bid value if this bidder had not participated, minus the actual total

winning bid value with his winning bid subtracted out. The VCG auction

also has the property that each bidder has the incentive to bid his true val-

uation of the items (see Ausubel & Milgrom (2005)).
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Bichler, Kalagnanam, Lee & Lee (2002) outline a classification of allocation

problems based on the number of participants and the type of traded goods.

Along the former criterion, these authors discern settings with one buyer

and one seller (bilateral allocation problem), multiple buyers and sellers

(N -bilateral allocation problem), and other involved parties, beside buy-

ers and sellers (multilateral allocation problem). The latter criterion leads

to a classification in three dimensions: the number of different items in

the auction (single-item versus multi-item), the quantity for each item in

the auction (single-unit versus multi-unit) and the negotiable qualitative at-

tributes (single-attribute versus multi-attribute). Bichler et al. (2002) define

combinatorial auctions as multi-item auctions. Furthermore, we can make

a distinction between forward and reverse auctions. While forward auctions

involve a single seller and multiple buyers, a reverse auction (or procurement

auction) involves multiple sellers and one buyer. As a typical example, this

buyer wants a variety of tasks to be carried out, while sellers are in principle

willing to perform subsets of tasks. In such a setting a bid for a subset of

tasks is an offer to fulfill that subset of tasks for the stated price. The goal

of the auctioneer is to have all tasks carried out at minimal cost.

It will be clear that – compared to a traditional auction where only one item

at a time is being auctioned – combinatorial auctions bring about some ex-

tra problems. To begin with, there is the question of how bids should be

expressed. There is a variety of bidding languages available, and a trade-off

between expressiveness and simplicity is to be made here (see e.g. Nisan

(2005). Next, the bids need to be communicated to the auctioneer. If each

bidder of the n bidders expresses his preferences on all subsets of the m

items that are being auctioned (supposing that the bidders would be willing

to expose their private information like this), this results in O(n2m) pieces

of information to be submitted to the auctioneer. Bid submission and the

relation between the extensiveness of this communication and the allocation

are studied in e.g. Nisan & Segal (2006). Further, the problem to decide

which bids to accept and which bids to turn down is known as the winner
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determination problem. This allocation decision depends of course on the

auctioneer’s objective. In this thesis we assume that the objective is to max-

imize the total value of the winning bids. Each winning bidder thus pays

his bid for the set of items he wins. Notice that in general, the payment of

a bidder need not be equal to his bid. We refer for instance to the Vickrey-

Clarke-Groves auction. Since the winner determination problem is the main

focus of this thesis, a more thorough introduction to this problem is given in

section 1.2. Finally, many other auction design questions (how many rounds

will be held? what feedback will be given to the bidder? etc.) and incentive

issues (will bidders bid their actual valuation? can free rider problems be

avoided? etc.) are worth considering.

In this work, we use the private valuation model, introduced by Vickrey

(1961). In this model, each bidder can express his valuation for any subset

of the items in terms of “money”. Moreover, these values do not depend

on the private information of other bidders. Furthermore, we assume that

there are no externalities present in the valuation of a bidder. This means

that the valuation of a bidder for a set depends only on the items in that

set. Thus, a bidder does not care to which particular bidder the other items

would be allocated. We also assume that bids are normalized, in the sense

that any bidder’s bid on the empty set is zero.

This thesis relies heavily on important results achieved in various domains.

However, these results are often not discussed in great detail in this text.

Therefore, we refer to Garey & Johnson (1979) and Ausiello, Crescenzi,

Gambosi, Kann, Marchetti-Spaccamela & Protasi (1999) for an excellent

overview on fundamental concepts and findings in complexity theory. Nat-

urally, this work is also built on decades of research on auctions in general.

A fine introduction to auction theory can be found in Klemperer (2000) and

Milgrom (2004). The most fascinating results in operations research and

combinatorial optimization can be found in Winston (2004) and Nemhauser

& Wolsey (1988). Finally, for a thorough discussion on combinatorial auc-
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tions, integrating contributions on many interesting aspects from both the-

ory and practice, we refer to the book edited by Cramton, Steinberg &

Shoham (2005).

1.2 The winner determination problem

In a combinatorial auction in its most general form, bidders can bid what-

ever amount they please on any subset of items in which they are interested.

The problem of deciding which bidders should get what items in order to

maximize the total winning bid value is called the winner determination

problem. Furthermore, we assume that at most one bid per bidder can be

accepted. Indeed, a bidder’s bid for the whole set of items he wins might

well be smaller than the sum of bids for the underlying subsets. Suppose for

instance a bidder j expresses the following bids: bj({1}) = 3, bj({2}) = 2,

and bj({1, 2}) = 4. Accepting both the bid on item 1 and the bid on item

2 leads to a combined bid of 2 + 3 = 5, whereas this bidder intended to bid

no more than 4 for the combination of items 1 and 2.

The following formulation is most commonly used to represent this problem

(for a single-unit setting). It makes use of the following notation, which we

use throughout this thesis. We use B to represent the set of bidders indexed

by j and G for the set of items indexed by i. We use bj(S) to denote the bid

by bidder j on the set of items S ∈ Ωj ⊆ 2G, where Ωj is the set of sets in

which bidder j is interested. The binary variable y(S, j) indicates whether

bidder j wins the set S (y(S, j) = 1), or not (otherwise).

maximize

∑

j∈B

∑

S∈Ωj

bj(S)y(S, j) (1.1)
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subject to

∑

S∈Ωj :S⊇{i}

∑

j∈B

y(S, j) 6 1 ∀i ∈ G (1.2)

∑

S∈Ωj

y(S, j) 6 1 ∀j ∈ B (1.3)

y(S, j) ∈ {0, 1} ∀S ∈ Ωj ,∀j ∈ B (1.4)

The first set of constraints (1.2) enforces that no item can be auctioned more

than once. The second set of constraints (1.3) ensures that there is at most

one winning bid per bidder. It is pointed out by de Vries & Vohra (2003)

that the latter set of constraints can be dropped, if the bid functions are

superadditive for all bidders j (i.e. bj(S)+bj(T ) 6 bj(S∪T ), with S, T ∈ Ωj).

The winner determination problem is shown to be NP -hard, even if every

bidder bids only on subsets of size 2 and all bids have a value equal to

1 (Van Hoesel & Müller 2001). This result is based on a reduction from

the three-dimensional matching problem (see Spieksma (1999)). Moreover,

Sandholm (2002) shows that the winner determination problem cannot be

approximated within a ratio of max(Kε−1,mε−1/2) in polynomial time for

any fixed ε > 0 (unless P=ZPP ), where K is the number of subsets of G

on which a bid has been made, and m is the number of items. This result

holds even if every item occurs in at most two bids and all prices are equal

to 1.

Numerous attempts to cope with this computational complexity can be

found in literature. From the auctioneer’s point of view, these attempts

can be subdivided in three categories, of which we give a short overview

hereunder. A first group of attempts (called decentralized approaches) boils

down to shifting the burden of solving the winner determination problem

(at least partially) to the bidder. In this approach, each time a new bid
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is expressed, the bidder should also indicate how this bid can lead to an

improved allocation. Another way to tackle the complexity consists of re-

stricting the subsets on which bids can be placed. In a third approach, bids

can be submitted on all possible subsets, but there are restrictions on what

a bidder can bid for these sets. The distinction between restricting the sub-

sets and restricting the preferences is also used in Müller (2005).

1.2.1 Decentralized approaches

In the decentralized approaches, there is no auctioneer who collects the bids

from all bidders and then decides which bidder is to get what items. Instead,

the auctioneer merely proposes an initial allocation, leaving it up to the bid-

ders to come up with a new allocation that generates a higher total winning

bid value (and is obviously also more satisfying for the bidder proposing this

allocation).

In the Adaptive User Selection Mechanism (AUSM, see Banks, Ledyard &

Porter (1989)) a bidder can submit a bid on a subset, if that bid increases the

total winning bid value over the bids it drives out of the current allocation.

To this end, the bidder is allowed to incorporate one or more unsuccessful

bids from other bidders into his own bid. This is done iteratively, until an

allocation is found for which no bidder expresses a higher bid within some

amount of time since the last bid was made.

Kelly & Steinberg (2000) present the Progressive Adaptive User Selection

Environment (PAUSE) procedure, which consists of two multi-round stages.

In the first stage, the items are auctioned individually in simultaneous auc-

tions over a number of rounds. In each round of the second stage, each

bidder submits an allocation of all items, incorporating bids of other bid-

ders if necessary. Thus, such a bid suggests not only which items are desired

by the submitting bidder, but also to which bidder(s) the other items can
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be allocated. In both stages, there are requirements on the improvement a

new bid creates and there is an activity rule for the bidders.

In a decentralized approach, the auctioneer only needs to check the valid-

ity of each bid, which is a computationally tractable problem. However,

the burden of complexity has been shifted to the bidder, who now faces

the problem of deciding whether he can create a bid that beats the current

allocation. Although this problem may still be NP -complete, the idea is

that it is easier to solve in practice than the general winner determination

problem, because a bidder is often only interested in a limited number of

items. Additionally, the bidder no longer needs to reveal his entire valuation

function to the auctioneer, which is often beneficial for privacy reasons.

1.2.2 Restricted-subset approaches

Unlike the decentralized approaches, the restricted-subset approaches stick

to a combinatorial auction where the auctioneer is solely responsible for

finding an optimal allocation. In order to reduce the complexity of the win-

ner determination problem, bids can be submitted only on a limited set of

combinations of items.

Rothkopf, Pekeç & Harstad (1998) found that if the family of subsets on

which a bidder can bid is limited to hierarchical subsets, meaning that ev-

ery two subsets are disjoint or one is a subset of the other, that then the

winner determination problem can be solved in polynomial time. The prob-

lem of finding an optimal allocation for a combinatorial auction where a

linear order exists among the items and bidders can only bid on subsets of

consecutive items, is also shown to be polynomially solvable. If the first

item in the ordering is considered the successor of the last (i.e. a circular

order), then the winner determination problem remains solvable in polyno-

mial time. Furthermore, Rothkopf et al. (1998) prove that a combinatorial
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auction where bidders can bid on subsets of a cardinality of at most two

has a polynomially solvable winner determination problem. However, the

results of Rothkopf et al. (1998) assume a combinatorial auction where a

bidder is allowed to win multiple subsets.

Nisan (2000) elaborates on some of the results of Rothkopf et al. (1998)

by stating explicitly that the LP-relaxation of a set packing formulation

(i.e. (1.1)-(1.4), without constraints (1.3)) results in an integral solution

for the special cases with hierarchical subsets and linearly ordered items.

These results follow from the fact that a set packing formulation with a to-

tally unimodular constraint matrix defines a polyhedron where all extreme

points are integral (see Nemhauser & Wolsey (1988)).

Tennenholtz (2002) presents a combinatorial network auction, which he

proves is computationally tractable. In this auction, the items are assumed

to be arranged in a tree, where every node corresponds to an item. The idea

is that bids can be submitted only on subsets of items that form a path in

the network. When the underlying tree is a path, this auction reduces to

the combinatorial auction with linearly ordered items (see Rothkopf et al.

(1998)). If the items are structured in a directed acyclic graph and the bids

are allowed on any directed subtree, the winner determination problem al-

ready becomes NP -hard again (Sandholm 2002).

In the above approaches, the auctioneer decides in advance on which combi-

nations the bidders are allowed to bid. While bidders may sometimes agree

on what combinations are interesting from an economical point of view, it

may also be the case that some bidders experience synergies between some

kind of items, while others have totally different kinds of synergies. Obvi-

ously, in general this approach can lead to inefficiencies, because bidders may

not be allowed to bid on the combinations they want. The task of deciding

to which subsets the auction is restricted can therefore be tricky for the auc-

tioneer, especially given the fact that the appearance of fairness should be
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upheld. Park & Rothkopf (2005) try to avoid this difficulty by proposing an

auction in which the bidders themselves determine the allowable combina-

tions. While in principle, bids on all subsets are allowed, the bidders are to

assign priorities to various combinations and then may use as many of these

(from the highest priority first) as is computationally manageable. Although

limiting the number of bids a bidder can express does not make the winner

determination problem polynomially solvable (see Rothkopf et al. (1998)),

it does increase the size of problems that can be solved within a reasonable

amount of time.

Günlük, Ladányi & de Vries (2005) describe an auction that is comparable to

the auction of Park & Rothkopf (2005), since in each round, the bidders can

submit bids on any single item and on a limited number of combinations of

items, which they can compose themselves. For each bidder, a pair of bids

from a different round, as well as a pair of bids from a same round that

overlap, cannot both be awarded. The authors present a branch-and-price

algorithm based on a multi-unit adaptation of formulation (1.1)-(1.4). In

their approach, the pricing problem is a vertex packing problem. Although

in general this problem is NP -hard, the pricing problem can be solved in

a reasonable amount of time for the FCC spectrum auctions. This particu-

lar auction is a simultaneous ascending auction with package bidding, where

bidders compete for licenses for spectrum use (e.g. radio, wireless telephone,

etc.). Since the bidders are not allowed to submit too many package bids

in any round, the pricing problem remains computationally manageable, al-

lowing the branch-and-price algorithm to solve instances with up to 99 items

within 10 minutes.

1.2.3 Restricted-preference approaches

Instead of limiting the sets for which a bid can be placed, a restricted-

preference method imposes limitations to what a bidder is allowed to bid
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on a bundle. A common restriction on a bidder’s preferences is that they

should be non-decreasing, i.e. the valuation for a set S1 can not be higher

than the valuation for a set S2 if S1 is a subset of S2. Another restriction

can be that the preferences should be supermodular. This means that the

sum of valuations for two sets should not be higher than the sum of the val-

uation of the union of both sets and the valuation of the intersection of both

sets. If there are only two bid functions a bidder can have, both of them

non-decreasing, integer valued and supermodular, then de Vries & Vohra

(2003) point out that the winner determination problem of this auction can

be solved in polynomial time. The authors also mention that if each bidder’s

bid function satisfies the gross substitutes property (see Kelso & Crawford

(1982) and section 6.3.4), the LP-relaxation of (1.1)-(1.4) provides an inte-

gral optimal solution.

If a bidder has a sequence of valuations p1 ≥ p2 ≥ ... ≥ pm, where pj

specifies his valuation for the j-th item he wins, regardless of what that

item might be, he has a so-called downward sloping symmetric bid function

(Nisan 2000). Notice that this means that the bidder values all items as if

they are identical and the bid is therefore only determined by the number

of items in the set. Nisan (2000) proves that if all bidders have a bid func-

tion of this kind, the LP-relaxation of (1.1)-(1.4), without constraints (1.3)

yields an integral optimal solution. Notice that this assumes that bidders

are allowed to win multiple bids. A more general structure is captured in so-

called matrix bids with order, which are intensively investigated in chapter 6.

Tennenholtz (2002) presents a quantity-constrained auction where all bids

consist of a series of desired items, each with a price the bidder is willing to

pay for this item, and a maximal number of items that he wishes to win. No-

tice that this is a subadditive valuation function, since a bidder will not pay

extra for anything exceeding his quantity limit. Tennenholtz (2002) shows

that the winner determination problem for this auction is computationally

tractable. Furthermore, this author presents a quantity-constrained auction
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with binary combinatorial bundles and an almost-additive auction, which

he proves also to be computationally tractable.

1.3 Outline of the thesis

The remainder of this thesis consists of two parts, in each of which we inves-

tigate a combinatorial auction in which bidder’s preferences are restricted

in some way. In chapters 2 to 5, we study a reverse auction, which we call

the total quantity discount auction. A forward auction, the so-called matrix

bid auction, is the topic of study in chapters 6 and 7.

In chapter 2, we study a procurement problem where a buyer needs to pur-

chase multiple units of different items at a minimal total cost. The suppliers

use a discount policy based on the total amount of units the buyer purchases.

We show how this problem can be solved by means of an auction, namely the

total quantity discount auction. Despite the fact that we prove the resulting

winner determination problem to be NP -hard and difficult to approximate,

we find that this problem has an interesting property with respect to solving

it efficiently.

Four variants of the total quantity discount auction are discussed in chapter

3. In a first variant, the market share that one or more suppliers can ob-

tain is constrained. Another variant allows the buyer to procure more units

than strictly needed, in order to reach a lower total cost. We also consider

a setting where the buyer needs to pay a disposal cost for the extra units

bought. In a third variant, the number of winning suppliers is limited, both

in general and per product. Finally, we investigate a multi-period variant,

where the buyer not only needs to decide what items to buy from what

supplier, but also when to do this, while considering the inventory costs.

In chapter 4, we discuss three exact algorithms (min-cost flow based branch-
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and-bound, linear programming based branch-and-bound, and branch-and-

cut) and investigate their performance on randomly generated instances in-

volving 50 suppliers and 100 items. It turns out that even the large instances

of the basic problem are solved to optimality within a limited amount of

time. However, we find that different algorithms perform best in terms of

computation time for different variants. The results described in chapters

2, 3, and 4 form the basis of a paper to appear in EJOR (Goossens, Maas,

Spieksma & van de Klundert 2007).

Chapter 5 can be seen as an interlude in this thesis. In this chapter, we

take a closer look at the so-called exclusionary side constraints. In the to-

tal quantity discount auction, this type of constraint enforces that only one

bid per supplier can be the winning bid. We try to gain insight in how

these constraints add to the complexity by studying it in the context of the

transportation problem. Three special cases of the transportation problem

with exclusionary side constraints are considered, of which one particularly

resembles the total quantity discount auction. A research report is based on

this chapter (Goossens & Spieksma 2005).

In chapter 6, we study the matrix bid auction. This auction limits a bid-

der in expressing his preferences, in the sense that the extra value an item

adds to a bid on a set is determined only by the number of items in this

set outranking this item, according to an ordering of the items expressed

by the bidder. We show how it can be verified whether a matrix bid sat-

isfies economic properties as free disposal, complement freeness, decreasing

marginal valuations and the gross substitutes property. Finally, we provide

a procedure to check whether a given collection of bids can be represented

by a matrix bid. If this is not the case, we present a method to approximate

these bids with a matrix bid. This chapter has been published as a research

report (Goossens & Spieksma 2006b).

In chapter 7, we present and compare two formulations for the winner de-
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termination problem of the matrix bid auction. To solve this problem, we

develop two branch-and-price algorithms for which the pricing problem is

a shortest path problem. These algorithms are tested on randomly gener-

ated instances with up to 50 items and 100 bidders. The chapter concludes

with a discussion of the computational results. The findings discussed in

this chapter have also been published as a research report (Goossens &

Spieksma 2006a).

To conclude this thesis, we elaborate on a number of topics for future re-

search in chapter 8.
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Chapter 2

The total quantity discount

auction

It is a widespread economic phenomenon that the price of an item depends –

among many other things – on the amount ordered. Indeed, there are many

reasons for suppliers to offer discounts based on the volume sold to a buyer.

Consequently, when it comes to procuring amounts of different items from

different suppliers, it makes sense to consider various alternatives. In fact,

choosing the right suppliers to deliver the right products has become a major

concern in many large companies. In this chapter, we investigate a combi-

natorial auction tailored to solve a procurement problem where bidders use

a specific discount policy. We call this auction the total quantity discount

auction. In section 2.1, we describe the discount structure and illustrate

how this auction works. In section 2.2 we motivate why this discount policy

is relevant by providing a number of real-life examples. Section 2.3 gives

an overview of related research on procurement and discount structures. A

mathematical formulation for the winner determination problem of the to-

tal quantity discount auction is given in section 2.4, while in section 2.5, we

discuss a number of interesting properties of this problem.

17



18 2.1. Description of the total quantity discount auction

2.1 Description of the total quantity discount auc-

tion

The total quantity discount auction is a reverse auction, meaning that there

is one buyer that needs a number of items and several suppliers compete

for the right to provide items. The total quantity discount auction is also

a multi-item, multi-unit auction, since the buyer can require many different

items, and also multiple units of each item. The auction is cleared in a sin-

gle round and the outcome determines which bidders are allowed to supply

what items such that the buyer pays a minimal total amount. In this way,

the auction solves the procurement problem faced by the buyer.

Let’s assume that the buyer is interested in a number of items, and has a

quantity for each of these items that he needs to purchase, from one or more

suppliers. To compete for (a part of) this request, each bidder (or supplier)

needs to submit one or more bids, consisting of a lower and and upper bound

of a volume interval, and prices for each item the supplier is willing to offer.

The idea is that this bid is only valid if the buyer purchases a total amount

of units that lies within the ranges of the volume interval.

Naturally, a bidder can submit multiple bids, however, we assume that the

corresponding volume intervals do not overlap. By submitting multiple bids,

the supplier can offer a discount that depends on the total quantity the buyer

orders from that supplier. Obviously, a supplier is assumed not to increase

his prices in a higher volume interval. Thus, it is the total amount of units

(possibly of various items) that determines the discount a supplier is willing

to grant. Notice however that the discount rate in each interval might vary

among the items. This discount structure is called total quantity discount

(TQD). Notice that to reach the quantity the buyer requires for an item, the

buyer may purchase from multiple suppliers, although he can accept only

one bid per supplier. Clearly, this is an all-unit discount policy, since the

prices in a volume interval apply to all units bought from the corresponding
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supplier (as opposed to an incremental discount policy, where only the items

purchased in surplus of some threshold give rise to a discount). A discus-

sion and classification of various quantity discount policies can be found in

Munson & Rosenblatt (1998).

We assume that a preselection of suppliers has been made, excluding those

suppliers who do not attain the required standards with respect to quality,

reliability and other relevant considerations from the auction (see Degraeve,

Labro & Roodhooft (2000) for a discussion of these considerations). Thus,

we assume that the only remaining criterion upon which the further sup-

plier selection decision is based, is the price these suppliers charge for the

various items. Given a demand for each item, the winner determination

problem for the total quantity discount auction is to determine which items

should be purchased from what supplier in order to satisfy the demand for

each item at minimal total cost for the buyer. We will refer to this prob-

lem as the TQD problem. In the collection of winning bids that supports

this solution, at most one bid of each bidder can be present. Obviously,

for each winning bid, the constraints on the lower and upper bound of the

total volume purchased from the corresponding supplier should be respected.

As an example, we consider a buyer who is throwing a party and wishes to

purchase pizza. The pizzas come in three kinds: pizza hawai (H), pizza al

ovo (AO), and pizza tirolese (T); the buyer needs four of each kind. There

are two pizza delivery companies, “Mamma Mia” and “Mangia e via”, who

express the following bids.

Mangia e via:

< [1, 5]; pH = �9, pAO = �10, pT = �8 >

< [6, 12]; pH = �8, pAO = �8.5, pT = �7 >
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Mamma Mia:

< [1, 12]; pH = �7, pAO = �8, pT = �9 >

If the buyer orders up to 5 pizzas, “Mangia e via” will charge �9 for a pizza

hawai, �10 for a pizza al ovo and �8 for a pizza tirolese. However, if 6 pizzas

or more are ordered, the buyer can make use of the second bid, where prices

drop to �8, �8.5 and �7 respectively. “Mamma Mia” has made only one

bid, charging �7 for a pizza hawai, �8 for a pizza al ovo and �9 for a pizza

tirolese. The optimal solution for the buyer would be to accept the bid by

“Mamma Mia” and the second bid by “Mangia e via”. This would allow

him to order 2 pizzas al ovo and 4 pizzas tirolese from “Mangia e via” and

4 pizzas hawai and the other 2 pizzas al ovo from “Mamma Mia”, at a total

cost of �89.

The total quantity discount policy is a way to price a set of items: the

cardinality of the set of all items ordered determines in which interval the

buyer is, and the all-unit discount policy leads to prices that imply comple-

mentary effects. Therefore, the total quantity discount auction is indeed a

combinatorial auction.

2.2 Motivation

One of the main advantages of the total quantity discount auction is that its

winner determination problem has a special structure that can be exploited

when constructing an exact algorithm (see section 2.5 and chapter 4). On

the other hand, the TQD auction restricts the preferences that can be ex-

pressed by a bidder. To illustrate that this restriction can be quite natural in

procurement settings, we now describe three recent examples, documented

in literature, where suppliers set their prices using a total quantity discount
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policy. These cases are from the dairy, the chemical, and the telecommuni-

cation industry.

A procurement problem where a dairy producer needs to purchase a num-

ber of bull semen straws from one or more breeding companies in order to

inseminate (a part of) its herd is discussed by McConnel & Galligan (2004).

Each breeding company offers semen straws from a number of bulls, and

grants a volume discount, based on the total amount of semen straws the

dairy producer purchases from that breeding company. Furthermore, if a

volume interval is reached, the corresponding discounted prices apply to all

semen straws purchased from that breeding company. Thus, the breeding

companies apply a total quantity discount policy. Each available bull has

a score on a number of traits that are of importance to the producer. The

number of semen straws needed from each particular bull is however not

known in advance. The diary producer only specifies a total number of se-

men straws needed and a number of trait goals that should be satisfied by

the portfolio of semen straws on average. Furthermore, in order to reduce

the risk of inbreeding, there is a constraint that limits the purchased amount

of semen straws from any bull to a given percentage of the portfolio. Mc-

Connel & Galligan (2004) develop a mixed integer program, which also takes

into account the possibility to order more straws than needed in order to

reach a higher discount interval. The authors use this formulation to solve

a real-life instance involving a demand of 1500 semen straws to be satisfied

from 52 available bulls across three breeding companies. These companies

specify no more than three volume intervals.

Crama, Pascual & Torres (2004) investigate another procurement problem,

characterized by a total quantity discount policy. In this problem, a chem-

ical company needs to purchase a number of ingredients from one or more

suppliers. Also in this case, the suppliers express the discount as a func-

tion of the total quantity of ingredients purchased. Since only one single

discount rate for all ingredients is used, this policy should be considered
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as a special case of the total quantity discount policy used in our problem.

Crama et al. (2004) however face the additional problem of deciding how to

use the purchased ingredients to manufacture the desired quantities of the

endproducts, since there are several alternative recipes, each with different

ingredient requirements to produce an endproduct. The authors present a

number of mixed integer models which they solve by branch-and-bound, in

order to come to a solution for a real-life case where 25 different ingredients

can be purchased from 8 suppliers in order to manufacture more than 30

distinct products.

A procurement problem in the telecom industry is described by van de Klun-

dert, Kuipers, Spieksma & Winkels (2005). Consider a telecommunication

company that needs to acquire capacity to accommodate its international

calls. This capacity is offered by various so-called carriers, i.e., for each des-

tination, each carrier offers capacity, priced in eurocents per minute. Prices

of carriers differ, and – which is particularly relevant for our setting – each

carrier uses an interval structure to arrive at a certain price. In other words,

the total amount of call-minutes handled by a certain carrier determines

the price. Moreover, the carriers use all-unit discounts. The problem is to

acquire the right amount of capacity for each destination at minimal cost.

A solution approach based on explicit enumeration of all interval selections

is presented by van de Klundert et al. (2005) and used to solve instances

with 5 carriers and up to 5000 destinations.

2.3 Related work on discounts and procurement

Procurement problems involving discount policies have been studied by

many authors. Katz, Sadrian & Tendick (1994), and also Sadrian & Yoon

(1994) discuss a procurement problem where they distinguish between pur-

chases on a commitment basis and purchases on an as-ordered basis. They

stress the importance of sourcing flexibility and model explicitly the fact
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that not all future items should be purchased via committed contracts. In

addition, they explicitly consider the number of vendors for each item, and

the percentages of the total supply given to each of the vendors. In their

discount policy, a supplier discounts the price of each item by the same

percentage based on the total dollar value of all items purchased from the

supplier, whereas our policy allows a different discount percentage for each

item.

Austin & Hogan (1976) is an early reference to procurement problems char-

acterized by a lower and upper bound for each supplier between which the

ordered amount needs to lie, provided that that supplier is used. In this

paper, the government needs to purchase a given amount of aviation fuel

from one or more suppliers, where prices differ depending on how the fuel

is transported. This problem differs from our setting in that the items con-

sidered are independent and there are no discounts. The authors solve the

problem using a branch-and-bound algorithm, exploiting the network struc-

ture of the core problem.

Davenport & Kalagnanam (2002) report on a volume discount auction in

which discounts are based on quantities for each individual item. Further-

more, they use an incremental discount policy, meaning that the discounts

apply only to the additional units above the threshold of the volume inter-

val. Hohner, Rich, Ng, Reid, Davenport, Kalagnanam, Lee & Chae (2003)

describe a web-based implementation of this procurement auction at Mars

Incorporated.

Eso, Ghosh, Kalagnanam & Ladányi (2005) also elaborate on the work of

Davenport & Kalagnanam (2002). They study a volume discount auction

with piece-wise linear supply curves, allowing discontinuities and all-unit dis-

counts. However, they do require additive separable supply curves, which

boils down to assuming that the prices charged by a supplier for different

commodities are independent. This makes their problem not truly combi-
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natorial, since synergies or substitutability between different items cannot

be reflected in the total price charged by the suppliers. As a result, a total

quantity discount structure is not possible in their setting. The authors

formulate a column generation based heuristic that provides near-optimal

solutions to the bid evaluation problem.

Another procurement auction with marginal decreasing piecewise-constant

supply curves is described in Kothari, Parkes & Suri (2003). This auction

also allows all-unit discounts, but it deals only with a single item. Kothari

et al. (2003) present fully polynomial-time approximation schemes for the

winner determination problem and the computation of the corresponding

payments of this auction.

Kim & Pardalos (2001) made a study of piecewise linear network flow prob-

lems, in which they identify a number of categories and for which they show

how they can be transformed to fixed charge network flow problems. In par-

ticular, the category with sawtooth arc cost functions is of interest to our

research, since it contains the TQD problem with a single item. However,

the authors do not consider a setting that could allow for total quantity

discounts over multiple items.

The TQD problem is also related to the so-called deal splitting problem in-

troduced by Shachnai, Shmueli & Sayegh (2004). In this problem, a buyer

needs to split an order of multiple units from a set of heterogeneous items

among a set of sellers, each having bounded amounts of the items, so as

to minimize the total cost of the deal. Two variants of the deal splitting

problem can be discerned, depending on whether the seller offers packages

containing combinations of the items or whether the buyer can generate such

combinations using seller-specified price tables. Shachnai et al. (2004) show

that for both variants an exact solution can be found in pseudo-polynomial

time if the number of heterogeneous items is fixed. Moreover, they develop

polynomial-time approximation schemes for several subclasses of instances
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of practical interest.

2.4 Mathematical formulation

To state a mathematical formulation of the winner determination problem

of the TQD auction, we use the following notation. We define G as the set

of m items, indexed by i, and B as the set of n suppliers, indexed by j. For

each item i in G, we define di as the amount of item i to be procured. Each

supplier j in B expresses maxj bids, which we index by k. Since each bid

defines exactly one volume interval, we can also use the index k to denote

the volume interval. In this way, for each supplier j ∈ B, ljk and ujk define

the minimum and maximum number of items respectively that needs to be

ordered according to bid k by supplier j. For simplicity, we assume that

the bids are ordered by increasing lower bound of the corresponding volume

interval. In this way, we have a sequence of intervals Zj = {1, ..., maxj},
indexed by k, with ljk < ljk′ if k < k′. Finally, for each supplier j ∈ B, for

each interval k ∈ Zj and each item i ∈ G, let cijk be the price for one unit

of item i purchased from supplier j according to his k-th bid.

We assume that these parameters satisfy the following assumptions:

∀j ∈ B, k 6= k′ ∈ Zj : [ljk, ujk) ∩ [ljk′ , ujk′) = ∅, (2.1)

∀j ∈ B, k ∈ Zj \ {maxj}, i ∈ G : cijk > ci,j,k+1, (2.2)

∀j ∈ B, k ∈ Zj , i ∈ G : cijk > 0, ljk > 0, ujk > 0, di > 0. (2.3)

Assumption (2.1) states that bids by the same supplier should not have

overlapping intervals. The requirement that prices should not increase from

one interval to the next is expressed in the second assumption. The last as-

sumption reflects that all prices and all quantities ordered are non-negative.
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We define the decision variable xijk as the amount of item i purchased from

supplier j according to the prices stated in his k-th bid. Further, we define a

binary decision variable yjk which is 1 if bid k is selected for supplier j and

0 otherwise. This leads to the following formulation of the TQD problem,

referred to as TQDF.

minimize
∑

i∈G

∑

j∈B

∑

k∈Zj

cijkxijk (2.4)

subject to
∑

j∈B

∑

k∈Zj

xijk = di ∀i ∈ G (2.5)

∑

k∈Zj

yjk 6 1 ∀j ∈ B (2.6)

∑

i∈G

xijk − yjkljk > 0 ∀j ∈ B, k ∈ Zj (2.7)

∑

i∈G

xijk − yjkujk 6 0 ∀j ∈ B, k ∈ Zj (2.8)

xijk > 0 ∀i ∈ G, j ∈ B, k ∈ Zj (2.9)

yjk ∈ {0, 1} ∀j ∈ B, k ∈ Zj (2.10)

The objective function (2.4) states that the amount of items i ordered from

supplier j according to bid k, times the corresponding price must be min-

imal. Constraints (2.5) make sure that the demand for each item is met,

while constraints (2.6) guarantee that at most one bid per supplier is se-

lected. Constraints (2.7) and (2.8) ensure that if a bid k is selected as a

winning bid, the total amount of units purchased from supplier j is between

the bounds of the corresponding interval. If bid k is not selected, these

constraints ensure that xijk = 0. Constraints (2.9) state that only a non-

negative amount can be purchased, while constraints (2.10) define yjk as a

boolean variable. Notice that this formulation allows to order nothing from



Chapter 2. The total quantity discount auction 27

a supplier. Notice also that we do not require integrality of the x-variables;

if the demands and the lower and upper bounds of each volume interval are

integral, then, assuming the existence of a feasible solution, there always

exists an optimal solution of TQDF with integral x-values (see section 2.5).

Let us now discuss how this formulation relates to known classes of integer

programming formulations. The TQD problem is related to fixed charge

network flow problems (see Nemhauser & Wolsey (1988)). In fact, when

omitting constraints (2.6) from the formulation above, the resulting prob-

lem can be formulated as a (special) fixed charge network flow problem.

Indeed, when one builds a network involving a source with supply
∑

di, a

‘demand’ node for each item i with demand di, and an ‘interval’ node for

each interval of each supplier, the variable xijk in the formulation above

represents nothing else but the flow on the arc from an ‘interval’ node to a

‘demand’ node. In particular, this implies that inequalities that are valid for

this formulation of the fixed charge network flow problem are also valid for

TQDF. However, due to the presence of constraints (2.6), the TQDF for-

mulation is more general than a fixed charge network flow problem. Notice,

though, that in the objective function (2.4), there is no fixed cost associated

to choosing some interval of some supplier, i.e., in terms of the fixed charge

network flow problem, the fixed cost of using an arc is 0.

Finally, one can view the TQD problem as a direct generalization of the

ordinary, well-known, transportation problem: given a set of demand nodes,

each with demand di, given a set of supply nodes each with a supply between

a given lower bound lk and upper bound uk, given costs per item for each

combination of demand node and supply node, and finally, given a collection

of subsets of the supply nodes such that at most one node of each subset is

allowed to supply a positive amount, find a solution of minimum cost. TQD

belongs to this class of generalized transportation problems; as far as we are

aware, this problem has not been investigated before. Sun (2002) studies a

special case of this generalized transportation problem where for each de-
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mand node i, pairs of supply nodes are given such that at most one supply

node of each pair is allowed to supply demand node i. These constraints are

called exclusionary constraints and form the topic studied in chapter 5.

2.5 Properties of the TQD problem

In this section we establish the complexity of the TQD problem (section

2.5.1). We also show that the LP-relaxation of TQDF can be solved by

solving a min-cost flow problem (section 2.5.2).

2.5.1 On the complexity of the TQD problem

We show that the TQD problem is a hard problem to solve when aiming for

optimal solutions.

Theorem 1. The decision version of the TQD problem is strongly NP -

complete.

Proof. We define TQD’ as the decision version of the TQD problem, where

the question is whether it is possible to buy the required items at a given

total purchasing cost K. Obviously, TQD’ is in NP , since given a solution

it suffices to check the constraints and the value of the solution, which can

easily be done in polynomial time. The reduction is from the 3-dimensional

matching (3DM) problem.

The decision version of the 3DM problem is described as follows: given a set

M ⊆ X ×Y ×Z of triples, where each of the sets X, Y and Z has exactly q

elements, is there a matching in M that contains q triples? Every instance

of 3DM can be reduced to a TQD’ instance in polynomial time. Suppose

that the 3q elements of the sets X, Y , and Z correspond to 3q items and

that each 3-element subset in M corresponds to a supplier, so n = q and

m = 3q. Each supplier has 2 bids. The first bid has an interval with a lower

bound of 0 and an upper bound of 2. The price of each item in this bid is 1.
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The interval of the second bid has a lower bound of 3 and an upper bound

of ∞. The price of each item in this bid is also 1, except for the three items

in the 3-element subset corresponding to the supplier, each of which have

a price of 0. Each item needs to be purchased exactly once, i.e., di = 1,

∀i. The question is whether the TQD’ problem can be solved with a total

purchasing cost of 0.

Further, every yes-instance of 3DM corresponds to a yes-instance of TQD’.

A solution of 3DM consists of q 3-element subsets, corresponding to q sup-

pliers in the TQD’ problem. Purchasing from each of these suppliers exactly

the 3 items represented by the 3-element subset enables us to reach every

supplier’s second interval, where these 3 items can be bought at price 0.

Since every element of X ∪ Y ∪ Z occurs exactly once in the solution of

3DM, every item will also be purchased exactly once in the TQD’ solution.

Therefore, if 3DM has a solution, it can easily be transformed to a solution

of TQD’.

Vice versa, every yes-instance of TQD’ also corresponds to a yes-instance

of 3DM. A solution of the TQD’ problem consists of a number of selected

suppliers, together providing every item exactly once at a total cost of 0. If

a supplier would provide less than 3 items, the quorum to get in the second

interval would not be met, so the cost would not be 0. If the supplier would

provide more, the cost would also be strictly positive, because all but these

3 items still have a price of 1 in the second interval. Providing more than

one of the 0-priced items would violate the demand constraint stating that

each item is to be supplied exactly once. Therefore every selected supplier

provides precisely 3 items, namely those that have a price of 0 in the sec-

ond interval and since 3q items need to be provided, q suppliers must be

selected. Therefore, for each of the q suppliers selected in the solution of

the TQD’ problem, there is a corresponding 3-element set in M . Moreover,

these q triples define a matching, since every item is bought exactly once.

As a consequence, the decision version of the TQD problem is strongly NP -
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complete. ¤

In fact, we can also make the following statement on the approximability of

the TQD problem:

Theorem 2. No polynomial-time approximation algorithm with constant

worst-case ratio exists for the TQD problem (unless P = NP ).

Proof. Assume that a ρ-approximation algorithm for the TQD problem

exists. Consider now an instance of 3DM with M ⊆ X × Y × Z, and let us

build an instance of the TQD problem as in the proof of Theorem 1 with a

price of ρ+1 for any item bought in the first interval, or bought in the second

interval when not belonging to one of the three items of that supplier. Ob-

serve that this instance of the TQD problem either has an optimal solution

with cost 0 (namely when the 3DM-instance has a matching), or it has an

optimal solution with cost at least ρ + 1 (when there is no matching in the

3DM instance). Thus, if there is a 3DM-matching the ρ-approximation algo-

rithm must return a zero-cost solution, which contradicts the NP -hardness

of 3DM. Hence such an algorithm cannot exist unless P = NP . ¤

Consider the following special case of the TQD problem, where the prices

stated in each bid are determined by the prices in the bid with the lowest

interval and a common discount rate δ. This discount rate δ determines the

price ci,j,k of item i in bid k as a function of the price in bid 1 as follows:

cijk = (1− δ)k−1ci,j,1 ∀i, j and ∀k > 1 (2.11)

We claim that this special case of the TQD problem is still a hard problem.

Theorem 3. The decision version of the TQD problem with a common

discount rate δ is strongly NP -complete.

Proof. In order to show this problem is NP -complete, we modify the re-

duction used in Theorem 1 as follows. As in Theorem 1, each supplier has 2
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intervals, the first interval ranges from 0 to 2 items, the second from 3 to an

unlimited amount of items. The prices of all items in the first interval are

2, except for the three items in the 3-element subset corresponding to the

supplier, each of which have a price of 1. Since all suppliers use a common

discount rate δ, the prices in the second interval are (1 − δ) for the three

items in the 3-element subset, and 2(1− δ) for the other items. Each item

still needs to be purchased exactly once. The question is now whether this

TQD problem can be solved with a total purchasing cost of m(1− δ). The

same reasoning as in Theorem 1 can be applied to verify that every yes-

instance of 3DM corresponds to a yes-instance of the TQD problem with

common discount rate and vice versa and that indeed the decision version

of the TQD problem with a common discount rate is strongly NP -complete.

¤

Finally, consider the variant of the TQD problem where the amounts pur-

chased must be at least as large as the demands di. In such a setting, it

might happen that buying more than what is strictly needed reduces the

total cost. We refer to this problem as the more-for-less variant of the TQD

problem (see section 3.2). For the special case of this variant where only

one item needs to be purchased, Chauhan, Eremeev, Romanova, Servakh &

Woeginger (2005) show that there exists a fully polynomial-time approxi-

mation scheme. We claim that this variant remains a hard problem.

Theorem 4. The decision version of the more-for-less variant of TQD prob-

lem is strongly NP -complete.

Proof. In the more-for-less setting, the buyer is allowed to purchase more

than di units of any item i in order to reduce the total cost. We can however

use the same reduction as in Theorem 3. Indeed, let each supplier have 2

bids, the first with an interval ranging from 0 to 2 items, the second with

an interval from 3 to an unlimited amount of items. Once again, the prices

of all items in both the first and second interval are 1, except for the three

items in the 3-element subset corresponding to the supplier, each of which
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have a price of (1− δ). The question remains whether it is possible to solve

this TQD problem with a total purchasing cost of m(1 − δ). Clearly this

can not be achieved by purchasing more than m units, which allows us to

conclude that every yes-instance of 3DM corresponds to a yes-instance of

the more-for-less variant and vice versa. Hence, the decision version of the

more-for-less variant of the TQD problem is strongly NP -complete. ¤

2.5.2 Min-cost flow and the winner determination problem

We now show that the LP-relaxation of TQDF can be solved by solving

a min-cost flow problem. In fact, even in the more general case where for

some suppliers the winning bids are prespecified, the LP-relaxation of the

resulting model can still be found by solving a min-cost flow problem. We

will use this result to construct an exact algorithm in chapter 4.

Let us first state a model which assumes that for an arbitrary given subset

of suppliers, referred to as D (D ⊆ B), a bid and its corresponding interval,

say s(j) ∈ Zj , has been selected, while for the remaining suppliers no bid

has been selected. We refer to the following formulation as GENTQDF.

minimize

∑

i∈G

∑

j∈B

∑

k∈Zj

cijkxijk (2.12)

subject to

∑

j∈B

∑

k∈Zj

xijk = di ∀i ∈ G (2.13)

∑

k∈Zj

yjk 6 1 ∀j ∈ B \D (2.14)

∑

i∈G

xijk − yjkljk > 0 ∀j ∈ B \D, k ∈ Zj (2.15)



Chapter 2. The total quantity discount auction 33

∑

i∈G

xijk − yjkujk 6 0 ∀j ∈ B \D, k ∈ Zj (2.16)

∑

i∈G

xi,j,s(j) − lj,s(j) > 0 ∀j ∈ D (2.17)

∑

i∈G

xi,j,s(j) − uj,s(j) 6 0 ∀j ∈ D (2.18)

xijk > 0 ∀i ∈ G, j ∈ B \D, k ∈ Zj (2.19)

xi,j,s(j) > 0 ∀i ∈ G, j ∈ D (2.20)

xijk = 0 ∀i ∈ G, j ∈ D, k 6= s(j) (2.21)

0 6 yjk 6 1 ∀j ∈ B \D, k ∈ Zj (2.22)

Observe that if D = ∅, the resulting model is the LP-relaxation of TQDF,

whereas if D = B, we arrive at the situation where an interval has been

selected for each supplier (see van de Klundert et al. (2005)). Introducing

D allows us to develop an enumerative algorithm solving only min-cost flow

problems (see chapter 4).

Theorem 5. GENTQDF can be polynomially transformed to min-cost flow.

Proof. We organize the proof by first showing that an optimal solution of

GENTQDF has a structural property. Then we construct a min-cost flow

instance and show the correspondence between optimal solutions of this in-

stance and GENTQDF.

Claim: There exists an optimal solution (x∗, y∗) of GENTQDF in which for

each j ∈ B \D:

x∗ijk = 0 ∀i ∈ G,∀k 6= maxj , and

y∗ij = 0 ∀k 6= maxj .
(2.23)

Thus, the claim states that there exists an optimal solution in which all x-
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and y-variables equal 0, except those corresponding to the highest interval

of each supplier. In other words, items are bought only at the lowest prices

of each supplier.

Argument: given some feasible solution (x, y) of GENTQDF, we show how

to modify (x, y) to (x∗, y∗) such that (x∗, y∗) is a feasible solution of GEN-

TQDF satisfying (2.23) and such that the cost of (x∗, y∗) does not exceed

the cost of (x, y).

For each i ∈ G and each j ∈ B \D, we set

x∗i,j,maxj
=

maxj∑

k=1

xijk, and (2.24)

x∗ijk = 0 for k = 1, ..., maxj − 1. (2.25)

Further, for each j ∈ B \D, we set

y∗j,maxj
= yj,maxj +

∑maxj−1
k=1

∑
i∈G xijk

uj,maxj

, and (2.26)

y∗jk = 0 for k = 1, ..., maxj − 1. (2.27)

All other variables remain the same, that is

x∗ijk = xijk ∀i ∈ G, j ∈ D, k ∈ Zj . (2.28)

It is obvious that the costs of (x∗, y∗) cannot exceed the costs of (x, y)

since the total amount of items has remained the same for each supplier,

while in (x∗, y∗) all items are purchased in the highest interval (and we have

ci,j,maxj 6 cijk ∀i, j, k, see (2.2)). Let us now argue that (x∗, y∗) is a feasible

solution of GENTQDF.
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Evidently, (x∗, y∗) satisfies (2.13), (2.17), (2.18), (2.19), (2.20) and (2.21).

To show that (x∗, y∗) satisfies ((2.14)) and ((2.22)), we need to show that

y∗j,maxj
6 1 for j ∈ B \ D. Observe that for k = 1, ...,maxj − 1 we have∑

i∈G xijk/ujk 6 yjk (using the feasibility of (x, y) with respect to ((2.16)))

and thus

∑

i∈G

xijk

ui,maxj

6 yjk for k = 1, ...,maxj − 1.

Summing over k = 1, ...,maxj−1 implies that
∑maxj−1

k=1 (
∑

i∈G xijk)/uj,maxj 6∑maxj−1
k=1 yjk and together with the feasibility of (x, y) with respect to (2.14),

this leads to (x∗, y∗) satisfying (2.14) and (2.22).

Consider now for some j ∈ B \ D constraints (2.15), written alternatively

as
∑

i∈G xijk > ljkyjk for k = 1, ...,maxj . In case k < maxj , the right-hand

side equals 0 (since y∗jk = 0 for k < maxj by construction) and feasibility

follows. In case k = maxj , we have, using feasibility of (x, y), that

∑

i∈G

xi,j,maxj > lj,maxjyj,maxj . (2.29)

Also it is true that

maxj−1∑

k=1

∑

i∈G

xijk >
∑maxj−1

k=1

∑
i∈G xijk

uj,maxj

lj,maxj . (2.30)

Summing (2.29) and (2.30) yields:

∑

i∈G

x∗i,j,maxj
=

∑

i∈G

(xi,j,maxj +
maxj−1∑

k=1

xijk)

> lj,maxj (yj,maxj +
maxj−1∑

k=1

∑

i∈G

xijk

uj,maxj

) = lj,maxjy
∗
j,maxj

. (2.31)

Thus (x∗, y∗) satisfies constraints (2.15).
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To verify that (x∗, y∗) satisfies constraints (2.16), observe that for j ∈ B \D

and for k = 1, ..., maxj − 1, we have
∑

i∈G x∗ijk = 0 and y∗jk = 0 (this follows

by construction of x∗ and y∗). Finally, in case k = maxj we have

∑

i∈G

xi,j,maxj 6 uj,maxjyj,maxj , and (2.32)

maxj−1∑

k=1

∑

i∈G

xijk =
∑maxj−1

k=1

∑
i∈G xijk

uj,maxj

uj,maxj . (2.33)

Summing (2.32) and (2.33) yields

∑

i∈G

x∗i,j,maxj
=

∑

i∈G

(xi,j,maxj +
maxj−1∑

k=1

xijk)

6 uj,maxj (yj,maxj +
maxj−1∑

k=1

∑

i∈G

xijk

uj,maxj

) = uj,maxjy
∗
j,maxj

, (2.34)

which shows that constraints (2.16) are also satisfied by (x∗, y∗) and allows

us to conclude that (x∗, y∗) is indeed a feasible solution of GENTQDF.

Property 2.23 allows us to simplify formulation (2.12)-(2.22) to the following

formulation, in which the y-variables no longer appear.

minimize

∑

i∈G

∑

j∈D

ci,j,s(j)xi,j,s(j) +
∑

i∈G

∑

j∈B\D
ci,j,maxjxi,j,maxj

(2.35)

subject to

∑

j∈D

xi,j,s(j) +
∑

j∈B\D
xi,j,maxj = di ∀i ∈ G (2.36)

∑

i∈G

xi,j,s(j) − lj,s(j) > 0 ∀j ∈ D (2.37)
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∑

i∈G

xi,j,s(j) − uj,s(j) 6 0 ∀j ∈ D (2.38)

∑

i∈G

xi,j,maxj − uj,maxj 6 0 ∀j ∈ B \D (2.39)

xi,j,maxj > 0 ∀i ∈ G, j ∈ B \D (2.40)

xijk = 0 ∀i ∈ G, j ∈ B \D, k 6= maxj (2.41)

xijk = 0 ∀i ∈ G, j ∈ D, k 6= s(j) (2.42)

Let us now build the network. We have three sets of nodes: there is a node

for each supplier (a ‘supplier node’), there is a node for each item (an ‘item

node’) and there is a single source node. The supply of the source node

equals
∑

i∈G di and the demand of each item node equals di. All other de-

mands are 0. Furthermore, there is an arc from the source node to each

supplier node. If this supplier is in D, the corresponding lower and upper

bounds of this arc are lj,s(j) and uj,s(j); if this supplier is not in D, the lower

and upper bounds are 0 and uj,maxj . The choice for a lower bound of 0 for

suppliers not in D, even if lj,1 is strictly positive, may seem surprising at

first sight. It can however be verified that because the y-values are relaxed

in GENTQDF, lj,1 no longer constrains the x-values. The cost of an arc

between the source node and each supplier node equals 0. There are also

arcs from each supplier node to each item node. These arcs are not con-

strained by lower or upper bounds, but do have a cost equal to ci,j,s(j) if

the corresponding supplier is in D and equal to ci,j,maxj if this supplier is

not in D. This completes the description of the min-cost flow instance. A

schematic representation is given in Figure 2.1.



38 2.5. Properties of the TQD problem

…
…

…

i di

1

2

m

itemssuppliers

1

g

h

n

0

0

0

0

-d2

-d1

-dm

D

B/D

c1,1,s(1)

c2,1,s(1)

cm,1,s(1)

c1,h,maxh

c2,h,maxh

cm,h,maxh

[l1,s(1);u1,s(1)] ; 0

[lg,s(g);ug,s(g)] ; 0

[0;uh,maxh
] ; 0

[0;un,maxn
] ; 0

Figure 2.1: GENTQDF as min-cost flow

A solution of this min-cost flow instance is characterized by flows fji on each

arc from supplier j to item i. It corresponds to a solution of GENTQDF as

follows:

xi,j,s(j) = fji ∀i ∈ G, j ∈ D, (2.43)

xi,j,maxj = fji ∀i ∈ G, j /∈ D, (2.44)

yj,s(j) = 1 ∀j ∈ D, (2.45)

yj,maxj =
∑

i∈G

fji

uj,maxj

∀j /∈ D. (2.46)

All other x- and y-variables of GENTQDF are set equal to 0.

Given (2.23), we conclude that an optimal solution of the min-cost flow

problem in Figure 2.1 corresponds to an optimal solution of GENTQDF.

It can now easily be seen that an optimal solution of GENTQDF also cor-

responds to an optimal flow in the min-cost flow problem. Thus, we have



Chapter 2. The total quantity discount auction 39

shown how GENTQDF can be polynomially transformed to min-cost flow. ¤

Notice that property (2.23) hints that TQDF is a rather weak formulation.

Indeed, when solving the LP-relaxation, only the prices in the bidder’s most

interesting bid are considered. Moreover, only the upper bound of this bid

is respected; constraints (2.7) do not force the solution towards reaching the

lower bound in any way. Notice also that as a consequence of Theorem 5,

the LP-relaxation of TQDF can be found by solving a min-cost flow prob-

lem. This result is the foundation for an exact algorithm to be discussed in

chapter 4.

2.6 Conclusion

We presented a multi-item, multi-unit combinatorial auction, tailored for a

procurement problem where suppliers adopt a discount that depends on the

total quantity ordered. We discussed a number of examples from various do-

mains where suppliers use this discount policy in practice and we compared

our auction with other approaches used to solve procurement problems with

discounts. We showed that the winner determination problem that results

from this auction is NP -hard, and that this is also the case for a number of

special cases of this problem. Furthermore, we argued that no polynomial-

time algorithm for the TQD problem can achieve a constant worst-case ratio

(unless P = NP ), which contrasts with the case of a single item for which

Chauhan et al. (2005) established NP -hardness and gave a fully polyno-

mial time approximation scheme. Finally, we proved that (a generalization

of) the linear programming relaxation of a straightforward formulation of

the problem can be solved by solving a min-cost flow problem. Thus, we

showed that a combinatorial algorithm solves the LP-relaxation of the TQD

problem.
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Chapter 3

Variants of the TQD auction

When procuring items, other considerations besides the price can be rele-

vant. Although the total quantity discount auction does not incorporate

criteria like quality or reliability, we now consider a number of variants of

the TQD problem that are common in both procurement practice and liter-

ature. A first variant adds constraints on the amount of items the buyer is

willing to purchase from a supplier (section 3.1). In another variant (section

3.2), the buyer is allowed to buy more units of any item than strictly needed,

while the third variant (section 3.3) imposes a restriction on the number of

winning suppliers (suppliers that end up selling some amount of any of the

items are called winning suppliers). Finally, a variant that incorporates a

multi-period perspective with inventory costs is described (section 3.4). We

show that results similar to that of Theorem 5 hold for each of these variants.

3.1 Market share constraints

Suppose that the buyer wants to impose upper and/or lower bounds on the

amount of an item that must be ordered from a supplier. Forcing that some

supplier j must be allocated an amount of at least qij and at most Qij of

item i can be done by adding the following constraint to GENTQDF:

41
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qij 6
∑

k∈Zj

xijk 6 Qij . (3.1)

On a more global level the buyer could provide bounds on the total allocation

for a supplier, across all items. Forcing the total amount of items purchased

from a supplier j to lie between wj and Wj can be done by adding the

following constraint to GENTQDF:

wj 6
∑

i∈G

∑

k∈Zj

xijk 6 Wj . (3.2)

These market share constraints are often mentioned in literature (see Dav-

enport & Kalagnanam (2002), Eso et al. (2005), Hohner et al. (2003), Katz

et al. (1994)). Notice that none of these extra constraints invalidate prop-

erty (2.23). Constraints (3.1) can easily be implemented in the min-cost flow

graph by changing the lower and upper bounds of the arcs from supplier j

to item i. Constraints (3.2) can be realized via the lower and upper bounds

of the arcs from the root node to supplier j. Thus, we obtain the following

statement:

Theorem 6. GENTQDF with constraints (3.1) and/or (3.2) can be poly-

nomially transformed to min-cost flow.

3.2 More-for-less

As described in section 2.5.1, it can be advantageous to obtain more of some

item i than the required amount di, since this might allow the buyer to use

the cheaper prices of a higher interval (see also Crama et al. (2004), Sadrian

& Yoon (1994)). If we wish to allow this, constraints (2.13) in GENTQDF

should be replaced by

∑

j∈B

∑

k∈Zj

xijk > di ∀i ∈ G. (3.3)
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Notice that for the special case where D = ∅, all units are already bought

in the highest intervals in an optimal solution of GENTQDF (see (2.23)).

Therefore, there is no need to buy more than di of any item i, and an optimal

solution can be found by solving the min-cost flow problem in Figure 2.1.

In general however, we can formulate the following result:

Theorem 7. GENTQDF with constraints (2.13) replaced by (3.3) can be

polynomially transformed to min-cost flow.

Proof. Consider the graph in Figure 3.1. It has supplier and item nodes,

with demands and connecting arcs like in Figure 2.1. The lower and upper

bounds and the costs for these arcs are the same as in Figure 2.1 but in

order not to overload the figure, they have been omitted. There is however

also a dummy node, corresponding to the additional units of any item i that

are bought once the demand di is fulfilled. The dummy node has a demand

of M , being at least
∑

j∈D lj,s(j). The supply of the source node is increased

by this same amount M . Furthermore, there is an arc from the source node

to the dummy node with cost 0 and an upper bound of M . Notice that

any flow in the network in Figure 2.1 is still a feasible flow in the network

in Figure 3.1. There are also arcs from each supplier j ∈ D to the dummy

node. These arcs have a cost equal to the price of the supplier’s cheapest

item in its selected interval s(j). In Figure 3.1, we refer to this item as q(j),

i.e. q(j) = argmini ci,j,s(j). Notice that this is the item of which we will buy

additional units from that supplier to reach the threshold of a higher inter-

val; it would be pointless to buy a more expensive item instead to achieve

this. There are no arcs to the dummy node from suppliers not in D. Since

for these suppliers the items are already bought at their lowest prices (see

(2.23)), there is no use in buying additional items.

Observe that in GENTQDF it can happen that because of the interval se-

lections made for suppliers in D, no feasible solution exists. This is the case

if the demands di are not high enough to reach the required lower bounds of
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Figure 3.1: GENTQDF with more-for-less as min-cost flow

the selected intervals. In the more-for-less variant of GENTQDF, however,

this is no longer possible since it is allowed to buy more than the amounts

di. Indeed, these extra amounts correspond to the flows on the arcs from

suppliers in D to the dummy node. If we refer to the flow from a supplier

j to the dummy node as fjd, then a solution of the min-cost flow model in

Figure 3.1 corresponds to a solution of GENTQDF with constraints (2.13)

replaced by (3.3) as follows:

xi,j,s(j) = fji ∀i ∈ G \ {q(j)}, j ∈ D, (3.4)

xq(j),j,s(j) = fj,q(j) + fjd ∀j ∈ D, (3.5)

xi,j,maxj = fji ∀i ∈ G, j /∈ D, (3.6)
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yj,s(j) = 1 ∀j ∈ D, (3.7)

yj,maxj =
∑

i∈G

fji

uj,maxj

∀j /∈ D. (3.8)

¤

Until now, we implicitly made the assumption that the buyer can simply

buy more than what is demanded and enjoy a higher discount without any

further consequence. However, as described in Crama et al. (2004), in prac-

tice, overbuying often leads to an extra cost for the buyer. The buyer may

for instance need extra storage capacity. Furthermore, the buyer may not be

able to use the additional items as profitably as the items of the original de-

mand, or even be forced to pay a cost for the disposal of these items. Let us

assume that pi is this non-negative cost the buyer incurs for each additional

unit of item i, in addition to the purchasing cost. Let us define x′ijk as the

amount of item i that is bought in addition to the demand in the k-th inter-

val of supplier j. We can now generalize more-for-less GENTQDF as follows:

minimize

∑

i∈G

∑

j∈B

∑

k∈Zj

(cijkxijk + (cijk + pi)x′ijk) (3.9)

subject to

∑

j∈B

∑

k∈Zj

xijk = di ∀i ∈ G (3.10)

∑

k∈Zj

yjk 6 1 ∀j ∈ B \D (3.11)

∑

i∈G

(xijk + x′ijk)− yjkljk > 0 ∀j ∈ B \D, k ∈ Zj (3.12)

∑

i∈G

(xijk + x′ijk)− yjkujk 6 0 ∀j ∈ B \D, k ∈ Zj (3.13)
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∑

i∈G

(xi,j,s(j) + x′i,j,s(j))− lj,s(j) > 0 ∀j ∈ D (3.14)

∑

i∈G

(xi,j,s(j) + x′i,j,s(j))− uj,s(j) 6 0 ∀j ∈ D (3.15)

xijk > 0 ∀i ∈ G, j ∈ B \D, k ∈ Zj (3.16)

x′ijk > 0 ∀i ∈ G, j ∈ B \D, k ∈ Zj (3.17)

xijk = x′ijk = 0 ∀i ∈ G, j ∈ D, k 6= s(j) (3.18)

0 6 yjk 6 1 ∀j ∈ B \D, k ∈ Zj (3.19)

Consider a min-cost flow network like the one in Figure 3.1, but with the

difference that the cost on the arcs from supplier j ∈ D to the dummy node

equals cq(j),j,s(j) + pq(j), with

q(j) = argmin
i

(ci,j,s(j) + pi). (3.20)

Let us now argue how a solution of this min-cost flow network corresponds

to a solution of generalized more-for-less GENTQDF. It is clear that for

suppliers not in D, it remains pointless to buy any additional item, since

the buyer can already get the lowest possible price by ordering in the highest

intervals. Notice that property (2.23) thus remains valid. For suppliers for

which a winning bid has been prespecified, it can be necessary to buy ad-

ditional items, namely if the demands di are insufficiently high to reach the

lower bounds of the selected intervals. In this case, the buyer will obviously

buy the cheapest additional item, namely the item for which ci,j,s(j) + pi is

minimal. Notice that this is exactly how we defined q(j). It is now easy to

see that a solution f of the min-cost flow network corresponds to a solution

of generalized more-for-less GENTQDF as follows:
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xi,j,s(j) = fji ∀i ∈ G, j ∈ D, (3.21)

xi,j,maxj = fji ∀i ∈ G, j /∈ D, (3.22)

x′q(j),j,s(j) = fjd ∀j ∈ D, (3.23)

yj,s(j) = 1 ∀j ∈ D, (3.24)

yj,maxj =
∑

i∈G

fji

uj,maxj

∀j /∈ D. (3.25)

All other x-, x′- and y-variables are set equal to 0. Hence we have proven

the following theorem:

Theorem 8. The generalization of more-for-less GENTQDF can be poly-

nomially transformed to min-cost flow.

3.3 Limited number of winning suppliers

Another important consideration apart from cost minimization is to make

sure that the demand is not procured from too many suppliers (see also Dav-

enport & Kalagnanam (2002), Eso et al. (2005), Hohner et al. (2003), Katz

et al. (1994), Sadrian & Yoon (1994)). Otherwise, overhead costs increase

due to managing this large amount of suppliers. Limiting the total number

of winning suppliers can be done for the order as a whole (section 3.3.1) or

per item (section 3.3.2).

3.3.1 Limited total number of winning suppliers

In order to model the requirement that a limited number of suppliers is

selected, we need to understand exactly when a supplier receives a positive

amount. This happens when yjk = 1 for some k, except possibly when

k = 1, and lj,1 = 0; the latter situation refers to the case where interval 1,

with a lower bound of 0, is selected. Then a supplier might receive nothing,

while there is a y-variable with a positive value. To handle this situation, we
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‘split’ each bid with an interval that has a lower bound of 0 and a positive

upper bound into two bids: one bid with an interval with a lower bound and

an upper bound of 0 (the dummy bid), and one bid with an interval with

a lower bound of 1 and an upper bound equal to the original upper bound

(interval 1). Notice that by setting this lower bound to 1, we assume that the

demands and the lower and upper bounds are or can be scaled to integers.

Thus, we have redefined interval 1 by excluding the option of a zero amount

of items. Moreover, we let yj,1 correspond to this new interval 1. Obviously,

selecting a supplier’s dummy bid comes down to not selecting this supplier

at all, in which case the supplier can simply be removed from the problem.

Selecting another bid of a supplier implies that this is a winning supplier.

This approach leads to a set D, containing only winning suppliers. In fact,

without loss of generality, we can now focus on constraining the winning

suppliers not in D, and limit their number to K by adding the following

constraint to GENTQDF:

∑

j∈B\D

∑

k∈Zj

yjk 6 K. (3.26)

If we assume that the highest volume interval of every supplier in B \D has

the same upper bound, we can prove a similar result to that of Theorem 5.

We refer to this common upper bound as umax. Given the fact that in most

real-life applications suppliers pose no upper bound at all to the amount of

items they are willing to sell, this assumption is quite reasonable.

Theorem 9. If umaxj = umax ∀j ∈ B \D, then GENTQDF with constraint

(3.26) added can be polynomially transformed to a min-cost flow problem.

Proof. First, notice that property (2.23) remains valid in this setting.

Indeed, given the x-values, we can find y-values for each supplier j ∈ B \D

and each volume interval k ∈ Zj satisfying constraints (2.15) and (2.16) in

the following interval:
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[
∑

i∈G xijk

ujk
,

∑
i∈G xijk

ljk
]. (3.27)

Naturally, in order to fulfill constraints (2.22), the y-values cannot exceed

1. It is easy to verify that shifting items from a supplier’s highest interval

to one or more lower intervals can never decrease the total y-value of this

supplier. Therefore, constraint (3.26) will never force the optimal solution

of GENTQDF away from the highest intervals and property (2.23) still holds.
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Figure 3.2: GENTQDF with a limited number of winning suppliers as min-cost
flow

We can now construct a min-cost flow network (see Figure 3.2). Compared

to Figure 2.1, an extra node, referred to as node E, is added. The arc from

the root node to node E has an upper bound of Kumax, and the arcs from

node E to the supplier nodes have upper bounds of umax.
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Let dmin be the minimal amount of items that needs to be purchased

from suppliers not in D in order to have a feasible solution, i.e., dmin =

max(
∑

i∈G di −
∑

j∈D uj,s(j), 0). The min-cost flow problem can only be in-

feasible if this demand dmin is too high for the upper bounds on the arcs,

i.e., if dmin > Kumax. In this case however, GENTQDF with constraint

(3.26) is infeasible as well. Indeed, even when choosing the y-values as low

as possible, namely as fj/umax, we fail to meet constraint (3.26):

∑

j∈B\D

∑

k∈Zj

yjk =
∑

j∈B\D
fj/umax

> dmin/umax

> K.

If there exists a feasible flow f to the min-cost flow problem, then we can

always find a solution to GENTQDF with constraint (3.26) by setting the

x- and y-variables as in (2.43)-(2.46). From Theorem 5, it is clear that this

solution satisfies (2.13)-(2.22). Let dmax be the maximal amount of items

that can be purchased from suppliers not in D in order to keep the solution

feasible, i.e., dmax =
∑

i∈G di −
∑

j∈D lj,s(j). Obviously, a feasible flow will

have dmax 6 Kumax. Therefore, the resulting y-variables will also satisfy

(3.26), as shown below:

∑

j∈B\D

∑

k∈Zj

yjk =
∑

i∈G

∑

j∈B\D
fj,i/umax

6 dmax/umax

6 K.

Notice that this proof no longer holds when each supplier j has an arbitrary

value for umaxj . For instance, if we set the upper bound on the arc from

the source to node E equal to the sum of the K highest upper bounds, then



Chapter 3. Variants of the TQD auction 51

it may happen that there exists a feasible flow f such that the correspond-

ing x- and y-variables according to (2.43)-(2.46) are no feasible solution to

GENTQDF. Indeed, consider the setting in Figure 3.3, assuming K = 1. A

flow of 2 to node E, splitting into flows of 1 to supplier 1 and supplier 2 is

feasible to the min-cost flow model. However, its corresponding y-values in

GENTQDF, 0.5 and 1 respectively, clearly violate constraint (3.26). Analo-

gously, setting the upper bound of the arc to node E equal to the sum of the

K lowest upper bounds results in the existence of a solution of GENTQDF

for which the corresponding flow is no feasible solution of the min-cost flow

model.
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Figure 3.3: Necessity of common umaxj

Property (2.23) is crucial for the possibility to use min-cost flow to solve LP-

relaxations of GENTQDF-type formulations. For instance, one could also

argue that the number of winning suppliers must be at least a minimum

number, say L. Indeed, depending on too few suppliers could move the

buyer in a vulnerable position if one of these suppliers is unable to supply

as agreed. This could be encoded by adding the following constraint to

GENTQDF:

∑

j∈B

∑

k∈Zj

yjk > L. (3.28)

Property (2.23) is however no longer valid in this setting, since constraint (3.28)
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pushes the optimal solution away from the highest intervals. Indeed, moving

the items towards one or more lower intervals can increase the total y-value

of each supplier. This is illustrated by the following example.

Supplier A Supplier B Supplier C

Interval 1-10 1-10 1-5 6-10

Unit cost 5 1 3 2

Consider a setting where 14 units of one single item need to be bought from

three suppliers with volume intervals and costs as indicated in the table

above. Also, we wish to order from at least 2 suppliers (L = 2). Solving

GENTQDF for this example results in the following optimal solution:

xA = 0 yA = 0

xB = 10 yB = 1

xC1 = 0.4 yC1 = 0.4

xC2 = 3.6 yC2 = 0.6

It is clear that property (2.23) is not valid for this solution, since it makes

use of supplier C’s lowest interval. Especially the fact that the optimal so-

lution makes use of more than one interval per supplier, prevents us from

following a similar reasoning as in Theorem 5 to transform this variant to a

min-cost flow problem.

3.3.2 Limited number of winning suppliers per item

Suppose now that the buyer is interested in limiting the number of win-

ning suppliers for one or more specific items only. Forcing that item i can
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be supplied by at most Qi suppliers can be done by adding the following

constraints to TQDF:

zij 6
∑

k∈Zj

xijk 6 Mijzij ∀i ∈ G, j ∈ B (3.29)

∑

j∈B

zij 6 Qi ∀i ∈ G (3.30)

zij ∈ {0, 1} ∀i ∈ G, j ∈ B. (3.31)

We introduced a new binary variable zij which is 1 if supplier j procures

at least 1 unit of item i and 0 otherwise. This is guaranteed by constraints

(3.29) and (3.31). In constraint (3.29), the parameter Mij can be set equal

to min(di, umaxj ). Constraints (3.30) state that no more than Qi suppliers

should procure item i. We refer to TQDF with constraints (3.29)-(3.31)

added as TQDF’.

We now generalize TQDF’ by assuming that for some suppliers an interval

is prespecified. Additionally, we assume that some zij variables get value

1 beforehand, some zij variables get value 0, whilst for others no value is

prespecified. When also the y- and z-variables are relaxed, so that they can

take any value between 0 and 1, this results in a relaxation of this general-

ization of TQDF’, to which we refer as GENTQDF’.

It can easily be verified that property (2.23) remains valid for GENTQDF’.

Indeed, also in this setting we can improve any solution that makes use of

intervals other than the highest by shifting items bought in these intervals

to the highest interval. As we argued in Theorem 5, it is always possible

to adjust the y-variables in such a way that the solution remains feasible.

Furthermore, this shift has no influence at all on the z-variables, since the

x-variables are summed over all intervals in constraints (3.29).

We can now construct a min-cost flow network like in Figure 2.1. However,
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for this variant, the arc from a supplier j to an item node i has a lower bound

of 1 and an upper bound of Mij if supplier j is chosen to be one of the Qi

suppliers that will be procuring item i. On the other hand, if supplier j is

chosen not to be part of the winning suppliers for item i, the arc from node j

to node i is deleted. A solution of this min-cost flow problem is characterized

by flows fji on each arc from supplier j to item i. This solution corresponds

to the x- and y-variables of the optimal solution of GENTQDF’ as indicated

in (2.43) to (2.46). The z-variables in GENTQDF’ follow from the min-cost

flow solution as follows:

zij =
fji

Mij
∀i ∈ G, j ∈ B. (3.32)

Indeed, constraints (3.30) force the z-variables towards the lowest value they

can get, which is
∑

k∈Zj
xijk/Mij . However, from property (2.23), it follows

that
∑

k∈Zj
xijk equals xi,j,s(j) for suppliers in D and xi,j,maxj for those

not in D, which is exactly fji (see (2.43) and (2.44)). Thus we obtain the

following statement:

Theorem 10. GENTQDF’ can be polynomially transformed to min-cost

flow.

3.4 Multi-period procurement

A lot of research on quantity discount policies has been done in the context

of lot sizing problems (see e.g. Xu, Lu & Glover (2000)). Lot sizing prob-

lems typically deal with when to order what amount of items and include

inventory costs. Whereas in the basic TQD auction we assumed a single-

period perspective, we generalize to an auction that handles a multi-period

procurement problem in this variant. Indeed, it no longer suffices for the

buyer to decide what items to purchase from what supplier, but the buyer

also needs to decide when to order what items, taking into account the in-

ventory costs.
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We define P as a series of r periods, indexed by p. For each item i, dip is

now the demand for item i in period p. We also define hip as the cost of

holding one unit of item i in inventory at the end of period p. Each bid k

is valid only in a period p and consists of a lower bound ljkp and an upper

bound ujkp, and values cijkp as the price of purchasing one unit of item i in

period p according to bid k by supplier j. In order to model this variant, we

need to generalize the x- and y-variables with an extra index p, referring to

the period in which the item is bought. We also generalize the set D to Dp,

being the set of suppliers for which an interval has been prespecified for the

period p. We refer to this interval as s(j, p). We also introduce the variable

vip as the inventory of item i at the end of period p. The generalized formu-

lation, to which we refer as multi-period GENTQDF then looks as follows:

minimize

∑

i∈G

∑

j∈B

∑

k∈Zj

∑

p∈P

cijkpxijkp +
∑

i∈G

∑

p∈P

hipvip

(3.33)

subject to

vi,1 =
∑

j∈B

∑

k∈Zj

xi,j,k,1 − di,1 ∀i ∈ G (3.34)

vip = vi,p−1 +
∑

j∈B

∑

k∈Zj

xijkp − dip ∀i ∈ G, p ∈ P (3.35)

∑

k∈Zj

yjkp 6 1 ∀j ∈ B \Dp, p ∈ P (3.36)

∑

i∈G

xijkp − yjkpljkp > 0 ∀j ∈ B \Dp, k ∈ Zj , p ∈ P (3.37)

∑

i∈G

xijkp − yjkpujkp 6 0 ∀j ∈ B \Dp, k ∈ Zj , p ∈ P (3.38)
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∑

i∈G

xi,j,s(j,p),p − lj,s(j,p),p > 0 ∀j ∈ Dp (3.39)

∑

i∈G

xi,j,s(j,p),p − uj,s(j,p),p 6 0 ∀j ∈ Dp (3.40)

xijkp > 0 ∀i ∈ G, j ∈ B \Dp, k ∈ Zj , p ∈ P (3.41)

xijkp = 0 ∀i ∈ G, j ∈ Dp, k 6= s(j, p), p ∈ P (3.42)

0 6 yjkp 6 1 ∀j ∈ B \Dp, k ∈ Zj , p ∈ P (3.43)

Generalizing from (2.23), we claim that there exists an optimal solution

(x∗, y∗) of multi-period GENTQDF in which for each p ∈ P and for each

j ∈ B \Dp :

x∗ijkp = 0 ∀i ∈ G, k 6= maxj , and

y∗jkp = 0 ∀k 6= maxj .
(3.44)

Notice that this claim can be proven in a similar way as (2.23).

Let us now construct a min-cost flow problem similar to the one in Fig-

ure 2.1, but now there are supplier nodes (j, p) for each supplier j in each

period p. Also, there are item nodes for each item in each period. Each

item node (i, p), corresponding with item i in period p, has a demand of

dip. The source node has a supply equal to
∑

i∈G

∑
p∈P dip. There are arcs

from a supplier node (j, q) to an item node (i, r) if q 6 r. These arcs have

a cost equal to ci,j,s(j,q),q +
∑r−1

p=q hip if the corresponding supplier is in Dq

and equal to ci,j,maxj ,q +
∑r−1

p=q hip if this supplier is not in Dq. A schematic

representation is given in Figure 3.4. However, in order not to overload the

figure, only one supplier and one item are drawn. Also, we assume that for

this supplier no interval is prespecified for any period.
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Figure 3.4: Multi-period GENTQDF as min-cost flow

A solution of the min-cost flow network in Figure 3.4 is characterized by

flows fjp from the source node to each supplier node (j, p) and by flows fjpiq

from supplier node (j, p) to item node (i, q). This solution can be written

as a solution of multi-period GENTQDF as follows:

xi,j,s(j,p),p =
r∑

q=p

fjpiq ∀i ∈ G, j ∈ D, p ∈ P , (3.45)

xi,j,maxj ,p =
r∑

q=p

fjpiq ∀i ∈ G, j /∈ D, p ∈ P , (3.46)

yj,s(j,p),p = 1 ∀j ∈ Dp, ∀p ∈ P , (3.47)

yj,maxj ,p =
fjp

uj,maxj ,p
∀j /∈ Dp, ∀p ∈ P . (3.48)

All other x- and y-variables of multi-period GENTQDF are set equal to 0.

The v-variables can now be computed from the x-variables using 3.34 and

3.35.
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Theorem 11. Multi-period GENTQDF can be polynomially transformed to

min-cost flow.

3.5 Conclusion

In this chapter, we recognized that in practice, the price of the items is often

not the only criterion upon which the supplier selection decision is based. In

chapter 2, we assumed that a preselection of suppliers was made, excluding

those suppliers from the auction, who do not satisfy whatever criterion the

buyer deems important. However, with this approach, a number of the

buyer’s concerns cannot be dealt with. A buyer may wish to place bounds

on the market share that a bidder can or should obtain. The buyer may

also want to purchase more units of any item than originally planned, if

this leads to a lower total cost. We also consider a setting where the buyer

needs to pay a disposal cost for the extra units bought. Furthermore, the

buyer may want to impose a maximum number of winning suppliers (per

item or in total) to avoid large overhead costs. Finally, in practice, the buyer

is often confronted with a procurement problem that keeps recurring over

time. In this setting, the buyer also needs to decide when the items should

be purchased, finding a balance between discounts and holding costs. We

extended the winner determination problem of the total quantity discount

auction to take into account these concerns. We also showed that for each

of these variants, property (2.23) still holds, which will turn out to be useful

for solving the winner determination problem in the next chapter.



Chapter 4

Exact algorithms for the

TQD auction

In this chapter we describe the three exact algorithms used to solve the

winner determination problem of the TQD auction and its variants. We

discuss an LP based branch-and-bound algorithm (section 4.1), a min-cost

flow based branch-and-bound algorithm (section 4.2), and a branch-and-

cut algorithm (section 4.3). We use these algorithms to solve a number

of generated instances and discuss the resulting computational results in

section 4.4.

4.1 LP based branch-and-bound

Branch-and-bound is probably the most widely used technique for solving

integer programming problems. To find an optimal integral solution, it

typically does a stepwise partitioning of the solution space. The branch-

and-bound algorithm can be represented by a tree. In the root node, a

relaxation of the original problem is solved. A relaxation is a simplification

of the problem, for instance by discarding a number of constraints. If this

relaxation does not render an integral solution, the solution space needs to

be partitioned in two or more mutually exclusive subsets. Each of these

59
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subsets is represented by child node. This partitioning phase is what we call

branching.

If a node results in an integral solution, no further partitioning is needed.

Either, this solution is better than the best solution found so far (i.e. the

incumbent) and thus replaces it as incumbent, or it is not, in which case it

can be discarded (pruned). If a fractional solution is found, the node needs

to be partitioned further unless we can show that none of its descendants

can result in a solution better than the incumbent. This can be done by

computing a bound on the best solution that can be reached from this node.

The objective function value of the node is an example of such a bound. If

a node turns out to be infeasible, it can be pruned as well.

If all generated nodes are considered, the algorithm ends and the incumbent

is an optimal solution. Thus, a branch-and-bound algorithm implicitly enu-

merates all possible solutions. Of course, the less nodes are generated, the

less computation time will typically be needed to find the optimal solution.

Notice that this is to a great extent determined by the way in which the

partitioning is done and by the choice of which node to consider next. Fur-

thermore, a tight bound will allow nodes to be pruned quickly, but may also

require a lot of computation time. A thorough discussion of branch-and-

bound can be found in Wolsey (1998), Johnson, Nemhauser & Savelsbergh

(2000), and Linderoth & Savelsbergh (1999).

We apply the branch-and-bound approach to the TQD problem, by relaxing

the integrality constraints (2.10), such that in each node a linear program-

ming problem is solved. We refer to this algorithm as the linear programming

based branch-and-bound algorithm and implemented it using Ilog Cplex 8.1.

To decide on which variable to branch, Ilog Cplex uses strong branching.

Strong branching selects a branching variable after evaluating the actual

objective degradations that occur when forcing variables to integer values.

A variable y with fractional LP value ŷ is tested by temporarily introduc-
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ing a lower bound dŷe and subsequently an upper bound bŷc, and solving

the relaxations. In order to reduce the required computation time, only a

restricted subset of the variables with fractional values are considered, and

a limited number of simplex iterations are performed to estimate the effect

on the objective function. Strong branching and other branching rules are

discussed in more detail in Achterberg, Koch & Martin (2005). In order

to select the node that is to be analyzed first, Ilog Cplex uses best bound

search, which means that the node with the best objective function will be

selected (generally near the top of the tree).

In order to solve the variants of the TQD auction, it suffices to add or alter

the relevant constraints in the formulation, as discussed in chapter 3. The

branch-and-bound algorithm can still be performed on the resulting model.

Notice however that for the setting with a limited number of suppliers per

item, constraints (3.31) should be relaxed.

4.2 Min-cost flow based branch-and-bound

In this section, we discuss a branch-and-bound algorithm, where in every

node of the branching tree a min-cost flow problem needs to be solved. This

algorithm is based on Theorem 5, which states that GENTQDF can be poly-

nomially transformed to min-cost flow. In the root node, the LP relaxation

of the TQD problem is solved as explained in section 2.5.2. If this results in

a fractional solution, we branch by selecting a bidder and creating a branch

for every bid by this bidder. In the resulting child nodes, we enforce that this

bid is a winning bid. In this way, however, we cannot impose that nothing

at all is ordered from this bidder, unless he has a bid with a lower bound of

zero. Therefore, for bidders without a bid with a lower bound of zero, we

create a dummy bid with a lower and an upper bound of zero, and an index

of zero. Selecting this bid then enforces that the corresponding supplier is

not to be used in the solution.
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In order to select a supplier, we compute for each supplier, the sum of its

x-values. We now find the bid for which this sum lies between its lower and

upper bound, or, if no such bid exists, the bid for which the sum lies closest

to either its upper or lower bound. We refer to the interval of this bid as the

LP-interval. We can now compute for each supplier its priority as the num-

ber of volume intervals minus the index of the LP-interval. Thus, suppliers

that express a lot of bids but receive little in the LP-relaxation, are accorded

a high priority. We use this priority to build up the search tree, as we start

with the supplier with the highest priority, creating branches from the root

node for each of its intervals. In the node from the first branch, we fix the

LP-interval of the supplier with the highest priority. In the next branch of

that level, we fix the interval directly above this interval; in the following

branch and still within this level, we fix the interval directly below it and so

on (provided that these intervals exist). In the following level of the branch-

ing tree we continue with the supplier with the second highest priority, again

branching on its intervals as just explained, and so on (see Figure 4.1). If a

supplier has only one interval, with a lower bound of zero, there is no need

to create a node in the branching tree for this supplier, since we can fix his

interval right away. In this way, every level in the branching tree corresponds

to a supplier, and there is a branch for every volume interval of that supplier.

In each node, the LP relaxation given the intervals fixed by the branch-

ing decisions, is used as an upper bound of the best solution that can still

be reached further down the tree. To traverse the tree, we use a standard

depth-first search strategy, such that the supplier with the highest prior-

ity and its bid lying closest to the LP solution are explored first. Notice

that the tree is completely determined after solving the root node. We ex-

perimented with recomputing the priorities in each node and thus building

the tree dynamically, but it turned out that this did not reduce the size

of the tree enough to compensate for the extra time needed to recompute

the priorities. We experimented with other priority settings based on the
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Prespecify interval of supplier

with highest priority
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Figure 4.1: Branching tree for min-cost flow based branch-and-bound

sum of the x-values and the number of bids, but the choice described above

seems to work best. A partial explanation for this observation can be that

in the current priority setting, suppliers who receive little are explored first.

Given a good solution, the other branches of this supplier should be elimi-

nated by the resulting bound. Finally, we use the solution of the previously

solved min-cost flow problem as a starting solution for the next min-cost

flow problem that needs to be solved (according to the depth first strategy).

Since these problems differ only by some bounds and prices that have been

changed, this results in a considerable decrease of the computation time.

The branching tree for both the market share and the more-for-less variant

is very similar. In the first variant, we prune the tree by deleting those bids

with volume intervals that fall outside the range imposed by the market-

share constraints. Afterwards, we can adapt the upper and lower bounds of

the highest and lowest interval respectively according to the market share

constraints. As a result, the branching tree will typically have less nodes at

comparable depths in the market share variant than in the basic case. In the

more-for-less variant on the other hand, the branching tree will in general

have more nodes at comparable depths compared to its counterpart in the

basic case, because less nodes are infeasible in the more-for-less setting. The
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branching tree for the variant that limits the number of winning suppliers

to K differs from the branching tree of the basic case, because for every

supplier, we need a dummy interval to impose that this supplier is not to

be used in the solution (see also section 3.3). Thus, whereas suppliers with

only one interval, which has a lower bound of zero, are left out of the tree

completely in the basic case, they now appear in the tree with two branches,

representing the decision to buy from that supplier or not. On the other

hand, a node needs no further branching as soon as K suppliers have been

selected.

The min-cost flow based branch-and-bound algorithm has been programmed

in C and compiled using Microsoft Visual C++ 6.0. To solve the min-cost

flow problems, we have used the network solver of Ilog Cplex 8.1.

4.3 Branch-and-cut

Branch-and-cut is in fact a combination of branch-and-bound and a cut-

ting plane algorithm. When confronted with a fractional solution, a cutting

plane algorithm tries to find a valid inequality that is violated by this frac-

tional solution. The problem of finding such a violated valid equality (if it

exists) is known as the separation problem. By repeatedly adding violated

constraints, the algorithm converges towards an optimal integral solution.

Cutting plane algorithms were first proposed by Gomory (1963); they tend

to converge slowly. Moreover, without a special structure, the separation

problem may be hard to deal with. For a further discussion of the separa-

tion problem, we refer to Wolsey (1998) or Nemhauser & Wolsey (1988).

A cutting plane method can be very useful when combined with a branch-

and-bound algorithm. Indeed, cutting planes can be used to strengthen

the linear programming relaxations used for bounding. This makes it a

much more powerful method than branch-and-bound alone. Whereas cut-



Chapter 4. Exact algorithms for the TQD auction 65

ting planes can result in a considerable reduction in the size of the tree,

finding adequate cutting planes can also be very time consuming. This ex-

plains why many branch-and-cut algorithms do not perform a cut generation

phase in every node of the branching tree. A more thorough discussion of

branch-and-cut can be found in e.g. Mitchell (2002).

We implemented the branch-and-cut algorithm by simply using the default

settings of the MIP solver of Ilog Cplex 8.1. These default setting include

the use of so-called flow cover cuts (see Nemhauser & Wolsey (1988)) that

are valid for the TQD problem and its variants.

4.4 Computational results

In this section we discuss the choices that were made to construct the in-

stances on which the algorithms have been tested. We continue with com-

putational results for the TQD problem and its variants and evaluate the

performance of our algorithms.

4.4.1 Structure of the instances

In order to test the performance of the exact algorithms, two types of in-

stances have been generated: completely random instances and instances

with a special structure, inspired by the instances studied by van de Klun-

dert et al. (2005). All instances have 10, 20, or 50 suppliers and 40 or 100

items. Furthermore, each supplier has a maximum of 3 or 5 bids. For all

instances, the total demand for an item is a random number between 1000

and 10000 units. For instances with 40 items, the upper bound increase

from one interval to the next is a random number between 10000 and 50000,

while for instances with 100 items, the upper bound increase is a random

number between 10000 and 100000.
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For structured instances, we first determine a base price for each item, ran-

domly picked between 3 and 7. The price for an item in a supplier’s first

interval is then computed by adding a random number in the interval [−2, 2]

to the base price. Furthermore, for each supplier j there is a discount rate

δjk ∈ [0, 0.1] for every interval k > 1, which determines the price cijk of item

i in interval k as a function of the price in interval k − 1 as follows:

cijk = (1− δjk)ci,j,k−1 ∀i ∈ G, j ∈ B and ∀k > 1 (4.1)

For random instances, the cost of purchasing an item from a supplier in its

first interval is a random number between 2 and 8. The price for this item

in each of the next intervals is computed by discounting the price in the

previous interval by a percentage picked randomly between 0 and 75%.

The key difference between the random and the structured instances is that

for the former instances prices can drop drastically from one interval to the

next, whereas for the latter this decrease in price is limited to 10%. Further-

more, for the structured instances, an item that is expensive at one supplier

will very likely be expensive at the other suppliers too. For the random

instances however, this is not necessarily the case as prices for an item can

differ in a wider range between the various suppliers. Finally, the discount

percentage one receives when moving from one interval to the next can dif-

fer substantially between the items for the random instances, while it is the

same for all the items for the structured instances.

In the variant with the market share constraints, only global constraints (as

in (3.2)) are included. For the instances with 10 suppliers, 5 suppliers are

picked randomly and between 5 and 20 percent of the total demand needs to

be purchased from each of those suppliers. For instances with 20 suppliers,

we pick 10 suppliers and force between 5 and 15 % of the total demand

to go to each of them and for the instances with 50 suppliers this becomes
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15 suppliers with each 5 to 10 % of the total demand. The more-for-less

variant needs no extra modifications, apart from allowing to buy more than

what is demanded. For the third variant, the number of winning suppliers

is limited to 5 for all instances. If an instance has no solution with only 5

winning suppliers, the interval thresholds are doubled for each supplier until

a solution exists.

4.4.2 Results

The results of our experiments are summarized in tables 4.1 to 4.4. The in-

stances are coded with ‘S’ for structured and ‘R’ for random instances. The

first number indicates the number of bidders, the second number reflects the

number of items and the third number is the maximal number of bids per

supplier. For each of these types of instances, 10 instances were generated

and solved with the three algorithms. This resulted in computation times

(in seconds) and a number of nodes searched in the branching tree for each

algorithm, averaged per type of instance in the tables. All computations

were done on a Pentium IV 2 GHz computer, with 512 Mb RAM.

In Table 4.1, the results for the winner determination problem of the basic

TQD auction are presented. Each algorithm solves all instances in a reason-

able amount of time; random instances seem to be harder to solve than the

structured ones. The min-cost flow based algorithm clearly performs best in

terms of computation time for all instances with 10 or 20 suppliers. However,

instances with 50 suppliers prove to be harder to solve with this algorithm.

The solution time per node is undoubtedly the smallest with the min-cost

flow approach (about 10 times smaller than with the linear programming

based branch-and-bound algorithm and 100 to up to 2000 times smaller than

with the branch-and-cut approach). However, the min-cost flow approach

also needs to investigate more nodes than the other two exact algorithms.

Comparing the LP based approach with the min-cost flow based approach
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learns that the former is faster if it needs to explore at least 10 times less

nodes. The branch-and-cut approach clearly searches the least amount of

nodes, but to achieve this it needs a time-consuming cut generation process.

The results show that it pays to generate cuts when the number of suppliers

is large.

The results of our experiments with the variant with market share con-

straints are summarized in Table 4.2. As in the basic case, the random

instances require more computation time than the structured ones. Market

share constraints are problematic for the branch-and-cut algorithm, whose

computation times sometimes even double compared to the basic case. The

linear programming based branch-and-bound algorithm deals with these

constraints much better, since it manages to solve the instances faster than in

the basic case. The results show, however, that the min-cost flow algorithm

is the obvious algorithm to deal with instances of this variant. Especially

for the instances with 50 suppliers, adding market share constraints causes

the computations times to slump compared to the basic case. Moreover, less

nodes need to be searched, which can be explained by the construction of

the branching tree as described in section 4.2.

Table 4.3 shows the results for the more-for-less variant. It turns out that in

none of the structured instances purchasing extra items leads to a lower to-

tal cost. In the random instances however, it is profitable in more than 85%

of the instances to buy more than strictly needed. This is explained by the

fact that discounts are substantially larger for the random cases than for the

structured instances (see section 4.4.1). As in the basic case, it seems to be

the case that the LP based algorithm is outperformed by the min-cost flow

based approach, as long as the latter does not require over 10 times more

nodes than the former. Thus, the min-cost flow based algorithm performs

best on all instances with 10 or 20 suppliers, but for the instances with 50

suppliers, it is advisable to use the linear programming based branch-and-

bound algorithm. Compared to the basic case, the min-cost flow algorithm
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needs to explore slightly more nodes, resulting in a higher computation time.

Apart from the random instances with 50 suppliers, which seem very difficult

for all algorithms, this increase in computation time remains very modest.

The linear programming based branch-and-bound algorithm is not affected

too much either. The branch-and-cut algorithm however deals poorly with

this variant.

Finally, Table 4.4 describes the results for the variant that limits the number

of winning suppliers. This constraint proved to be binding for more than 98%

of the structured instances but less than 50% of the random instances. For

the random instances, the prices drop sharper from one interval to the next,

which makes it more interesting to go for the higher intervals. This leads

to an optimal solution with less suppliers than for the structured instances.

This explains why a constraint limiting the number of winning suppliers less

often affects the random instances. As for the computation times, branch-

and-cut seems the best option for the structured instances. For the random

instances, the picture is less clear. The instances with 10 suppliers are best

solved with the min-cost flow algorithm, although this algorithm is left far

behind by the other two for the instances with 20 suppliers. For these in-

stances, branch-and-bound based on linear programming outperforms the

other algorithms for instances where suppliers can have up to 5 volume in-

tervals. Branch-and-cut is the fastest approach to solve random instances

with 20 suppliers and up to 3 volume intervals per supplier. Notice that no

instances with 50 suppliers are mentioned in this table, because the com-

putation times for these problems were impractically high for all algorithms.

4.5 Conclusion

We described three exact algorithms for solving the winner determination

problem of the total quantity discount auction and its variants. One algo-

rithm is based on our result that the problem can be solved by solving a num-
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ber of min-cost flow problems; the other two algorithms are a branch-and-cut

and an linear programming based branch-and-bound algorithm. The algo-

rithms were tested on fairly large randomly generated instances of the basic

problem and three variants.

Our computational results show that all three algorithms came to an exact

solution in a reasonable amount of time. However, it also became clear that

each algorithm has instances for which it performs best. In general, the

min-cost flow based algorithm works best for instances where the number of

suppliers does not exceed 20 (which seems to correspond to most practical

cases). It works especially well for the variant where we imposed constraints

on the market share a supplier is allowed to obtain. The branch-and-cut

algorithm outperforms the other algorithms on large instances in terms of

suppliers of the basic case and on the structured instances of the variant

that requires a limited amount of winning suppliers. Finally, the linear pro-

gramming based branch-and-bound algorithm is at its best with the large

instances of the variant where the buyer is allowed to purchase more than

strictly needed.
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lp b&b mcf b&b branch&cut

Instances time [s] #nodes time [s] #nodes time [s] #nodes

S-10-40-3 0.08 29.3 0.01 116.6 0.09 0.3

S-10-40-5 0.11 52.5 0.02 161.1 0.15 10.9

S-10-100-3 0.11 17.2 0.02 69.8 0.12 0.2

S-10-100-5 0.36 74.3 0.14 501.6 0.55 3.2

S-20-40-3 0.16 73.5 0.07 389.2 0.12 0.5

S-20-40-5 0.58 207.3 0.38 1,887.8 0.50 4.7

S-20-100-3 0.57 128.8 0.30 749.6 0.34 1.3

S-20-100-5 1.07 155.1 0.67 1,512.8 1.17 2.1

S-50-40-3 1.92 719.0 5.61 16,671.8 0.51 2.7

S-50-40-5 7.81 2,087.2 32.93 85,210.4 2.99 16.5

S-50-100-3 4.67 696.1 21.81 26,595.3 1.45 2.1

S-50-100-5 24.41 2,614.0 159.77 168,181.3 10.45 14.7

R-10-40-3 0.07 24.3 0.01 54.9 0.09 2.1

R-10-40-5 0.31 160.7 0.07 428.9 0.59 30.5

R-10-100-3 0.10 10.1 0.02 46.9 0.14 2.6

R-10-100-5 0.78 160.0 0.31 845.1 1.50 31.7

R-20-40-3 0.25 121.6 0.14 700.5 0.29 9.5

R-20-40-5 1.56 659.9 0.45 2,155.6 1.81 68.5

R-20-100-3 1.05 235.0 0.59 1,249.6 0.83 8.1

R-20-100-5 5.34 882.8 3.18 3,938.2 6.81 70.1

R-50-40-3 6.17 2,411.0 10.31 28,975.3 1.67 81.6

R-50-40-5 18.41 4,303.1 18.60 48,876.6 14.18 140.9

R-50-100-3 38.47 6,289.1 97.29 103,885.7 8.84 43.8

R-50-100-5 122.49 11,451.2 241.39 237,953.3 61.71 216.8

Table 4.1: Computational results for the basic case
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lp b&b mcf b&b branch&cut

Instances time [s] #nodes time [s] #nodes time [s] #nodes

S-10-40-3 0.08 25.3 0.01 55.6 0.12 0.7

S-10-40-5 0.12 34.4 0.01 51.3 0.21 2.7

S-10-100-3 0.14 17.6 0.03 102.0 0.18 0.9

S-10-100-5 0.39 58.5 0.07 223.7 0.82 2.9

S-20-40-3 0.20 56.4 0.05 233.6 0.29 0.8

S-20-40-5 0.91 255.8 0.10 453.8 1.68 17.4

S-20-100-3 0.78 136.6 0.13 267.1 0.86 2.5

S-20-100-5 2.08 268.8 0.35 672.4 3.47 9.3

S-50-40-3 1.07 196.1 0.24 622.5 1.18 5.7

S-50-40-5 5.47 790.7 0.31 858.5 9.36 71.9

S-50-100-3 3.58 290.4 1.21 1,185.0 2.86 5.8

S-50-100-5 15.00 807.3 2.85 3,002.7 20.08 63.7

R-10-40-3 0.08 24.0 0.01 67.9 0.15 7.5

R-10-40-5 0.30 125.1 0.04 248.5 0.80 20.4

R-10-100-3 0.14 15.1 0.02 40.7 0.20 0.2

R-10-100-5 1.04 213.2 0.20 546.7 2.46 27.0

R-20-40-3 0.32 132.7 0.12 484.5 0.60 21.6

R-20-40-5 1.50 505.7 0.24 1,062.4 2.91 62.2

R-20-100-3 1.27 253.6 0.26 453.0 1.81 26.5

R-20-100-5 8.44 1,226.5 5.50 9,671.1 11.95 105.2

R-50-40-3 1.15 214.0 0.19 526.5 2.38 25.8

R-50-40-5 7.32 2,099.7 0.56 1,552.2 19.18 273.7

R-50-100-3 3.69 287.5 2.12 2,046.3 7.66 34.1

R-50-100-5 27.79 1,731.3 15.55 15,900.1 59.75 228.9

Table 4.2: Computational results for variant 1 (market share constraints)
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lp b&b mcf b&b branch&cut

Instances time [s] #nodes time [s] #nodes time [s] #nodes

S-10-40-3 0.06 27.9 0.02 118.7 0.14 0.4

S-10-40-5 0.11 50.6 0.02 166.8 0.49 23.2

S-10-100-3 0.12 17.5 0.02 69.8 0.29 6.8

S-10-100-5 0.40 75.3 0.16 513.3 2.48 66.5

S-20-40-3 0.17 71.3 0.07 389.9 0.45 5.2

S-20-40-5 0.61 219.3 0.43 1,997.3 4.42 148.7

S-20-100-3 0.63 135.7 0.32 749.9 2.08 43.4

S-20-100-5 1.26 185.8 0.74 1,545.9 11.47 164.2

S-50-40-3 1.98 739.7 5.57 16,724.3 8.90 261.9

S-50-40-5 9.88 2,491.3 36.90 94,865.4 147.56 2,500.0

S-50-100-3 5.65 832.3 22.39 26,625.3 28.42 523.7

S-50-100-5 32.31 3,365.0 171.14 172,466.7 271.80 3,006.0

R-10-40-3 0.06 21.6 0.02 55.5 0.10 0.1

R-10-40-5 0.17 82.9 0.05 428.5 0.67 18.5

R-10-100-3 0.10 9.3 0.01 45.6 0.17 0.2

R-10-100-5 0.50 91.5 0.24 1,068.9 2.49 42.6

R-20-40-3 0.24 117.0 0.13 793.8 0.60 15.9

R-20-40-5 0.91 343.9 0.47 3,167.6 3.55 89.8

R-20-100-3 1.00 241.4 0.53 1,369.0 1.85 17.6

R-20-100-5 4.46 801.6 3.11 10,389.8 25.09 434.8

R-50-40-3 10.51 4,615.8 15.91 59,066.0 35.16 1,195.8

R-50-40-5 25.54 6,714.3 39.33 171,566.6 169.82 1,511.1

R-50-100-3 79.93 14,059.4 130.42 206,668.9 274.82 6,035.4

R-50-100-5 398.31 45,945.3 446.85 798,002.9 2,036.07 17,577.4

Table 4.3: Computational results for variant 2 (more for less)
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lp b&b mcf b&b branch&cut

Instances time [s] #nodes time [s] #nodes time [s] #nodes

S-10-40-3 0.29 372.0 0.26 1,786.3 0.17 3.4

S-10-40-5 0.41 421.1 0.32 2,135.7 0.27 8.1

S-10-100-3 1.23 603.4 0.73 2,017.0 0.35 8.0

S-10-100-5 2.65 1,007.4 1.43 4,115.9 1.17 16.5

S-20-40-3 3.00 2,763.0 6.70 30,788.1 0.34 2.4

S-20-40-5 2.39 1,345.2 15.48 66,377.0 1.07 27.3

S-20-100-3 16.76 5,083.6 23.83 44,780.9 1.63 17.3

S-20-100-5 7.15 1,597.2 20.02 36,588.2 2.73 12.8

R-10-40-3 0.06 25.6 0.03 229.6 0.09 2.1

R-10-40-5 0.26 181.9 0.43 2,697.7 0.57 35.9

R-10-100-3 0.13 26.6 0.10 302.7 0.11 0.0

R-10-100-5 0.74 195.9 0.71 2,040.6 1.33 28.5

R-20-40-3 0.37 252.7 2.06 9,812.6 0.30 8.5

R-20-40-5 1.08 578.6 5.73 25,467.2 1.63 61.2

R-20-100-3 2.38 730.9 7.07 13,881.7 0.91 9.5

R-20-100-5 4.19 920.6 26.47 48,444.9 6.49 66.6

Table 4.4: Computational results for variant 3 (limited nr. of winning suppliers)
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Exclusionary side constraints

In the total quantity discount auction (see chapters 2 to 4), the buyer’s

task is to select exactly one volume interval for each supplier from whom

he wishes to purchase. The choice for a specific volume interval therefore

excludes the possibility to purchase items at the prices of any other volume

interval this supplier may have. In this chapter, we take a closer look at

these so-called exclusionary side constraints and we investigate how they

contribute to the complexity of the TQD auction. In order to get a clearer

view on these constraints, we study them in the context of the transportation

problem, which is a well-known and efficiently solvable problem.

5.1 The transportation problem with exclusionary

side constraints

The ordinary transportation problem can be described as follows: given a

number of supply nodes each with a certain supply of items, a number of

demand nodes each with a certain demand for items, and a unit transporta-

tion cost for each pair consisting of a supply node and a demand node, send

the items from the supply nodes to the demand nodes at a minimum cost.

In this chapter we consider the variant where for each demand node a set

of pairs of supply nodes is given such that at most one supply node of each

75
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given pair is allowed to send items to that demand node. Following the

literature, we refer to this problem as the transportation problem with ex-

clusionary side constraints (TPESC).

The transportation problem with exclusionary side constraints can be for-

mulated as follows. Let there be a set S of supply nodes, each with a supply

of si, i ∈ S, and a set D of demand nodes, each with a demand of dj ,

j ∈ D. For each pair consisting of supply node i ∈ S and demand node

j ∈ D, a unit cost cij > 0 is given. Finally, for each demand node j ∈ D,

a (possibly empty) set of pairs of supply nodes, called Fj , is given; thus

Fj = {(i1, i2)| (i1, i2) ∈ S × S, i1 6= i2}. We assume that all data are inte-

gral. The problem is to send all supply to the demand nodes at minimum

cost, such that each demand node j ∈ D receives items from at most one

supply node for each pair of supply nodes present in Fj . Obviously, if Fj = ∅
for all j ∈ D, the ordinary transportation problem arises. Notice that we

assume that total supply equals total demand, that is
∑

i∈S si =
∑

j∈D dj .

For a mathematical formulation, we refer to Sun (2002). When we use the

phrase “the feasibility version of TPESC”, we refer to the situation where

(i) the (given) bipartite network between supply nodes and demand nodes

is not necessarily complete, (ii) no costs are specified, and (iii), the question

to answer is whether a feasible solution (using only edges from the network)

exists.

As far as we are aware, this problem has first been introduced by Cao (1992),

who described an application in storage management of containers. In this

application, arriving containers must be positioned in rows of a storage yard,

such that the costs of operations (searching, loading, retrieving) are min-

imized. Differences in size, ownership, or content may disallow containers

to be stored in the same row, giving rise to exclusionary side constraints.

A branch-and-bound approach was described to solve the problem. Other

branch-and-bound approaches are described and tested in Sun (2002), while

evolutionary algorithms have been proposed and tested by Cao & Uebe
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(1995), and Syarif & Gen (2003). These contributions suggest that those

authors believe that the problem is NP -hard, although no formal statement

of this result seems to have been made.

In this chapter, we confirm this thesis by showing that the feasibility ver-

sion of TPESC is NP -complete. More specifically, we establish for each of

three relevant special cases of TPESC its complexity status. One special

case concerns the setting where all Fj , j ∈ D are equal and is related to the

winner determination problem of the TQD auction, discussed in chapters 2

to 4. We refer to this case as TPESC with identical exclusionary sets (see

Section 5.2). In section 5.3, we investigate TPESC with a single exclusion-

ary set, i.e. a setting where all sets Fj except one are empty. Finally, in

Section 5.4 we discuss another special case, where the number of suppliers

is fixed.

5.2 TPESC with identical exclusionary sets

In this section we focus on the TPESC with identical exclusionary sets.

This special case arises in the total quantity discount auction (see chapters

2 to 4). For the reader’s convenience, we now briefly recapitulate the TQD

auction and its winner determination problem. Consider a buyer procuring

given amounts of different items from different suppliers by means of a com-

binatorial auction. Suppliers can participate in this auction by submitting

at least one bid, consisting of prices charged for each individual item, and a

volume interval on the total number of sold items, within which these price

are valid. Each of the suppliers thus uses a so-called total quantity discount

policy to set the prices for the different items. The resulting winner deter-

mination problem is to decide which bids to accept, in order to acquire the

given amounts of each of the different items at minimum total cost. Thus, a

solution for this problem prescribes how many units of each item are ordered

from each supplier.
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Observe that the winner determination problem of the TQD auction (as the

TPESC problem) is a generalization of the ordinary transportation problem.

Indeed, by associating a demand node with each item (with its demand equal

to the amount that needs to be bought), and by associating a supply node

with appropriate lower and upper bounds with each volume interval of each

supplier, the TQD winner determination problem boils down to selecting

supply nodes (at most one from each supplier) and finding the right amount

of units of each item to be transported. In case a supplier can only deliver

a fixed number of items, that is, there is only one supply node for each sup-

plier with coinciding upper and lower bound, the ordinary transportation

problem arises. One important aspect in this generalization of the trans-

portation problem is the fact that for each demand node, a set of supply

nodes is given (namely the nodes corresponding to the intervals of a sin-

gle supplier) from which at most one can be used to actually supply that

demand node; this corresponds to our Fj sets, with j ∈ D. Observe that

if a supplier uses more than two intervals, this is easily accommodated by

having an element in the exclusionary set for each pair of volume intervals

(which gives rise to a polynomial number of elements in the exclusionary

set). Also, observe that these sets are the same for all demand nodes, in

other words, we are dealing with an instance of TPESC with identical F -sets.

Let us now formulate our results for this special case of TPESC. We first

prove that the problem with |D| = 2, that is, the case of two demand nodes,

is weakly NP -hard, then we exhibit a pseudo-polynomial time algorithm

for this case, and finally we show that the feasibility version of the problem

with |D| = 3 is strongly NP -complete.

Theorem 12. The feasibility version of TPESC with identical exclusionary

sets is NP -complete, even if |D| = 2.

Proof. We prove the theorem by presenting a reduction from Even-Odd
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Partitioning (EOP) to TPESC. EOP is proved to be NP -complete in Garey,

Tarjan & Wilfong (1988).

EOP

Input: n pairs of positive integers (x2i−1, x2i), i = 1, . . . , n.

Question: does there exist a partition of {1, . . . , 2n} into disjoint subsets A

and B with |A ∩ {2i − 1, 2i}| = |B ∩ {2i − 1, 2i}| = 1 for i = 1, . . . , n, and

with
∑

i∈A xi =
∑

i∈B xi?

For each integer in the input of EOP, we construct a supply node with sup-

ply equal to the value of the integer, that is, we set S = {1, 2, . . . , 2n} with

si = xi for i = 1, . . . , 2n. There are two demand nodes, each having demand

d1 = d2 = 1
2

∑2n
i=1 xi. We set F1 = F2 = {(2i − 1, 2i)| i = 1, . . . , n}, imply-

ing that at most one supply node per pair is allowed to send items to that

demand node. Each supply node is connected to each demand node. This

completes the description of the instance of TPESC.

A yes-answer to the EOP instance directly corresponds to a feasible solution

of the TPESC instance. Also, by observing the fact that the two demand

nodes have identical exclusionary constraints, it is clear that in any feasible

solution of the TPESC instance, each supply node sends its entire supply to

precisely one of the demand nodes which in turn corresponds to a yes-answer

of the EOP instance.

Of course, this result does not rule out the existence of a pseudo-polynomial

time algorithm for TPESC with common exclusionary sets and two demand

nodes. We will now describe such an algorithm.

We first construct a graph G = (V, E). There is a node in G for each sup-

ply node in the TPESC instance. Let there be an edge between each pair

of nodes for which there is an exclusionary constraint in F . The resulting

graph can be partitioned into a number of connected components (Vi, Ei),
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i = 1, . . . , c, such that there is no exclusionary constraint between two ver-

tices in different sets Vi. Thus, any two vertices that are connected by an

edge are part of the same component. For each component i, there are only

two possible ways of dividing the supply of the nodes of that component

over the two demand nodes (as observed earlier, the fact that the two de-

mand nodes have identical exclusionary constraints and that total supply

equals total demand, implies that in any feasible solution, each supply node

sends its entire supply to precisely one of the demand nodes). Indeed, if we

pick an arbitrary node of each component and call it the primal node of the

component, we can either assign its supply to the first demand node or to

the second. This choice determines to which demand nodes the supply of

the other nodes of that component must be sent. Notice that we assume

here that there exists a feasible way of sending the supply of the supply

nodes of a component to the demand nodes, that is, we assume there is no

contradiction caused by the exclusionary sets. In a preprocessing phase, we

can find out whether a feasible way exists by verifying 2-coloredness of each

component.

Suppose that assigning the supply of the primal node of component i to the

first demand node results in a total supply of wi being sent to the first de-

mand node by the component i, and a remaining supply of ri =
∑

j∈Vi
sj−wi

being sent to the second demand node. Further, let pi1 (pi2) correspond to

the total cost corresponding to component i, when the supply of the pri-

mal node is being sent to the first (second) demand node. We partition

the set of components into two subsets as follows: C1 = {i|wi > ri}, and

C2 = {i|wi < ri}. This allows us to define decision variables xi such that, for

i ∈ C1: xi = 1(0) if the supply of the primal node is being sent to the first

(second) demand node, and for i ∈ C2: xi = 1(0) if the supply of the primal

node is being sent to the second (first) demand node. We can formulate the

TPESC problem with identical exclusionary sets and two demand nodes as

follows:
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minimize

∑

i∈C1

[pi1xi + pi2(1− xi)] +
∑

i∈C2

[pi2xi + pi1(1− xi)] (5.1)

subject to

∑

i∈C1

[wixi + ri(1− xi)] +
∑

i∈C2

[rixi + wi(1− xi)] = d1 (5.2)

∑

i∈C1

[rixi + wi(1− xi)] +
∑

i∈C2

[wixi + ri(1− xi)] = d2 (5.3)

xi ∈ {0, 1} for i = 1, . . . , c. (5.4)

Let us now define for i ∈ C1: ai = wi − ri, pi = pi1 − pi2, and for i ∈ C2:

ai = ri − wi, pi = pi2 − pi1, and we define U = d1 −
∑

i∈C1
ri −

∑
i∈C2

wi.

Rewriting (5.1)-(5.4) using these definitions gives us the following equivalent

integer program:

minimize

c∑

i=1

pixi (5.5)

subject to

c∑

i=1

aixi = U (5.6)

xi ∈ {0, 1} for i = 1, . . . , c. (5.7)

Notice that when constraint (5.6) is satisfied, both the first and the second

demand node receive their required supply of d1 respectively d2. Also ob-

serve that the definitions above imply that ai > 0. In fact, we can eliminate

those variables xi which have as coefficient ai = 0 (since, in an optimal so-

lution we set, in case ai = 0: xi = 1 if pi 6 0, else we set xi = 0). Thus,

henceforth we will assume that ai > 1. Furthermore, we assume that U > 0,
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since no solution exists if U < 0.

This problem is a generalization of the change making problem (see Martello

& Toth (1990)), since there is a cost pi associated to each variable xi. Fur-

thermore, there are bounds equal to 1 on the variables. Wright (1975)

developed a dynamic program for the change-making problem. The follow-

ing modified version of this algorithm, to which we refer as algorithm DP,

provides an optimal solution for formulation (5.5)-(5.7).

Let fq(z) be the optimal solution value of a sub-instance of (5.5)-(5.7), con-

sisting of components 1, . . . , q and a right-hand side of z, with 1 6 q 6 c

and 0 6 z 6 U . If no solution exists for a combination of values q and z,

then fq(z) = ∞. It is clear that

f1(z) =





0 if z = 0;

p1 if z = a1;

∞ if z 6= a1.

Now, fq(z) can be computed by considering increasing values of q from 2 to

c and, for each q, increasing values of z from 0 to U as

fq(z) =

{
fq−1(z) if z = 0, 1, . . . , aq − 1;

min(fq−1(z), fq−1(z − aq) + pq) if z = aq, . . . , U.

The optimal solution value of formulation (5.5)-(5.7) is then given by fc(U).

The time complexity of algorithm DP is O(cU), which proves that TPESC

with two demand nodes with identical exclusionary constraints can be solved

in pseudo-polynomial time. We have shown the following:

Theorem 13. Algorithm DP is a pseudo-polynomial time algorithm for

TPESC with identical exclusionary constraints and two demand nodes.
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We now argue that it is unlikely that this algorithm can be extended to the

case of three demand nodes by showing that TPESC with identical exclu-

sionary sets and three demand nodes is strongly NP -hard.

Theorem 14. The feasibility version of TPESC with identical exclusionary

sets is strongly NP -complete, even if |D| = 3.

Proof. We prove the theorem by presenting a reduction from Graph 3-

colorability (see Garey & Johnson (1979)) to TPESC.

Graph 3-colorability

Input: a graph G = (V, E).

Question: is G 3-colorable, that is, does there exist a coloring of the vertices

of G such that two connected vertices receive different colors, and such that

no more than three different colors are used?

We build an instance of TPESC by having a supply node for every vertex

of V , by having a supply node for every edge of E, and by having a single

dummy node d. Thus S = V ∪E ∪{d}. Each supply node corresponding to

a vertex or an edge of G has sj = 1, j ∈ S \{d}, the supply corresponding to

the dummy node equals sd = 2(|V |+ |E|). There are three demand nodes,

each having demand dj = |V |+ |E|. Let the two endpoints of an edge e ∈ E

be denoted by ve and we, and let pe be the supply node in S corresponding to

this edge e. For each edge e in G there are three pairs of supply nodes in the

set of exclusionary constraints, i.e. F = {(ve, we), (ve, pe), (we, pe)|e ∈ E}.
Further, each supply node is connected to each demand node. This com-

pletes the description of an instance of TPESC.

Suppose that G admits a 3-coloring. We associate a different color to each

of the three demand nodes. Next, we send the unit supply of each supply

node corresponding to a vertex v ∈ V to the appropriate demand node (the

one with v’s color in the coloring). The unit supply of a supply node corre-
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sponding to an edge e ∈ E is sent to the demand node not receiving supply

from supply nodes ve and we (obviously, there is always one such node). We

use the supply from the dummy node to satisfy all demand from the demand

nodes exactly. Observe that we have satisfied the exclusionary constraints,

and hence: we have a feasible solution to TPESC.

Suppose there is a feasible solution to TPESC. Consider a triple of supply

nodes (ve, we, pe) associated to edge e. Due to the choice for F , it follows

that the supply of each of these three supply nodes is sent to a unique de-

mand node. Thus, the supply of supply nodes that correspond to adjacent

vertices in G, goes to different demand nodes. Since there are three demand

nodes, we have found a 3-coloring.

5.3 TPESC with a single exclusionary set

In this section we deal with a special case of TPESC, namely the problem

that arises when exactly one F -set is nonempty. As we shall see, already

this restricted version is hard to approximate, even for two demand nodes.

First, we sketch an application of this special case of TPESC.

When a company decides to store its items, it basically has the choice be-

tween constructing its own private warehouse and renting a public ware-

house. Assuming that there are seasonal changes in the need for storage

space, Ballou (1998) shows that it is advisable to make use of both options.

This leaves the company with the problem of where to store what items, min-

imizing the total cost. One can imagine that the public warehouse imposes

constraints on what items can be stored together (e.g. hazardous materi-

als), whereas these constraints could be non-existing in a private warehouse,

since this warehouse can be built specifically according to the (safety) needs

of the company. This practical application boils down to a TPESC with

only two demand nodes, where only one has a nonempty F -set (namely the
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demand node corresponding to the public warehouse).

We now show that it is difficult to find a good approximation algorithm for

TPESC with a single exclusionary set.

Theorem 15. TPESC with a single exclusionary set does not admit a

polynomial-time constant-factor approximation algorithm unless P = NP ,

even if |D| = 2.

Proof. We prove the theorem by presenting a reduction from Independent

Set (IS) to TPESC.

Independent Set

Input: a graph G = (V, E) and an integer K 6 |V |.
Question: does there exist an independent set of cardinality at least K, that

is, a subset V ′ ⊆ V with |V ′| > K, such that no two vertices in V ′ are joined

by an edge in E?

For each vertex j ∈ V we construct a supply node with supply sj = 1;

there is an additional supply node q with supply sq = K. There are two de-

mand nodes; the first one has demand d1 = K, the second one has demand

d2 = |V |. The cost of an edge between supply node q and the first demand

node equals c > 0, all other edges have cost 0. The first demand node has

a set of exclusionary constraints F1 = {(k, l)| k, l ∈ V ∧ (k, l) ∈ E}. The

second demand node has no exclusionary constraints, that is, F2 = ∅.

We now show that the existence of a polynomial-time algorithm with a con-

stant performance ratio for TPESC would imply P = NP .

Suppose that the instance of IS has a yes-answer, that is, there exists an

independent set V ′ of cardinality at least K. In this case, given the con-

struction of F1, there exist K supply nodes corresponding to nodes from the
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set V ′ that satisfy the exclusionary constraints. It is now easy to see that

a solution where the supply of these nodes is sent to the first demand node

and where the other nodes supply the second demand node, is a feasible

solution to TPESC that has zero cost.

In case that the instance of TPESC admits a zero cost solution, apparently

no edge between supply node q and the first demand node is used. Hence,

the demand of this node is fulfilled by K supply nodes that correspond ver-

tices in G that form an independent set of size K.

Thus a polynomial-time algorithm with a constant performance ratio for

TPESC would find a zero cost solution if one exists, and hence would be

able to distinguish between the yes-instances and the no-instances of IS.

5.4 TPESC with a fixed number of supply nodes

In this section we show that if the number of supply nodes is not part of

the input, a pseudo-polynomial time algorithm exists to solve the problem.

Observe that this contrasts with the case of a fixed number of demand nodes

(in particular Theorem 15), where the case of two demand nodes renders a

problem that does not allow a polynomial-time algorithm with a constant

performance ratio (unless P = NP ).

Theorem 16. TPESC with a fixed number of supply nodes can be solved

with a pseudo-polynomial time algorithm.

Proof. We prove the theorem by presenting a dynamic programming al-

gorithm for TPESC with a fixed number of supply nodes. To facilitate the

exposition, let m = |S|, n = |D|, and let L be the largest number in the

input. As a state in the dynamic program, we use (f1, f2, . . . , fm) where fi

denotes the amount of items sent by supply node i to all demand nodes.
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Observe that the number of states is bounded by (L + 1)m. Further we

define Hj , 1 6 j 6 n, as the set of states that can be reached after hav-

ing fulfilled the demand of the demand nodes 1, 2, . . . , j, and we start with

H0 = {(0, 0, . . . , 0)}. In iteration j, we deal with demand node j that has de-

mand dj , 1 6 j 6 n. We enumerate all possible integral ways of distributing

demand dj over the m supply nodes. Notice that we use here the fact that if

a solution exists, there exists one with integral flows. Let us define Ej as the

set of m-vectors that correspond to a feasible way of distributing demand

dj over the m supply nodes. In the absence of exclusionary constraints, i.e.,

if Fj = ∅, then

|Ej | =
(

dj + m− 1

m− 1

)
.

By enumerating all

(
dj + m− 1

m− 1

)
potential ways of distributing demand

dj over the m supply nodes, and next verifying, for each way, whether it is

feasible with respect to the exclusionary constraints (whose number |Fj | is

bounded by

(
m

2

)
), we can find in O(m2(dj + m)m), the set Ej . Now, we

can compute Hj as follows:

Hj = {f + g| f ∈ Hj−1, g ∈ Ej}.

States in which a value fi exceeds si are omitted since they cannot lead to a

feasible solution. Finally, we need to inspect whether (s1, s2, . . . , sm) ∈ Hn.

If so, a solution is found, else no solution exists. The complexity of this

algorithm is O(n · Lm ·m2(L + m)m), which, in case of a fixed m leads to a

pseudo-polynomial time algorithm. Notice that when arbitrary costs cij are

given, we can, by keeping track of the cost of an element of Ej , compute the

cost of a state, thereby finding the cost of an optimal solution.



88 5.5. Conclusion

It is not hard to see that Theorem 16 is best possible in the sense that one

easily verifies that the existence of a polynomial-time algorithm for TPESC

even with two supply nodes would imply P = NP . Indeed, the well-known

partition problem is easily seen to be a special case of the feasibility version

of TPESC with two supply nodes.

5.5 Conclusion

In this chapter, we showed that the feasibility version of TPESC is NP -

complete, even if there are only two demand nodes. For the special case

where all exclusionary constraints are identical in each demand node, we

showed that in case of two demand nodes the feasibility version of TPESC

is (weakly) NP -complete and a pseudo-polynomial time algorithm exists. In

case of three demand nodes, this problem becomes strongly NP -complete.

If only one single demand node has exclusionary constraints, the existence

of a polynomial-time algorithm with a fixed performance ratio would imply

P = NP , even in the case of two demand nodes. Finally, we also investi-

gated a setting with a fixed number of supply nodes. For this special case, we

showed that in case of two demand nodes the feasibility version of TPESC

is (weakly) NP -complete and a pseudo-polynomial time algorithm exists.

Table 5.1 gives an overview of our results.

Our results settle the complexity status of the transportation problem with

exclusionary side constraints and motivate the use of heuristics and branch-

and-bound approaches (Cao 1992, Sun 2002, Cao & Uebe 1995, Syarif &

Gen 2003) for solving large instances.
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TPESC with identical TPESC with TPESC with

exclusionary sets a single a fixed number

exclusionary set of supply nodes

|D| = 2 |D| > 3 |D| > 2 |S| > 2

Weakly NP -hard; Strongly No polynomial-time Weakly NP -hard;

Pseudo-pol. NP -hard constant-factor Pseudo-pol.

time algorithm approximation time algorithm

(unless P = NP )

Table 5.1: The complexity status of TPESC
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Chapter 6

The matrix bid auction

This chapter focusses on a combinatorial auction where a bidder can express

his preferences by means of a so-called ordered matrix bid. This matrix bid

auction was developed by Day (2004) and allows bids on all possible sub-

sets, although there are restrictions on what a bidder can bid for these

sets. Therefore, the matrix bid auction can be classified in the restricted-

preference approach (see chapter 1). In the first section, we give an overview

of how this auction works and we discuss some of its properties. We elabo-

rate on the relevance of the matrix bid auction in section 6.2. In section 6.3,

we develop methods to verify whether a given matrix bid satisfies a number

of properties related to microeconomic theory. Finally, in section 6.4, we

investigate how a collection of arbitrary bids can be represented as a matrix

bid.

6.1 Description of the matrix bid auction

The matrix bid auction is a multi-item, single-unit combinatorial auction.

This means that for each item that is auctioned, only one unit of this item

is available. In the matrix bid auction, each bidder must submit a strict

ordering (or ranking) of the items in which he is interested. Furthermore,

91
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we assume that for each bidder, the extra value an item adds to a set is de-

termined only by the number of higher ranked items in that set, according

to the ranking of that bidder.

The ordering of the items is denoted by rij , which is item i’s position in

bidder j’s ranking, for each i ∈ G and j ∈ B. This ordering should be strict

in the sense that for each bidder j, ri1j 6= ri2j for any pair of distinct items

i1 and i2. For instance, if rij = 2, item i is bidder j’s second highest ranked

item. Furthermore, each bidder j specifies values bijk, which correspond to

the value the bidder is prepared to pay for item i given that it is the k-th

highest ranked item in the set that bidder j is awarded. The bijk values

allow to determine the value bidder j attributes to any set S ⊆ G. Indeed,

bidder j’s bid on a set S is denoted as bj(S) and can be computed as:

bj(S) =
∑

i∈S

bi,j,k(i,j,S) (6.1)

where k(i, j, S) is the ranking of item i amongst the items in the set S,

according to bidder j’s ranking. Notice that equation (6.1) assumes that

no externalities are involved, i.e. a bidder’s valuation depends only on the

items he wins, and not for instance on the identity of the bidders to whom

the other items are allocated. The winner determination problem is, given

the bids bj(S) for each set S and each bidder j, to determine which bidder is

to receive which items, such that the total winning bid value is maximized.

Notice that we assume that each bidder pays what he bids for the subsets

he wins.

Observe that the value for index k of item i in bidder j’s bid can never

be higher than the rank rij . This allows us to arrange the values bijk as

a lower triangular matrix for each bidder j, where the rows correspond to

the items, ordered by decreasing rank and the columns correspond to values

for k. Hence the name matrix bid (with order). Notice also that bidder j’s

ranking rij does not necessarily reflect a preference order of the items. If
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an item is highly ranked, this merely means that its added value to a set

depends on less items than the added value of a lower ranked item. Fur-

thermore, we make no assumption regarding the bijk values. Indeed, these

values may be negative, e.g. to reflect the disposal cost of an unwanted item.

Specifying a sufficiently large negative value can also keep the bidder from

winning this item in the first place.

As a frivolous example, we consider the following matrix bid, where a bidder

expresses his preferences for an ice cream. There are two flavors of ice

cream (vanilla and banana), and also hot chocolate and strawberry sauce

are available.

vanilla ice 4

banana ice 5 2

hot chocolate -5 0 3

strawberry sauce -5 0 3 -1

Consider now the value this bidder j attributes to vanilla ice with hot choco-

late. Observe that for this choice of S, vanilla ice is the highest ranked item

(that is, k(vanilla ice, j, S) = 1), and hot chocolate is the second highest

ranked item (that is, k(hot chocolate, j, S) = 2). We find using (6.1):

bj(S) = bvanilla ice,j,k(vanilla ice,j,S) + bhot chocolate,j,k(hot chocolate,j,S)

= b1,j,1 + b3,j,2

= 4 + 0 = 4.

Thus, this matrix bid can be interpreted as follows: bidder j feels that he

needs at least one scoop of ice cream of one of the two available flavors,

although he prefers banana. Indeed, no combination without ice cream will

result in a positive valuation, because the bidder charges a (disposal) cost

of 5 if he gets one or both toppings without ice cream. Furthermore, the

bidder is not willing to pay as much for the second scoop of ice cream as
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for the first. The highest bid this bidder places is 9, for the combination of

vanilla and banana ice with any one of the two toppings.

Despite the fact that we adopt a restriction on the preferences a bidder

can express, the winner determination problem of the matrix bid auction

remains NP -hard (Day 2004). In section 7.1, we elaborate on the compu-

tational complexity of this problem.

6.2 Motivation

There are three reasons for investigating a combinatorial auction with ma-

trix bids. Shortly sketched, these reasons are: capturing structure, allowing

faster computation, and finding a compact way of representing preferences.

We now explore these arguments in more detail.

First, bids in any practical combinatorial auction are likely to posses some

structure. In literature, we find references of both theoretical structures (see

e.g. Rothkopf et al. (1998), Nisan (2000), and Leyton-Brown & Shoham

(2005)) and structures in practice (see e.g. Bleischwitz & Kliewer (2005)

and Goossens et al. (2007)). Capturing and understanding this structure is

important, not only since it allows to develop algorithms that can be more

efficient than algorithms for a general combinatorial auction, but also be-

cause it improves our understanding of various properties of an auction. The

matrix bid auction, where the incremental value an item adds to a bid on

a set is determined only by the number of higher ranked items in that set,

imposes one such structure. Thus, the matrix bid auction offers a way of cap-

turing structure that may be present in combinatorial auctions. Day (2004)

illustrates that this structure encompasses the following six types of bidders.

Additive preference bidder: For every item i, the bidder has a price pi.



Chapter 6. The matrix bid auction 95

The bidder’s valuation for a set S is then
∑

i∈S pi.

Single-minded bidder: This bidder is interested in one particular set S

for which he is willing to pay a price p. These single minded bids (S, p)

are also known as flat bids or atomic bids (Nisan 2000).

Nested flat bidder: This bidder is a generalization of the single-minded

bidder and expresses a chain of q exclusive single-minded bids (S1, p1),

(S2, p2), ... (Sq, pq) such that S1 ⊂ S2 ⊂ ... ⊂ Sq.

Nested k-of bidder: The k-of bid function consists of a bid (k, S, p), which

is a bid of p on any subset of S of at least size k. Multiple k-of bids

(k1, S, p1), (k2, S, p2), ..., (kq, S, pq) on the same set S can be repre-

sented in a single matrix bid, provided that all k-values are different.

This bid function is also known as the general symmetric bid function,

in which the bidder specifies prices p1, p2, ..., pm where pk is the price

the bidder is willing to pay for the k-th item won (see Nisan (2000)

and section 1.2.3). The bidder’s valuation for a set S is then
∑|S|

i=1 pi.

Partition bidder: This bidder partitions the items into a number of groups

of substitutes. The bidder gives a ranking of the groups and prices

he is willing to pay for receiving exactly one item from each group,

given that exactly one item from each higher ranked group has been

received. This bid function can be generalized to accommodate an

arbitrary given demand for each group of substitutes.

Add-on bidder: This bid function consists of a bid for an essential item,

and extra prices the bidder is willing to pay for each number of items

from a set of add-on items in which the bidder is interested.

Any auction whose bidders are from these types is a combinatorial auction

with matrix bids.

Second, matrix bid auctions allow for a faster computation due to the restric-

tion on the preferences that is assumed. Indeed, Day & Raghavan (2006)
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solve the winner determination problem of the matrix bid auction using a

formulation based on the assignment problem (see section 7.2), and compare

this with solving the winner determination problem of a general combinato-

rial auction using the set packing formulation (see (1.1)-(1.4)). The authors

conclude that the computation time for the general combinatorial auction

is higher and grows much faster than for the matrix bid auction. More-

over, they manage to solve the winner determination problem for matrix

bid auctions with 72 items, 75 bidders and over 1023 bids, whereas for the

general combinatorial auction, the largest instances that can be solved have

16 items, 25 bidders, and less than 109 bids. Although this comparison

is somewhat distorted since it does not use a state-of-the-art method (e.g.

CABOB, see Sandholm, Suri, Gilpin & Levine (2005)) to solve the winner

determination problem for the general auction, it does give an indication of

the size of the matrix bid auctions that can be solved in practice. We will

come back to computational issues extensively in chapter 7.

Finally, the matrix bid auction also offers a compact way of representing

preferences. Indeed, each bidder only needs to communicate an ordered list

of m items and m(m+1)
2 matrix bid entries, which is far less than bids for

each of the 2m possible sets of items in a general combinatorial auction. We

do recognize that choosing a ranking of the items and filling the matrix bid

with appropriate values might not be a trivial task for the bidder. However,

in section 6.4.1, we develop a procedure that recognizes whether a given

collection of bids can be translated into a matrix bid. If this is not the case,

the algorithm in section 6.4.2 presents a way to approximate this collection

of bids by a matrix bid, in a way that does not expose the bidder to paying

more than he stated for any set of items.
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6.3 Recognizing matrix bid properties

Bid functions may or may not posses various micro-economic properties,

which may have consequences for the complexity and/or the approximabil-

ity of the winner determination problem. For instance, if bid functions

are submodular (see section 6.3.3), a greedy algorithm produces a 1/2-

approximation (Lehmann, Lehmann & Nisan 2001). Therefore, it is in-

teresting to see how ordered matrix bids relate to such properties. More

specifically, in this section we discuss the relationship between the bid func-

tion implied by a matrix bid and micro-economic concepts as free disposal

(6.3.1), complement freeness (6.3.2), decreasing marginal valuations (6.3.3),

and the gross substitutes property (6.3.4). In particular, we show how to

verify efficiently whether a given matrix bid satisfies each of these proper-

ties. Since this section deals only with the bid function of a single bidder,

the index j that is used to indicate the bidder will be dropped. In literature,

many of the economic concepts discussed in this section are in terms of a

valuation function. Although for some auctions (e.g. the VCG auction), it

has been shown that it is in the bidder’s best interest to bid his true val-

uation, in general, a bidder’s bid and his valuation need not be identical.

Indeed, strategic considerations may motivate a bidder to express bids that

differ considerably from his valuation. Nevertheless, in this section, we ig-

nore this issue and assume equivalence between the notions bid function and

valuation function. This is common practice in studies on bidding languages

(see e.g. Nisan (2005)). We refer to Gul & Stacchetti (1999) and Cramton

et al. (2005) for the definitions used in this section.

6.3.1 Free disposal

In microeconomics, it is often assumed that agents prefer more to less. In the

context of an auction, this means that a bidder is always willing to receive

one or more items for free (see also section 3.2). Consequently, a seller will

never get stuck with unsold items and can therefore dispose of any number
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of items at no cost. Free disposal is a very common assumption in literature

on combinatorial auctions (Lehmann et al. 2001, Nisan 2000) and can be

defined as follows.

Definition 1. A bid function b satisfies the free disposal property if

b(S) 6 b(T ) ∀S ⊆ T ⊆ G. (6.2)

Notice that this definition is equivalent with the definition of a monotone

non-decreasing function. Alternatively stated, this definition implies that

disposing an item from a set cannot increase the value of the resulting set.

In combinatorial auctions where a bidder does not communicate bids on

every possible subset of items, but rather only on a limited number of sub-

sets of his liking, allocating all items may be problematic for the auctioneer.

In its strictest sense, the lack of free disposal would mean that buyers do

not accept anything extra beyond what they bid on. Using this interpreta-

tion, even finding a solution to the winner determination problem where all

items are allocated is NP -complete (Sandholm, Suri, Gilpin & Levine 2002).

However, many other approaches allow the auctioneer to allocate all items,

without disposal cost. Nisan (2005) assumes that bids of each bidder satisfy

the free disposal property. Moreover, if a bidder did not express a bid on a

set S, the auctioneer can construct a new bid b(S) equal to the highest bid

over all subsets of S. Obviously, the newly created bids also satisfy the free

disposal property. A similar approach is followed by Leyton-Brown, Shoham

& Tennenholtz (2000), since they allow the auctioneer to create additional

bids with value zero for any subset of items, which can then be combined

with any of the bids expressed by the bidders (which also satisfy the free

disposal property).

The concept of free disposal is, however, also relevant in a combinatorial

auction where bidders do express bids on every possible subset, as in the

matrix bid auction. In this case, assuming bid functions that satisfy free
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disposal guarantees the existence of a total winning bid value maximizing

allocation in which all items are awarded to some bidder.

Obviously, not every matrix bid satisfies the free disposal property. For

instance, the matrix bid that was used in section 6.1 does not allow free dis-

posal, since b(hot chocolate) < b(∅). The matrix framework indeed allows

the bidder to take into account a disposal cost which can vary across the

items and may lead to one or more sets with a negative valuation. However,

imposing that each entry in the matrix bid is non-negative is not sufficient

to attain the free disposal property. This is illustrated by the matrix bid

below, as b(y) = 3 > 2 = b(x, y).

item x 1

item y 3 1

Verifying free disposal can be done in polynomial time for a given matrix

bid, as witnessed by the following theorem.

Theorem 17. Verifying whether a matrix bid b satisfies the free disposal

property can be done in polynomial time.

Proof. We will show that solving a shortest path problem on an acyclic

graph involving O(m3) nodes and O(m4) arcs determines whether a matrix

bid b satisfies the free disposal property (6.2). The graph can be described

as follows.

The graph contains a source and a sink, and nodes indexed by (i, s, t). The

index i refers to item i and ranges from 1 to m. The index t ranges from

1 to ri, while s ranges from 0 to t. There are arcs from each node (i, s, t)

to (i′, s, t + 1) and to (i′, s + 1, t + 1), for all items i′ ranked lower than i

(recall that we consider a single bidder). Furthermore, there is an arc from

the source to each node (i, 0, 1) and (i, 1, 1), and there is an arc from each

node (except the source) to the sink. Let the cost on the arc from (i, s, t)
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to (i′, s, t + 1) be equal to bi′,t+1 and let the cost on the arc from (i, s, t) to

(i′, s + 1, t + 1) be equal to bi′,t+1 − bi′,s+1. Analogously, the arcs from the

source to each node (i, 0, 1) and (i, 1, 1) have a cost equal to bi,1 and zero

respectively. Arcs to the sink have a cost equal to zero. This completes the

description of the graph. Notice that this graph is acyclic and contains a

number of nodes and arcs that is polynomial in the number of items (O(m3)

and O(m4) respectively). Figure 6.1 illustrates this graph; arcs with no in-

dication of their cost have a cost equal to 0.

(i,s,t)

(i’,s,t+1)

(i’,s+1,t+1)

source

bi’,t+1 – bi’,s+1

bi’,t+1

(i,0,1)

(i,1,1)

(i’,0,1)

(i’,1,1)

sink

bi’,1

bi,1

ri<ri’

Figure 6.1: Graph used to verify free disposal

The graph described above should be interpreted as follows. Each node

(i, s, t) corresponds to a state where s and t items ranked at least as high as

item i are present in set S and set T ⊇ S respectively. Selecting an arc from

(i, s, t) to (i′, s, t + 1) corresponds to adding item i′ to set T as the (t + 1)-

th best item, but not to S, whereas an arc from (i, s, t) to (i′, s + 1, t + 1)

corresponds to adding item i′ to both set S and set T , as the (s + 1)-th and

(t + 1)-th best item respectively. In this way, each path from source to sink

determines sets S and T , and, vice versa, there is a path from the source to

the sink for each possible S and T . Notice that the arcs are such that S will

always be a subset of T .
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We now show that the length of a path from source to sink in this graph

equals b(T ) − b(S). Each path from source to sink consists of two types

of arcs: those arcs that add items i to the set T (and not to S), and

those arcs that add items i to both S and T . The former arcs give rise

to the term
∑

i∈T\S bi,k(i,T ), whereas the latter arcs give rise to the term∑
i∈S⊆T (bi,k(i,T ) − bi,k(i,S)). Recall from section 6.1 that k(i, A) denotes the

rank of item i in the set A. Thus, the length of the path equals

∑

i∈T\S
bi,k(i,T ) +

∑

i∈S⊆T

(bi,k(i,T ) − bi,k(i,S)) =
∑

i∈T

bi,k(i,T ) −
∑

i∈S

bi,k(i,S)

= b(T )− b(S).

Thus, verifying the free disposal property (see definition 1) for a given ma-

trix bid can be done by solving a shortest path problem in this graph, which

takes polynomial time. Concluding, a shortest path in our graph with non-

negative length is equivalent to free disposal. ¤

6.3.2 Complement free

Although the difficulty to deal with complementarity or substitution effects

in a bidder’s valuation in a classic sequential auction is a major motiva-

tion for researching combinatorial auctions in the first place, assuming the

absence of complementarities is quite common in microeconomic theory.

Lehmann et al. (2001) state that “in most of microeconomic theory, the

consumers are assumed to exhibit diminishing marginal utilities”. In their

work, they assume that the valuation of a union of disjoint sets is never

higher than the sum of the valuations of the individual sets. This notion

can be formalized as follows and is also known as subadditivity.

Definition 2. A bid function b is complement free (or subadditive) if

b(S ∪ T ) 6 b(S) + b(T ) ∀S, T : S ∩ T = ∅. (6.3)
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Although the winner determination problem for bidders with a complement

free bid function remains NP -hard (Lehmann et al. 2001), there exists a

polynomial time algorithm that finds a O( 1
log m)-approximation if, given ex-

ternal prices for all items, a bidder can determine in polynomial time for

which set his valuation b exceeds the sum of the prices of the items in that

set the most (Dobzinski, Nisan & Schapira 2005). If a bidder can only

determine his valuation for a given set in polynomial time, then the approx-

imation ratio decreases to O(m−1/2) (Dobzinski et al. 2005).

A sufficient condition to have a complement free matrix bid is that the bik

values are non-increasing in the rows (i.e. bik 6 bi,k+1 ∀i, k). Indeed, for

each item i, the valuation of the union of two sets will only make use of

bik values with a value of index k at least as high as the value used in the

valuation of the individual sets. Having non-increasing bik values is not a

necessary condition though, as is illustrated by the following example of a

complement free bid function.

item x 0

item y 2 1

item z 2 1 2

We now show how we can verify in polynomial time whether a matrix bid

is complement free.

Theorem 18. Verifying whether a matrix bid b satisfies the complement

free property can be done in polynomial time.

Proof. Given definition 2, it suffices to establish the existence of sets of

items S and T , such that S ∩T = ∅ and b(S) + b(T )− b(S ∪T ) < 0, to find

out whether a matrix bid b is not complement free. We show that this can

be done by solving a shortest path problem, by adapting the construction

described in Theorem 17.
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Consider a graph containing a source, a sink, and nodes, indexed by (i, s, t).

The index i refers to item i, with 1 6 i 6 m. Both indices s and t range

from 0 to ri, insofar 0 < s+ t 6 ri. There are arcs from each node (i, s, t) to

(i′, s + 1, t) and to (i′, s, t + 1), for all items i′ ranked lower than i. Further-

more, there is an arc from the source to each node (i, 1, 0) and (i, 0, 1), and

there is an arc from each node (except the source) to the sink. Let the cost

of the arc from (i, s, t) to (i′, s + 1, t) be equal to bi′,s+1 − bi′,s+t+1 and let

the cost of the arc to (i′, s, t+1) be equal to bi′,t+1−bi′,s+t+1. The arcs from

the source to each node (i, 1, 0) and (i, 0, 1), and also all arcs to the sink

have a cost equal to zero. Notice that this graph is acyclic. Figure 6.2 illus-

trates this graph; arcs with no indication of their cost have a cost equal to 0.

(i,s,t)

(i’,s+1,t)

(i’,s,t+1)

source

bi’,s+1 – bi’,s+t+1

bi’,t+1 – bi’,s+t+1

(i,1,0)

(i,0,1)

(i’,1,0)

(i’,0,1)

sink

ri<ri’

Figure 6.2: Graph used to verify complement freeness

Each node (i, s, t) in the graph represents the state where s and t items

ranked at least as high as item i are present in sets S and T respectively.

Each path from source to sink determines what items are to be added to

sets S and T , and the arcs are such that these sets will always be disjoint.

If such a path contains an arc from (i, s, t) to (i′, s + 1, t), this corresponds

to item i′ being present in set S as the (s + 1)-th best item. If an arc from

(i, s, t) to (i′, s, t + 1) is present in the path, this means that item i′ is in
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set T as the (t + 1)-th best item. We now show that the length of a path

from source to sink in this graph equals b(S) + b(T )− b(S ∪ T ). Each path

from source to sink consists of two types of arcs: those arcs that add item

an item i to the set S, and those arcs that add an item i to T . Given the

choice of the costs of the arcs, the length of a path equals

∑

i∈S

(bi,k(i,S) − bi,k(i,S∪T )) +
∑

i∈T

(bi,k(i,T ) − bi,k(i,S∪T ))

=
∑

i∈S

bi,k(i,S) +
∑

i∈T

bi,k(i,T ) −
∑

i∈S∪T

bi,k(i,S∪T )

= b(S) + b(T )− b(S ∪ T ).

Thus, if a shortest path in this graph has a non-negative length, then the

matrix bid b is complement free, and vice versa. Since the graph is acyclic

and contains a number of nodes and arcs that is polynomial in the number

of items (O(m3) and O(m4) respectively), verifying whether a matrix bid is

complement free can be done in polynomial time. ¤

Complement free valuations find their natural counterpart in substitute free

valuations, for which b(S ∪ T ) > b(S) + b(T ) for all disjoint sets S and T .

This property is also known as superadditivity. The set packing formulation

of the winner determination problem (see (1.1)-(1.4)) can be written more

succinctly if all bid functions are superadditive (de Vries & Vohra 2003). In

this case, there is no need to prevent a bidder from winning multiple bids.

Furthermore, the auctioneer only needs to take into account the highest bid

for each set.

Notice that having bik values that are non-decreasing in the rows is a suf-

ficient condition for a matrix bid to be superadditive. Non-decreasing bik

values in the rows is, however, not a necessary condition, which is illustrated

by the matrix bid below.
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item x 0

item y 1 2

item z 2 3 2

Verifying whether a matrix bid satisfies the substitute free property can

also be done in polynomial time. Using the same graph as in theorem 18,

a longest path with non-positive length implies superadditivity of the given

matrix bid. Since this graph has no cycles, its longest path can be found in

polynomial time.

Corollary 1. Verifying whether a matrix bid b satisfies the substitute free

property can be done in polynomial time.

6.3.3 Decreasing marginal valuations

In many practical applications, and also in most of microeconomic theory,

it is assumed that the more items an agent has, the less he values an extra

item. This concept is called decreasing marginal valuations. It is also an

assumption in chapters 2 to 4, where a buyer expects a discount from its

suppliers if a larger volume was purchased.

Definition 3. A bid function b has decreasing marginal valuations if

b(T ∪ {x})− b(T ) 6 b(S ∪ {x})− b(S) ∀S ⊆ T, x ∈ G. (6.4)

Moulin (1988) showed that a (bid) function has decreasing marginal valua-

tions if and only if it is submodular.

Definition 4. A bid function b is submodular if

b(S ∪ T ) + b(S ∩ T ) 6 b(S) + b(T ) ∀S, T ⊆ G. (6.5)

Lehmann et al. (2001) show that a valuation where the items have decreasing

marginal valuations is also complement free (assuming that this valuation

function satisfies free disposal and normalization). The authors also pro-

vide an example that illustrates that the converse is not true. Indeed, a
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complement free valuation function may still have so-called hidden comple-

mentarities. When we consider a bidder’s valuation for a set of items A,

given that this bidder already acquired some set of items W (W ∩ A = ∅),
complementarities may still arise. In other words, even if a bid function

b is complement free, this is not necessarily the case for marginal bids b′,

defined by b′(A) = b(A|W ) = b(A ∪W )− b(W ). If we want to enforce that

the marginal bids are complement free as well, the bid function b is required

to be submodular (Lehmann et al. 2001). This phenomenon may play a role

in an auction with multiple rounds.

Lehmann et al. (2001) also show that the winner determination problem for

bidders with a submodular bid function remains NP -hard, but that a greedy

algorithm produces a 1/2-approximation. This algorithm simply assigns the

items one by one (in no particular order) to the bidder with the highest

marginal value for that item, given the other items that bidder already

acquired. The following example with two items (x and y) and two bidders

(A and B) shows that this approximation is tight, even for submodular

matrix bids.

bidder A bidder B

item x 1 item x 1

item y 1 0 item y 0 0

The optimal total winning bid value for the auctioneer in this auction is 2,

by allocating item x to bidder B and item y to bidder A. However, the

greedy algorithm can generate a total winning bid value of 1, by starting

with allocating item x arbitrarily to bidder A and ending up with marginal

bids of zero for item y. Khot, Lipton, Markakis & Mehta (2005) show that

if each bidder can determine his valuation for a given set in polynomial time

and if this valuation function is submodular, it is NP -hard to approximate

the optimal solution by a factor better than e−1
e . This result assumes that,

given external prices for all items, bidders cannot determine in polynomial

time (in the number of items and bidders) for which set their valuation ex-
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ceeds the sum of the prices of the items in that set the most.

Day (2004) suggests that a matrix bid with bik values that are non-increasing

in both the rows and the columns represents a bid function with decreas-

ing marginal valuations. Notice from the example below that this is not

necessarily the case (with S = {x, z} and T = {y, z}).

item x 7

item y 6 5

item z 5 1 0

Furthermore, not all bid functions with decreasing marginal valuations can

be represented as a matrix bid, as can be easily verified for the submodular

bid function b that produces the following bids on each subset of the item

set {x, y, z}: b({}) = 0, b({x}) = 1, b({y}) = 2, b({z}) = 3, b({x, y}) = 3,

b({y, z}) = 3, b({x, z}) = 3 and b({x, y, z}) = 3.

We can, however, verify whether a matrix bid represents a valuation func-

tion with decreasing marginal valuations in polynomial time.

Theorem 19. Verifying whether a matrix bid b has decreasing marginal

valuations can be done in polynomial time.

Proof. Using the equivalence result by Moulin (1988), it is sufficient to

establish the existence of sets of items S and T , for which b(S) + b(T ) −
b(S∪T )−b(S∩T ) < 0, in order to find out whether a matrix bid is not sub-

modular. We show that the existence of such sets can be verified by solving

a shortest path problem, again by adapting the construction described in

Theorem 17.

Consider a graph containing a source, a sink, and nodes, indexed by (i, s, t, c).

The index i refers to item i, with 1 6 i 6 m. The indices s, t and c

range from 0 to ri, though no nodes are needed if both s and t are 0.
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There are arcs from each node (i, s, t, c) to (i′, s + 1, t, c), (i′, s, t + 1, c)

and (i′, s + 1, t + 1, c + 1), for all items i′ ranked lower than i. Further-

more, there are arcs from the source to each node (i, 1, 0, 0), (i, 0, 1, 0)

and (i, 1, 1, 1), and there are arcs from each node but the source to the

sink. Let the cost on the arc from (i, s, t, c) to (i′, s + 1, t, c) be equal to

bi′,s+1 − bi′,s+t−c+1 and let the cost on the arc to (i′, s, t + 1, c) be equal to

bi′,t+1 − bi′,s+t−c+1. The arcs from (i, s, t, c) to (i′, s + 1, t + 1, c + 1) have a

cost equal to bi′,s+1 + bi′,t+1 − bi′,s+t−c+1 − bi′,c+1. The arcs from the source

to each node (i, 1, 0, 0), (i, 0, 1, 0) and (i, 1, 1, 1), and also all arcs to the sink

have a cost equal to zero. Figure 6.3 illustrates this acyclic graph; arcs with

no indication of their cost have a cost equal to 0.

(i,s,t,c)

(i’,s+1,t,c)

(i’,s,t+1,c)

source

bi’,s+1 – bi’,s+t-c+1

bi’,t+1 – bi’,s+t-c+1

(i,0,1,0)

(i,1,1,1)

(i’,1,0,0)

(i’,0,1,0) sink

ri<ri’

(i,1,0,0)

(i’,1,1,1)
(i’,s+1,t+1,c+1)

bi’,s+1 + bi’,t+1 – bi’,s+t-c+1 - bi’,c+1

Figure 6.3: Graph used to verify decreasing marginal valuations

The graph should be interpreted as follows. Each node (i, s, t, c) stands for

a state where s, t, and c items ranked at least as high as item i that are in

sets S, T , and S ∩T respectively. Each path from source to sink determines

what items are to be added to sets S and T , and there is a path from source
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to sink for each possible S and T . If the arc from (i, s, t, c) to (i′, s+1, t, c) is

included in the path, this means that item i′ is in set S as the (s+1)-th best

item, whereas the arc to (i′, s, t + 1, c) corresponds to item i′ being in set T ,

as the (t + 1)-th best item. The arc from (i, s, t, c) to (i′, s + 1, t + 1, c + 1)

corresponds to adding item i′ to both S and T , where c + 1 is the number

of items in S ∩ T ranked at least as high as i′.

We now show that the length of a path from source to sink corresponds to

b(S) + b(T )− b(S ∪T )− b(S ∩T ). Each path consists of three types of arcs:

those arcs that add an item i to S and not to T , those that add an item i

to T and not to S, and those that add an item i to both S and T . Given

the choice of the costs of these arcs, the length of the path equals

∑

i∈S\T
(bi,k(i,S) − bi,k(i,S∪T )) +

∑

i∈T\S
(bi,k(i,T ) − bi,k(i,S∪T ))

+
∑

i∈S∩T

(bi,k(i,S) + bi,k(i,T ) − bi,k(i,S∪T ) − bi,k(i,S∩T ))

=
∑

i∈S

bi,k(i,S) +
∑

i∈T

bi,k(i,T ) −
∑

i∈S∪T

bi,k(i,S∪T ) −
∑

i∈S∩T

bi,k(i,S∩T )

= b(S) + b(T )− b(S ∪ T )− b(S ∩ T ).

Thus, if the shortest path in this graph has a non-negative length, then

the matrix bid has decreasing marginal valuations, and vice versa. Since

the graph contains a number of nodes and arcs that is polynomial in the

number of items (O(m4) and O(m5) respectively), it is clear that verifying

whether a matrix bid b has decreasing marginal valuations can be done in

polynomial time. ¤

If a bid function b satisfies the property that b(S∪T )+b(S∩T ) > b(S)+b(T )

for all sets S and T , we call b supermodular, or, equivalently, b is said to have

increasing marginal valuations. It is pointed out by de Vries & Vohra (2003)
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that if there are only two bid functions a bidder can have, both of them non-

decreasing, integer valued and supermodular, then the corresponding winner

determination problem can be solved in polynomial time.

Notice that having bik values that are non-decreasing in the rows is no suf-

ficient condition for a matrix bid to be supermodular. Choosing S = {x, z}
and T = {y, z} in the matrix bid below illustrates this.

item x 1

item y 1 2

item z 0 5 6

The same graph as described in theorem 19 can be used to verify whether a

matrix bid is supermodular. Indeed, a longest path from source to sink with

a non-positive length implies that the matrix bid is supermodular. Since

the graph is acyclic, its longest path can be found in polynomial time.

Corollary 2. Verifying whether a matrix bid b has increasing marginal val-

uations can be done in polynomial time.

6.3.4 Gross substitutes property

The gross substitutes property was introduced by Kelso & Crawford (1982)

in the context of a labor market, and applied to auctions by e.g. Bevia,

Quinzii & Silva (1999), and Bikhchandani & Mamer (1997). The gross

substitutes property departs from a price vector p containing prices that are

to be paid for each item i. Given a valuation function b, we can define the

demand set D(p) of the corresponding bidder given the current price vector

p as

D(p) = {argmax
S⊆G

(b(S)−
∑

i∈S

pi)}. (6.6)
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The gross substitutes property requires that a bidder will continue to de-

mand items for which the price did not rise, when other items have become

more expensive. This condition can be defined more formally as follows.

Definition 5. A bid function b satisfies the gross substitutes property if for

all price vectors p 6 q (according to a point-wise comparison) and all sets

S ∈ D(p), there exists a set T ∈ D(q) such that {i ∈ S : pi = qi} ⊆ T .

The gross substitutes property is stronger than submodularity, since Gul &

Stacchetti (1999) show that each bid function that satisfies the gross sub-

stitutes condition is also submodular, whereas the converse is not true. Gul

& Stacchetti (1999) also prove that in an auction where each bidder has

a bid function that satisfies the gross substitutes property, there exists a

price vector and an allocation such that every bidder receives a set of items

that is in his demand set given these prices. This situation is known as a

Walrasian equilibrium. Kelso & Crawford (1982) develop a fully polynomial

approximation scheme for finding this Walrasian equilibrium (see also Nisan

& Segal (2006)).

Assuming that a bid function b has the gross substitutes property leads

to a number of interesting results. Indeed, the LP-relaxation of the set

packing formulation (see (1.1)-(1.4)) for the winner determination prob-

lem of a combinatorial auction where all bidders have bid functions that

satisfy the gross substitutes condition has an integral solution (Kelso &

Crawford 1982, Bikhchandani, de Vries, Schummer & Vohra 2002). Fur-

thermore, Murota & Tamura (2003) and Fujishige & Yang (2003) show

that given a valuation function that satisfies the gross substitutes property

and a price vector, the bidder’s demand set can be computed in polyno-

mial time. Using the equivalence of separation and optimization (Grötschel,

Lovász & Schrijver 1981), it follows that in this setting, the winner deter-

mination problem can be solved in polynomial time. Ausubel & Milgrom

(2005) show that if every bidder has gross substitutes bid functions, the
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Vickrey-Clarke-Groves auction does not suffer from a number weaknesses as

e.g. vulnerability to the use of multiple bidding identities by a single bidder.

The fact that the definition of the gross substitutes property is based on

prices that should be paid for each item is somewhat awkward, since a matrix

bid specifies bids, and the price for a set of items is simply the winning bid

for that set. However, Reijnierse, Potters & van Gellekom (2002) formulated

the following equivalent characterization of the gross substitutes property,

which is independent of prices. A bid function b satisfies the gross substitutes

property if for all S ⊆ G and x, y, z ∈ G the following conditions hold:

b(S ∪ {x, y})− b(S ∪ {x}) 6 b(S ∪ {y})− b(S), and (6.7)

b(S ∪ {x, y}) + b(S ∪ {z})
6 max(b(S ∪ {x, z}) + b(S ∪ {y}), b(S ∪ {y, z}) + b(S ∪ {x})). (6.8)

Reijnierse et al. (2002) also show that it can be checked whether a bid

function satisfies the gross substitutes property in a time complexity of

O(K log3(K)) where K is the number of subsets of G, which equals 2m.

For matrix bids, however, this can be done in a time which is polynomial in

the number of items, as witnessed by the following theorem.

Theorem 20. Verifying whether a matrix bid b satisfies the gross substitutes

property can be done in polynomial time.

Proof. From the equivalence result by Reijnierse et al. (2002) it follows that

a matrix bid b has the gross substitutes property if and only if conditions

(6.7) and (6.8) are satisfied. Moulin (1988) shows that condition (6.7) is

in fact equivalent with submodularity. According to theorem 19, checking

whether a matrix bid b is submodular can be done in polynomial time. As for

condition (6.8), it suffices to consider the setting where x, y, z /∈ S. Indeed,

the matrix bid auction is a single-unit auction, implying b(S ∪ {x}) = b(S)
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if x ∈ S. Using this, it is trivial to see that condition (6.8) where any subset

of {x, y, z} is in S, is satisfied for any submodular matrix bid. In the re-

mainder of this proof, we will show that solving a shortest path problem on

an acyclic graph suffices to check whether a matrix bid b satisfies condition

(6.8) with x, y, z /∈ S. We will first assume that rx < ry < rz (i.e. item

x is ranked higher than item y, which is ranked higher than item z) and

afterwards we will discuss the other settings.

First, we show that for the setting with rx < ry < rz, the following is true:

b(S ∪ {x, z}) + b(S ∪ {y}) = b(S ∪ {y, z}) + b(S ∪ {x}). (6.9)

Indeed, all items i in S that are ranked higher than item x contribute

b(i, k(i, S)) to each of the four terms in equation (6.9), where k(i, S) is the

rank i has amongst the items in S. Item x adds b(x, k(x, S ∪ {x, z})) to the

left-hand side of equation (6.9), which equals b(x, k(x, S ∪ {x})), added to

the right-hand side. Items i ∈ S that are ranked between x and y contribute

b(i, k(i, S))+b(i, k(i, S)+1) to both sides of the equation. Items i ∈ S ranked

between y and z contribute 2b(i, k(i, S)+1) to both the left-hand and right-

hand side of equation (6.9). Furthermore, also item y adds equal amounts to

both sides of the equation, namely b(y, k(y, S∪{y})) and b(y, k(y, S∪{y, z})).
The same goes for item z, adding the equal terms b(z, k(z, S ∪ {x, z})) and

b(z, k(z, S ∪ {y, z})) to the left-hand and the right-hand side respectively.

Finally, items i ∈ S ranked lower than z add b(i, k(i, S)+2)+b(i, k(i, S)+1)

to both sides of the equation. Using this result, condition (6.8) can be re-

formulated as

b(S ∪ {x, y}) + b(S ∪ {z}) 6 b(S ∪ {x, z}) + b(S ∪ {y}). (6.10)

Consider a graph containing a source, a sink and nodes, indexed by (i, s, q).

The index i refers to item i and ranges from 1 to m, whereas s ranges from

0 to ri and q ranges from 0 to 3. There are arcs from each node (i, s, q)
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Table 6.1: Cost on the arcs from (i, s, q) to (i′, s + 1, q) and to (i′, s, q + 1), de-
pending on the value for q.
(i, s, q) → (i′, s + 1, q) (i, s, q) → (i′, s, q + 1)

q = 0 bi′,s+1 + bi′,s+1 − bi′,s+1 − bi′,s+1 = 0 bi′,s+1 − bi′,s+1 = 0

q = 1 bi′,s+2 + bi′,s+1 − bi′,s+2 − bi′,s+1 = 0 bi′,s+2 − bi′,s+1

q = 2 bi′,s+3 + bi′,s+1 − bi′,s+2 − bi′,s+2 bi′,s+1 − bi′,s+2

q = 3 bi′,s+3 + bi′,s+2 − bi′,s+3 − bi′,s+2 = 0 (no such arc exists)

to (i′, s + 1, q) and to (i′, s, q + 1), for all items i′ ranked lower than i and

insofar q + 1 6 3. Furthermore, there are arcs from the source to each node

(i, 1, 0) and (i, 0, 1), and there are arcs from each node (i, s, 3) to the sink.

Depending on the value for q, the arc from (i, s, q) to (i′, s + 1, q) and the

arc from (i, s, q) to (i′, s, q + 1) have costs as presented in table 6.1. The

arcs from the source to each node (i, 1, 0), and(i, 0, 1), and also all arcs to

the sink have a cost equal to zero.

The graph can be interpreted as follows. Each node (i, s, q) represents a

state where s items ranked at least as high as item i are in set S. The index

q keeps track of how many of the items x, y, and z are ranked at least as

high as item i, and should be understood as follows.

q = 0 : rx > ri

q = 1 : ry > ri > rx

q = 2 : rz > ri > ry

q = 3 : ri > rz

Each path from source to sink determines which items are to be added to

set S and which items are selected to play the role of x, y and z. If the path

contains an arc from (i, s, q) or from the source to (i′, s+1, q), this indicates

that item i′ is added to the set S, as the (s + 1)-th highest ranked item.

An arc from (i, s, q) or from the source to (i′, s, q + 1) indicates that item i′

is selected as item x, y or z, for q = 0, q = 1, or q = 2 respectively. The

fact that there are only arcs from nodes (i, s, 3) to the sink, guarantees that
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items x, y and z are selected in each path from the source to the sink.

We now show that the length of a path from source to sink in this graph

equals b(S∪{x, y})+b(S∪{z})−b(S∪{x, z})− b(S∪{y}). Each path from

source to sink has exactly one arc that selects an item x (namely the arc

where q increases from 0 to 1), one arc that selects an item y (q increases

from 1 to 2), and one arc that selects an item z (q increases from 2 to 3).

The other arcs in the path can be divided into four types: those arcs that

add an item i ranked higher than x to the set S, those arcs that add an

item i ranked between x and y to S, those arcs that add an item i ranked

between y and z to S, and those arcs that add an item i ranked lower than

z. From the costs in table 6.1, it follows that the length of a path from

source to sink equals

∑

i∈S:rx>ri

(bi,k(i,S∪{x,y}) + bi,k(i,S∪{z}) − bi,k(i,S∪{x,z}) − bi,k(i,S∪{y}))

+
∑

i∈S:ry>ri>rx

(bi,k(i,S∪{x,y}) + bi,k(i,S∪{z}) − bi,k(i,S∪{x,z}) − bi,k(i,S∪{y}))

+
∑

i∈S:rz>ri>ry

(bi,k(i,S∪{x,y}) + bi,k(i,S∪{z}) − bi,k(i,S∪{x,z}) − bi,k(i,S∪{y}))

+
∑

i∈S:ri>rz

(bi,k(i,S∪{x,y}) + bi,k(i,S∪{z}) − bi,k(i,S∪{x,z}) − bi,k(i,S∪{y}))

+bx,k(x,S∪{x,y}) − bx,k(x,S∪{x,z}) + by,k(y,S∪{x,y}) − by,k(y,S∪{y})

+bz,k(z,S∪{z}) − bz,k(z,S∪{x,z})

=
∑

i∈S∪{x,y}
bi,k(i,S∪{x,y}) +

∑

i∈S∪{z}
bi,k(i,S∪{z})

−
∑

i∈S∪{x,z}
bi,k(i,S∪{x,z}) −

∑

i∈S∪{y}
bi,k(i,S∪{y})

= b(S ∪ {x, y}) + b(S ∪ {z})− b(S ∪ {x, z})− b(S ∪ {y}).
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Thus, if this graph has a shortest path with non-negative length, then condi-

tion (6.8) is satisfied for every S and every x, y, z /∈ S such that rx < ry < rz.

Moreover, a similar reasoning can be used to prove that this result is also

valid if ry < rx < rz.

We now show that for the setting with rx < rz < ry, condition (6.8) is

satisfied for any matrix bid, since

b(S ∪ {x, y}) + b(S ∪ {z}) = b(S ∪ {y, z}) + b(S ∪ {x}). (6.11)

Observe that all items i in S that are ranked higher than item x con-

tribute b(i, k(i, S)) to each of the terms in equation (6.11). Item x adds

b(x, k(x, S ∪ {x, y})) to the left-hand side of equation (6.11), which equals

b(x, k(x, S∪{x})), added to the right-hand side. Items i ∈ S that are ranked

between x and z contribute b(i, k(i, S))+b(i, k(i, S)+1) to both sides of the

equation. Also item z adds an equal to term to both sides of the equation,

namely b(z, k(z, S ∪ {z})) and b(z, k(z, S ∪ {y, z})) to the left-hand and the

right-hand side respectively. Items i ∈ S ranked between z and y contribute

2b(i, k(i, S)+1) to both the left-hand and right-hand side of equation (6.11).

Furthermore, also item y adds equal amounts to both sides of the equation,

namely b(y, k(y, S ∪ {x, y})) and b(y, k(y, S ∪ {y, z})). Finally, items i ∈ S

ranked lower than y add b(i, k(i, S) + 2) + b(i, k(i, S) + 1) to both sides of

the equation. A similar reasoning can be used to show that equality (6.11)

is also valid for a setting with rz < rx < ry. Obviously, condition (6.8) is

satisfied for any matrix bid that satisfies equality (6.11).

An analogous proof can be developed to show that condition (6.8) is also

always satisfied for the settings with ry < rz < rx or rz < ry < rx, since

b(S ∪ {x, y}) + b(S ∪ {z}) = b(S ∪ {x, z}) + b(S ∪ {y}). (6.12)

We can conclude that it can be verified in polynomial time whether a matrix

bid satisfies conditions (6.7) and (6.8) by solving a shortest path problem
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on two graphs, with a number of nodes and arcs that is polynomial in the

number of items (O(m4) and O(m5), and O(m2) and O(m3) respectively). If

the shortest paths in both graphs have a non-negative length, then the ma-

trix bid has the gross substitutes property. Otherwise, if one of the shortest

paths has a negative length, the matrix bid does not have the gross substi-

tutes property. ¤

6.4 Expressing arbitrary bids as a matrix bid

The matrix bid auction fits in the scope of the restricted preference approach,

which accepts that bidders cannot fully express their preferences in order to

solve the winner determination problem more efficiently. In section 6.4.1, we

describe an algorithm that answers the question whether a given collection

of bids can be represented in a matrix bid. If the answer is no, we need to

find a matrix bid that offers a good approximation of the bids. This is what

is done in section 6.4.2, by generalizing the algorithm of section 6.4.1.

6.4.1 Exact expression of a bid function using a matrix bid

From the description in section 6.1, it is clear that not every bid function

can be represented by a matrix bid. This is due to the fact that there is

in general only one entry available to express the added value of an item

to many sets. Indeed, whereas there is only one set corresponding to the

entries on the first column and to those on the diagonal, this is not the case

for the other entries. Day (2004) shows that for each entry bik, the number

of sets containing k − 1 items ranked higher than i corresponds to Pascal’s

triangle1, which implies that the entries towards the middle and the bot-

tom depend on the largest number of sets (notice that we drop the index

j again, since this section deals only with the bid function of a single bidder).

1see http://mathworld.wolfram.com/PascalsTriangle.html
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As mentioned in section 6.1, an arbitrary bid function can be represented

as a matrix bid if and only if the incremental value an item adds to a set is

determined only by the number of higher ranked items in that set. Although

a list of bidder types that can be represented in a matrix bid (see section

6.2) gives some insight in the expressiveness of the matrix bid language, a

test to determine whether a given collection of bids can fit into a matrix bid

would be useful as well. Indeed, in practice, bidders do not necessarily bid

according to a well-known structure, but often simply express a number of

bids on various sets of their interest.

Consider a given set of items G, with |G| = m, and bids v(S) with S ⊆ G.

A naive way of verifying whether the given bids can fit into a matrix bid

involves checking every possible ranking of the items; this has a time com-

plexity of O(m!2m). The following procedure FIT(p,G, v) tries to fill the

first p rows of the matrix bid with items in G, such that the bids that follow

from this matrix bid correspond with the given bids v. In other words, if such

a matrix bid exists, FIT(m,G, v) returns YES and produces the ranking of

the items and entries bik. Otherwise, FIT(m,G, v) returns NO, indicating

that the given bids cannot be represented in a matrix bid.
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Algorithm 1 FIT(p, G, v)
STEP 1:
L ← G; A ← {};
Go to STEP 2;

STEP 2:
Pick an item i from L;
L ← L \ {i}; k ← 1;
Go to STEP 3;

STEP 3:
∃bik ∈ IR : v(S ∪ {i})− v(S) = bik for all sets S ⊆ G \ {i} with |S| = k − 1?
if YES then

if (k < p) then
k ← k + 1;
Go to STEP 3;

else
A ← A ∪ {i};
if (L 6= {}) then

Go to STEP 2;
else

Go to STEP 4;
end if

end if
end if
if NO then

if (L 6= {}) then
Go to STEP 2;

else
Go to STEP 4;

end if
end if

STEP 4:
if (A = {}) then

return NO;
else

for (i ∈ A) do
ri = p;
Fill row p with bik with 1 6 k 6 p;
p ← p− 1;

end for
if (p = 0) then

return YES;
else

FIT(p,G \A, v);
end if

end if



120 6.4. Expressing arbitrary bids as a matrix bid

Theorem 21. FIT(m,G, v) recognizes whether a bid function b, defined on

subsets of a set G, containing m items, can be expressed as a matrix bid.

Proof. The algorithm FIT(p,G, v) searches for items in G that can be

placed on the p-th row of the matrix bid. To keep track of these items, the

algorithm uses the set A, which is initialized to the empty set in step 1.

Furthermore, the algorithm initializes the set L of items that still need to

be assigned to a row p. In step 2, an item is picked from L. In step 3, we

verify whether a value can be found for an entry k on row p that satisfies

the requirements that follow from the given bids v. By repeating step 3 for

every entry of row p, we find out whether item i can be placed on row p;

if this is the case, we add it to A. From the way a bid is computed from a

matrix bid (see 6.1), it follows that the key condition is indeed:

∃bik ∈ IR : v(S∪{i})−v(S) = bik,∀S ⊆ G\{i} : |S| = k−1, ∀k ∈ {1, ..., p}?

This condition is checked for all items that have not yet been placed on a

row of the matrix bid. If we find a non-empty set A in step 4, we can use the

items in A to fill rows p− |A|+ 1 to p, with the bik values that are obtained

in step 3. Indeed, if an item can be placed on row p, it can also be placed

on a higher ranked row (i.e. p− 1, p− 2, etc.) since the sets for which the

condition in step 3 needs to be valid on such a row are a subset of the sets

that need to satisfy the condition for row p. Notice that the choice of which

item of A should be placed on which row from p− |A|+ 1 to p has no effect

on choices made regarding rows lower than p or higher than p − |A| + 1.

At this point, we perform the FIT algorithm again, in order to place the

remaining G \ A items on the remaining p − |A| rows. If we can continue

the algorithm until all rows have been filled with an item, then clearly the

given bids can be represented by a matrix bid.

If at some stage in step 4, the set A is empty, then we conclude that there

is no way to represent the bids in a matrix bid. Indeed, this means that we
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found at some row q a set Q of items (with |Q| = q) that cannot be placed

at that row q. We also know that none of these items can be placed at a row

ranked lower than q (i.e. q + 1, q + 2, etc.), since otherwise this would have

been clear at an earlier stage of the algorithm. Therefore, we can conclude

that if the algorithm returns NO, no matrix bid exists that represents the

given bids. ¤

In order to verify whether there exists an entry for item i on column k of

row p, we need to check all sets of size k − 1 that do not contain item i.

Thus, verifying whether an item fits on a row requires processing at most 2m

sets. As a result, this algorithm has a time complexity of O(m22m), which

is exponential in the number of items m, but polynomial in the input, being

the number of bids, i.e. 2m.

6.4.2 Approximate expression of a bid function using a ma-

trix bid

In this section, we focus on the question how we can approximate a given

collection of bids by a matrix bid. Day (2004) points out that such an ap-

proximation should ideally be safe and effective. An approximation is safe

if it does not expose the bidder to paying more than he is willing to for any

set. An approximation consisting of entries aik is effective if there exists no

other safe approximation with entries bik such that bik > aik for all i ∈ G

and all k ∈ {1, ..., ri} and bik > aik for at least one i ∈ G and k ∈ {1, ..., ri}.
Day (2004) also points out that the entries in the first column and on the

diagonal can always be filled in exactly, since they correspond to only one

set. However, no advice is given on how to choose one of the m! possible

rankings of the items.

The following algorithm APPROX(m,G, v) is an adaptation of the FIT al-

gorithm, such that if no item is found that fits on some row of the matrix
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bid, an item q is selected and a safe approximation is constructed. Indeed,

if no item fits on some row, there is for each item at least one entry on that

row for which there is no single value that represents the marginal value of

that item for all relevant sets. The selected item q is that item for which

the sum of absolute values of the difference between the highest and the

lowest marginal value is minimal. In case there are multiple such items, the

algorithm makes an arbitrary choice among these items.

Algorithm 2 APPROX(m,G, v)
for (p = m downto 1) do

for (i ∈ G) do
for (k = 1 to p) do

high(i, k) ← maxS⊆G\{i}:|S|=k−1(v(S ∪ {i})− v(S));
low(i, k) ← minS⊆G\{i}:|S|=k−1(v(S ∪ {i})− v(S));

end for
d(i) ← ∑p

k=1 |high(i, k)− low(i, k)|;
end for
Q ← argmini d(i);
Pick an arbitrary q ∈ Q;
G ← G \ {q};
rq = p;
for (k = 1 to p) do

bqk ← low(q, k);
end for

end for

Notice that the notion of a safe approximation is especially important when

the matrix bid is expressed by the bidder and communicated to the auction-

eer. However, it may also be the case that the bidder does not communicate

his bids as a matrix bid, but that the auctioneer translates them to a matrix

bid. The auctioneer might do this in order to benefit from the fact that the

winner determination problem of a matrix bid auction can be solved more

efficiently than that of a general auction (see Day & Raghavan (2006)). If

this is the case, the approximation need not necessarily be safe, since the

auctioneer could use it only to determine the allocation, and use the original

bids to determine the actual prices. In this case, the choice for the average
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of the highest and the lowest marginal value (or even the highest marginal

value) as an approximate entry bqk in the matrix bid could be motivated as

well.

6.5 Conclusion

In this chapter, we focussed on the matrix bid auction, which is a combina-

torial auction where a restriction is imposed on the preferences that can be

expressed by a bidder. We investigated the structure on the bids implied by

this auction and revealed the relationship between a matrix bid and concepts

like free disposal, complement freeness, decreasing marginal valuations, and

gross substitutes. Finally, we developed tools that should facilitate the use

of the matrix bid auction in practice. Given a number of bids, we found

a way to determine whether these bids can be expressed as a matrix bid.

Finally, we also show how to approximate these bids in a matrix bid if an

exact representation is not possible.
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Chapter 7

Exact algorithms for the

matrix bid auction

In this chapter, we focus on solving the winner determination problem for

the matrix bid auction (see chapter 6) exactly. In section 7.1, we discuss

the computational complexity of the special case of the matrix bid auction

winner determination problem that arises if all bidders have the same rank-

ing of the items. Section 7.2 deals with two mathematical programming

formulations for the general matrix bid auction winner determination prob-

lem. Based on one of these formulations, we develop two branch-and-price

algorithms to solve the winner determination problem in section 7.3. Fi-

nally, in section 7.4, we present computational results for these algorithms

and compare them with results from the branch-and-cut approach by Day

(2004).

7.1 Computational complexity

In the matrix bid auction, the key assumption is that for each bidder, the ex-

tra value an item adds to a set depends only on the number of higher ranked

items in that set, according to the ranking of that bidder. This assumption

125
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does not prevent the bidder from expressing a bid on any combination of

items, but restricts what these bids can be. Despite this restriction, the win-

ner determination problem of the matrix bid auction is NP -hard (Day 2004).

Even if each bidder has the same ranking of the items, the matrix bid auc-

tion winner determination problem remains NP -hard. Moreover, unless

P = NP , there exists no polynomial-time approximation scheme (PTAS)

for this problem.

Theorem 22. There exists no polynomial-time approximation scheme for

the winner determination problem for the matrix bid auction where all bid-

ders have an identical ranking of the items, unless P = NP .

Proof. We consider the winner determination problem for the matrix bid

auction where all bidders have an identical ranking. We refer to this problem

as MBI. The reduction is from the 3-dimensional matching (3DM) problem.

The 3DM problem is described as follows: given a set M ⊆ X × Y × Z of

triples, where each of the sets X, Y and Z has exactly q elements, find the

largest matching in M . Kann (1991) shows that it is NP -hard to decide

whether there exists a matching of size q, or whether every matching has a

size of at most (1− δ)q for some fixed δ > 0 (see also Petrank (1994)).

Every instance of 3DM can be reduced to an MBI instance in polynomial

time. Suppose that the 3q elements of the sets X, Y , and Z correspond to

3q items and that each 3-element subset in M corresponds to a bidder. We

pick an arbitrary ordering of the items and let this be the ranking of the

items for each bidder. Each bidder thus has a matrix bid with this ranking

and with the following entries. The highest ranked item of the triple cor-

responding to the bidder gets a value of 1 in the first column, the second

highest ranked item gets a value of 2 in the second column, and the third

highest ranked item gets a value of 3 in the third column. All other entries

get a value of zero.
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If an instance of 3DM has a matching of size q, then the corresponding in-

stance of MBI has a solution of value 6q. Indeed, a solution of 3DM consists

of q pairwise disjoint 3-element subsets, corresponding to q bidders in MBI.

Each supplier has a bid of 6 for the 3 items represented by the 3-element

subset. Accepting these bids leads to a sum of winning bids equal to 6q.

Since every element of X∪Y ∪Z occurs exactly once in the solution of 3DM,

every item will also be auctioned exactly once in the MBI solution.

If our instance of 3DM has a matching of size at most (1 − δ)q, at most

(1 − δ)q entries with value 3 in the matrix bids can be used, resulting in a

MBI solution value of (1− δ)6q. Notice that for a maximal solution value,

we need to use a maximal number of entries with value 3. The number of

items remaining is 3q − 3(1 − δ)q = 3δq. Each pair of these items adds at

most 3 to the solution value, resulting in a maximal solution value for MBI

of

(1− δ)6q +
9δq

2
= (6− 3

2
δ)q.

Consequently, a polynomial-time approximation scheme for MBI would im-

ply that we could distinguish between instances of 3DM with a matching of

size q and instances where every matching has a size of at most (1 − δ)q,

which is an NP -hard problem (Kann 1991). ¤

Notice that it follows from theorem 22 that the winner determination prob-

lem for the matrix bid auction where bidders have an identical ranking of

the items is NP -hard. In this theorem, the number of bidders is part of

the input. In the case that the number of bidders is fixed (and we still as-

sume identical rankings), the winner determination problem can be solved

in polynomial time.

Theorem 23. The winner determination problem for a matrix bid auction

with a fixed number of bidders, all having an identical ordering of the items,
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can be solved in polynomial time.

Proof. We will show that the winner determination problem for a matrix

bid auction with a fixed number of bidders, say n, all having an identical

ranking r of the items, say 1, 2, ...,m, can be solved by solving a longest

path problem on an acyclic graph involving O(mn+2) nodes and O(nmn+2)

arcs.

This graph contains nodes indexed by (i, s1, s2, ..., sn, k), a source, and a

sink. The index i refers to item i and ranges from 1 to m. The indices sj ,

with j ∈ {1, 2, ..., n}, and k range from 0 to ri, with
∑

j sj + k = ri. There

are arcs from each node (i, s1, s2, ..., sn, k) to (i+1, s′1, s
′
2, ..., s

′
n, k′), provided

that s′j > sj for all j ∈ {1, 2, ..., n}, and that k′ > k. Furthermore, there is

an arc from the source to each node (1, s1, s2, ..., sn, k), and an arc from each

node (m, s1, s2, ..., sn, k) to the sink. The arc from node (i, s1, s2, ..., sn, k)

to (i+1, s′1, s
′
2, ..., s

′
n, k′) has a cost of bi+1,j,s′j where j is the index for which

s′j = sj + 1, if k′ = k. If k′ = k + 1, then this arc has a cost of zero. All

arcs to the sink also have a cost of zero. The graph is depicted in Figure 7.1

for a setting with 2 items and 2 bidders. All arcs without indication of the

corresponding cost have a cost equal to zero.

The graph described above should be interpreted as follows. Each node

(i, s1, s2, ..., sn, k) corresponds to a state where a decision has been made on

the allocation of item i and all items ranked higher than i, with each bidder

j receiving sj items and k items remaining with the auctioneer. Selecting an

arc from (i, s1, s2, ..., sn, k) to (i + 1, s′1, s
′
2, ..., s

′
n, k′) therefore corresponds

to allocating item i + 1 to that bidder j for which s′j = sj + 1. If there is no

such bidder, then item i+1 remains with the auctioneer (and k′ = k+1). In

this way, each path from source to sink determines how the items are to be

allocated, and there is a path from the source to the sink for each possible

allocation.
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(1,1,0,0)

(1,0,1,0)

(1,0,0,1)

(2,2,0,0)

(2,0,2,0)

(2,0,0,2)

(2,1,1,0)

(2,1,0,1)

(2,0,1,1)

source
sink

b1,1,1

b1,2,1

b2,1,2

b2,1,1

b2,2,1

b2,2,2

b2,1,1

b2,2,1

Figure 7.1: Illustration of the graph for 2 items and 2 bidders

We now sketch the equivalence between the length of a path in the graph

and the value of an allocation of the items. We know that in a matrix bid,

the value of adding an item i to a set is determined only by the number of

higher ranked items. Since the graph contains only arcs from higher ranked

items to lower ranked items, the effect of adding an item i to a set on the

bid for this set can be determined, regardless of whatever items are added

to the set further down the path. The cost of an arc is nothing else but

the appropriate entry from the matrix bid of the bidder receiving the item.

This means that the length of any path from source to sink corresponds to∑
j bj(Sj), where Sj is the set of items allocated to bidder j, according to

that path. Therefore, the winner determination problem for a matrix bid

auction with a fixed number of bidders, all having an identical ordering of

the items, can be solved by solving a longest path problem. This can be
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done in polynomial time, since the underlying graph is acyclic. ¤

7.2 Mathematical formulations

In this section, we present two mathematical formulations for the matrix

bid auction winner determination problem. The first formulation (see also

Day (2004)) is inspired by the assignment problem, the second by the set

packing problem. We show that the LP-relaxations of both formulations are

equally strong.

We define the binary variable xijk to be 1 if bidder j receives item i as the

k-th best item, and 0 otherwise. This leads to the formulation below, to

which we refer as the assignment formulation.

maximize

∑

i∈G

∑

j∈B

rij∑

k=1

bijkxijk (7.1)

subject to

∑

j∈B

rij∑

k=1

xijk 6 1 ∀i ∈ G (7.2)

∑

i∈G:rij≥k

xijk 6 1 ∀j ∈ B,∀k ∈ {1, ..., rij} (7.3)

∑

l∈G:k≤rlj≤rij

xljk 6
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G,∀j ∈ B, ∀k ∈ {2, ..., rij}

(7.4)

xijk ∈ {0, 1} ∀i ∈ G,∀j ∈ B, ∀k ∈ {1, ..., rij}
(7.5)

Constraints (7.2) enforce that each item can be assigned to at most one
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bidder, while constraints (7.3) make sure that for each bidder, at most one

item is the k-th best item in the set this bidder gets. Finally, constraints

(7.4) impose that a bidder cannot get an item as the k-th best item in a

set, unless a higher ranked item was assigned to this bidder as his (k−1)-th

best item in this set. Constraints (7.5) are the integrality constraints.

Notice that the formulation (7.1)-(7.5) is not the minimal correct formula-

tion for the matrix bid winner determination problem. Indeed, constraints

(7.3) for k ∈ {2, ..., rij} are redundant in (7.1)-(7.5), since they are already

enforced by constraints (7.3) for k = 1 and constraints (7.4). Also, replac-

ing constraints (7.4) with the following (weaker) constraints still results in

a correct formulation:

xijk 6
∑

l∈G:k−1≤rlj<rij

xljk−1 ∀i ∈ G,∀j ∈ B, ∀k ∈ {2, ..., rij}.

However, with this formulation, all constraints (7.3) remain necessary.

The set packing formulation below makes use of binary variables y(S, j),

which equals 1 if bidder j wins set S, and 0 otherwise. The first set of

constraints (7.7) enforces that each item is awarded to at most one bidder.

The second set of constraints guarantees (7.8) that no bidder receives more

than one set. The integrality constraints are (7.9).

maximize
∑

j∈B

∑

S⊆G

bj(S)y(S, j) (7.6)

subject to
∑

S⊇{i}

∑

j∈B

y(S, j) 6 1 ∀i ∈ G (7.7)

∑

S⊆G

y(S, j) 6 1 ∀j ∈ B (7.8)

y(S, j) ∈ {0, 1} ∀S ⊆ G,∀j ∈ B (7.9)
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Notice that this set packing formulation is identical to the formulation (1.1)-

(1.4) for the winner determination problem of a general combinatorial auc-

tion, with Ωj = 2G. Indeed, the matrix bid auction only differs from a

general combinatorial auction in the way bj(S) is computed. Notice also

that the assignment formulation is polynomially sized in the number of bid-

ders and the number of items. This is not the case for the set packing

formulation. In the following theorem, we prove that the LP-relaxation of

the set packing formulation and the LP-relaxation of the assignment formu-

lation are equally strong.

Theorem 24. The LP relaxation of the assignment formulation and the LP

relaxation of the set packing formulation are equally strong. Moreover, if the

assignment formulation has an integral solution that is optimal with respect

to the LP-relaxation, this is also the case for the assignment formulation,

and vice versa.

Proof. In order to prove the first part of this theorem, we need to show

that the LP-relaxation of the set packing formulation is at least as strong

as the LP-relaxation of the assignment formulation and vice versa. In order

to prove the first relation, we need to show that any solution ŷ of the LP-

relaxation of the set packing formulation can be transformed to a solution x̂

of the LP-relaxation of the assignment formulation with the same objective

function value. This is accomplished by the following procedure. For the

remainder of this proof, if we mention a formulation, we mean in fact its

LP-relaxation.

First, we initialize all variables x̂ijk to 0, for all i ∈ G, j ∈ B, and k ∈
{1, ..., rij}. We consider each variable ŷ(S, j), with S ⊆ G and j ∈ B once,

and set for each item i in S
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x̂i,j,k(i,j,S) ← x̂i,j,k(i,j,S) + ŷ(S, j). (7.10)

Thus, in this procedure, the value of each variable ŷ(S, j) is added to |S|
x̂ijk variables, namely those with item i ∈ S, and k = k(i, j, S). It follows

that the following equality is valid:

rij∑

k=1

x̂ijk =
rij∑

k=1

∑

S:i∈S∧k=k(i,j,S)

ŷ(S, j) =
∑

S⊇{i}
ŷ(S, j) ∀i ∈ G, j ∈ B.

(7.11)

Using this equality, we verify that (7.2) holds for x̂:

∑

j∈B

rij∑

k=1

x̂ijk =
∑

j∈B

∑

S⊇{i}
ŷ(S, j) 6 1. (7.12)

Notice that the last inequality follows from the feasibility of ŷ (see (7.7)).

We also establish for j ∈ B, and k ∈ {1, ..., rij}:

∑

i∈G:rij>k

x̂ijk =
∑

i∈G

∑

S:i∈S∧k(i,j,S)=k

ŷ(S, j)

=
∑

S:|S|>k

ŷ(S, j)

6
∑

S⊆G

ŷ(S, j) 6 1, (7.13)

which shows that x̂ satisfies (7.3). Finally, we have that for each i ∈ G,

j ∈ B, and k = 1, ..., rij :

∑

l∈G:k≤rlj≤rij

x̂ljk =
∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k

ŷ(S, j). (7.14)

Thus we can write for each i ∈ G, j ∈ B, and k = 2, ..., rij :
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∑

l∈G:k≤rlj≤rij

x̂ljk −
∑

l∈G:k−1≤rlj<rij

x̂ljk−1 =

∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k

ŷ(S, j)−
∑

l∈G:rlj6rij

∑

S:l∈S∧k(l,j,S)=k−1

ŷ(S, j).

(7.15)

Consider some ŷ(S, j) occurring in the first term. The corresponding set S

has at the k-th position (k > 2) some item l, rlj 6 rij . It follows that there

must be some other item, say l′ with rl′j 6 rlj at position k− 1. Hence this

ŷ(S, j) also occurs in the second term. It follows that the expression (7.15)

cannot have a positive value, and hence (7.4) is satisfied. Notice also that

the transformation procedure (7.10) does not affect the objective function

value. Moreover, it transforms any integral solution ŷ to an integral solution

x̂.

Hence, we have shown that the set packing formulation is at least as strong

as the assignment formulation and if the set packing formulation has an

integral solution that is optimal with respect to the LP-relaxation, this is

also the case for the assignment formulation. In the remainder of this proof,

we show that the assignment formulation is at least strong as the set pack-

ing formulation. In order to prove this second relation, we show that any

solution x̂ of the LP-relaxation of the assignment formulation can be trans-

formed to a solution ŷ of the LP-relaxation of the set packing formulation

with the same objective function value. This is accomplished by the follow-

ing procedure, CONVERT(x̂).
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Algorithm 3 CONVERT(x̂)
for (j ∈ B) do

Initialize ŷ(S, j) ← 0 for all S ⊆ G;

Step 1:
for (i ∈ G) do

ŷ({i}, j) ← x̂ij1

end for

Step 2:
for (k = 2 to m) do

for (i ∈ G: rij = k to m) do
Step 2a:
T = {S ⊆ {i′ : ri′j < rij} : |S| = k − 1};
while (x̂ijk > 0) do

Pick a set S from T and remove S from T ;
if (x̂ijk > ŷ(S, j)) then

ŷ(S ∪ {i}, j) ← ŷ(S, j);
x̂ijk ← x̂ijk − ŷ(S, j);
ŷ(S, j) ← 0;

else
ŷ(S ∪ {i}, j) ← x̂ijk;
ŷ(S, j) ← ŷ(S, j)− x̂ijk;
x̂ijk ← 0;

end if
end while

end for
end for

end for
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The CONVERT procedure translates any solution for the assignment for-

mulation to a solution for set packing formulation. First, we argue that the

CONVERT algorithm terminates.

The crucial step in the CONVERT algorithm is step 2a, which has to be

performed for each bidder j, for each k from 2 to m, and for each i ∈ G with

rij > k. Let us consider now a bidder j, item i, and rank k, for which step

2a is to be performed, and let ỹ(S, j) be the solution as it is constructed by

the CONVERT algorithm so far. In order to guarantee that the while loop

in step 2a terminates, we need:

x̂ijk 6
∑

S:S⊆{i′:ri′j<rij}∧|S|=k−1

ỹ(S, j). (7.16)

Notice that in CONVERT, so far, each variable ỹ(S, j), with |S| = k − 1

and l being the lowest ranked item in S, has been increased at most once,

namely with (a fraction of) x̂l,j,k−1. Furthermore, the total value of x̂l,j,k−1

has been added exclusively over variables ỹ(S, j) with |S| = k − 1 and l the

lowest ranked item in S. Therefore, we have that the total fraction that has

been added to variables ỹ(S, j) with S containing k− 1 items ranked higher

than i equals:

∑

i′:k6ri′j<rij

x̂i′,j,k−1. (7.17)

Notice that the value of each variable ỹ(S, j) may also have been decreased

in CONVERT. Indeed, variables ỹ(S, j) with S containing k − 1 items and

the one with the lowest rank being l, can be decreased only with (a fraction

of) variables x̂i′,j,k with i′ ranked higher than l, and lower than i (since step

2a has not yet been performed for rank k and item i or items ranked lower

than i). Furthermore, the total value of x̂l,j,k has been subtracted only from

variables ỹ(S, j), with S containing k − 1 items, all ranked higher than l.

Therefore, we have that the total fraction that has been subtracted from

variables ỹ(S, j) with S containing k− 1 items ranked higher than i equals:
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∑

i′:k6ri′j<rij

x̂i′,j,k. (7.18)

Thus,

∑

S:S⊆{i′:ri′j<rij}∧|S|=k−1

ỹ(S, j) =
∑

i′:k6ri′j<rij

x̂i′,j,k−1 −
∑

i′:k6ri′j<rij

x̂i′,j,k.

(7.19)

Further, it follows from (7.4) that

x̂ijk 6
∑

i′:k6ri′j<rij

x̂i′,j,k−1 −
∑

i′:k6ri′j<rij

x̂i′,j,k (7.20)

for each bidder j, for each k from 2 to m, and for each i ∈ G with rij > k.

From (7.19) and (7.20) we conclude that (7.16) is true and hence the CON-

VERT algorithm terminates.

We now argue that solution ŷ is indeed feasible with respect to constraints

(7.7), (7.8), and the relaxation of (7.9).

For each bidder j and each item i, it is clear that after step 1,
∑

S⊇{i} ŷ(S, j) =

x̂ij1. In step 2, each value x̂ijk is spread over one or more variables ŷ(S, j)

with S containing item i. Also, for each variable ŷ(S, j) that is increased,

a variable ŷ(S \ {i}, j) is decreased with the same value. Therefore, af-

ter step 2,
∑

S⊇{i} ŷ(S, j) 6
∑rij

k=1 x̂ijk. Summing over the bidders gives∑
j∈B

∑
S⊇{i} ŷ(S, j) 6

∑
j∈B

∑rij

k=1 x̂ijk. Given (7.2), this implies that con-

straints (7.7) are satisfied.

For each bidder j, it is clear that after step 1 of CONVERT,
∑

S⊆G ŷ(S, j) =∑
i∈G x̂ij1. In step 2, for every variable ŷ(S, j) whose value is increased, there

is some other variable ŷ(S′, j) whose value is reduced by the same amount.

Given (7.3), this implies that constraints (7.8) are satisfied.
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Each variable ŷ(S, j) is increased by at most one variable x̂ijk. Therefore, it

follows from the relaxation of constraints (7.5) that ŷ(S, j) 6 1 for all S ⊆ G

and each bidder j. By construction of the algorithm, no variable ŷ(S, j) will

have a value less than zero. Thus, ŷ satisfies the relaxation of constraints

(7.9).

Further, the objective function value of both solutions x̂ and ŷ is the same.

Consider any bidder j. After step 1, the objective function of solution ŷ

has a value equal to
∑

i∈G bij1x̂ij1, since b({i}, j) = bij1. Every time step

2a is performed, the objective function value is increased by (b(S ∪{i}, j)−
b(S, j))x̂ijk. Since set S contains only items ranked higher than item i, we

have b(S∪{i}, j)−b(S, j) = bijk, where k is the number of items in S plus one.

Therefore, after step 2 the objective function equals
∑

i∈G

∑rij

k=1 bij1x̂ij1.

Summing over all bidders j shows that the CONVERT(x̂) procedure pro-

duces a solution ŷ with the same objective function value as x̂.

Finally, it is easy to see that if the CONVERT procedure is confronted with

an integral solution x̂, it will produce an integral solution ŷ. Thus, we can

conclude that the assignment formulation and the set packing formulation

are equally strong, and that if one formulation has an integral optimal so-

lution, this is also the case for the other formulation. ¤

7.3 Branch-and-price algorithms for solving the

matrix bid auction

Theorem 24 shows that the set packing formulation (7.6)-(7.9) is equally

strong as the assignment formulation (7.1)-(7.5). Here we outline an algo-

rithm based on the set packing formulation. Solving the LP-relaxation of

the set packing formulation is however not trivial, given the huge amount of

variables (n2m). Considering that only a small percentage of these variables
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are nonzero in an optimal solution, column generation suggests itself as an

efficient solution technique. Column generation was proposed by Dantzig

& Wolfe (1960) and starts by solving the LP-relaxation considering only a

restricted subset of the variables. This problem is also called the restricted

master problem. Notice that this problem can be restricted to m + n vari-

ables, whereas the assignment formulation requires nm(m + 1)/2 variables,

which may still be large. The next step is to verify whether any of the

variables that were not considered could improve the current solution. In

other words, we search for a variable with a non-negative reduced cost. This

problem is called the pricing problem. If we find such a variable, we add

it to the restricted master problem and solve it again. This re-optimizing

and pricing is to be repeated until the pricing problem fails to produce new

variables, indicating that the LP-relaxation has been solved to optimality.

Notice that the column generation procedure does not guarantee to find

an integral solution. In case of a fractional solution, a branching decision

needs to be made, partitioning the solution space in order to create a num-

ber of smaller subproblems. With branch-and-price, this results in a search

tree where column generation has to be applied in every node. In this way,

branch-and-price can be seen as a generalization of the column generation

technique for integer programming. Combining the column generation ap-

proach with a branching scheme may not be straightforward. The key to

an efficient branch-and-price algorithm is an easy-to-solve pricing problem.

The branching rule should therefore not destroy the structure of the pricing

problem or increase its complexity when moving deeper down the search tree.

Branch-and-price has proven to be successful for solving huge integer pro-

grams arising from a number of combinatorial problems (see Barnhart, John-

son, Nemhauser, Savelsbergh & Vance (1998) for an overview). We refer to

Vanderbeck & Wolsey (1996) for a more elaborate description of the branch-

and-price technique. In section 7.3.1, we show how the LP-relaxation of the

set packing formulation for the matrix bid auction winner determination
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problem can be solved efficiently using column generation. Next, the column

generation approach is used as a building block for two branch-and-price al-

gorithms to solve the matrix bid auction. The algorithm in section 7.3.2

makes use of a branching rule based on assigning items to bidders, whereas

in section 7.3.3, branching is done by deciding on the succession of items in a

winning set. Finally, in section 7.3.4, we comment on some issues that turn

out to be important while implementing both branch-and-price algorithms.

7.3.1 Column generation for the matrix bid auction

In this section, we show how the LP-relaxation of the set packing formula-

tion of the matrix bid winner determination problem can be solved using

column generation. We also prove that the pricing problem can be solved

in polynomial time, since it can be solved by solving a shortest path problem.

If we define ui for each item i ∈ G as the dual price associated with the

corresponding constraint of (7.7), and vj for each bidder j ∈ B as the dual

price associated with the corresponding constraint of (7.8), we can write the

dual of the set packing formulation (7.6)-(7.9) as follows:

minimize

∑

i∈G

ui +
∑

j∈B

vj (7.21)

subject to

∑

i∈S

ui + vj > bj(S) ∀S ⊆ G,∀j ∈ B (7.22)

ui > 0, vj > 0 ∀i ∈ G,∀j ∈ B (7.23)
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We start by finding an optimal solution for the restricted master problem, i.e.

the LP-relaxation of (7.6)-(7.9) considering only a limited number of vari-

ables y(S, j). This solution is also an optimal solution for the (unrestricted)

LP-relaxation of (7.6)-(7.9) if its corresponding dual variables form a feasible

solution for (7.21)-(7.23), which has a constraint for every variable y(S, j).

Consequently, we need to add a new column or variable to the restricted

master problem if a constraint of (7.22) is violated. The pricing problem

thus boils down to determining the existence of a set S of items and a bidder

j such that

∑

i∈S

ui < bj(S)− vj . (7.24)

Theorem 25. The pricing problem, i.e. finding a set S of items and a

bidder j such that a constraint of (7.22) is violated, can be solved by solving

a shortest path problem.

Proof. We construct a graph with a source and a sink, and a subgraph for

each bidder j. Such a subgraph contains rij nodes for each item i, called

item nodes. We will refer to an item node as (i, j, k), where i stands for

the item and k ranges from 1 to rij . There are arcs from each node (i, j, k)

to each node (i′, j, k + 1) where item i′ is ranked lower than item i (i.e.,

ri′j > rij). These arcs have a cost equal to ui′ − bi′,j,k+1. Notice that there

are no arcs between nodes corresponding to different subgraphs. Further-

more, for each subgraph, there are arcs from the source node to node (i, j, 1)

for each item i with a cost equal to ui − bij1 and there are arcs from each

item node (i, j, k) to the sink with cost vj . A schematic representation of

this graph is given in Figure 7.2 for a setting with a single bidder j and

three items.

From the structure of this graph, it follows that all nodes of a path from the

source to the sink correspond to the same bidder and each path contains at

most one node per item. Moreover, exactly one arc with cost vj is included
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item 1

item 2

item 3

source

sink

(1,j,1)

(2,j,1) (2,j,1)

(3,j,1) (3,j,2) (3,j,3)

vj

u1-b1j1

u3-b3j2

Figure 7.2: The pricing problem as a shortest path problem

in the path. Therefore, the length of a path containing nodes (i, j, k) of the

items i ∈ S of bidder j in this graph equals

∑

i∈S

(ui − bijk) + vj (7.25)

Furthermore, the graph ensures that an item i is in the path using its k-th

node only if a higher ranked item is in the path through its (k− 1)-th node.

We can therefore state that
∑

i∈S bijk = bj(S) and it follows that the ex-

istence of a path with negative length corresponds to a violated constraint

in the dual. Consequently, we need to solve a shortest path problem on an

acyclic graph in order to solve the pricing problem.

Thus, if the shortest path has a negative length, we can add a column for

the corresponding bidder j containing the items in set S determined by the

item nodes traversed in the path. Naturally, bidder j’s bid for this set S is
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bj(S). Notice that since the pricing problem is solvable in polynomial time,

the LP-relaxation of the set packing formulation for the matrix bid auction

can also be solved in polynomial time.

Corollary 3. The LP-relaxation of the set packing formulation (7.6)-(7.9)

for the matrix bid auction winner determination problem can be solved in

polynomial time.

7.3.2 Branching on an item-bidder pair

The solution of the LP-relaxation of the matrix bid winner determination

problem found by column generation may not be integral. If this is the case,

we need to partition the solution space to eliminate this fractional solution.

In this approach, we partition the solution space by the branching decision

whether or not to assign an item to a bidder. We first prove that in a

fractional solution, there always exists an item that has been fractionally

assigned to one or more bidders.

Lemma 1. For any fractional solution to the relaxation of (7.6)-(7.9),

∃i ∈ G, j ∈ B : 0 <
∑

S:S⊇{i}
y(S, j) < 1 (7.26)

Proof. We will prove this theorem by showing that a solution must be

integral if it does not satisfy (7.26). Consider a solution for which prop-

erty (7.26) is not valid. This means that each item has been assigned fully

or not at all to each bidder. In this case, no items are split over multiple

bidders. An item p for which
∑

S:S⊇{p} y(S, j) = 1 could, however, still be

split over multiple sets of the same bidder j. It is easy to see that if bidder

j is awarded a set S containing next to p any other item q, that this item

then should occur in each set containing p in order to have the sum of the

fractions of sets containing p equal 1. In other words, the sets of bidder j

are identical, and we have, in fact, an integral solution.
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The branch-and-price algorithm can, however, only be valid if in every node

of the search tree, all generated columns satisfy the previously made branch-

ing decisions. Prohibiting that an item is awarded to a certain bidder in the

pricing problem can be done by simply removing the vertices correspond-

ing to that item for that bidder from the graph. Enforcing that an item

is awarded to a certain bidder in the pricing problem is less obvious. For

that bidder, the arcs from the source to any lower ranked item need to be

removed. Also the arcs from any higher ranked item to any item ranked

lower than that item need to be deleted. Finally, the arcs from the higher

ranked items to the sink must be removed as well. Clearly, all nodes that

can no longer be reached as a consequence of these removals can now also

be deleted, as are the arcs leaving those nodes, and so on. For all other

bidders, we need to remove the vertices of that item from the graph. Fig-

ure 7.3 shows the pricing problem where item 2 is forced to be awarded to

the bidder whose item nodes are depicted. In this graph, we made sure that

every path from the source to the sink of that bidder must include a node

corresponding to item 2.

Notice that this branching rule does not destroy the structure of the pric-

ing problem: in all branches, the pricing problem remains a shortest path

problem. It is easy to see that this shortest path problem can be adjusted

to produce columns that comply with a series of branching decisions. More-

over, when moving deeper down the tree, more and more arcs and nodes

will be removed. Thus, we have described a valid branching rule where the

pricing problem remains solvable as a shortest path problem throughout the

search tree.

7.3.3 Branching on a pair of successive items

Ryan & Foster (1981) suggest a branching rule for the set partitioning prob-

lems where two constraints are covered together or not at all by the variables
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item 1

item 2

item 3

source

sink

(1,j,1)

(2,j,1) (2,j,1)

(3,j,2) (3,j,3)

Figure 7.3: The pricing problem where the bidder must get item 2

in one branch, whereas in the other branch, each variable can cover at most

one of these constraints. This rule can easily be generalized to set packing

problems and can be translated to a combinatorial auction context as two

items needing to go to the same bidder in one branch and to different bid-

ders in the other branch. However, forcing two arbitrary items to go to the

same bidder, but also forbidding that these items go to the same bidder,

is not straightforward to achieve in the shortest path problem described in

section 7.3.1. Therefore, we modify this branching rule, such that it takes

into account the ranking of the items specified in the bidder’s matrix bid.

A similar modification has been applied for example in a pallet loading ap-

plication (Moonen 2005).

We partition the solution space by branching on a pair of items p and q. In

one branch, we enforce that if item p is present in a bidder’s set, then item q

must be directly successive to p in this set, when the set is sorted according

to this bidder’s ranking of the items. In the other branch, no bidder can

have items p and q as direct successors in a set, according to his ranking.
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We first prove that there always exists a pair of items such that the sets in

which these items occur as direct successors according to the corresponding

bidder’s ranking, have been fractionally assigned to one or more bidders. We

introduce the notation p →j q to denote that item p is directly succeeded

by item q in a set, according to the ranking of bidder j.

Lemma 2. For any optimal, extreme fractional solution to the relaxation

of (7.6)-(7.9),

∃p, q ∈ G : 0 <
∑

j∈B

∑

S:S⊇{p,q}∧p→jq

y(S, j) < 1 (7.27)

Proof. Assume that we have an optimal, extreme fractional solution for

which (7.27) is not satisfied. This means that for each pair of items, each

bid on a set in which these items are direct successors according to rank-

ing of the bidder that made the bid, has been assigned to that bidder

for a total fraction of 0 or 1. Thus, for any items p and q for which∑
j∈B

∑
S:S⊇{p,q}∧p→jq y(S, j) = 1, we can conclude that if item p is present

in a set, that then also item q is present in this set. Therefore, each pair

of sets to which a positive fraction has been assigned is disjoint or identi-

cal. Since there is a single variable y(S, j) representing identical sets of the

same bidder j, we conclude that identical sets must be split over multiple

bidders. This leaves us with the problem of assigning a number of disjoint

sets among one or more bidders, where each assignment of a set to a bidder

has its profit, namely the bid of this bidder for this set. This problem is a

maximum weighted assignment problem on a bipartite graph, where each

node on one side of the partition represents a set, and each node on the

other side of the partition represents a bidder. It follows that each opti-

mal, extreme solution is integral. Consequently, for any optimal, extreme

fractional solution to the relaxation of (7.6)-(7.9), property (7.27) is true.

The above theorem shows that it is always possible to find a pair of items p

and q on which to branch. However, we still need to enforce that the pricing
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problem will generate columns that satisfy the constraint imposed by the

branching decision. In the branch where we impose p →j q, for each bidder

j, we need to remove all arcs from nodes corresponding to p to any node not

corresponding to q. Notice that for a bidder that ranks q higher than p, this

comes down to removing all nodes related to p from the graph. This leaves

us with a graph where if one arrives in a node related to p, the only option

is to take an arc to a node related to q. In the branch where p should not

be directly succeeded by q, it suffices, for each bidder, to remove the arcs

going from a p-node to a q-node, if they exist.

Notice this branching rule does not destroy the structure of the pricing

problem either, even when we consider a sequence of branching decisions.

Indeed, it is not hard to verify that when going deeper into the search tree,

the pricing problem can still be solved as a shortest path problem on an

increasingly smaller graph.

7.3.4 Implementation issues

Both branch-and-price algorithms were implemented using Visual C++ 6.0.

The set packing problems were solved using Ilog Cplex 8.1. The LEDA

libraries (version 5.0.1) allowed us to solve the shortest path problems in

linear time. In the remainder of this section, some of the most important

implementation issues are discussed.

Solving the root node

A first issue that needs to be solved is determining which columns will be

used in the very first restricted master problem. Using many columns obvi-

ously increases the computation time needed to solve the restricted master

problem. On the other hand, this may result in a solution that is closer to

the optimal solution, such that less iterations for solving the pricing prob-

lem and re-optimizing are needed. In our case, after experimenting with a
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number of settings, it turned out that including a rather large number of

variables to start the column generation process pays off. We constructed

a set for every strictly positive entry in the matrix bid by taking the item

corresponding to this entry and completing the set with the k highest ranked

items, where k is the entry’s column in the matrix bid.

After the restricted master problem has been solved and the corresponding

dual solution has been obtained, new columns with a non-negative reduced

cost need to be added. The question remains how many such columns we

should add. Again, adding too many new variables increases the computa-

tion time for solving the resulting restricted master problem, whereas adding

too few variables can result in a large number of iterations for solving the

pricing problem and re-optimizing. The strategy that proved to be the most

efficient consists of adding for each bidder those variables whose reduced

cost is at most 2% less than the most positive reduced cost for a variable

from that bidder. Furthermore, the number of such variables that is added

for each bidder cannot exceed the number of items. Notice that finding

these variables demands very little extra computation time, since the LEDA

libraries provide the distance from the source to each node in the graph,

after having solved the shortest path problem.

Finally, when re-optimizing the restricted master problem, we start from the

optimal base of the previous iteration. In order not to drag along too many

columns for the remainder of the search tree, those columns that were added

at some iteration, but never made part of any base solution are removed from

the model. We keep the other columns, assuming that they will be useful

again later.

A selection rule when branching on an item-bidder pair

The major issue in implementing this branching rule is to choose the item

on which to branch and the bidder(s) to assign it to. We chose to branch
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on the item that is fractionally assigned to the highest number of bidders.

For each of these bidders, a branch is constructed in which the bidder is

assigned the item. A final branch is added where none of these bidders is

allowed to receive the item. We opted for a depth-first strategy, where the

branch where the item is assigned to the bidder with the highest fraction is

explored first. Thus, the branch where bidders are disallowed to receive an

item always comes last.

A selection rule when branching on a pair of successive items

With this branching rule, each node that needs further partitioning of the

solution space leads to two branches. In the first branch, we enforce that

for each bidder, if item p is present in a bid, q should be the next item in

that bid, according to the ranking of that bidder. The second branch con-

siders only bids for which p and q are no direct successors according to the

bidder’s ranking. We again chose a depth-first strategy, where the branch

where p →j q is imposed is explored first. The question remains how to

select the items p and q. We opted to pick those items p and q for which∑
j∈B

∑
S:S⊇{p,q}∧p→jq y(S, j) is closest to 0.5.

Solving a tree node

Before we can start solving a node of the tree, we remove all columns that

do not satisfy the latest branching decision. In case of backtracking, this

branching decision expires and those columns are re-entered into the model,

since we experienced that they often turn out to be useful in other branches

of the tree.

The LP objective value of the node can be used as an upper bound to the

integral solution that could be found further down the tree. Clearly, if this

value is lower than the incumbent found so far, the node can be pruned. It
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may, however, require a large number of iterations to prove LP optimality.

Vanderbeck & Wolsey (1996) show that the Lagrangian relaxation can also

be used as an upper bound. The Lagrangian upper bound can be computed

as (see e.g. Beliën (2006))

δ +
∑

j∈B

max
S⊆G

(RC(S, j), 0) (7.28)

where δ is the objective value of the restricted master and RC(S, j) is the re-

duced cost of variable y(S, j). Notice that the computation of this bound re-

quires little additional computational effort, since the pricing problem, which

is solved for every bidder j anyway, finds the variable with the highest re-

duced cost. This upper bound is referred to as the Lagrangian upper bound,

since it equals the bound obtained by Lagrange relaxation (Lasdon 1970).

If at any iteration in the column generation process, the Lagrangian upper

bound is lower than the incumbent, we can prune the node, without any

risk of missing the optimal solution.

Obviously, when we re-optimize the restricted master problem, we also start

from the optimal base of the previous iteration. The first restricted master

problem is solved starting from the base solution of the parent node. Fur-

thermore, as in the root node, we delete the added columns that turned out

not to be useful.

7.4 Computational results

In this section, we elaborate on how we generated the instances on which

the branch-and-price algorithms were tested. We also give an overview of

the computational results and compare them with results from a branch-

and-cut approach performed on the assignment formulation.
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7.4.1 Structure of the instances

Unfortunately, real-life data for combinatorial auctions are not abundantly

available for the public. It is therefore not uncommon in combinatorial auc-

tion literature to turn to randomly generated data (see for instance Leyton-

Brown et al. (2000), Sandholm (2002), and Parkes (1999)). For a thorough

discussion on the empirical hardness of several data distributions commonly

used for combinatorial auctions, we refer to Leyton-Brown, Nudelman &

Shoham (2005).

The randomly generated data we use, are due to Day (2004). Each matrix

bid is composed according to a bid type, randomly chosen out of the six

possibilities discussed in section 6.2 (additive preference bids, single-minded

bids, nested flat bids, nested k-of bids, partition bids, and add-on bids) and

a bid type that has non-increasing rows and columns. In order to avoid

auctions for which the exact solution of the winner determination problem

is obvious, the matrix bids are constructed such that they are competitive.

Furthermore, there is a parameter H that bounds the highest incremental

value an item brings to a set. For more details on the bid types or on how

the instances were generated, we refer to Day (2004).

We performed experiments on matrix bid auctions with 5, 10, 25 or 50 items

and 5, 10, 25, 50, 75 or 100 bidders. For each combination, 10 instances were

generated and solved to optimality. The highest incremental value per item

(H) was limited to 10. We have no indication that the branch-and-price

algorithm performs differently with other settings for H. All computational

experiments were done on a desktop computer with a Pentium IV 2 GHz

processor, with 512 MB RAM.



152 7.4. Computational results

7.4.2 Results

Tables 7.1 and 7.2 give an overview of the average computation times needed

to solve the matrix bid auction winner determination problem using branch-

and-price with branching on an item-bidder pair (BOI) and branch-and-price

with branching on a pair of successive of items (BOS) respectively. In Table

7.3, we give the average computation times that resulted from solving the

assignment based formulation (7.1)-(7.5) with the Ilog Cplex 8.1 branch-and-

cut algorithm with standard settings (B&C), which is basically the approach

followed in Day & Raghavan (2006). Horizontally, the number of bidders n

varies from 5 to 100, while the number of items m auctioned ranges from 5

to 50 vertically. All computation times are expressed in seconds.

As could be expected, the computation time is determined more by the num-

ber of items in the auction, than by the number of bidders. All instances

with up to 10 items are solved in less than a second by all algorithms; here

the branch-and-price algorithms clearly perform better. Auctions with 50

items are also solved in less than 20 minutes on average by all algorithms.

The branch-and-cut algorithm seems on average the fastest way to solve

these instances. Perhaps surprisingly, for the branch-and-price algorithms,

the computation times for the 25 and 50 item instances do not always in-

crease when more bidders come into play. This can be explained by the

fact that the computation times for the individual instances tend to vary

considerably.

One way to get a more accurate view on what the underlying trend is, is to

consider a larger sample set. Also, it is not uncommon in literature on com-

binatorial auctions to study the median instead (see for instance Sandholm

et al. (2005) and Hoos & Boutilier (2000)). Tables 7.4 to 7.6 give an overview

of the median computation times needed to solve the winner determination

problem. The tables shows a clear trend of how the computation times rise

with the number of bidders and the number of items, since the median is
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n = 5 10 25 50 75 100

m = 5 0.005 0.007 0.008 0.017 0.027 0.038

10 0.027 0.038 0.053 0.088 0.118 0.169

25 0.636 0.597 1.157 4.292 12.704 49.155

50 247.224 60.711 437.951 557.083 622.591 802.483

Table 7.1: Average computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.005 0.006 0.006 0.018 0.027 0.038

10 0.033 0.037 0.044 0.067 0.104 0.182

25 0.698 0.767 1.194 3.814 16.300 97.122

50 76.598 67.584 843.435 259.079 645.632 983.539

Table 7.2: Average computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.030 0.027 0.049 0.052 0.070 0.102

10 0.050 0.069 0.140 0.278 0.524 0.748

25 0.757 1.391 3.598 10.689 17.584 31.940

50 57.676 28.333 91.230 215.083 355.785 811.960

Table 7.3: Average computation times [s] for n bidders and m items using B&C

less affected by extreme values. It is also confirmed that the branch-and-

price algorithms manage to solve the majority of the instances with many

items a lot faster than reflected by the average computation times. The

branch-and-cut algorithm seems to suffer less from instances with extreme

computation times, since the median computation time is much closer to

the average computation time. The results show that computation times

for the branch-and-price algorithm with branching on an item-bidder pair

rise more severely with an increasing number of items than those of the

branch-and-cut algorithm. On the other hand, the branch-and-price algo-
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n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040

10 0.015 0.020 0.055 0.055 0.105 0.130

25 0.480 0.460 0.760 2.445 9.480 16.825

50 20.855 29.105 45.605 129.870 227.370 353.970

Table 7.4: Median computation times [s] for n bidders and m items using BOI

n = 5 10 25 50 75 100

m = 5 0.000 0.010 0.010 0.020 0.030 0.040

10 0.015 0.020 0.040 0.055 0.100 0.130

25 0.485 0.495 0.815 2.445 6.790 13.605

50 20.855 29.215 37.970 129.870 238.785 514.370

Table 7.5: Median computation times [s] for n bidders and m items using BOS

n = 5 10 25 50 75 100

m = 5 0.020 0.025 0.040 0.050 0.070 0.105

10 0.040 0.060 0.140 0.260 0.535 0.740

25 0.530 1.235 3.245 10.595 18.120 28.960

50 14.665 22.615 73.035 191.670 350.340 589.940

Table 7.6: Median computation times [s] for n bidders and m items using B&C

rithm with branching on an item-bidder pair handles an increasing number

of bidders better than the branch-and-cut algorithm. Furthermore, apart

from a couple of exceptions, the median computation times are lower with

branch-and-price than with branch-and-cut.

Tables 7.7 and 7.8 give the average computation times for solving the LP-

relaxation of the set packing formulation (7.6)-(7.9) and the assignment

formulation (7.1)-(7.5) respectively. Recall that the former is used in both

branch-and-price algorithms, while the latter is used in the branch-and-cut
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n = 5 10 25 50 75 100

m = 5 0.01 [8] 0.01 [8] 0.01 [7] 0.02 [9] 0.03 [10] 0.04 [10]

10 0.01 [6] 0.02 [9] 0.03 [4] 0.05 [8] 0.09 [8] 0.14 [7]

25 0.31 [3] 0.41 [7] 0.80 [8] 2.12 [8] 3.29 [5] 4.71 [4]

50 14.02 [5] 14.96 [6] 32.93 [4] 74.46 [7] 124.29 [5] 116.19 [4]

Table 7.7: Average computation times [s] for the LP-relaxation of the set packing
formulation for n bidders and m items

n = 5 10 25 50 75 100

m = 5 0.01 [8] 0.02 [9] 0.02 [8] 0.03 [8] 0.04 [10] 0.04 [9]

10 0.02 [6] 0.03 [9] 0.05 [5] 0.09 [7] 0.14 [7] 0.20 [8]

25 0.28 [5] 0.51 [8] 1.61 [7] 4.47 [9] 6.03 [5] 8.35 [5]

50 9.40 [5] 20.01 [6] 43.93 [3] 159.46 [6] 313.76 [4] 461.91 [4]

Table 7.8: Average computation times [s] for the LP-relaxation of the assignment
formulation for n bidders and m items

algorithm. The tables might be influenced by the fact that the LP-relaxation

of both formulations can be solved in polynomial time. Furthermore, with

two exceptions, the LP-relaxation of the set packing formulation is solved

faster than the the LP-relaxation of the assignment formulation. Between

brackets, the number of instances out of 10 for which the LP-relaxation

resulted in an integral solution is indicated. Notice that Theorem 24 does

not imply that these numbers should be at least as high for the assignment

formulation than for the set packing formulation. Indeed, if there exists an

integral optimal solution, the algorithms may not find it as there may be

fractional solutions with the same objective value. Further, the number of

instances for which an integral optimal solution was found remains more

or less constant over the bidders, while it drops for instances with more

items. Not surprisingly, instances with an integral LP-relaxation have low

computation times. Therefore, the figures in Table 7.7 partially explain the

fluctuations in average computation times for the instances with 25 or 50
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items (see Tables 7.1 and 7.2).

Finally, Table 7.9 gives an overview of the performance details of the three

algorithms. Column A gives the average number of nodes in the branching

tree that were explored. Column B represents the average number of pricing

rounds, and column C gives the average number of variables that were gen-

erated (these columns are not applicable for the branch-and-cut algorithm).

On the rows, we find the instances, where the first number indicates the

number of items and the second gives the number of bidders. There seems

to be no systematic difference between the branch-and-price algorithms for

any of the three parameters described in this table. The branch-and-cut

algorithm solves very little nodes in its branching tree, compared to the

branch-and-price algorithms. In many cases, the branch-and-cut algorithm

prefers generating valid inequalities in the root node to branching.

7.5 Conclusion

In this chapter, we studied the winner determination problem for the ma-

trix bid auction. We first looked at a special case of the matrix bid auction,

namely where all bidders have an identical ranking of the items. For this

auction, the winner determination problem is still NP -hard, although there

exists a polynomial time algorithm in the case the number of bidders is fixed.

Then, we compared two mathematical formulations for the winner determi-

nation problem of the general matrix bid auction. One assignment is based

on the assignment problem, while the other is based on the set packing

problem. We found that both formulations are equally strong. Moreover,

an integral solution for one formulation can always be translated to an inte-

gral solution for the other formulation. We used the set packing formulation

as a basis for a column generation approach where the pricing problem can

be solved as a shortest path problem. This means that we are able to solve

the LP relaxation of the set packing formulation in polynomial time. We



Chapter 7. Exact algorithms for the matrix bid auction 157

BOI BOS B&C

Inst. A B C A B C A

5-5 2.2 3.9 33.3 2.4 4.7 34.4 1.0

5-10 1.3 3.7 68.4 1.4 3.4 68.3 1.0

5-25 2.5 4.5 142.2 1.6 3.2 141.6 1.0

5-50 1.3 3.2 266.9 1.2 3.1 266.9 1.0

5-75 1.0 2.4 435.9 1.0 2.4 435.9 1.0

5-100 1.0 2.0 565.0 1.0 2.0 565.0 1.0

10-5 7.6 18.3 124.2 9.4 27.5 93.7 1.2

10-10 7.6 16.5 201.8 5.4 16.8 193.8 1.5

10-25 4.9 10.2 363.8 2.8 8.4 352.0 1.0

10-50 3.7 8.0 788.9 1.8 5.4 782.2 1.0

10-75 2.3 6.9 1,117.7 1.6 6.0 1,113.8 1.0

10-100 2.3 7.0 1,459.5 2.6 8.4 1,455.4 1.0

25-5 7.7 72.3 1,017.7 6.4 89.4 723.1 1.2

25-10 2.0 37.8 990.7 6.8 51.7 864.5 1.5

25-25 4.4 31.2 1,793.3 3.8 33.2 1,752.1 1.0

25-50 8.6 59.7 3,703.2 5.2 55.1 3,602.4 1.0

25-75 30.0 123.5 5,402.7 32.8 143.1 5,412.7 1.0

25-100 96.8 349.3 7,564.0 163.0 635.3 7,895.2 1.3

50-5 21.4 3,095.8 4,745.9 37.9 1,279.2 2,872.6 11.8

50-10 12.2 592.6 3,963.3 27.9 611.7 4,112.8 1.0

50-25 315.1 1,494.0 11,752.4 1,029.6 2,806.7 10,141.0 1.2

50-50 361.6 938.5 16,278.1 67.6 468.4 14,359.3 1.0

50-75 102.5 828.5 20,773.4 106.7 852.0 20,776.0 1.0

50-100 96.0 839.5 30,538.0 100.4 995.4 31,120.3 5.7

Table 7.9: Performance details for the three algorithms (BOI, BOS, B&C)
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then extended this approach to two branch-and-price algorithms. In one

algorithm, we branch on the items, while in the other, branching is done

on the succession of the items. The pricing problem for these branch-and-

price algorithms remains solvable as a shortest path problem throughout the

search tree. These algorithms are tested on randomly generated instances

with up to 50 items and 100 bidders, which they solved within 20 min-

utes (on average). Finally, the branch-and-price algorithms withstood the

comparison with a branch-and-cut algorithm, based on Day & Raghavan

(2006). The algorithms perform better on instances with up to 10 items,

but are outperformed by the branch-and-cut algorithm on some of the larger

instances. The increase in computation time, however, seems favorable for

the branch-and-price algorithms, which indicates that they form at least a

viable approach to solve instances of the matrix bid auction winner deter-

mination problem.



Chapter 8

Topics for future research

To conclude this thesis, we elaborate on a number of topics for future re-

search. In section 8.1, we discuss potential improvements for solving the

winner determination problem of the total quantity discount auction, and

in section 8.2, we present some future research topics for the matrix bid auc-

tion. All computational experiments in this chapter were done on a desktop

computer with a Pentium IV 2 GHz processor, with 512 MB RAM.

8.1 The total quantity discount auction

In chapters 2 to 4 we discussed the total quantity discount auction. With re-

spect to the computational side of this research, the main result was that the

winner determination problem allowed a formulation with an LP-relaxation

that can be solved by solving a min-cost flow problem. Moreover, we were

able to generalize this result to a setting in which a number of bids are ac-

cepted beforehand (see section 2.5.2). This allowed us to develop a branch-

and-bound algorithm where every node of the branching tree is be solved as

a min-cost flow problem (see section 4.2).

Given the efficiency with which a min-cost flow problem can be solved, it

159
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should not be surprising that the min-cost flow branch-and-bound algorithm

solves a node of its branching tree on average 10 times faster than the lin-

ear programming based branch-and-bound algorithm, and up to 2000 times

faster than the branch-and-cut algorithm. This advantage makes the min-

cost flow based algorithm the fastest algorithm on all instances with up to

20 bidders. However, for the instances with 50 bidders, the min-cost flow

algorithm is outperformed by the LP-based branch-and-bound algorithm,

and even more by the branch-and-cut algorithm. For these instances, the

min-cost flow approach needs to solve 10 to 60 times more nodes than the

LP-based approach. In other words, the min-cost flow approach loses the

advantage it has in terms of node solution time because of an inefficient

branching strategy.

Variable selection Computation time [s] Number of nodes

Highest priority 59.55 65,241

Min. integer feas. 983.12 240,464

Max. integer feas. 1,984.41 419,591

Pseudo costs 25.11 5,882

Strong branching 125.75 1,869

Pseudo reduced costs 61.73 15,352

Table 8.1: Average computation times [s] and number of nodes for various variable
selection strategies in a depth-first search

The node selection strategy that is used in the min-cost flow based algo-

rithm is depth-first search. To determine the variable on which to branch,

we determine the highest priority bidder as the bidder for which the num-

ber of volume intervals minus the index of the LP-interval is maximal. The

LP-interval is then the first interval to fix, followed by the interval directly

above this interval, the interval directly below, and so on (see section 4.2).

This highest priority strategy is not readily available in Ilog Cplex, which



Chapter 8. Topics for future research 161

presents minimum integer feasibility, maximum integer feasibility, pseudo

costs, strong branching, and pseudo reduced costs as its variable selection

strategies. Table 8.1 gives an overview of the performance of these strategies

in a depth-first search, as tested on (structured and random) instances with

50 bidders, 100 items, and at most 3 bids per bidder. In terms of number

of nodes that need to be searched, strong branching seems the best choice.

However, in terms of computation time, a pseudo cost variable selection

strategy is the better option. In conclusion, this table suggests that plug-

ging in a pseudo costs rule in the min-cost flow algorithm could decrease the

number of nodes in the branching tree substantially, possibly improving the

computation times by a factor of 10.

Node selection Computation time [s] Number of nodes

Depth-first search 25.11 5,882

Best-bound search 14.37 3,300

Best-estimate search 14.51 3,282

Alternate best-estimate search 15.25 3,385

Table 8.2: Average computation times [s] and number of nodes for various search
strategies using a pseudo costs variable selection rule

Furthermore, Ilog Cplex presents other search strategies than depth-first

search, which was used in the min-cost flow based algorithm. Assuming a

pseudo costs variable selection rule, the performance of these search strate-

gies on instances with 50 bidders, 100 items, and at most 3 bids per bidder

is represented in Table 8.2. The table points to best-bound search as the

best strategy. Furthermore, the table suggests that implementing this search

strategy in the min-cost flow approach can lead to an additional decrease in

computation time of over 40%.

Implementing the min-cost flow based branch-and-bound algorithm with a
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pseudo costs variable selection rule and a best-bound search strategy, and

verifying whether and to what extent this improves the computation times

remains a topic for further research.

8.2 The matrix bid auction

In chapter 7, we developed two branch-and-price algorithms for the winner

determination problem of the matrix bid auction. We tested the perfor-

mance of these algorithms on instances with various numbers of bidders and

items. Each instance consists of matrix bids that were randomly chosen out

of seven possible types: additive preference bids, single-minded bids, nested

flat bids, nested k-of bids, partition bids, add-on bids, and a bid type that

has non-increasing rows and columns (see also section 6.2 and Day (2004)).

The question arises though how the algorithms would perform on instances

that are composed out of only one single bid type. To this end we generated

10 instances for every bid type with 10 bidders and 50 items. We also inves-

tigated a random bid type, where the entries in the matrix bid are simply

randomly picked numbers between 0 and 10.

Table 8.3 gives an overview of the average computation time needed to solve

instances with bids of the mentioned bid types, using branch-and-price with

branching on an item-bidder pair (BOI), branch-and-price with branching

on a pair of successive of items (BOS), and the Ilog Cplex 8.1 branch-and-cut

algorithm with standard settings (B&C). The last line in the table repeats

the computation times mentioned in section 7.4 for instances with 50 items

and 10 bidders and a combination of various bid types. The table clearly

shows that the difficulty of the various bid types is diverse. Additive pref-

erence bids, single minded bids, nested flat bids and non-increasing bids are

indeed solved much faster than the other bid types. For most of these bid

types, branch-and-price with branching on a pair of successive of items is the

fastest algorithm. On the other hand, the instances with nested k-of bids and
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Bid type BOI BOS B&C

Additive preference bid 12.71 7.88 5.91

Single-minded bid 0.13 0.13 9.75

Nested flat bid 0.14 0.14 12.11

Nested k-of bid * * *

Partition bid * * 61.11

Add-on bid 73.49 85.34 82.14

Non-increasing bid 0.43 0.43 2.94

Random bid 81.72 106.43 282.02

Mixed bid types 60.71 67.58 28.33

Table 8.3: Average computation times [s] for various bid types (*not all instances
could be solved)

partition bids are a hard nut to crack for the branch-and-price algorithms,

since not all instances could be solved (due to a lack of memory). The lat-

ter bid type turns out to be very difficult for the branch-and-cut algorithm

as well, since for some instances, even over 80 hours of computation time

did not suffice to solve them to optimality. Finally, instances with add-on

bids and random bids also require quite some computation time. For these

instances, branch-and-price with branching on an item-bidder pair performs

best; especially for the random instances, the difference with branch-and-cut

is considerable.

Finally, Table 8.4 gives an overview of the performance details of the branch-

and-price algorithms. Column A gives the average number of nodes in the

branching tree that were explored. Column B represents the average num-

ber of pricing rounds, and column C gives the average number of variables

that were generated. The table supports the differences in computation time

for the various bid types that are mentioned in Table 8.3.
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BOI BOS

Bid type A B C A B C

Additive preference bid 3.3 52.9 11,752 2.3 24.8 12,111

Single-minded bid 1.0 1.3 11 1.0 1.3 11

Nested flat bid 1.0 1.3 292 1.0 1.3 292

Add-on bid 17.3 813.4 2,312 46.6 789.9 5,134

Non-increasing bid 1.0 4.4 203 1.0 4.4 203

Random bid 24.0 383.9 13,127 117.0 447.4 14,881

Mixed bid types 12.2 592.6 3,963 27.9 611.7 4,113

Table 8.4: Performance details for the branch-and-price algorithms (BOI, BOS)

Another issue is that the bid functions that can be represented in a single

matrix bid seem restrictive. Therefore, it would be interesting to extend the

matrix bid auction to a setting where multiple matrix bids per bidder can

be submitted. However, we would have to ensure that at most one bid per

bidder can be accepted. For the branch-and-price algorithm, this could be

done as follows. We create a dummy item for each bidder. This dummy item

is to be inserted in each matrix bid of this bidder as the highest ranked item.

The first column of each matrix bid has a zero in the entry corresponding

to the dummy item, and a highly negative value for all other entries. Obvi-

ously, each positive bid will have to include the dummy item, and thus the

constraint that each item can be auctioned at most once will avoid that bids

from different matrix bids by the same bidder are accepted. In this way,

the branch-and-price algorithms can still be applied for this variant with

multiple matrix bids per bidder.

Notice that any bid function can be represented by a series of such matrix

bids, although this may require a number of matrix bids that is exponential

in the number of items. Indeed, a matrix bid like the one described above

could be created for each bid on a subset of items. An interesting topic for

further research would be to develop a way to represent an arbitrary set of
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bids using as few matrix bids as possible. If this number turns out to be

small, the resulting winner determination problem may still be efficiently

solvable in practice.
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Family size, welfare and public policy. Leuven, KUL. Faculteit Economische en Toegepaste
Economische Wetenschappen, 1988. XIII, 444 pp.

66. HEIJNEN Bart (09/09/88)
Risicowijziging onder invloed van vrijstellingen en herverzekeringen: een theoretische anal-
yse van optimaliteit en premiebepaling. Leuven, KUL. Faculteit Economische en Toegepaste
Economische Wetenschappen, 1988. onregelmatig gepagineerd.

67. GEEROMS Hans (14/10/88)
Belastingvermijding. Theoretische analyse van de determinanten van de belastingontduik-
ing en de belastingontwijking met empirische verificaties. Leuven, s.n., 1988. XIII, 409, 5
pp.

68. PUT Ferdi (19/12/88)
Introducing dynamic and temporal aspects in a conceptual (database) schema. Leuven,
KUL. Faculteit Economische en Toegepaste Economische Wetenschappen, 1988. XVIII,
415 pp.

69. VAN ROMPUY Guido (13/01/89)
A supply-side approach to tax reform programs. Theory and empirical evidence for Bel-
gium. Leuven, KUL. Faculteit Economische en Toegepaste Economische Wetenschappen,
1989. XVI, 189, 6 pp.



188

70. PEETERS Ludo (19/06/89)
Een ruimtelijk evenwichtsmodel van de graanmarkten in de E.G.: empirische specifi-
catie en beleidstoepassingen. Leuven, K.U.Leuven. Faculteit Economische en Toegepaste
Economische Wetenschappen, 1989. XVI, 412 pp.

71. PACOLET Jozef (10/11/89)
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