
THE DEVELOPMENT AND APPLICATION OF

METAHEURISTICS FOR PROBLEMS IN GRAPH

THEORY: A COMPUTATIONAL STUDY

A thesis submitted for the degree of

Doctor of Philosophy

by

Sergio Consoli

School of Information Systems, Computing and Mathematics

Brunel University

20th November 2008

This thesis has been supervised by:

Prof. Kenneth Darby-Dowman

Examiner committee:

Dr. Eleni Hadjiconstantinou

Dr. Steven Noble

Prof. Said Salhi

The work described in this thesis has been carried out at the School of

Information Systems, Computing and Mathematics at Brunel Univer-

sity, West London, as part of the E.U. Marie Curie EST-FP6 project

NET-ACE (number MEST-CT-2004-006724).

Copyright c© 2008 by Sergio Consoli

All rights are reserved. Reproduction in whole or in part is

prohibited without the written consent of the copyright owner.

The important thing is not to stop questioning. Curiosity has its

own reason for existing. One cannot help but be in awe when he

contemplates the mysteries of eternity, of life, of the marvellous

structure of reality. It is enough if one tries merely to comprehend a

little of this mystery every day. Never lose a holy curiosity.

Albert Einstein

This thesis is dedicated, with deepest love

and everlasting respect, to my parents

Carmelo and Concetta, my aunt

Mariagrazia, my brother Fabrizio, and my

beloved half Lucia. Without their love,

encouragement, and constant support I

could not have reached this stage.

Acknowledgements

First and foremost I would like to express my most sincere gratitude

to Prof. Kenneth Darby-Dowman for introducing me to the fields

of operations research, graph theory, and combinatorial optimization,

for his elaborate feedback and tremendous technical contributions, for

his inspiration and competent support that led me to the realization

of this work. There are simply no words to explain the encouragement

and the affection I have received from him.

I would like to thank the School of Information Systems, Computing

and Mathematics at Brunel University, particularly all the colleagues

of the NET-ACE and CARISMA research groups, for the extensive

feedback and for being always nice and friendly during these years.

I acknowledge the director of NET-ACE, Prof. Geoff Rodgers, and

the director of CARISMA, Prof. Gautam Mitra, for bearing with me

with a support and understanding during my research years. This

work was supported by an E.U. Marie Curie Fellowship for Early

Stage Researcher Training (EST-FP6) under grant number MEST-

CT-2004-006724 at Brunel University.

Many thanks go also to the DEIOC department of the University of

La Laguna, Tenerife, and the User Experiences Group at Philips Re-

search Eindhoven, where I had the opportunity to undertake research

placements during my Ph.D. course. For helping me in the resolution

of the problems that arise from addressing the combinatorial opti-

mization field, and for being always kind in giving an answer to my

questions and doubts, special thanks go to Prof. José Andrés Moreno-

Pérez from the University of La Laguna, and Dr. Steffen Pauws, Dr.

Jan Korst, and Dr. Gijs Geleijnse from Philips Research Eindhoven.

Many thanks also to Dr. Nenad Mladenović from Brunel University

both for his initial encouragement of the research and for his contin-

ued wise counsel, involvement, and enthusiasm throughout my work.

These researchers are also particularly thanked because they helped

me in writing the manuscripts that form the greatest part of this the-

sis and that led me to submit papers for publication in international

journals of the field.

There are a few special thanks that I would like to give. Firstly to

my father, my mother, and my aunt Mariagrazia for the love, help

and precious advice they constantly gave to me. I wouldn’t be here

without their support and affection. Particular thanks are for my

brother Fabrizio who encouraged, with enthusiasm and affection, my

journey towards the field of science and research, and, making use

of his talent, gave me always many competent ideas and ample feed-

back, and challenged me with incredible insight and logic. Next I

want to thank my friends Pierpaolo Vivo and Elisa Garimberti, for

the ample feedback, reading preliminary versions, commenting, and

discovering mistakes. My biggest thank go to my beloved half Lucia

for her invaluable encouragement, psychological support, and patient

understanding during the years of my research. The end of my Ph.D.

course coincides with the beginning of a new stage of our lives to-

gether. I deeply love her.

For all the others who have been close to me during these years I have

again the same but sincere words: thanks to everyone.

Abstract

It is known that graph theoretic models have extensive application

to real-life discrete optimization problems. Many of these models

are NP-hard and, as a result, exact methods may be impractical for

large scale problem instances. Consequently, there is a great interest

in developing efficient approximate methods that yield near-optimal

solutions in acceptable computational times. A class of such methods,

known as metaheuristics, have been proposed with success.

This thesis considers some recently proposed NP-hard combinatorial

optimization problems formulated on graphs. In particular, the min-

imum labelling spanning tree problem, the minimum labelling Steiner

tree problem, and the minimum quartet tree cost problem, are inves-

tigated. Several metaheuristics are proposed for each problem, from

classical approximation algorithms to novel approaches. A compre-

hensive computational investigation in which the proposed methods

are compared with other algorithms recommended in the literature is

reported. The results show that the proposed metaheuristics outper-

form the algorithms recommended in the literature, obtaining optimal

or near-optimal solutions in short computational running times. In

addition, a thorough analysis of the implementation of these methods

provide insights for the implementation of metaheuristic strategies for

other graph theoretic problems.

Related publications

• S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008).

Greedy randomized adaptive search and variable neighbourhood search for the

minimum labelling spanning tree problem. European Journal of Operational Re-

search, accepted for publication. doi:10.1016/j.ejor.2008.03.014.

• S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008).

Solving the minimum labelling spanning tree problem using hybrid local search.

Submitted to Optimization Methods and Software, Special Issue EURO XXII con-

ference.

• S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović (2008).

Discrete particle swarm optimization for the minimum labelling Steiner tree prob-

lem. In N. Krasnogor, G. Nicosia, M. Pavone, and D. Pelta, editors, Nature

Inspired Cooperative Strategies for Optimization, volume 129 of Studies in Com-

putational Intelligence, pages 313-322. Springer-Verlag, New York.

• S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović (2008).

Discrete particle swarm optimization for the minimum labelling Steiner tree prob-

lem. Submitted to Natural Computing, Special Issue NICSO conference.

• S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008).

Variable neighbourhood search for the minimum labelling Steiner tree problem.

Annals of Operations Research, accepted for publication.

• S. Consoli, K. Darby-Dowman, G. Geleijnse, J. Korst, and S. Pauws (2008).

Heuristic approaches for the quartet method of hierarchical clustering. Submitted

to IEEE Transactions on Knowledge and Data Engineering.

vii

Contents

1 Introduction 1

2 Metaheuristics: foundations and classification 7

2.1 Main concepts on metaheuristics 8

2.2 Single-solution metaheuristics . 14

2.2.1 Simulated Annealing . 15

2.2.2 Tabu Search . 18

2.2.3 Greedy Randomized Adaptive Search Procedure 21

2.2.4 Iterated Local Search . 24

2.2.5 Variable Neighbourhood Search 27

2.2.6 Guided Local Search . 32

2.3 Population-based metaheuristics 36

2.3.1 Genetic Algorithms . 38

2.3.2 Quantum-inspired Genetic Algorithms 43

2.3.3 Estimation of Distribution Algorithms 49

2.3.4 Scatter Search . 53

2.3.5 Ant Colony Optimization 56

2.3.6 Particle Swarm Optimization 63

2.4 Hybrid metaheuristics . 68

3 Minimum labelling spanning tree problem 71

3.1 Description of the problem . 71

3.2 Literature review . 74

3.3 Exploited metaheuristics . 78

3.3.1 Modified Genetic Algorithm 78

viii

CONTENTS

3.3.2 Pilot Method . 80

3.3.3 Greedy Randomized Adaptive Search Procedure 83

3.3.4 Variable Neighbourhood Search 86

3.3.5 Hybrid local search . 90

3.4 Computational results . 100

3.4.1 Experimental analysis . 102

3.4.2 Statistical analysis of the results 108

3.5 Conclusions and further research 111

4 Minimum labelling Steiner tree problem 113

4.1 Introduction . 113

4.2 Origin of the problem . 116

4.3 Description of the algorithms . 117

4.3.1 Exact Method . 117

4.3.2 Pilot Method . 119

4.3.3 Greedy Randomized Adaptive Search Procedure 121

4.3.4 Discrete Particle Swarm Optimization 124

4.3.5 Variable Neighbourhood Search 128

4.3.6 Hybrid local search . 131

4.4 Computational results . 135

4.5 Conclusions . 142

5 Quartet method of hierarchical clustering 143

5.1 Introduction . 143

5.2 The quartet method of hierarchical clustering 148

5.2.1 Mathematical formulation 151

5.3 Exploited metaheuristics . 154

5.3.1 Randomized Hill Climbing 155

5.3.2 Greedy Randomized Adaptive Search Process 157

5.3.3 Simulated Annealing . 162

5.3.4 Variable Neighbourhood Search 167

5.3.5 Reduced Variable Neighbourhood Search 170

5.4 Experimental results . 172

5.4.1 Testing the quartet-based tree reconstruction 173

ix

CONTENTS

5.4.2 Testing on examples from nature 176

5.4.3 Testing on geographic distances 179

5.4.4 Testing on data extracted from the World Wide Web . . . 182

5.5 Conclusions . 186

6 Conclusions 187

A Computational complexity 190

B Statistical tests 192

References 194

x

Summary of Abbreviations

ACO : Ant Colony Optimization
AS : Ant System
DPSO : Discrete Particle Swarm Optimization
EDA : Estimation of Distribution Algorithm
EXACT : Exact Method
GA : Genetic Algorithm
GRASP : Greedy Randomized Adaptive Search Procedure
GLS : Guided Local Search
HYBRID : hybrid local search method
MA : Memetic Algorithm
max-CPU-time : maximum allowed CPU time
MGA : Modified Genetic Algorithm
MLST : minimum labelling spanning tree
MLSteiner : minimum labelling Steiner tree
MQC : maximum quartet consistency
MQTC : minimum quartet tree cost
MVCA : Maximum Vertex Covering Algorithm
NCD : Normalized Compression Distances
PILOT : Pilot Method
PSO : Particle Swarm Optimization
QGA : Quantum-inspired Genetic Algorithm
RHC : Randomized Hill Climbing
RVNS : Reduced Variable Neighbourhood Search
SA : Simulated Annealing
SS : Scatter Search
SVNS : Skewed Variable Neighbourhood Search
TS : Tabu Search
VNDS : Variable Neighbourhood Decomposition Search
VNS : Variable Neighbourhood Search
WWW : World Wide Web

xi

List of Figures

2.1 Basic schema of Variable Neighbourhood Search. 29

2.2 Guided Local Search strategy. 33

2.3 Rotation of the QuBit i performed by the quantum interference op-

erator according to the corresponding reference bit in a Quantum-

inspired Genetic Algorithm. 48

2.4 Example of reference set in Scatter Search. 53

2.5 Foraging behaviour of real ants. 57

2.6 Example of a decision (or construction) graph. 58

3.1 The top two graphs show a sample graph and its MLST solution.

The bottom three graphs show some feasible solutions. 73

3.2 Example illustrating the steps of the revised MVCA. 75

3.3 Example illustrating the steps of Complementary Local Search. . 93

4.1 Example of an input graph of the MLSteiner problem. 115

4.2 Minimum labelling Steiner tree solution for the graph of Figure 4.1.115

5.1 The left part shows an example of a distance matrix in input to

the quartet method of hierarchical clustering. The right part shows

the boron tree representing the optimal hierarchy. 147

5.2 The three different simple quartet topologies of the generic set

{a, b, c, d} of objects. 149

5.3 Example showing the exchange of two leaves attached to two one-

neighbouring transition nodes. 160

5.4 Example showing the exchange of two leaves attached to a transi-

tion node and to the one-neighbouring terminal node. 161

xii

LIST OF FIGURES

5.5 Example showing the move of a transition node to another branch

of the one-neighbouring cross node. 161

5.6 Example showing the exchange of two branches of two one-neighbouring

cross nodes. 162

5.7 Transformation of two one-neighbouring transition nodes into one

terminal node and one cross node. 165

5.8 Transformation of one terminal node and the one-neighbouring

cross node into two transition nodes. 166

5.9 Randomly generated full unrooted binary tree t with 10 objects

and St = 1. 174

5.10 The full unrooted binary tree t obtained by RVNS for the instance

with n = 24 mammals, with a normalized tree benefit score of

St = 0.99588 obtained in 2.08 sec. 178

5.11 The full unrooted binary tree t with St = 0.91973 obtained by

RVNS in 32.94 sec for the instance with n = 37 European cities. . 181

5.12 The full unrooted binary tree t with St = 0.98760 obtained by

RVNS in 2.84 sec for the instance with n = 25 Asian cities. 182

A.1 Diagram of complexity classes. 191

xiii

List of Tables

2.1 Main classification of metaheuristics 10

2.2 Example of the rotation angle of a QuBit i in function of the

current probability to measure the value 0 (αi), of the current

probability to measure the value 1 (βi), and of the corresponding

bit value of the best solution (reference bit) 47

3.1 Computational results for Group 1 (max-CPU-time for heuristics

= 1000 ms) . 103

3.2 Computational results for Group 2 with n = 100 (max-CPU-time

for heuristics = 20∗103 ms) . 105

3.3 Computational results for Group 2 with n = 200 (max-CPU-time

for heuristics = 60∗103 ms) . 106

3.4 Computational results for Group 2 with n = 500 (max-CPU-time

for heuristics = 300∗103 ms) . 107

3.5 Pairwise differences of the average ranks of the algorithms (Critical

difference = 1.05 for a significance level α = 1% for the Nemenyi

test) . 109

4.1 Computational results for n = 100 and q = 0.2 ·n (max-CPU-time

for heuristics = 5000 ms) . 137

4.2 Computational results for n = 100 and q = 0.4 ·n (max-CPU-time

for heuristics = 6000 ms) . 138

4.3 Computational results for n = 500 and q = 0.2 ·n (max-CPU-time

for heuristics = 500∗103 ms) . 139

xiv

LIST OF TABLES

4.4 Computational results for n = 500 and q = 0.4 ·n (max-CPU-time

for heuristics = 600∗103 ms) . 140

4.5 Pairwise differences of the average ranks of the algorithms (Critical

difference = 1.29 for a significance level of α = 1% for the Nemenyi

test) . 141

5.1 Computational results for artificial data with optimal normalized

tree benefit score equals to one (max-CPU-time for heuristics =

36000 sec) . 175

5.2 Computational results for examples from nature (DNA sequences

of different placental mammalian species) (max-CPU-time for heuris-

tics = 36000 sec) . 177

5.3 Computational results for geographic distances between cities (max-

CPU-time for heuristics = 36000 sec) 179

5.4 Computational results for data concerning distances between mu-

sical artists extracted from the World Wide Web (max-CPU-time

for heuristics = 36000 sec) . 184

xv

My arguments will be open to all,
and may be judged of by all.

Publius

Chapter 1

Introduction

Combinatorial optimization (CO) is the general name given to the problem of

finding the best solution out of a very large, but finite, number of possible so-

lutions. It is one of the youngest and most active areas of discrete mathemat-

ics and operational research, related to computer science, algorithm theory, and

computational complexity theory, and sitting at the intersection of several fields,

including artificial intelligence, computer science, and software engineering. Its

increasing interest arises from the fact that a large number of scientific and in-

dustrial problems can be formulated as abstract combinatorial optimization prob-

lems, through graphs and/or (integer) linear programs. To solve problems arising

in the fields of transportation and telecommunications, the operational research

analyst often has to use techniques that were first designed to solve classical

combinatorial problems related to graph theory (Avis et al., 2005). For exam-

ple, many combinatorial optimisation problems have been formulated on graphs,

where the possible solutions are “optimal” spanning trees with respect to some

measure. Typical measures include the total length or the diameter of the tree.

Many real-life combinatorial optimisation problems belong to this class of prob-

lems and consequently there is a large and growing interest in both theoretical

and practical aspects of the subject. Examples of such problems are network

flow problems (e.g. shortest path problem, minimum spanning tree problem,

maximum/minimum cost flow problem), matching problems (e.g. maximum car-

dinality matching problem, job assignment problem, maximum/minimum weight

1

matching problem), matroids (e.g. maximization/minimization problem for inde-

pendent systems, matroid intersection problem, matroid partitioning problem),

set covering problem, colouring problems (e.g. vertex-colouring problem, edge-

colouring problem), max 3-sat problem, knapsack problem, bin-packing problem,

network design problems (e.g. survivable network design problem, Steiner tree

problem), and travelling salesman problem.

A combinatorial optimization problem P = (S, f) may be specified as follows:

- A set of variables X = {x1, x2, . . . , xn};
- Variable domains D1, . . . , Dn;

- Constraints among variables;

- An objective function f to be minimized (or maximized), where

f : D1 × . . .×Dn → <+.

The set of all possible feasible solutions is

S = {s = {(x1, v1), . . . , (xn, vn)}|vi ∈ Di and s satisfies the constraints}, (1.1)

and is usually called the search (or solution) space, as each element of the set can

be seen as a candidate solution. To solve a combinatorial optimization problem

means to find a solution s∗ ∈ S with minimum (or maximum) objective function

value; that is, f(s∗) ≤ f(s), ∀s ∈ S. s∗ is called a “globally optimal solution” of

(S, f). Let the set S∗ ⊆ S be the “set of globally optimal solutions”.

Some of these problems have polynomial-time (“efficient”) algorithms, and

they are said to be in the complexity class P. However, most of them are NP-

hard, meaning that no algorithm with a number of steps polynomial in the size

of the problem instances is known to exist, and it is not possible to guarantee,

in general, that an exact solution to the problem can be found within an accept-

able timeframe. For more details on the concepts of P and NP complexity, see

Appendix A.

In practice, combinatorial optimization problems are often large-scale and dif-

ficult to solve. Thus, much attention has been given to studying computational

complexity and algorithm design with a view to developing efficient solution pro-

cedures. The No-Free-Lunch-Theorem (Wolpert and Macready, 1997) states that,

if an optimization algorithm performs well on a particular sub-class of combinato-

rial problems, having been designed to exploit the specific characteristics of that

2

sub-class, then it may have degraded performance on other combinatorial prob-

lems not belonging to that sub-class. The theorem is used as an argument against

using generic searching algorithms (e.g. Genetic Algorithms and Simulated An-

nealing) without exploiting as much domain knowledge as possible. Alternatively,

the theorem establishes that a general-purpose universal optimization strategy is

not possible, and the only way one strategy can outperform another is when it is

specially adapted to the problem under consideration (Ho and Pepyne, 2002).

Combinatorial optimization algorithms are classified as complete (or exact)

algorithms and approximate algorithms. Complete strategies are guaranteed to

find, for every instance of a specified combinatorial problem of finite size, an opti-

mal solution in bounded time (with proof of its optimality), while in approximate

methods, the guarantee of finding an optimal solution is sacrificed for the sake

of getting good solutions in a significantly reduced amount of time. By consider-

ing the knapsack problem, for example, it is easy to understand the difficulty of

finding an optimal solution. Suppose a hitchhiker has to fill up his knapsack by

selecting, from among various possible objects, those that will give him maximum

comfort: these and many other examples of knapsack problems can be mathe-

matically formulated by numbering the objects from 1 to n, and introducing a

vector of binary variables xj = (j = 1, . . . , n) having the following meaning:

xj =

{
1 if object j is selected
0 otherwise

(1.2)

Then, if pj is a measure of the comfort given by object j, wj its size, and c the

size of the knapsack, the problem will be to select, from among all binary vectors

x satisfying the constraint

Hb =
n∑

j=1

wjxj ≤ c, (1.3)

the one which maximizes the objective function f :

max f = max
n∑

j=1

pjxj. (1.4)

There are many applications of the knapsack model. For example, suppose

an investment of up to c dollars is to be made in one or more of n possible

3

investments. Let pj be the profit expected from investment j, and wj the required

investment. It is self-evident that the optimal solution of the knapsack problem

above will indicate the best possible choice of investments. A naive approach to

solve the knapsack problem would be to examine all possible binary vectors x,

selecting the best of those that satisfy the constraint. A full enumeration consists

of 2n vectors and thus, for a computer with a clock frequency of 3.6 GHz (3.6 ·109

instructions per second, i.e. 1 instruction in 0.28 · 10−9 sec), a lower bound (LB)

of the time to compute the 2n vectors is given by:

LB = 2n · (0.28 · 10−9) sec =
1

365 · 24 · 3600
· 0.28 · 2n · 10−9 years. (1.5)

For example, with n = 60, LB ≈ 10 years, with n = 61, LB ≈ 20 years, and with

n = 65, LB almost 4 centuries!

The complexity of many combinatorial problems arising in operational re-

search and other fields is such that an exact solution may not be found within

a reasonable time. Moreover, in some cases where a problem admits a polyno-

mial algorithm, the power of this polynomial may be so large that many realistic

instances cannot be solved in reasonable time (these are also called long-term

problems in the complexity class P). There are also problems that are known to

have a polynomial time algorithm but no-one knows what the algorithm actu-

ally is. In all these contexts, making use of exact algorithms to reach optimality

may be impractical, and approximate techniques need to be used in order to

provide good feasible solutions. In the last 20 years, a new kind of approximate

algorithms, commonly called metaheuristics, have emerged in this class, which

basically try to combine heuristics in high level frameworks aimed at efficiently

and effectively exploring the search space. Metaheuristics perform intelligent

searches in the search space, starting with one or more candidate solutions, and

improving them by means of intense searches in promising areas and by using

diversification mechanisms for moving towards attractive areas.

The research reported in this thesis focusses on metaheuristic techniques ap-

plied to problems in graph theory. The aim of the thesis is twofold. On the

one hand, it seeks to bring together, in a systematic and consistent way, several

features of different metaheuristic techniques. Classical and novel metaheuristics

are presented in Chapter 2. This chapter covers many theoretical and practical

4

aspects of metaheuristics, outlining their main concepts and components, simi-

larities and differences, advantages and disadvantages.

Subsequent chapters of the thesis address some recent and relevant combina-

torial optimization problems formulated on graphs, and present suitable meta-

heuristics used to attain near-optimal solutions. These problems constitute some

new and intriguing research areas, and are able to model and describe many

real-world problems.

The first problem addressed is the minimum labelling spanning tree prob-

lem, discussed and examined in Chapter 3 and based on (Consoli et al., 2008b)

and (Consoli et al., 2008c). In this chapter, some new metaheuristics for the

problem are proposed. Some nonparametric statistical tests are performed to

compare the performance of the proposed heuristics with that of the other algo-

rithms recommended in the literature. A comparison with the results provided

by an exact approach is also presented.

A similar study is presented in Chapter 4 for the minimum labelling Steiner

tree problem, another graph problem related to the minimum labelling spanning

tree problem and to the well-known Steiner tree problem. This chapter is based

on (Consoli et al., 2008d), (Consoli et al., 2008e), and (Consoli et al., 2008f).

Several effective metaheuristics are proposed, evaluated, and compared to the

best performing approaches in the literature, with respect to the quality of their

solutions and the computational running times.

Finally, Chapter 5 deals with the quartet method of hierarchical clustering.

This chapter is based on (Consoli et al., 2008a). Because the quartet method is

based on an NP-hard graph optimization problem, called minimum quartet tree

cost problem, any practical approach to obtain or approximate the optimal solu-

tions requires heuristics. Thus, some new metaheuristic approaches are proposed

and discussed in depth, showing the importance and the potential of these ap-

proaches to deal with complex graph problems arising in real-world applications.

Furthermore, the performance of the proposed algorithms is tested through ex-

tensive computational experiments and comparison with other approaches in the

literature.

This thesis is intended to provide the communities of both researchers and

practitioners with a broadly applicable, up to date coverage of metaheuristic

5

methodologies that have proven to be successful in a wide variety of graph the-

oretic models, and that hold particular promise for success in the future. The

metaheuristics used to solve the graph problems reported in this thesis serve as

illustrations in showing the importance and the potential of metaheuristic ap-

proaches to deal with these classes of problems. In addition, thorough analysis

of the implementation of these methods provides insights for the implementation

of metaheuristic strategies for other complex graph problems. With this thesis,

the author hopes to encourage an even wider adoption of metaheuristic methods

for solving graph problems, and to stimulate research that may lead to additional

innovations in metaheuristic procedures.

6

Consider your origin; you were
not born to live like brutes, but to
follow virtue and knowledge.

Dante Alighieri

Chapter 2

Metaheuristics: foundations and

classification

Since the early years of operational research (OR), there has been much inter-

est in combinatorial optimization (CO) problems formulated on graphs and their

practical applications (Avis et al., 2005). Most of these problems are NP-hard

(Appendix A). Thus there is a need for heuristics and approximate solution

approaches with performance guarantees. Indeed, the goal of approximate meth-

ods is to find “quickly” (reasonable run-times), with “high” probability, provable

“good” solutions (low error from the real optimal solution). This chapter briefly

outlines the components, foundations, advantages and disadvantages of different

metaheuristic approaches from a conceptual point of view, in order to analyse

their similarities and differences. In Section 2.1 the basic concepts of metaheuris-

tics are outlined, allowing different kinds of classification between them. The two

very significant forces of intensification and diversification, that mainly determine

the behaviour of a metaheuristic, are also pointed out. In Section 2.2 and Sec-

tion 2.3, the most important single-solution and population-based metaheuristics

are presented in order to analyse their components, similarities and differences,

from conceptual and practical point of views. Section 2.4 concludes by exploring

the importance of hybridization and integration of metaheuristics. For a sur-

vey on the basic concepts of metaheuristics and combinatorial optimization, the

reader is referred to (Voß et al., 1999; Glover and Kochenberger, 2003; Gendreau

and Potvin, 2005).

7

2.1 Main concepts on metaheuristics

2.1 Main concepts on metaheuristics

In recent years, there have been significant advances in the theory and application

of metaheuristics to the approximate solution of hard optimization problems. The

term metaheuristic derives from the composition of two Greek words: “Heuris-

tic” (from the verb heuriskein) that means “to find”; and the suffix “Meta”

that means “beyond, in an upper level”. Before this term was largely adopted,

metaheuristics were often called modern heuristics (V. J. Rayward-Smith, 1996).

This family includes, but it is not limited to, Simulated Annealing (SA), Tabu

Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP), Iter-

ated Local Search (ILS), Variable Neighbourhood Search (VNS), Guided Local

Search (GLS), Genetic Algorithms (GAs), Quantum-inspired Genetic Algorithms

(QGAs), Estimation of Distribution Algorithms (EDAs), Scatter Search (SS), Ant

Colony Optimization (ACO), and Particle Swarm Optimization (PSO).

As Voß et al. (1999) state, “A metaheuristic is an iterative master process

that guides and modifies the operations of subordinate heuristics to efficiently

produce high-quality solutions. It may manipulate a complete (or incomplete)

single-solution or a collection of solutions at each iteration. The subordinate

heuristics may be high (or low) level procedures, or a simple local search, or just

a construction method”. Before going into the details of such a statement, it

is important to clarify the concepts of diversification and intensification used in

metaheuristics. The first term means the exploration of the search space while

the latter one refers to the exploitation of the accumulated search-experience.

When the search process starts, it needs to compute the value of different points

in the search domain in order to find promising areas (diversification). Then

the algorithm needs to investigate promising zones to find the local-optimum

(intensification). The best local optimum found in the different areas will be the

candidate solution, hoping to be as near as possible to the optimum that the

algorithm is looking for. The terms “diversification” and “intensification” are

mainly used in methods based on the concept of memory, such as Tabu Search.

Conversely the terms “exploration” and “exploitation” are used in strategies that

do not require explicit usage of memory, such as in GRASP. Finding a good

balance between diversification (exploration) and intensification (exploitation) is

8

2.1 Main concepts on metaheuristics

essential for a metaheuristic in order to quickly identify regions in the search

space with high-quality solutions, without wasting too much time in regions with

a low quality.

Intensification and diversification are not contradictory options, but each fea-

ture contains aspects of the other. Balancing properly these two strengths is a

crucial issue in metaheuristics, and so many techniques have been proposed in

recent years with this intent. These techniques are based sometimes on intuition

and experience, and at other times on theoretically or empirically derived princi-

ples. In this context, both problem specific knowledge and a solid understanding

of the properties and characteristics of the different metaheuristics are crucial for

achieving peak performance and robustness.

Metaheuristics can be classified in different ways depending on the specific

point of view of interest (Table 2.1). The main classification consists of consider-

ing single-solution (or single-point) methods, such as Tabu Search and Simulated

Annealing, and population-based methods, such as Genetic Algorithms and Ant

Colony Optimization. Often, single-solution methods are also called trajectory

methods, because they work on a single solution at each time-step describing

a curve (trajectory) in the search space during the progress of the search. On

the other hand, population-based metaheuristics compute simultaneously a set

of points at each time-step of the search process, describing the evolution of an

entire population in the search domain.

A special class of single-point metaheuristics consists of explorative methods.

Given a candidate solution, these strategies search for local minima by restrict-

ing the search process to a neighbourhood of the candidate solution. Here the

neighbourhood of a current solution s is defined as a function N(s) : S → 2s,

which assigns to every s ∈ S a set of neighbourhoods N(s) ⊆ S, where S is the

search space. With the introduction of a neighbourhood structure, it is possible

to define the concept of locally minimal solution (or local minimum) with respect

to a neighbourhood structure N(·), as a solution ŝ such that ∀s ∈ N(ŝ) → f(ŝ) ≤
f(s).

9

2.1 Main concepts on metaheuristics

T
ab

le
2.

1:
M

ai
n

cl
as

si
fic

at
io

n
of

m
et

ah
eu

ri
st

ic
s

M
E
T
A

H
E
U

R
IS

T
IC

S
SA

T
S

G
R

A
SP

IL
S

V
N

S
G

L
S

G
A

s
Q

G
A

s
E

D
A

s
SS

A
C

O
P

SO
si

ng
le

-s
ol

ut
io

n
√

√
√

√
√

√

H
po

pu
la

ti
on

-b
as

ed
√

√
√

√
√

√

E
ex

pl
or

at
iv

e:
st

at
ic

ne
ig

hb
ou

rh
oo

d
√

√
√

√

U
C

ex
pl

or
at

iv
e:

dy
na

m
ic

ne
ig

hb
ou

rh
oo

d
√

√
√

R
L

m
em

or
y-

le
ss

√
√

√

I
A

m
em

or
y-

us
ag

e
√

√
√

√
√

√
√

√
√

S
S

na
tu

re
-i
ns

pi
re

d
√

√

T
S

ev
ol

ut
io

na
ry

√
√

√
√

√

I
st

at
ic

ob
je

ct
iv

e
fu

nc
ti

on
√

√
√

√
√

√
√

√
√

√
√

C
dy

na
m

ic
ob

je
ct

iv
e

fu
nc

ti
on

√

lo
ca

l
se

ar
ch

√
√

√
√

√
√

√
√

√
√

co
ns

tr
uc

ti
ve

se
ar

ch
√

√

10

2.1 Main concepts on metaheuristics

A further classification of explorative methods can be made by considering

the neighbourhood structure that is “explored” during the search process. Some

metaheuristics work on a single (or static) neighbourhood structure, meaning that

the fitness landscape topology does not change in the course of the search process.

Conversely, other metaheuristics use a set of different neighbourhood structures

(dynamic neighbourhood structures). These methods diversify the search process

by swapping between the neighbourhoods considered, allowing the exploration of

different areas of the search space. A typical example is given by Iterative Local

Search (ILS) and Variable Neighbourhood Search (VNS).

Another important feature in the classification of metaheuristics is the use of

memory during the search history, because it is one of the fundamental elements

of a powerful metaheuristic. In memory-less algorithms the next state depends

only on the information accumulated in the current state of the search process, as

a Markov process, while in memory-usage algorithms there is the use of a short-

term and/or long-term memory. Usually, the first keeps track of recently visited

solutions (moves), while the second is concerned with the storage of information

about the entire search process.

Metaheuristics taking inspiration from nature and natural systems for the so-

lution of complex problems are also called nature-inspired algorithms. Biological

and natural processes have always been a source of inspiration for computer sci-

ence and information technology in many real-world applications. Its well known

that biological entities, from single cell organisms - like bacteria - to humans, often

engage in a rich repertoire of social interaction that could range from altruistic

cooperation to open conflict. One specific kind of social interaction is cooperative

problem solving, where a group of autonomous entities work together to achieve a

certain goal. Examples of nature-inspired algorithms include, but are not limited

to, Particle Swarm Optimization and Ant Colony Optimization.

Population-based metaheuristics that are inspired by the Darwinian evolution

theory (Darwin, 1859), belong to the class of evolutionary algorithms. The main

idea consists of the survival of the best element in natural evolution processes.

The field of natural evolution applied to optimization algorithms is at a stage

of tremendous growth. There are currently three well-defined paradigms, which

have served as the basis for much of the research in this field: Genetic Algorithms

11

2.1 Main concepts on metaheuristics

(GAs), Evolution Strategies (ES), and Evolutionary Programming (EP). Each of

these emphasizes a different aspect of natural evolution. In general, they have

foundation on the following evolutionary operators: recombination or crossover,

which recombines two or more individuals (ancestors) to produce new individuals

(children); modification or mutation, which causes a self-adaptation of individ-

uals; selection of individuals based on their fitness, where fitness is defined as a

value of an objective function or some measure of the quality of solutions, which

is the driving force in evolutionary algorithms. Individuals with a high fitness

have a high probability to be chosen as members of the next population (or as

parents for the population of new individuals). This is analogous to the principle

of survival of the fittest in natural evolution, i.e. the capability of nature to adapt

itself to a changing environment.

Metaheuristics can also be classified according to the way they make use of

the objective function. If, during the search, the objective function is altered

by trying to incorporate information collected during the search process (for ex-

ample to escape from local minima), then the metaheuristic is said to have a

dynamic objective function, as with the Guided Local Search (GLS). Techniques

that keep the objective function as it is given by the problem belong to the class

of metaheuristic with a static objective function.

Finally, metaheuristics can also be classified as local search methods and con-

structive search methods. A constructive search method builds a solution at each

step, simply by adding components to the solution of the previous step, until the

constraints are satisfied. GRASP is a typical example of a metaheuristic belong-

ing to this class. These methods are usually faster than local search methods,

but they also tend to be of lower quality. A local search method tries to replace

the current solution at each step with a “better” one in a neighbourhood of the

current solution. The concept in local search is simple: given a solution s and

an objective function f(·), every “move” from the current solution s to a candi-

date solution s′ is only performed if the objective function value f(s′) is smaller

than the value given by the current solution f(s) (in the case of a minimization

problem). In this context, a move from the solution s is defined as the choice of

a solution s′ from the neighbourhood N(s), that is s′ ∈ N(s).

12

2.1 Main concepts on metaheuristics

The simplest local search method consists of an iterative search, and it is used

often in conjunction with other metaheuristics. The algorithm is specified in Al-

gorithm 2.1. Iterative search starts from a solution s ∈ S (e.g. generated at ran-

Algorithm 2.1: Iterative search method

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define a static neighbourhood structure N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin

while termination conditions do
s ←Generate-Solution();

Find an improved solution in N(s): s ←Improve(N(s));

if f(s) < f(s′) then
Move s′ ← s;

end

end

⇒ Return(s′).
end

dom). Then, the procedure Improve(N(s)) tries to find a better solution within

the neighbourhood N(s) of the current solution s. Therefore, iterative search be-

longs also to the class of explorative methods. The procedure Improve(N(s)) can

be either a first improvement procedure or a best improvement procedure. In the

first case, it scans the neighbourhood N(s) and chooses the first solution that is

better than the current solution s. In the second case, it exhaustively explores the

neighbourhood N(s) and returns the solution with the lowest objective function

value. Both methods stop at local minima. Therefore, their performance strongly

depends on the definition of the search space S, the objective function f(·), and

the neighbourhood structure N(·). If the new improved solution s is better than

the best solution to date s′, the algorithm moves the current solution s to s′

(i.e. s′ ← s). The algorithm starts again with the same procedure, and it halts

when some user termination conditions are satisfied. Possible termination condi-

tions are the maximum allowed CPU time, the maximum number of iterations,

or the maximum number of iterations without improvements. The best solution

to date s′ forms the output of the procedure. The effectiveness of iterative search

tends to be highly unsatisfactory for many combinatorial optimization problems,

13

2.2 Single-solution metaheuristics

because it often becomes trapped in local minima. Therefore, rather than as

stand-alone algorithm, iterative search is usually used as additional component

in other metaheuristics.

Summarizing, metaheuristics are strategies, approximate and usually non

deterministic, that guide the search process to efficiently explore the search

space in order to find near-optimal solutions, using techniques which range from

simple local search procedures to complex learning processes. They are not

problem-specific, can incorporate mechanisms to avoid “traps” (local optima),

may use domain-specific knowledge to explore the most promising areas, and fi-

nally they can memorize the search experience in order to guide the future search

(long/short-time form of memory). A rigourous classification of metaheuristics

can not be performed, because many methods may fit several classes at the same

time, and also because in many cases it is not possible to clearly attribute an

algorithm to one of the classes specified above. However, the classification of

metaheuristics in single-solution and population-based methods permits a clear

distinction between these kinds of algorithms. In the following sections, the most

important single-point and population-based methods will be presented from a

conceptual point of view, in order to analyse their components, similarities and

differences, advantages and disadvantages.

2.2 Single-solution metaheuristics

Single-solution metaheuristics, also named trajectory methods, are so called be-

cause the search process designs a trajectory in the search space, starting from an

initial state and dynamically adding a new solution to the curve in each discrete

time-step. So, this process can be seen as the evolution in time of a discrete

dynamical system in the state space. The generated trajectory is useful because

it provides information about the behaviour of the algorithm and its dynamics

in order to choose the most effective method to solve the problem instance under

consideration.

The system dynamics are the result of the combination of algorithms (i.e.

chosen strategy), problem representation (i.e. definition of the search landscape)

and problem instance. Trajectory shape depends on the strategy used. Simple

14

2.2 Single-solution metaheuristics

algorithms generate a trajectory composed of a transient phase followed by an

attractor (a fixed point, a cycle, or a complex attractor). Advanced algorithms

generate more complex trajectories comprising more different phases, represent-

ing the dynamic tuning between diversification and intensification during the

search process. These continuous oscillations provide alternate phases in the de-

signed trajectory, trying to find an optimal balance between these fundamental

strengths. The main single-solution metaheuristics are described below.

2.2.1 Simulated Annealing

Simulated Annealing (SA) is possibly the oldest probabilistic local search method

for global optimization problems, and one of the first to clearly provide a way

to escape from local traps. It was independently invented by Kirkpatrick et al.

(1983) and by Cerny (1985). The SA metaheuristic performs a stochastic search of

the neighbourhood space. In the case of a minimization problem, modifications to

the current solution that increase the value of the objective function are allowed

in SA, in contrast to classical descent methods where only modifications that

decrease the objective value are possible.

The name and inspiration of this method come from the process of annealing

in metallurgy, a technique involving heating and controlled cooling of a material

to increase the size of its crystals and reduce their defects. The heat causes the

atoms to become unstuck from their initial positions (a local minimum of the

internal energy) and wander randomly through states of higher energy; the slow

cooling provides an opportunity to find configurations with lower internal energy

than the initial one. By analogy with this physical process, each step of the SA

algorithm replaces the current solution by a random “nearby” solution, chosen

with a probability that depends on the difference between the corresponding func-

tion values and on a global parameter T (called temperature), that is gradually

decreased during the process (cooling process).

The dependency is such that the current solution changes arbitrarily in the

search domain when T is large, i.e. at the beginning of the algorithm, through

uphill moves (or random walks) that saves the method from becoming trapped at

15

2.2 Single-solution metaheuristics

a local minimum. Afterwards, the temperature T is gradually decreased, inten-

sifying the search process in the specific promising-zone of the domain (downhill

moves). More precisely, the current solution is always replaced by a new one if

this modification reduces the objective function value, while a modification in-

creasing the objective function value by ∆ is only accepted with a probability

exp(−∆/T) (Boltzmann function), using the temperature T as a control param-

eter. At a high temperature T , the probability of accepting an increase to the

objective value is high (uphill moves: high diversification and low intensification

capabilities). Conversely, this probability gets lower as the temperature T is de-

creased (downhill moves: high intensification and low diversification capabilities).

Therefore, according to the SA criterion, the value of T is initially high, which

allows many worse moves to be accepted, and is gradually reduced following a

so-called cooling schedule (or cooling law). Considering the iteration k and the

temperature value Tk, the cooling schedule is a decreasing function which deter-

mines the temperature value at the successive iteration k + 1, as follows:

Tk+1 ← func(Tk, k), (2.1)

The process described is memory-less because it follows a trajectory in the state

space in which the successor state is chosen depending only on the incumbent

one, without taking into account the history of the search process.

The details of the implementation of Simulated Annealing are specified in

Algorithm 2.2. At the beginning, the initial temperature value (T0), a static

neighbourhood structure (N(·)), the specific cooling schedule, and the user ter-

mination conditions need to be imposed. Possible termination conditions are

the maximum allowed CPU time, the maximum number of iterations, or the

maximum number of iterations without improvements. Then, the algorithm

starts with an initial solution s, for example generated at random (Generate-

Initial-Solution()), and selects at random a point s′ within its neighbourhood

N(s) (Pick-up-at-random(N(s))). If s′ produces an improvement in the ob-

jective function value with respect to s (f(s′) < f(s)), then the current so-

lution is replaced with the improved one (s ← s′). Otherwise, s′ replaces s

with probability exp(−(f(s′) − f(s))/T). Specifically, a random number ξ with

uniform distribution in [0, 1] is independently generated (ξ ← random[0, 1]),

16

2.2 Single-solution metaheuristics

Algorithm 2.2: Simulated Annealing

Input: An objective function f(·), the search space S, a specific cooling schedule;

Output: A solution s ∈ S;

Initialization:

- Define a static neighbourhood structure N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Let T0 be the initial temperature value;

begin
s ←Generate-Initial-Solution();

Set the temperature to the initial value: T ← T0;

while termination conditions do
s′ ←Pick-up-at-random(N(s));

if f(s′) < f(s) then
Move s ← s′;

else
Select at random a number between 0 and 1: ξ ← random[0, 1];

if ξ < exp
(
− f(s′)−f(s)

T

)
then

Move s ← s′;
end

end

Cooling schedule for the temperature: Tk+1 ← func(Tk, k);

Continue with the next iteration: k ← k + 1;

end

⇒ Return(s).
end

and if ξ < exp(−(f(s′) − f(s))/T), the worse move s′ is accepted (s ← s′).

Then, the temperature T is updated according to the specific cooling schedule

(Tk+1 ← func(Tk, k)), and the algorithm stops when the termination conditions

are satisfied.

Theoretical results on non-homogeneous Markov chains (Aarts and Korst,

1988; Aarts et al., 2005) state that under particular conditions on the cooling

schedule, the algorithm converges in probability to a global minimum as k →
+∞. More precisely, calling pk the probability to find a global minimum after

k steps, then there exists Γ ∈ < such that
∑+∞

k=1 exp Γ
Tk
→ +∞ if and only if

limk→∞ pk = 1.

Different cooling schedules in Simulated Annealing, all satisfying this hypoth-

esis of convergence, may be considered, such as a logarithmic cooling law :

Tk+1 =
Γ

lg(k + k0)
, (2.2)

where Γ and k0 are arbitrary constant values that must be set experimentally by

17

2.2 Single-solution metaheuristics

the user. Logarithmic cooling schedule satisfies the hypothesis of convergence, as

is shown in the following equation:

+∞∑

k=0

exp
Γ

Tk+1

=
+∞∑

k=0

exp
Γ
Γ

lg(k+k0)

=

=
+∞∑

k=0

exp lg(k + k0) =
+∞∑

k=0

(k + k0) → +∞. (2.3)

Sometimes, the logarithmic cooling law is too slow for practical purposes.

Therefore, faster cooling schedule techniques may be adopted, such as a geometric

cooling law, which is a cooling rule with an exponential decay of the temperature:

Tk+1 = α · Tk, (2.4)

where α ∈ [0, 1].

Other complex cooling techniques can be used in order to improve the per-

formance of the SA algorithm. For example, to have an optimal balance between

diversification and intensification, the cooling rule may be updated during the

search process. At the beginning, T can be constant or linearly decreasing to

have a high diversification factor for a larger exploration of the domain. Then, T

can follow a fast rule, such as the geometric one, to converge quickly to a local

optimum. Other successful variants are non-monotonic cooling schedules that al-

ternate phases of cooling and reheating, providing an oscillating balance between

diversification and intensification.

Simulated Annealing has been applied to several combinatorial problems with

success (Gendreau and Potvin, 2005). Rather than as a stand-alone algorithm,

it is nowadays used as a component in many hybrid metaheuristics to improve

their performance in specific applications (Aarts et al., 1997).

2.2.2 Tabu Search

Tabu Search (TS) is a widely used metaheuristic introduced by Glover (1986). It

shares with Simulated Annealing the ability to guide the search avoiding traps

in poor local optima, but in a deterministic way rather than a stochastic one,

modelling human memory processes. Memory is implemented by the implicit

18

2.2 Single-solution metaheuristics

recording of previously seen solutions using a simple data structure. This consists

of a tabu list of moves which have been made in the recent past of the search,

and which are forbidden (tabu) for a certain numbers of iterations. This helps

to avoid cycling, and serves also to promote a diversified search of the solution,

trying to escape from local minima.

The details of Tabu Search are specified in Algorithm 2.3. The procedure

Algorithm 2.3: Tabu Search

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define a neighbourhood rule N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Let tabu list be the set of forbidden solutions;

- Let allowed set be the set of admissible solutions;

begin
tabu list ← ∅;
s ←Generate-Initial-Solution();

Move s′ ← s;

Update the tabu list: tabu list ← FIFO(tabu list ∪ s);

while termination conditions do
Update the allowed set: allowed set ← N(s)− tabu list ;

Find the best solution within the allowed set: s ←Improve(allowed set);

if f(s) < f(s′) then
Move s′ ← s;

Update the tabu list: tabu list ← FIFO(tabu list ∪ s);

end

end

⇒ Return(s′).
end

starts with an initial solution s, for example generated at random (Generate-

Initial-Solution()). Then, at each iteration, the procedure Improve(·) tries to

find a better solution from the set of solutions that do not belong to the tabu

list, referring to this set as the allowed set. This procedure can be either a first

improvement procedure or a best improvement procedure. In the first case, it

scans the allowed set and chooses the first solution that is better than s. In the

second case, it exhaustively explores the allowed set and returns the solution with

the lowest objective function value. If the new improved solution s is better than

the best solution to date s′, the algorithm moves the current solution s to s′ (i.e.

s′ ← s), and the tabu list is updated by following a FIFO (First In First Out)

19

2.2 Single-solution metaheuristics

technique, i.e. the current solution s is added to the tabu list and the oldest

element is removed (tabu list ← FIFO(tabu list ∪ s)). Due to this dynamic

restriction of allowed solutions in a neighbourhood, TS can be considered as an

explorative method with a dynamic neighbourhood structure, and with a short-

term memory implemented by the tabu list. The algorithm starts again with the

same procedure, and it stops when a termination condition is met or the allowed

set is empty. The best solution to date s′ forms the output of the algorithm.

Usage of memory in metaheuristics can be described, generally, in terms of four

“dimensions” in the search: recency, frequency, quality, and influence, in which

the first two are the most important. Recency records the most recent iteration in

which a solution was involved. In TS the most recent moves are forbidden and the

length of the tabu list, called tabu tenure, represents the recency principle. The

tabu tenure is either fixed or dynamically updated during the search process.

If its value is small, there is a high exploitation of the domain, but not many

uphill moves to differentiate the search. Otherwise, if the tabu tenure is large, the

exploration of new areas is encouraged because it forbids revisiting a large number

of solutions. A promising research direction in Tabu Search consists of creating

advanced ways to adapt the tabu tenure dynamically (Glover, 1986). For example,

the tabu tenure could be periodically re-initialized at random between a minimum

value and a maximum value. Otherwise, it could be manually increased if there

are many solution repetitions (i.e. a larger diversification factor is needed), while

it could be decreased if no improvements are obtained and more intensification

is required. It is often beneficial to focus on some components or attributes of

a move rather than on the complete move itself, avoiding managing a list on

entire solutions that could make TS inefficient and not practical. Attributes are

stored in different tabu lists defining the tabu conditions, which are used to filter

the neighbourhood of a solution and generate the allowed set. A neighbouring

solution is considered forbidden, and deemed not admissible, if it has attributes

on a tabu list. Storing attributes rather than complete solutions is much more

efficient, but also it may cause some non-tabu solutions, because forbidding an

attribute means assigning the tabu status to probably more than one solution. To

correct such errors, some aspiration criteria are defined, enabling the introduction

of a solution in the allowed set even if it is forbidden by tabu conditions. The

20

2.2 Single-solution metaheuristics

most commonly used aspiration criterion selects elements that are better than

the current solution.

If recency simulates the short-term memory, a long-term memory can be im-

plemented by the use of a variety of frequency measures, as “residence” measures

and “transition” measures. The former is related to the number of times a par-

ticular attribute is observed, while the latter relates to the number of times an

attribute changes from one value to another. In each case, the frequency measures

are usually employed to generate penalties, which modify the objective function.

Thereby, diversification is encouraged by the generation of solutions embodying

combinations of attributes significantly different from those previously encoun-

tered. Conversely, intensification is promoted by incorporating attributes of so-

lutions from selected subsets of elements, called elite subsets, implicitly focussing

the search in sub-regions defined relative to these subsets.

After discussing the concepts of recency and frequency, it may be also helpful

to provide a brief reiteration of the basic notions of quality and influence. Quality

in TS usually refers to those solutions with good objective function values. A

collection of such elite solutions may stimulate a more intensive search in the

most promising regions of the search area. Influence is roughly a measure of the

degree of change induced in solution structure, commonly expressed in terms of

the distance of a move from one solution to the next. It is an important aspect of

the use of aspiration criteria, and is also relevant to the development of candidate

list strategies. Influence is a property regarding choices made during the search

and can be used to indicate which choices have shown to be the most critical.

The Tabu Search heuristic is a rich source of ideas. Many of these ideas

together with the corresponding strategies have been, and are currently, adopted

by other metaheuristics. From a practical point of view, a recency-based approach

with a simple neighbourhood structure, searched using a restricted candidate list

strategy, will often provide very good results (Glover and Kochenberger, 2003).

2.2.3 Greedy Randomized Adaptive Search Procedure

The GRASP (Greedy Randomized Adaptive Search Procedure) methodology

was developed in the late 1980s, and the acronym was coined by Feo and Re-

21

2.2 Single-solution metaheuristics

sende (1989). It was first used to solve set covering problems (Feo and Resende,

1995), but was then extended to a wide range of combinatorial optimization prob-

lems (Pitsoulis and Resende, 2002). Surely GRASP must have been implemented

many times in an ad hoc way before anyone knew it was a specific metaheuris-

tic. GRASP is a typical example of a constructive metaheuristic, belonging also

to the class of explorative methods. It is basically a multi-start two-phase meta-

heuristic, consisting of a construction phase and a local search improvement phase

(Algorithm 2.4).

Algorithm 2.4: Greedy Randomized Adaptive Search Procedure

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define a static neighbourhood structure N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin

while termination conditions do
Set s ← ∅;
Construction phase(s);

Local search(N(s));

if f(s) < f(s′) then
Move s′ ← s;

end

end

⇒ Return(s′).
end

The solution construction mechanism builds a feasible solution s by using

a greedy randomized procedure, whose randomness allows solutions in different

areas of the solution space to be obtained (Construction phase(s) procedure,

see Algorithm 2.5). The greedy randomized procedure obtains a solution by

iteratively creating a candidate list of elements that can be added to the partial

Algorithm 2.5: Procedure Construction phase(·)
Procedure Construction phase(s):

Let RCLα ← 0 be the restricted candidate list of length α;

while s is incomplete do
Update the restricted candidate list: RCLα ←Greedy evaluation(S, α);

Select at random an element x ∈ RCLα;

Add element x to the incomplete solution s: s ← s ∪ {x};
end

22

2.2 Single-solution metaheuristics

solution, and then randomly selecting an element from this list. The candidate

list (RCLα: Restricted Candidate List of length α) is created by evaluating the

elements not yet included in the partial solution (RCLα ←Greedy evaluation(S,

α)). A greedy function (or constructive heuristic), depending on the specifications

of the problem, is used to perform this evaluation. Only the best elements,

according to this greedy function, are included in RCLα. In particular, the

elements are ranked by means of the greedy function that gives them a score as

a function of the benefit if inserted in the current partial solution. These scores

can be either static values (fixed from the starting point to the end of the entire

algorithm) or dynamic values (updated at each step depending on the current

partial solution).

The size α of the candidate list is a very important parameter because it

determines the strength of the heuristic bias, and also influences the sampling

of the search space. It can be limited either by the number of elements, or by

their quality with respect to the best candidate element. The simplest scheme to

define α is updating it at each step, randomly or by means of greedy evaluation.

The extreme cases for the size of the candidate list are: α = 1 and α = n, where

n represents the number of elements to be evaluated. In the first case, only

the best element is added to the restricted candidate list, and the construction

mechanism is equivalent to a deterministic greedy heuristic. In the case of α = n,

the candidate list is filled with all the n elements, and the construction mechanism

is equivalent to a random walk, because complete randomization is used to choose

the next element to add to the partial solution.

The construction phase stops when a feasible solution is produced. The so-

lution s obtained is not necessarily locally optimal, so a local search phase (such

as Simulated Annealing or Tabu Search) is included to try to improve it (Local

search(N(s)) procedure). This phase uses a local search mechanism which, iter-

atively, tries to replace the current solution with a better neighbouring solution,

until no better solution can be found. Different strategies may be used in order

to evaluate the neighbourhood structure N(·). At each step, the best element

found to date is memorized as s′. This two-phase process is iterative, continuing

until the user termination condition such as the maximum allowed CPU time, the

maximum number of iterations, or the maximum number of iterations between

23

2.2 Single-solution metaheuristics

two successive improvements, is reached. The final result of GRASP is the best

solution found to date, s′.

The solutions obtained by GRASP are usually of good quality because it offers

fast local convergence (high intensification capability) as a result of the greedy

aspect of the procedure used in the construction phase, and of the local search

mechanism; and also a wide exploration of the solution space (high diversification

capability) for the randomization used in the selection of a new element from

RCLα. However, GRASP does not use history-memory of the search process

and, for this reason, it can be outperformed by other metaheuristics in some

applications.

GRASP can be effective if the solution construction mechanism samples the

most promising regions of the domain (by using an effective constructive heuristic

and an appropriate value of α), and if the resulting solutions from the construc-

tive heuristic belong to regions associated with different local minima (by using

an effective constructive heuristic and an appropriate local search with a good

choice of the neighbourhood structure). Several new components, presented and

discussed in (Resende and Ribeiro, 2003), have extended the scheme of GRASP

(reactive GRASP, parameter variations, bias functions, memory and learning,

improved local search, path relinking,. . .). For its characteristics of simplicity

and high speed, GRASP is often used as a method for generating good starting

points for other hybrid metaheuristics.

2.2.4 Iterated Local Search

Iterated Local Search (ILS) was proposed by Stützle (1999, 2006) for the quadratic

assignment problem, and is probably the most general scheme among the explo-

rative strategies. The aim of this heuristic is to prevent getting stuck in local

optima of the objective function. Iterated Local Search mainly consists of two

operators for generating new solutions (Lourenço et al., 2003). One is a local

search, to reach local optima performing a walk in the search space, and the

other is a perturbation operator, to efficiently escape from local optima. That

is, when local search is trapped in a local optimum, the perturbation operator is

applied to the local optimum to generate a new starting point for the local search.

24

2.2 Single-solution metaheuristics

It is desirable that the generated starting point should be in a promising area in

the search space. Formally, Iterated Local Search is specified in Algorithm 2.6.

Algorithm 2.6: Iterated Local Search

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define the neighbourhood structure N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin
s ←Generate-Initial-Solution();

Set s′ ← s;

repeat
s ←Perturbation(N(s), history);

Local search(s);

if f(s) < f(s′) then
Move s′ ← s;

else
Apply an acceptance criterion to select the candidate solution:

s ←Acceptance criterion(s, s′, history);

end
until termination conditions ;

⇒ Return(s′).
end

The algorithm initializes the search by selecting an initial candidate solution

s. It is preferable to start from a good initial solution s, but also the construction

of s should be, computationally, not too expensive. The fastest way is to gen-

erate randomly the initial solution. However constructive heuristics may also be

adopted at this stage in order to quickly find high-quality starting points. The

core of the overall algorithm consists of the following three phases:

1. A “perturbation” within the neighbourhood N(·) applied to the current

candidate solution s (s ←Perturbation(N(s), history));

2. A “local search” performed with respect to the perturbed solution s in order

to find a local minimum (Local search(s));

3. The application of an “acceptance criterion” to decide which of the two

local optima, s or s′, has to be chosen as the new candidate solution to

continue the search process (s ←Acceptance criterion(s, s′, history)).

25

2.2 Single-solution metaheuristics

The specific steps have to be properly designed and set to find a good trade-

off between intensification and diversification of the search process, in order to

achieve high performance of the algorithm and its efficacy to solve large and

difficult instances of problems. Both the perturbation and the acceptance cri-

terion mechanisms can use aspects of the search history (long-term or short-

term memory). For example, stronger perturbation should be applied when the

same local optima s are repeatedly encountered. The role of the perturbation

Perturbation(N(s), history) (usually probabilistic to avoid cycling) is to mod-

ify the current candidate solution s within its neighbourhood N(s) to help the

search process to effectively escape from local minima, in order to eventually

find different better points. Typically, the strength of the perturbation, given by

the selected neighbourhood structure N(·), has a strong influence on the length

of the subsequent local search phase. The neighbourhood structure can be ei-

ther fixed independently of the problem size (static neighbourhood structure) or

variable (dynamic neighbourhood structure). However, the latter one is in gen-

eral more effective because the larger the problem size, the greater should be the

strength. A more sophisticated adaptive strength scheme is also possible in which

the perturbation strength is increased when more diversification is needed, and

decreased when intensification seems preferable. Variable Neighbourhood Search

and its variants belong to this category, as will be explained in the next section.

After the perturbation phase, a locally optimal solution s is achieved by ap-

plying the local search phase (Local Search(s) procedure), whose characteristics

have a considerable influence on the performance of the entire algorithm. The

local search considered is not restricted to N(·), but any neighbourhood structure

can be used to try to improve, if possible, the current solution s.

The successive acceptance criterion (Acceptance criterion(s, s′, history)) has

also a strong influence on the behaviour and the performances of ILS. The two

extremes are:

- Accepting the new local minimum s as the new candidate solution only in case

of improvement (i.e. only if f(s) < f(s′). This is the mechanism used in classic

local search methods, which produces a strong intensification of the search pro-

cess);

26

2.2 Single-solution metaheuristics

- Always accepting the new solution s as the new candidate solution (this corre-

sponds to a random walk in the search space, which produces a high diversification

of the search process).

Between these extremes, there are several intermediate choices. It is possible, for

example, to adopt a kind of annealing schedule, consisting of accepting always

the candidate solutions s which produce an improvement (f(s) < f(s′)), and also

the candidate solutions s which do not produce an improvement (f(s) ≥ f(s′))

with a probability that is a function of the temperature parameter T and the

difference of objective function values (∆ = f(s)− f(s′)), as follows:

exp(−∆/T) = exp(−(f(s)− f(s′))/T). (2.5)

As in Simulated Annealing, the cooling schedule for the temperature T can

be either monotonic (non-increasing in time) or non-monotonic (adapted to tune

the balance between diversification and intensification capabilities). The non-

monotonic schedule is particularly effective if it exploits the history of the search

process: instead of constantly decreasing the temperature, it is increased when

more diversification seems to be required.

Iterated Local Search is often used as a framework for other metaheuristics or

can be easily incorporated as a subcomponent in some of them to build effective

hybrid methods. Successful applications of Iterated Local Search are the travel-

ling salesman problem, the single-machine total weighted tardiness problem, and

the quadratic assignment problem (Lourenço et al., 2003; Stützle, 2006).

2.2.5 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a relatively new and widely applicable

metaheuristic based on dynamically changing neighbourhood structures during

the search process (Hansen and Mladenović, 1997, 2001, 2003). VNS doesn’t

follow just a trajectory, but it searches for new solutions in increasingly distant

neighbourhoods of the current solution, jumping only if a better solution than the

current best solution is found. This single-point metaheuristic belongs also to the

class of explorative methods which consider dynamic neighbourhood structures,

and it can be considered a special case of Iterated Local Search.

27

2.2 Single-solution metaheuristics

The VNS approach can be summarized as: “One Operator, One Landscape”,

meaning that promising zones of the search space given by a specific neighbour-

hood may not be promising for other neighbourhoods (landscape). Nevertheless,

a local optimum with respect to a given neighbourhood may not be locally opti-

mal with respect to another neighbourhood.

The basic VNS procedure is specified in Algorithm 2.7, and illustrated in

Figure 2.1. At the starting point, it is required to define arbitrarily a suitable

Algorithm 2.7: Variable Neighbourhood Search

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define the neighbourhood structure Nk(·), with k ← 1, 2, ..., kmax, where kmax represents the size of

the neighbourhood structure (e.g. increasingly distant neighbourhoods: |N1(·)| < ... < |Nkmax (·)|);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin
s′ ←Generate-Initial-Solution();

repeat
Set k ← 1;

while k < kmax do
s ←Shaking phase(Nk(s′));
Local search(s);

if f(s) < f(s′) then
Move s′ ← s;

Set k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end
until termination conditions ;

⇒ Return(s′).
end

neighbourhood structure of size kmax (user parameter to be set), where Nk(·)
defines a neighbourhood of size k, and |Nk(·)| its cardinality. The simplest and

most common choice is a structure in which the neighbourhoods have increasing

cardinality: |N1(·)| < |N2(·)| < ... < |Nkmax(·)| (nevertheless, with this sequence

a large number of solutions could be revisited, at the cost of increased com-

putational time. Today, attempts to improve the scanning of the landscape are

made through more complex neighbourhood structures). The process of changing

neighbourhoods when no improvement occurs diversifies the search. In particu-

lar, the choice of neighbourhoods of increasing cardinality yields a progressive

28

2.2 Single-solution metaheuristics

Figure 2.1: Basic schema of Variable Neighbourhood Search.

diversification.

VNS starts from an initial solution s′ (e.g. generated at random) with k

increasing from 1 up to kmax during the progressive execution. The basic idea

of VNS to change the neighbourhood structure, when the search is trapped at

a local minimum, is implemented by the Shaking phase (Shaking phase(Nk(s
′))

procedure). It consists of the random selection of a point s in the neighbourhood

Nk(s
′) of the current solution s′, which may provide a better starting point for

the successive local search phase. The random point s is generated in order to

avoid cycling, which might occur if any deterministic rule was used. The suc-

cessive local search phase (Local Search(s) procedure) is not restricted to Nk(·),
but any neighbourhood structure can be used to try to improve, if possible, the

current solution s. Afterwards, if no improvements are obtained (f(s) ≥ f(s′))

in the move phase, the neighbourhood structure is increased (k ← k + 1) giving

a progressive diversification (|N1(C)| < |N2(C)| < ... < |Nkmax(C)|). Otherwise,

if an improved solution s is obtained (f(s) < f(s′)), it becomes the best solution

to date (s′ ← s) and the algorithm restarts from the first neighbourhood (k ← 1)

of the best solution to date (N1(s
′)). The algorithm proceeds until the user

termination conditions (maximum allowed CPU time, maximum number of iter-

ations, or maximum number of iterations between two successive improvements)

are satisfied.

29

2.2 Single-solution metaheuristics

VNS provides a general framework and many variants exist for specific re-

quirements. Experimentally, VNS performance can be improved if s is not just

picked at random from Nk(s
′), but it is achieved by performing an iterative search

in the shaking phase between a random selection of points. Moreover, setting

k ← k + kstep instead of k ← k + 1, and k ← kmin instead of k ← 1, gives

an easy and natural way to drive the intensification and diversification of the

search. It is also possible to remove the local search step for very large prob-

lem instances for which it is costly, making it similar to the classic Monte-Carlo

method. This variant of VNS is called Reduced Variable Neighbourhood Search

(RVNS). Another important variant of VNS is the Variable Neighbourhood De-

scent (VND) algorithm. For some problems, the local search strategy may be

time-consuming. Since the properties of a neighbourhood are in general different

from those of other neighbourhoods, a local search strategy may perform differ-

ently on them (Hansen and Mladenović, 2003). From this consideration, VND is

used to try to reduce the computational running times. VND orders the neigh-

bourhood structures in a sequential way, and applies a local search by changing

neighbourhoods deterministically.

The choice of the neighbourhood structures is the critical point in VNS and

VND, because the neighbourhoods should exploit different properties and charac-

teristics of the search space. Thus, another important variant of VNS, called Vari-

able Neighbourhood Decomposition Search (VNDS), selects the neighbourhoods

by producing a decomposition of the problem instance (Hansen and Mladenović,

2003). VNDS follows the same scheme of the basic VNS, but the neighbourhood

structures and the local search are defined on sub-problems of each solution. All

attributes (variables) of the current solution are kept fixed with the exception of k

of them, which define a neighbourhood structure Nk(·). Local search only regards

changes on the variables belonging to the sub-problem it is applied to. VNDS

procedure can be obtained by substituting the inner loop of the VNS algorithm,

as specified in Algorithm 2.8.

In the shaking phase, the current solution s′ and the incumbent one s differ

only in k attributes (variables). In the local search phase, the improved solution is

obtained by just allowing movements involving these k attributes of the solution

s (Local search(s, k variables)). If a better solution s is reached, then the current

30

2.2 Single-solution metaheuristics

Algorithm 2.8: Variable Neighbourhood Decomposition Search

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define the neighbourhood structure Nk(·), with k ← 1, 2, ..., kmax, where kmax represents the size of

the neighbourhood structure (e.g. increasingly distant neighbourhoods: |N1(·)| < ... < |Nkmax (·)|);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin
s′ ←Generate-Initial-Solution();

repeat
Set k ← 1;

while k < kmax do
s ←Shaking phase(Nk(s′));
Local search(s, k variables);

if f(s) < f(s′) then
Move s′ ← s;

Set k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end
until termination conditions ;

⇒ Return(s′).
end

solution is replaced with the improved one (s′ ← s), and the algorithm will start

again with the first neighbourhood by setting k ← 1. Conversely, if no improved

solutions are reached (f(s) ≥ f(s′)), it means that the current solution s′ is a

local minimum for k variables, and the algorithm will increase the number of the

variables to explore (k ← k+1). The algorithm proceeds iteratively and will stop

if the usual stopping conditions are satisfied.

VNS, RVNS, VND, and VNDS are steepest descent-oriented algorithms and,

often, they are unsuitable to effectively explore the search space. Another variant

has been developed called Skewed Variable Neighbourhood Search (SVNS), which

extends the basic VNS by providing a more flexible acceptance criterion (Hansen

and Mladenović, 2003). As an alternative to only accepting solution improve-

ments, worse solutions s can be accepted if they differ from the current one (s′)

by less than the value of α · ρ(s′, s), where ρ(s′, s) is the distance between s′ and

s, and α ∈ [0, 1] is a weight parameter in the acceptance criterion. The distance

measure ρ is defined by the user with respect to the characteristics of the specific

problem, and it may be, for example, the Hamming distance, the Manhattan

31

2.2 Single-solution metaheuristics

distance, or others. The SVNS procedure is specified in Algorithm 2.9.

Algorithm 2.9: Skewed Variable Neighbourhood Search

Input: An objective function f(·) and the search space S;

Output: A solution s′ ∈ S;

Initialization:

- Define the neighbourhood structure Nk(·), with k ← 1, 2, ..., kmax, where kmax represents the size of

the neighbourhood structure (e.g. increasingly distant neighbourhoods: |N1(·)| < ... < |Nkmax (·)|);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

begin
s′ ←Generate-Initial-Solution();

repeat
Set k ← 1;

while k < kmax do
s ←Shaking phase(Nk(s′));
Local search(s);

if (f(s)− f(s′) < α · ρ(s′, s)) then
Move s′ ← s;

Set k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end
until termination conditions ;

⇒ Return(s′).
end

Variable Neighbourhood Search and its variants have been successfully ap-

plied to many combinatorial optimization problems (Hansen and Mladenović,

2001, 2003), such as, for example, travelling salesman problem, vehicle routing

problem, location and clustering problems, job shop scheduling. Current re-

search activity in VNS is huge. A systematic study of moves and neighbourhood

structures for whole classes of problems, together with the data-structures for

their implementation, is one promising research direction. Another one is trying

to consider more sophisticated distributions of neighbourhoods. Introduction of

memory, parallel VNS, and hybridizing VNS within exact algorithms, are also

interesting research areas (Hansen and Mladenović, 2003).

2.2.6 Guided Local Search

Guided Local Search (GLS) is an explorative metaheuristic based on penalties and

was introduced in (Voudouris, 1997; Voudouris and Tsang, 1999). The Guided

32

2.2 Single-solution metaheuristics

Local Search approach gradually moves (to guide the search) away from local min-

ima by changing the search landscape. In contrast to other explorative strategies

such as Tabu Search and Variable Neighbourhood Search, the set of solutions and

the neighbourhood structure are kept fixed (single neighbourhood structure) while

the objective function f(·) is dynamically changed (dynamic objective function),

in order to make the current local optimum less desirable and trying to escape

from it.

Guided Local Search is an algorithm for modifying classic local search heuris-

tics. This strategy is based on the definition of solution features, which may be

any kind of properties or characteristics that can be used to discriminate between

solutions (e.g. in travelling salesman problem they are the arcs between pairs of

cities (Voudouris and Tsang, 1999)). An indicator function Ii(s) is defined to

show whether the feature i is present in a specific solution s, that is:

Ii(s) =

{
1 if feature i is present in solution s
0 otherwise.

(2.6)

The GLS procedure is specified in Algorithm 2.10, and illustrated in Fig-

ure 2.2.

Figure 2.2: Guided Local Search strategy.

33

2.2 Single-solution metaheuristics

Algorithm 2.10: Guided Local Search

Input: An objective function f(·), the search space S, m solution features, the regulation parameter λ

for the solution features;

Output: A solution s′ ∈ S;

Initialization:

- Define a static neighbourhood structure N(·);
- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Let pi, with i ← 1 . . . m, be the penalty parameters for the m solution features considered;

- Let ci, with i ← 1 . . . m, be the costs assigned to the m solution features considered;

begin
s ←Generate-Initial-Solution();

Set s′ ← s;

Initialize the penalty parameters to 0: pi ← 0, ∀i ← 1 . . . m;

while termination conditions do
Modify the objective function: f ′(s) = f(s) + λ ·∑m

i=1 pi · Ii(s), where

Ii(s) =

{
1 if feature i is present in solution s

0 otherwise

Local search(f ′(·), N(s));

if f ′(s) < f ′(s′) then
Move s′ ← s;

end

Calculate the utility function Util(s, i) for each solution feature i,∀i ← 1 . . . m, of the current

candidate solution s: Util(s, i) =

{
Ii(s) · ci

1+pi
if feature i is present in solution s

0 otherwise

foreach solution feature i with max Util(s, i) do
Penalize the solution feature i: pi ← pi + 1;

end

end

⇒ Return(s′).
end

Consider a candidate solution s and a total of m features, the new objective

function f ′(s) is equal to the sum of the current objective function f(s) and a

term depending on the m features:

f ′(s) = f(s) + λ ·
m∑

i=1

pi · Ii(s), (2.7)

where λ is the user-defined regulation parameter balancing the importance of

the influence of all the features i with respect to the original objective function

f(s), and pi are the penalty parameters weighting the importance of the specific

feature i. At the beginning, the algorithm initializes all the penalty parameters to

zero, and assigns the variables uniformly at random. Then, the local search (Local

search(f ′(·), N(s))) tries to find a better solution within the neighbourhood N(s)

34

2.2 Single-solution metaheuristics

of the current solution s. The local search is computed with respect to the new

objective function f ′(s), and it may be either a first improvement procedure or

a best improvement procedure, as in standard local search procedures. After the

local search phase, the penalty parameters are updated by means of a penalties

update rule. The most common choice is to use an incrementing rule: the penalties

of all features with maximal utility are incremented by one (pi ← pi + 1), where

the utility of solution s under feature i is a function defined as:

Util(s, i) =

{
Ii(s) · ci

1 + pi

if feature i is present in solution s

0 otherwise
(2.8)

where ci is the cost assigned to feature i, obtained from an user-defined heuristic

evaluation of the relative importance of each feature with respect to the others.

The intention is to penalize “bad features”, or features which “matter most”,

when a local search settles in a local optimum, by incrementing the penalty

values of the features i with the greatest Util(s, i) value. Besides, the more times

that a local minimum s has been penalized, the greater (pi + 1) becomes, and

therefore, the lower the utility of penalizing it again. The higher the cost of this

feature, the greater the utility of penalizing it. In other words, if a feature is not

exhibited in the local optimum, then the utility of penalizing it is 0. The feature

which has high cost affects the overall cost more. Therefore, the cost is scaled

by the penalty parameter pi to prevent the algorithm from being totally biased

toward the cost, and also to make the algorithm sensitive to the search history

(memory-usage algorithm). The procedure continues iteratively and halts when

the user termination conditions are satisfied. The best solution to date (s′) is

produced as output of the method.

A variant to the classic GLS scheme consists of modifying the incrementing

update rule for the penalties with a multiplicative rule (Voudouris and Tsang,

1999). The multiplicative rule has the form: pi = α · pi, where α ∈ [0, 1] is a

user-defined parameter. This rule is applied with a lower frequency than the in-

crementing one (for example every few hundreds of iterations) in order to smooth

the weights of penalized features and to prevent the landscape from becoming

too rugged. The penalty update rules are often very sensitive to the problem

instance. Another extension of GLS uses an additional mechanism for bounding

35

2.3 Population-based metaheuristics

the range of the penalties: if after the updating process, the maximum penalty

exceeds a given max threshold, all penalties are uniformly decayed, improving the

performance of the algorithm and its efficacy to solve large and difficult problem

instances.

2.3 Population-based metaheuristics

Population-based methods deal at each step with a set of solutions (or a pop-

ulation) rather than with a single one, providing a natural and intrinsic way

to explore the search space. Their performance strongly depends on the way

the populations are manipulated. The main population-based methods in com-

binatorial optimization are divided in evolutionary algorithms, such as Genetic

Algorithms (GAs), Quantum-inspired Genetic Algorithms (QGAs), Estimation of

Distribution Algorithms (EDAs), and Scatter Search (SS), and in nature-inspired

algorithms, such as Ant Colony Optimization (ACO) and Particle Swarm Opti-

mization (PSO).

Evolutionary algorithms are inspired by the Darwinian evolution theory (Dar-

win, 1859). The main idea is that populations evolve over the course of gener-

ations through a process of natural selection. In evolutionary algorithms, this

idea consists of applying iteratively specific genetic operators to modify individ-

uals, which are solutions to the problem, within a set (population). At the end

of the iterations, the best individual among the population of survivors repre-

sents, hopefully, a near-solution to the problem. It is generally accepted that

any evolutionary algorithm must have the following basic components: a genetic

representation (or data structure) of problem solutions; a way to create the initial

population; an evaluation function rating the solutions in terms of their fitness;

some genetic operators, such as recombination (or crossover) and modification (or

mutation); and a set of values for the specific parameters, such as population size

and probabilities of applying genetic operators. The data structure used to repre-

sent the solutions and the set of genetic operators, constitute the skeleton of each

evolutionary algorithm. There are currently three well-defined paradigms in evo-

lutionary algorithms, characterized by different components. They are Genetic

36

2.3 Population-based metaheuristics

Algorithms (GAs), Evolution Strategies (ES), and Evolutionary Programming

(EP).

Genetic Algorithms consider a population of individuals, or generation of chro-

mosomes, that are feasible solutions of the problem, represented in most of the

cases by binary strings. Crossover and mutation operations are then applied in

order to build one generation from the previous one. After a number of gener-

ations, the algorithm converges and the best individual, hopefully, represents a

near-optimal solution.

Evolution Strategies were developed mainly to build systems capable of solving

real-valued parameter optimization problems. Their natural representation of the

individuals consists of a vector of real numbers in order to help mutation operators

and manipulation of the candidate solutions. Generally, Evolution Strategies

emphasize behavioural changes by mutation at the level of the individual.

Evolutionary Programming stresses behavioural change at the level of the

species. The phenotypes of individuals are represented as finite state machines

capable of reacting to environmental stimulation, and to develop operators (pri-

marily mutation) for reflecting structural and behavioural change over time. They

are mainly used to build predictive systems.

Nature-inspired algorithms are influenced by the social behaviour of biolog-

ical organisms inside swarms occurring in nature and natural systems, such as

bacteria, colonies of ants, flocks of birds, or schools of fish. It is well known that

biological entities often engage in a rich repertoire of social interaction that could

range from altruistic cooperation to open conflict. One specific kind of social

interaction is cooperative problem solving, where a group of autonomous entities

work together to achieve a goal. In nature-inspired algorithms, the principles

of natural evolution are applied to optimization procedures for the solution of

complex problems. For example, in Ant Colony Optimization, a colony of arti-

ficial ants is used to construct solutions guided by the pheromone trails and by

heuristic information, as specified in Section 2.3.5.

The classification of population-based metaheuristics in evolutionary algo-

rithms and nature-inspired algorithms is not a rigourous classification, because

the two classes share common properties. This means that many methods may

fit both classes at the same time, because the Darwinian evolution theory used

37

2.3 Population-based metaheuristics

in evolutionary algorithms is also a nature-inspired process. This is the case, for

example, with Genetic Algorithms.

2.3.1 Genetic Algorithms

Genetic Algorithms (GAs) have their origins from the studies of cellular automata

conducted by Holland (1975), but only recently their potential for solving combi-

natorial optimization, linear, and non-linear problems has been exploited (Gold-

berg et al., 1991; Holland, 1992), becoming the most used evolutionary algorithms.

The original motivation for GAs resulted from a biological analogy: if the natural

process of selecting the best individuals for reproduction and for the creation of

new individuals managed to develop strong species adapted to their environments,

would it manage to find good solutions also for optimization problems? In the

selective breeding of plants and animals, offspring are sought to receive certain

desirable characteristics, determined by the genetic combination of the parents’

chromosomes. In the case of GAs, a population of strings (usually referred to,

in the literature of evolutionary algorithms, as chromosomes) is used in order

to obtain genetic recombination. Genetic Algorithms work on finite populations,

called also generations, and the chromosomes represent candidate solutions to the

problem. The elements of a chromosome are called genes, and the values that

these elements can take alleles. In general, this is defined as the “phenotype -

genotype” mapping, and it is one of the central points in the development of a

good GA (usually this mapping is constituted by a bijection). In most of the

cases, the chromosomes are represented by fixed strings with binary values. In

this case, an allele is the 0 or 1 value in the bit string, while the position at which

the 0 or 1 value is placed in the chromosome is called the locus. Each generation

evolves under a selective pressure that helps the survival of the fittest individual.

Based on the evaluation of a specified criterion of goodness, not only dependent

on the value of the objective function, and defined as fitness, the strings have

a lower or higher probability of being selected for reproduction. Chromosomes

are evaluated according to the fitness, and are selectively interbred in pairs to

produce offspring, through the genetic operators. The resulting offspring inherit

properties directly from their parents. The fitter a chromosome is, the more likely

38

2.3 Population-based metaheuristics

it is to produce offspring. The offspring are evaluated and placed in the new pop-

ulation, replacing the weaker members. Fitness is a central key to GAs and it

is usually defined in order to avoid too flat search space, by creating “valleys”

and “mountains”, so as to guide properly the search process. The term “Genetic

Algorithms” is due to these genetic concepts of representation and manipulation

of individuals.

Summarizing, the GA mechanism consists of three phases: evaluation of the

fitness of each chromosome, selection of the parent chromosomes, and applications

of the genetic operators to the parent chromosomes. When two or more parents

are selected for reproduction, GAs use the genetic operators of crossover and

mutation. Crossover is a matter of replacing some of the genes in one parent,

with some other genes of the other parent, consequently producing offspring.

Mutation is instead applied to a single chromosome, where some of the genes are

randomly selected and the corresponding allele values are changed. The evolution

process is repeated until the system ceases to improve. The survival of the fittest

ensures that the overall solution quality increases as the algorithm proceeds from

one generation to the next one. The main steps of the GA approach are specified

in Algorithm 2.11.

After the definition of the encoding of an individual, the first relevant point

to consider is the size, nP , and the composition of the initial population P .

Concerning the size, it is important to find a good compromise between efficiency

(in the terms of computational complexity and time) and efficacy (in terms of

quality of the solutions achieved) of the GA. The size of the population can remain

unchanged in the following generations (steady state), as in Algorithm 2.11, or

vary according to different criteria. As to how the population is chosen (P =

(p[0], p[1], . . . , p[nP − 1]) ←Initialize-Population(S, nP)), a random creation is

commonly assumed, but there are several approaches that use heuristic techniques

in order to produce a first population containing already solutions of good quality.

The successive step consists of evaluating the fitness of each individual in

the population, and selecting the parents for the genetic operators of crossover

and mutation (Select(P , f(·)) procedure). The basic idea for the selection of

the parents to be mated is that it should be related to fitness, and the original

scheme for its implementation is commonly known as the roulette-wheel method.

39

2.3 Population-based metaheuristics

Algorithm 2.11: Genetic Algorithm

Input: A fitness function f(·), the search space S;

Output: A solution s′ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Set the size nP of the population P = (p[0], p[1], . . . , p[nP − 1]);

- Let P ′ = (p′[0], p′[1], . . . , p′[nP − 1]) be the next generation;

- Set the probability of crossover: µc ∈ [0, 1);

- Set the probability of mutation: µm ∈ [0, 1)|(µc + µm) < 1;

begin
Generate the initial population: P = (p[0], p[1], . . . , p[nP − 1]) ←Initialize-Population(S, nP);

Evaluate the fitness of each individual in the population:

(f(p[0]), f(p[1]), . . . , f(p[nP − 1])) ←Evaluate(p[0], p[1], . . . , p[nP − 1]);

repeat
Set P ′ ← ∅;
for i ← 1 to nP do

According to the fitness evaluation, select at random an individual from the population:

s ←Select(P , f(·));
Select at random a number between 0 and 1: ξ ← random[0, 1);

if ξ ∈ [0, µc) then
Let s be the first parent for the crossover: pc1 ← s;

According to the fitness evaluation, select at random the second parent for the

crossover: pc2 ←Select(P , f(·));
Perform the crossover operation: pcrossovered ←Crossover(pc1, pc2);

Add the crossover offspring to the next generation: P ′ ← P ′ ∪ {pcrossovered};
else if ξ ∈ [µc, (µc + µm)) then

Let s be the parent for the mutation: pm ← s;

Perform the mutation operation: pmutated ←Mutation(pm);

Add the mutation offspring to the next generation: P ′ ← P ′ ∪ {pmutated};
else if ξ ∈ [(µc + µm), 1) then

Add the selected individual to the next generation: P ′ ← P ′ ∪ {s};
end

end

Update the generation: P ← P ′;
until termination conditions ;

Select the best individual to date: s′ ←Extract-the-Best(P , f(·));
⇒ Return(s′).

end

It uses a probability distribution for selection, in which the selection probability

of a given string is proportional to its fitness. Another method, known as the

stochastic universal selection, proved to be particularly effective for reducing the

high stochastic variability of the roulette-wheel method. Another approach is

the tournament selection, in which a subset of parents is randomly chosen and

the best among them is used for parent selection (for details on these approaches

see (Glover and Kochenberger, 2003)). Regarding the selection process, GAs can

40

2.3 Population-based metaheuristics

deal with an unstructured population, in which any individual may be recombined

with any other one to create offspring, or with a structured population, if any

individual can be recombined with only those included in a particular set, as is

the case of Parallel Genetic Algorithms (Glover and Kochenberger, 2003).

The selection process is followed by the reproduction of the individuals by

means of the genetic operators of crossover and mutation. In Algorithm 2.11,

crossover is applied with a probability µc, while mutation with probability µm.

For the remaining probability, the selected individuals are simply duplicated in

the next generation P ′ (generational replacement evolution). However, there exist

other possibilities for the selection process. For example, it is possible to use

crossover and mutation at the same time, or use only one of them, or taking into

account other tailored mechanisms dependent on the problem addressed. Usually,

crossover is always applied and mutation has just a low probability of being

selected, since empirical studies show that, with higher probabilities, mutation

has the negative effect of reducing the average solution value of the population

and disallowing the achievement of new good solutions (Holland, 1992).

Crossover replaces some of the genes in one parent (pc1), with some other genes

of the other parent (pc2), consequently producing offspring (pcrossovered). If the in-

formation sources for the crossover operations are just a couple of individuals, as

in Algorithm 2.11, it is a case of a two-parents crossover scheme. Otherwise, if the

offspring are produced by some recombination of more than two parents, it is the

case of a multi-parents crossover. Recently clever crossover schemes were devel-

oped, such as Gene Pool Recombination (using population statistics to generate

the individuals of the next population), or the Bit-Simulated Crossover (using a

probability distribution over the search space given by the current population to

generate the next one).

A problem to avoid in GAs is the premature convergence toward sub-optimal

solutions. A correct use of the mutation operator is fundamental to balance the

diversification capability of the Genetic Algorithm, trying to avoid premature con-

vergence. Mutation is a simple mechanism which just performs a small random

perturbation on the selected individual (noise). Considering the chromosome pm,

the mutation operator consists of randomly selecting some of the genes of pm and

changing the corresponding allele values, producing the new individual pmutated.

41

2.3 Population-based metaheuristics

An alternative approach is to use an immigration theory, that operates by includ-

ing in the new generations individuals either randomly created, or coming from

areas not frequently searched during the execution of the algorithm (the history

of the evolution has thus to be memorized).

The application of the genetic operators can produce infeasible solutions.

There are three different ways to handle infeasible solutions. Infeasible individu-

als could be simply “rejected”, “penalized” (by assigning them an additional poor

fitness value, so that they will have difficulty in being reselected in the succeeding

steps to create offspring), or just “repaired” (but this is not always possible).

When the next generation of individuals P ′ is completed, it becomes the

new current population (P ← P ′), and the algorithm continues with the same

procedure until some user termination conditions are satisfied. Then, the best

individual s′ within the survivors represents the output of the Genetic Algorithm.

Some Genetic Algorithms can include mechanisms to improve the intensifi-

cation capability of the search process (Glover and Kochenberger, 2003). These

mechanisms consist of including local search procedures by means of hybridiza-

tion with other metaheuristics. Hybridization of GAs with other metaheuristics

proved to be very useful, if not necessary, for efficiently addressing many opti-

mization problems. While the use of a population ensures the diversification of

the search, the use of local search techniques may improve the intensification

factor on the promising zones. This is the case, for example, of Memetic Al-

gorithms (MAs). Memetic Algorithms were first introduced by Moscato (1989)

and represent a broad class of evolutionary algorithms. The main idea of MAs

is to combine the effective search method of Genetic Algorithms, with the use of

specific information related to the optimization problem addressed. As for the

evolutionary approaches, MAs use a population of solutions that are combined

together through crossover and mutation in order to produce new solutions. The

intensification phase is obtained by incorporating heuristics, approximation algo-

rithms, local search, truncated exact methods, and other techniques tailored to

the solution of the specific problem, and aimed to quickly identify promising areas

in the search space. The term MA is particularly used when the intensification

phase is performed with the use of another nested metaheuristic, applied to each

42

2.3 Population-based metaheuristics

individual of the population. Typically, a MA consists of a GA in which a nested

Tabu Search or Simulated Annealing is used (Moscato, 1989).

2.3.2 Quantum-inspired Genetic Algorithms

Quantum-inspired Genetic Algorithms (QGAs) are a family of novel evolutionary

algorithms proposed by Narayanan and Moore (1996). They are based on con-

cepts and principles of quantum mechanics, such as standing waves, interference,

and coherence, applied to Genetic Algorithms in order to increase their perfor-

mance. A quantum-inspired computational method generates candidate solutions

to the problem instance, and a classical algorithm checks if these solutions are in

fact feasible. In order to understand QGAs further, it is necessary to underline

some basic principles of quantum mechanics (Feynman and Hibbs, 1965).

An atom consists of a nucleus (containing particles called protons (positive

charges) and neutrons (neutral charges)) and electrons (negative charges), sur-

rounding the nucleus through wave orbits (not-planar). There are different types

of orbit, depending on two factors: angular momentum and energy level. An

electron around a nucleus jumps states in discrete quanta by absorbing photons

(from a low energy orbit to an higher energy one) or releasing it (high level to a

lower one): the term “quantum” means that in-between states or orbits do not

exist, while a “photon” is the smallest unit of energy.

A quantum particle’s location can be described by a quantum state vector

| Ψ >, representing a linear superposition (i.e. a weighted sum) of the particle

given individual quantum state vectors | A >, | B >, | C >, . . ., respectively of

the possible positions A, B, C, . . ., as follows (Feynman and Hibbs, 1965):

| Ψ >= α· | A > +β· | B > +γ· | C > + . . . , (2.9)

where the weighting factors α, β, γ, . . ., are complex numbers, which represent the

probabilities that the particle is in a specific location (probA = |α|2, probB = |β|2,
probC = |γ|2, . . ., respectively). From Heisenberg’s uncertainly principle (Feyn-

man and Hibbs, 1965), both the position and momentum of a particle cannot be

simultaneously known at any particular instant. Thus, if there are n locations

given by n state vectors, the particle is said to be at all n locations at the same

43

2.3 Population-based metaheuristics

time. However, in the act of observing a quantum state (or wave function), it col-

lapses to a single one. This is a consequence of the many-universes interpretation

by Everett (1957): since all quantum systems exist in parallel universes, it is not

possible to view a quantum system in all these universes but only in a single one.

For example, in the case of two universes, the probability P12 of arrival of the

particle in a specific point is the square of the height of its quantum amplitude

a12 (Narayanan, 1999):

P12 = a2
12. (2.10)

From the analogy with water waves theory, the total amplitude a12 is the sum of

the wave amplitude of each single universe (Narayanan, 1999):

a12 = a1 + a2. (2.11)

Thus, the probability P12 is given by:

P12 = a2
12 = (a1 + a2)

2 = a2
1 + a2

2 + 2a1a2 = P1 + P2 + 2a1a2; (2.12)

that is, the probability P12 of arrival of the particle in a specific point is the sum

of the probability of having the particle in each single universe and adding an

interference factor, 2a1a2, due by the scrambling between the universes.

Recently, it was proved that a quantum system could be used to perform com-

putations and to simulate quantum processes, impossible to compute efficiently

on a conventional calculator (Narayanan, 1999). The “many universes” interpre-

tation was used by Shor (1994) in his quantum computing method for extracting

prime factors of very large integers. This result was used to deal with cryptog-

raphy algorithms, in which key production methods are based on the seeming

intractability of finding the prime factors of very large integers.

Quantum principles were applied to Genetics Algorithms, giving an initial ba-

sic methodology to design quantum computational algorithms (Narayanan and

Moore, 1996). The following guidelines explain how to develop a Quantum-

inspired Genetic Algorithm:

1. Express the problem in a numerical form through specific conversion meth-

ods;

44

2.3 Population-based metaheuristics

2. Determine the initial configuration;

3. Define the terminating conditions;

4. Divide the problem instance into smaller sub-problems;

5. Identify the number of required universes;

6. Assign an universe to each sub-problem;

7. Compute in parallel in the different universes;

8. There must be a form of interaction (interference) between all the universes,

which yields a solution or new useful information for the universes.

An important difference between the classical GAs and QGAs is in the represen-

tation of the elementary information unit. If GAs are based on bits, QGAs are

based on QuBits, derived by the superposition principle of quantum mechanics.

The QuBit does not represent only the value 0 or 1, but a superposition of the

two bits. Its state is represented as follows:

| Ψ >= α· | 0 > +β· | 1 >, (2.13)

where | 0 > and | 1 > are the classical bit values 0 and 1, and α and β are

complex numbers whose square values, |α|2 and |β|2, stand respectively for the

probability to measure the value 0 for the QuBit (prob0 = |α|2), and that to

measure 1 (prob1 = |β|2). That is:

|α|2 + |β|2 = 1. (2.14)

In the case of multiple QuBits, as in a quantum system, the resulting state

space grows exponentially with respect to the number of particles. For example,

in the case of ρ QuBits, the state space has 2ρ dimensions, and its representation

is defined as follows (Narayanan, 1999):
[

α1 α2 · · · αρ

β1 β2 · · · βρ

]
, (2.15)

where |αi|2 + |βi|2 = 1, with i = 1, . . . , ρ. Each chromosome in such a QGA

is encoded as a matrix of 2 x ρ QuBits. This allows a chromosome to encode

45

2.3 Population-based metaheuristics

not only one solution, but all the possible solutions by using the superposition

principle. Again, |αi|2 and |βi|2 are the probabilities to measure respectively

the value | 0 > and the value | 1 > for the QuBit i of a certain chromosome.

Each quantum operation regards in parallel all the states present within the

superposition (characteristic of diversity (Narayanan, 1999)). Only one QuBit

chromosome is enough to represent c states, while in a classical bit representation

at least c chromosomes are needed. This means that the QuBit representation

possesses simultaneously the two characteristics of exploration and exploitation.

If |αi|2 or |βi|2 converges to 1 or 0, the QuBit i of the chromosome considered

stretches to a single state (0 or 1 value), and the property of diversity disappears

Algorithm 2.12: Quantum-inspired Genetic Algorithm

Input: A fitness function f(·), the search space S;

Output: A solution s′ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Set the number ρ of QuBits for each chromosome;

- Set the size nP of the population P = (p[0]2xρ, p[1]2xρ, . . . , p[nP − 1]2xρ);

- Let P ′ = (p′[0]2xρ, p′[1]2xρ, . . . , p′[nP − 1]2xρ) be the next generation;

- Set the probability of crossover: µc ∈ [0, 1);

- Set the probability of mutation: µm ∈ [0, 1)|(µc + µm) < 1;

begin
Generate the initial population:

P = (p[0]2xρ, p[1]2xρ, . . . , p[nP − 1]2xρ) ←Initialize-Population(S, nP , ρ);

Evaluate the fitness of each individual in the population:

(f(p[0]), f(p[1]), . . . , f(p[nP − 1])) ←Evaluate(p[0]2xρ, p[1]2xρ, . . . , p[nP − 1]2xρ);

According to the fitness evaluation, select the best individual in the population:

s ←Extract-the-Best(P , f(·));
Set s′ ← s;

repeat
Set P ′ ← ∅;
Perform the quantum interference operation: P ←Interference(P , s′);
According to the probability µc, perform the crossover operation: P ′ ←Crossover(P , µc);

According to the probability µm, perform the mutation operation: P ′ ←Mutation(P , µm);

Perform at random the shifting operation: P ′ ←Shifting(P);

Update the generation: P ← P ′;
According to the fitness evaluation, select the best individual in the population:

s ←Extract-the-Best(P , f(·));
if f(s) < f(s′) then

Move s′ ← s;

end
until termination conditions ;

⇒ Return(s′).
end

46

2.3 Population-based metaheuristics

gradually.

The procedure for a general Quantum-inspired Genetic Algorithm, starting

from an initial population, applies four quantum operators (quantum interfer-

ence, crossover, mutation, shifting), and an evaluation. The evaluation is a

special kind of measurement applied to the resulting solutions in order to ex-

tract the corresponding fitness values. Formally, the procedure can be specified

in Algorithm 2.12. At the beginning, the initial population P , composed of nP

“quantum chromosomes”, each one containing ρ QuBits, is randomly generated

(P ←Initialize-Population(S, nP , ρ)). The most common choice is to gener-

ate P at random. After, the four operators of quantum interference, crossover,

mutation, and shifting are applied.

The first operator is the quantum interference that allows a shift of each QuBit

of the chromosomes in P in the direction of the corresponding bit value in the

best solution. That is performed by rotating the specific QuBit by an angle, ±δ,

which is a function of the value of the corresponding bit in the best solution,

called the reference bit. Consider a QuBit i, with a probability to measure the

value 0 equal to αi, and a probability to measure the value 1 equal to βi. Table 2.2

gives the value of the rotation angle, ±δ, in function of the current probability

values αi and βi, and of the corresponding bit in the best solution (reference bit).

Figure 2.3 shows the results of the rotation of the QuBit i, performed by the

quantum interference operator according to the corresponding reference bit.

Table 2.2: Example of the rotation angle of a QuBit i in function of the current
probability to measure the value 0 (αi), of the current probability to measure the
value 1 (βi), and of the corresponding bit value of the best solution (reference bit)

αi βi Reference bit Rotation angle
> 0 > 0 1 +δ

> 0 > 0 0 −δ

> 0 < 0 1 −δ

> 0 < 0 0 +δ

< 0 > 0 1 −δ

< 0 > 0 0 +δ

< 0 < 0 1 +δ

< 0 < 0 0 −δ

47

2.3 Population-based metaheuristics

Figure 2.3: Rotation of the QuBit i performed by the quantum interference op-
erator according to the corresponding reference bit in a Quantum-inspired Genetic
Algorithm.

The second operation is a classical GA crossover performed, with probability

µc, between pairs of chromosomes, within the population P , selected at random

positions. The resulting crossover offspring constitutes part of the next generation

(P ′ ←Crossover(P , µc)). According to the probability µm, the successive muta-

tion operator is applied at random over some chromosomes (P ′ ←Mutation(P ,

µm)). Note that the probability µm depends on the probability of applying

crossover µc, that is µm ∈ [0, 1)|(µc + µm) < 1.

The fourth operation (P ′ ←Shifting(P)) consists of a random shifting of some

chromosomes, in order to further increase the diversification of the search process.

The shifting is obtained by permuting the columns of each chromosome with

other columns. After these four quantum operators, an evaluation of the fitness

of each chromosome within the population is applied in order to select the best

individual to date. The evaluation is a special kind of measurement applied to

the resulting solutions within the population to extract their corresponding fitness

values. In quantum mechanics, only states containing exactly one QuBit with the

value 1 in each line, and exactly one QuBit having the value 1 in each column

(coherent solutions) are possible. Conversely, in QGA, the final measurement

does not destroy the states superposition, keeping all the possible solutions for

the following iterations. After the evaluation of the solutions, a new population

for the next iteration is selected (P ← P ′). The population P will consist of the

48

2.3 Population-based metaheuristics

best (nP−1) chromosomes from the generation P ′ obtained by the operators, plus

one chromosome randomly selected among the other ones (in order to maintain

a good diversity). The algorithm continues iteratively until the user termination

conditions are satisfied. Then, the best solution to date (s′) is produced as output

of the algorithm.

The increased performance of Quantum-inspired Genetic Algorithms with re-

spect to classical Genetic Algorithms may be attributed mainly to the interfer-

ence operation and to the multiple superpositions of individuals, obtained by

representing the chromosomes with QuBits. The quantum interference operator

provides a larger number of chromosomes to choose for the next generation, while

the multiple superpositions of individuals allow losing less good solutions during

each step.

If progress continues at this rate, future computer circuits will be based on

nanotechnology and the behaviour of such circuits will have to be given in quan-

tum mechanical terms rather than in terms of classical physics (since on the

atomic scale matter obeys the laws of quantum mechanics). Such compilers will

require less translation to machine language than the classical ones, so carrying

efficiency benefits. Although it is currently not clear how true quantum computa-

tion algorithms will be related to quantum hardware (e.g. quantum logic gates),

quantum-inspired computing could help quantum hardware platforms to be fea-

sible. The increased performance of Quantum-inspired Genetic Algorithms with

respect to classical Genetic Algorithms has been recently demonstrated for some

classical combinatorial optimization problems, such as the travelling salesman

problem (Talbi et al., 2004).

2.3.3 Estimation of Distribution Algorithms

Genetic Algorithms are optimization techniques based on selection and recom-

bination of promising solutions. Their behaviour depends on the setting of the

genetic operators of selection, crossover, and mutation, and on the choice of many

parameters, such as population size, probabilities of crossover and mutation, rate

of generational reproduction, and number of iterations. However, interactions

49

2.3 Population-based metaheuristics

among the variables of the search space are not explicitly considered. Further-

more, the fixed two-parents crossover and mutation sometimes provide low quality

solutions in the next generations. Two-parents crossover can been replaced by

generating new solutions according to a probability distribution associated with

the variables of the search space. This new approach was introduced by Mühlen-

bein and Paaß (1996) and used in the so called Estimation of Distribution Algo-

rithms (EDAs).

In EDAs, interactions among the variables of the individuals are explicitly

expressed through the joint probability distribution associated to the variables

that are present in a database of individuals selected from the previous generation.

The estimation of this joint probability distribution is not an easy task, and

different methods can be used. The method determines the form of Estimation

of Distribution Algorithm. Afterwards, the offspring for the next generation

are created by sampling the joint probability distribution. The evaluation of

the individuals used by EDAs is based on fitness measurement, as with Genetic

Algorithms, but neither crossover nor mutation is applied. Formally, the EDA

approach can be summarized in Algorithm 2.13.

The algorithm starts by generating an initial population P of nP individ-

uals. Then, n′P < nP individuals are selected to form the next generation

(P ′ ←Select(P , n′P)). Using one of the EDA methods, the successive step cal-

culates the joint probability distribution, prob(x|P ′), of the variables x that are

present in the selected individuals P ′ (Estimation distribution(P , n′P)). Offspring

are generated by just sampling the probability distribution, and replacing the old

population (P ←Sampling(P ′, prob(x|P ′))). The algorithm is repeated itera-

tively until the termination conditions are satisfied, producing the best solution

to date (s′) as output.

Different methods can be used to estimate the joint probability distribution

prob(x|P ′), determining different Estimation of Distribution Algorithms. In spe-

cific problems, the particular method is selected according to the dependencies

among the variables of the search space. Univariate Marginal Distribution Algo-

rithm, Population Based Incremental Learning, and Compact Genetic Algorithm

are different EDAs which do not consider interaction among variables (univariate

variables). In this case, the joint probability distribution can be simply calculated

50

2.3 Population-based metaheuristics

Algorithm 2.13: Estimation of Distribution Algorithm

Input: A fitness function f(·), the search space S;

Output: A solution s′ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Set the size nP of the population P = (p[0], p[1], . . . , p[nP − 1]);

- Set the size n′P of the next generation P ′ = (p′[0], p′[1], . . . , p′[n′P − 1]), where n′P < nP ;

- Let prob(x|P ′) be the joint probability distribution of the variables x that are present in the

individuals in P ′;
begin

Generate the initial population: P = (p[0], p[1], . . . , p[nP − 1]) ←Initialize-Population(S, nP);

Evaluate the fitness of each individual in the population:

(f(p[0]), f(p[1]), . . . , f(p[nP − 1])) ←Evaluate(p[0], p[1], . . . , p[nP − 1]);

According to the fitness evaluation, select the best individual in the population:

s ←Extract-the-Best(P , f(·));
Set s′ ← s;

repeat
Select n′P individuals for the next generation: P ′ ←Select(P , n′P);

Estimate the joint probability distribution of the variables x that are present in the

individuals in P ′: prob(x|P ′) ←Estimation distribution(P , n′P);

Generate offspring by sampling the joint probability distribution:

P ←Sampling(P ′, prob(x|P ′));
According to the fitness evaluation, select the best individual in the population:

s ←Extract-the-Best(P , f(·));
if f(s) < f(s′) then

Move s′ ← s;

end
until termination conditions ;

⇒ Return(s′).
end

as the product of the marginal probabilities of each single variable (Larrañaga and

Lozano, 2001). In Univariate Marginal Distribution Algorithm, the joint probabil-

ity distribution is factorized as a product of independent univariate marginal dis-

tributions, estimated from marginal frequencies. In the case of Population Based

Incremental Learning, the joint probability distribution is represented by a vec-

tor of probability distributions: (probg(x0|P ′), probg(x1|P ′), . . . , probg(xi|P ′), . . .),

where probg(xi|P ′) refers to the probability of obtaining a 1 in the i-th variable

of the search space in the g-th generation. At each step, the next generation of

individuals is obtained by sampling the vector of probability distributions. At

each iteration, a number of best individuals in the current generation are selected

in order to update the probability vector by a rule, which shifts the vector to-

wards the best individuals. Compact Genetic Algorithm considers also a vector

51

2.3 Population-based metaheuristics

of probability distributions, as Population Based Incremental Learning. In Com-

pact Genetic Algorithm, the probability for each variable is initialized to a 0.5

value. Then, using this vector of probabilities, the method randomly generates

new individuals. An evaluation of their objective function values provides a rank-

ing of individuals. The probability distributions are shifted toward the generated

solution vector(s) with highest quality. The distance that the probability distri-

butions are shifted depends on a learning rate parameter. At this step, a mutation

operator may be further applied to the probability distributions. This procedure

is repeated iteratively until the vector of probability distributions converges to

a local optimum. The vector of probability distributions can be regarded as a

prototype vector for generating high-quality solution vectors with respect to the

available knowledge about the search space. The drawback of this method is

the fact that it does not automatically provide a way to deal with constrained

problems (Larrañaga and Lozano, 2001).

To solve problems with variables with pairwise interactions (bivariate depen-

dencies), other Estimation of Distribution Algorithms exist, such as Mutual In-

formation Maximizing Input Clustering, Combining Optimizers with Mutual In-

formation Trees, and Bivariate Marginal Distribution Algorithm (Larrañaga and

Lozano, 2001). For real-world problems, where multiple interactions occur, the

followed EDAs are used: Factorized Distribution Algorithm, Extended Compact

Genetic Algorithm, Bayesian Optimization Algorithm, Estimation of Bayesian

Network Algorithm (Larrañaga and Lozano, 2001). Bayesian Optimization Al-

gorithm, for example, estimates the joint probability distributions of selected

individuals using modelling data from Bayesian Networks. The Bayesian metric,

used to measure the goodness of each structure, has the property that struc-

tures reflecting the same conditional dependency or independency have the same

scores (Larrañaga and Lozano, 2001). In order to reduce the cardinality of the

search space, the algorithm imposes restrictions on the number of parents a node

may have (for problems where a node may have more than 2 parents, the situation

is complicated to solve).

The field of EDAs is still quite young, and nowadays much of the research

effort is focused on methodology rather than high-performance applications.

52

2.3 Population-based metaheuristics

2.3.4 Scatter Search

Scatter Search (SS) is a novel evolutionary algorithm compatible with random-

ized implementations, but not based on randomization as in the case of the other

evolutionary approaches (Glover et al., 2000). It joins solutions by generalized

path constructions (in both Euclidean and neighbourhood spaces) and utilizing

strategic designs, instead of exclusively using randomization. Scatter Search em-

bodies strategies still not emulated by other evolutionary methods. The approach

has been shown to be advantageous for solving a variety of complex optimization

problems (Glover et al., 2003).

Scatter Search captures information not separately contained in the original

vectors. It takes advantage of auxiliary heuristic methods both for selecting the

elements to be combined and for generating new vectors. It linearly combines

solutions from a set, called the reference set, in order to create new ones. In the

example specified in Figure 2.4, the original reference set consists of the solutions

labelled A, B and C (Glover et al., 2000). After a non-convex combination of

the reference solutions A and B, a number of new solutions in the line segment

defined by A and B are created; in the example only solution 1 is introduced into

the reference set. In a similar way, other convex and non-convex combinations

Figure 2.4: Example of reference set in Scatter Search.

53

2.3 Population-based metaheuristics

between original and newly created reference solutions, produce points 2, 3, and

4. Finally, the resulting reference set is composed of seven solutions (or elements).

Scatter Search does not leave solutions in a raw form after the combination

mechanism, but applies heuristic improvements to the candidates for entry into

the reference set. Unlike a “population” in Genetic Algorithms, the reference set

of solutions in Scatter Search is relatively small. A typical GA population size

consists of 100 elements, which are randomly sampled to create combinations.

In contrast, Scatter Search systematically chooses two or more elements of the

reference set to create new solutions. If the reference set consists of b solutions,

experimentally the procedure will examine around (3b − 7) · b/2 elements, and

so there is a practical need for keeping the cardinality of the reference set small.

Typically, the reference set in Scatter Search has 20 solutions or less. Moreover,

Genetic Algorithms need large populations to maintain a good level of diversi-

fication (for the random sampling embedded in its search mechanisms), while

Scatter Search systematically injects diversity to the reference set. To limit the

scope of the search to a selective group, a mechanism for controlling the number

of possible combinations in a given reference set can be used. The reference set

is divided into “tiers” and combined solutions must include at least one of the

elements from each of them.

The Scatter Search approach may be outlined as follows (Glover et al., 2000):

1) Generate a starting set of solution vectors to guarantee a critical level

of diversity. Apply custom heuristic processes to try to improve these solution

vectors. The reference solutions will be a subset of the best vectors. A solution

may be added to the reference set if the diversification factor of the set improves,

even if its objective value is inferior to other solutions competing for admission

into the set.

2) Create new solutions consisting of structured combinations of subsets of

the current reference solutions. These combinations are chosen to produce points

both inside and outside the convex regions spanned by the reference solutions,

and they are modified to become acceptable solutions.

3) Apply the heuristic processes (already used to generate the reference set)

to improve the solutions created. These heuristic processes must be able also to

operate on infeasible solutions to restore feasibility if possible.

54

2.3 Population-based metaheuristics

4) Extract a collection of the “best” improved solutions from the last step

and add them to the reference set. The notion of “best” is once again broad,

as in the step 1. Steps 2, 3, and 4 are repeated until the reference set does not

change. Moreover, the reference set is periodically diversified restarting from step

1. When reaching a specified iteration limit the algorithm will stop.

The goal of structured combinations in Scatter Search is to create weighted

centres of the selected sub-regions. Another important feature relates to the

construction of new solutions “within” and “across” clusters of points. Finally,

Scatter Search employs subordinate mechanisms to improve infeasible solutions,

in order to make it possible for them to be included into the reference set.

The main general behaviour of Scatter Search is specified in the following

routines (Blum and Roli, 2003):

• Seed-Generation: one or more seed trial solutions are created to initialize

the algorithm;

• Diversification-Generator : a collection of diverse trial solutions are gener-

ated from an arbitrary seed as input;

• Improvement : a local search method transforms a trial solution into one or

more enhanced ones (neither the input nor the output solutions are required

to be feasible);

• Reference-Set-Update: the reference set, consisting of the ”best“ found so-

lutions (typically small values, e.g. no more than 20 elements), is produced.

Solutions gain membership of the reference set according to their quality or

their diversity values;

• Subset-Generation: a subset of solutions from the reference set is generated

as a basis for creating combined solutions;

• Solution-Combination: the solutions within the subset obtained from the

reference set are transformed into one or more combined solution vectors.

From a spatial orientation, in Scatter Search new solutions are created by lin-

ear combinations of reference solutions using both positive and negative weights.

55

2.3 Population-based metaheuristics

The resulting points can be both inside and outside the convex region spanned by

the reference set. By natural extension, such combinations may be paths, gener-

ated between and beyond selected solutions in neighbourhood space rather than

in Euclidean space. This SS extension is called Path Relinking. A path between

solutions in a neighbourhood space will produce new solutions sharing a subset

of attributes contained in the parent solutions. The attributes vary according to

the path selected and the location on the path. Such paths are specified by the

solution attributes that are added, dropped or modified by the moves executed in

neighbourhood space. To generate the desired paths starting from an initiating

solution, the moves must progressively introduce (or subtract) attributes by a

guiding solution. This step consists of the incorporation of attributes from elite

parents in partially or fully constructed solutions by means of heuristic methods.

It is carried out by isolating assignments occurring frequently or influentially in

high quality solutions, and then introducing them into other solutions (implicit

form of frequency-based memory). Moreover, the possibilities of multi-parent

path generation emerge in Path Relinking. Typically, the generation of such

paths “relinks” previous points in the neighbourhood space in ways not achieved

from the search history (hence giving the approach its name). Path Relinking

is often used as a hybrid component in metaheuristics, such as Tabu Search and

Greedy Randomized Adaptive Search Procedure.

The evolutionary Scatter Search and Path Relinking have proved unusually

effectiveness for solving diverse optimization problems, from both classical and

real-world settings (Glover et al., 2003). For example, they have been applied

with success to the multi-objective quadratic assignment problem, the vehicle

routing problem, job shop scheduling, and mixed integer programming.

2.3.5 Ant Colony Optimization

Ant Colony Optimization (ACO) is a recent nature-inspired metaheuristic for

solving combinatorial optimization problems, proposed in the early 90’s by Marco

Dorigo and colleagues (see for example (Colorni et al., 1992)). As Dorigo and

Stützle (2004) state, its inspiring source is the foraging behaviour of real ants.

When searching for food, ants initially explore the area surrounding their nest in

56

2.3 Population-based metaheuristics

a random manner. As soon as an ant finds a food source, it evaluates quantity

and quality of the food and carries some of the found food to the nest. During

the return trip, the ant deposits a chemical pheromone trail on the ground. The

quantity of pheromone deposited, which may depend on the quantity and quality

of the food, will guide other ants to the food source. The indirect communication

between the ants via the pheromone trails allows them to find shortest paths

between their nest and food sources (Figure 2.5). This functionality of real ant

colonies is exploited in artificial models in order to solve discrete optimization

problems.

Figure 2.5: Foraging behaviour of real ants.

As an analogy to the biological example, ACO is based on the indirect commu-

nication of a colony of simple agents, called artificial ants, mediated by artificial

pheromone trials. The pheromone trial in ACO is distributed numerical informa-

tion, which is used by the ants for probabilistically constructing solutions to the

problem being solved, and updated, by the same ants, during the execution of

the process. Thus, Ant Colony Optimization may be also associated to the class

of constructive metaheuristics.

The parameterized probabilistic mathematical model used by ACO is called

pheromone model. The artificial ants perform randomized walks on a completely

connected construction (or decision) graph G = (C, L), whose vertices, ci, are

appropriately defined solution components, C, and the set of edges L constitutes

the connections `i,j between these components (Figure 2.6).

The artificial ants incrementally construct solutions by adding solution com-

ponents ci to a partial solution under consideration. Pheromone trail parameters,

τi and τi,j, are associated, respectively, with every node ci and each arc `i,j,

57

2.3 Population-based metaheuristics

Figure 2.6: Example of a decision (or construction) graph.

which also has assigned a priori or run time heuristic values, respectively ηi and

ηi,j (Dorigo and Stützle, 2004). It is possible to define the following useful sets:

• T = {τi, τi,j} ⇒ set of pheromone trail parameters ;

• H = {ηi, ηi,j} ⇒ set of heuristic values.

Ants do not move arbitrarily on the graph, but rather follow a construction policy

which is a function of the problem constraints. The values T and H are used by

the ants to take probabilistic decisions on how to move on the decision graph. The

probabilities involved in moving on the construction graph are commonly called

transition probabilities. The set of pheromone trail parameters T is associated

with components and connections, and is iteratively updated. This set encodes

a long term memory concerning the whole process. It is important to note that

ants move independently one from the other. A single ant has a low probability of

finding the global optimum, but the collection of the number of ants composing

the colony, generally large, has an overall stronger probability. The approach

obtained by the movements of the ants through adjacent states of the graph,

allow the ants to construct solutions. The evaluation of this (eventually) partial

solution is used in order to update the pheromone. The use of a colony of ants

gives the algorithm increased robustness, and in many ACO applications the

collective interaction of a population of agents is needed to efficiently solve a

problem.

The simplest ACO algorithm is the Ant System (AS), which is based on the

pheromone trail parameters T and the set of heuristic values H. Ant System is

58

2.3 Population-based metaheuristics

specified in Algorithm 2.14. Given a set of artificial ants A, the algorithm first

initializes the pheromone trail parameters T and the heuristic values H. The

most common choice is to assign a positive constant number to these values, i.e.

ηi = ηi,j = τi = τi,j = const > 0. Then, each ant a ∈ A iteratively constructs

a solution sa to the problem (sa ←Construction(T , H)). In this phase, an ant

incrementally builds a solution by adding probabilistic-chosen components (by

means of transition probabilities) to the partial solution constructed so far. Only

feasible solution components can be added to the current partial solution. How-

ever, in particular circumstances where it is necessary or desirable, ants can also

construct infeasible solutions. Considering a single ant a ∈ A and the incom-

plete solution sa constructed by a, the transition probability associated with a

Algorithm 2.14: Ant System

Input: An objective function f(·), a quality function F (·), the search space S;

Output: A solution s′ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Let A be the set of na artificial ants;

- Let T = {τi, τi,j} be the set of pheromone trail parameters;

- Let H = {ηi, ηi,j} be the set heuristic values;

- Let ρ be the pheromone evaporation rate;

begin
Initialize the pheromone trail parameters: T = {τi, τi,j} ←Initialize-Pheromone(S);

Initialize the heuristic values: H = {ηi, ηi,j} ←Initialize-Heuristic-Values(S);

Set s′ ← ∅;
repeat

for a ← 1 to na do
Set sa ← ∅;
sa ←Construction(T , H);

end

Apply the online delayed pheromone update rule to each solution component cj :

τj = (1− ρ) · τj +
∑na

a=1 ∆τsa
j ; where ∆τsa

j =

{
F (sa) if cj is included in sa

0 otherwise
According to the objective function, select the best solution obtained by the ants:

s ←Extract-the-Best(A, f(·));
if f(s) < f(s′) then

Move s′ ← s;

end
until termination conditions ;

⇒ Return(s′).
end

59

2.3 Population-based metaheuristics

component cj is given by the following state transition rule:

prob(cj|sa[ck]) =





[ηj]
α · [τj]

β

∑
cu∈J(sa[ck])[ηu]α · [τu]β

, if cj ∈ J(sa[ck])

0 otherwise,

(2.16)

where the above parameters have the following meaning:

• prob(cj|sa[ck]) is the probability of adding the component cj to the partial

solution, sa[ck], constructed by the ant a so far (ck is the last node added

to sa);

• α and β are positive constant weights which adjust, respectively, the relative

importance of the heuristic value H and of the pheromone trail parameters

T ;

• J(sa[ck]) is the set of solution components allowed to be added to the partial

solution sa[ck].

Once all ants have constructed a solution, the pheromone trail parameter of

each solution component, cj, is updated according to the following online delayed

pheromone update rule:

τj = (1− ρ) · τj +
na∑

a=1

∆τ sa
j ,

with ∆τ sa
j =

{
F (sa) if cj is included in sa

0 otherwise
(2.17)

and where ρ ∈]0, 1] is the pheromone evaporation rate, which is a parameter

balancing the strength of the pheromone update rule, and F (·) is the quality

function satisfying: ∀s1 ∈ S, s2 ∈ S such that s1 6= s2, if f(s1) < f(s2) then

F (s1) > F (s2).

In the online delayed pheromone update rule, each ant iteratively (“online”)

retraces the path backwards (“delayed”) and updates the pheromone trail param-

eters, according to the degree of excellence of the solution considered. The result

of the update rule, in practice, consists of increasing the pheromone trail pa-

rameters of solution components that have been found in high-quality solutions.

60

2.3 Population-based metaheuristics

In this way, the ants’ experience accumulated during the search process is used

to influence the solution construction in future iterations of the algorithm. The

use of heuristic information guides the ants towards the most promising areas of

the search space, while the stochastic component allows the ants to build also a

variety of different solutions. At each iteration the best solution so far is selected,

and the algorithm continues until the user termination conditions are satisfied.

The output of the method is the best solution to date (s′).

The general Ant Colony Optimization (Algorithm 2.15) can be obtained as an

extension of Ant System. The construction method followed by ACO is the same

of that used by AS. Each ant builds a solution moving through the decision graph

G, following the same state transition rule pointed out in AS. This mechanism

Algorithm 2.15: Ant Colony Optimization

Input: An objective function f(·), a quality function F (·), the search space S;

Output: A solution s′ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let s′ ∈ S be the best solution to date;

- Let A be the set of na artificial ants;

- Let T = {τi, τi,j} be the set of pheromone trail parameters;

- Let H = {ηi, ηi,j} be the set heuristic values;

- Let ρ be the pheromone evaporation rate;

begin
Initialize the pheromone trail parameters: T = {τi, τi,j} ←Initialize-Pheromone(S);

Initialize the heuristic values: H = {ηi, ηi,j} ←Initialize-Heuristic-Values(S);

Set s′ ← ∅;
repeat

for a ← 1 to na do
Set sa ← ∅;
sa ←Construction(T , H);

Apply the online step-by-step pheromone update rule: Step-by-step update(sa, T , H);

end

Apply the online delayed pheromone update rule to each solution component cj :

τj = (1− ρ) · τj +
∑na

a=1 ∆τsa
j ; where ∆τsa

j =

{
F (sa) if cj is included in sa

0 otherwise
According to the objective function, select the best solution obtained by the ants:

s ←Extract-the-Best(A, f(·));
if f(s) < f(s′) then

Move s′ ← s;

end

Apply the pheromone evaporation: Evaporation(T);

Apply the daemon offline pheromone updates: Daemon-updates(T , H, ρ);
until termination conditions ;

⇒ Return(s′).
end

61

2.3 Population-based metaheuristics

makes use of a sort of memory because each ant keeps the partial solution it has

built in terms of path, but with an ability to retrace backwards. Ant Colony

Optimization extends Ant System by adding three components, which are de-

signed and synchronized in relation to the requirements of the specific problem.

The first consists of an improvement in the pheromone update method. Besides

the online delayed pheromone update rule, another real time update rule is used,

called online step-by-step pheromone update rule. This consists of updating step-

by-step the pheromone trail parameters T during the construction phase, when

an ant a is walking on connection `i,j in order to reach a component to add to its

current partial solution sa.

The second additive component is the mechanism of pheromone evaporation.

The pheromone values, τi, decrease with time to avoid rapid convergence to local

minima, due to the nature of the delayed and step-by-step pheromone update

rules. This mechanism represents a form of “forgetting” which increases the di-

versification capability of the search process, by allowing new areas of the search

domain to be explored. The third component consists of the (optional) applica-

tion of daemon offline pheromone updates. For example, a daemon entity may

collect global information about the path found by each ant, and can decide

whether to apply additional weight (pheromone bias) to the pheromone trail pa-

rameters of the components used by the ant that built the best solution. The

application of such centralized action on the algorithm is aimed at increasing the

intensification capability of the search process.

There exist different ACO implementations in the literature. Currently, the

best performing are Ant Colony System and MAX-MIN Ant System (Dorigo and

Stützle, 2004). Ant Colony System extends the basic Ant System by adding

an online step-by-step pheromone update rule and daemon offline pheromone

updates, already explained in the general ACO. However, the mechanism used

by Ant Colony System in the online delayed and step-by-step pheromone update

rules is different than the mechanism used by ACO (Dorigo and Stützle, 2004).

Ant Colony System uses “pseudo random-proportional update rules” to decide

where each ant in the decision graph should be moved. The first mechanism

involves deterministic moves (in a greedy manner) to intensify the search around

62

2.3 Population-based metaheuristics

high-quality solutions, while the second includes random movements, as the usual

online pheromone update rules, to diversify the search process.

In contrast, MAX-MIN Ant System extends the basic Ant System by con-

sidering an alternative strategy (Dorigo and Stützle, 2004). First, it adds dae-

mon offline pheromone updates. Then, it considers “bounded values” for the

pheromone trail parameters T . These values are bounded in a finite interval

[τmin, τmax], after being initialized to τmax. In this way, the probability of con-

structing a solution can not exceed a minimum threshold value (a lower bound

≥ 0), previously fixed. Thus, solutions apparently of medium/low-quality have

the chance to find a global optimum, by increasing the diversification factor of the

search. In addition, MAX-MIN Ant System periodically re-initializes the values

of the pheromone trail parameters in order to further encourage the diversification

factor of the search.

In spite of many cases in which ACO could not reach the results obtained by

other metaheuristics, the approach is still being used to address several optimiza-

tion problems (Dorigo and Stützle, 2004), among which quadratic assignment,

vehicle routing, sequential ordering and scheduling. Current research intent is

concerned with the use of ACO with other metaheuristics in order to create ef-

ficient hybrids. Similarities between ACO and probabilistic learning algorithms

have been found, such as with Estimation of Distribution Algorithms. For more

details see (Blum and Roli, 2003).

2.3.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired algorithm first proposed

by Kennedy and Eberhart (1995). It has been applied with success in many areas

and appears to be a suitable approach for several optimization problems (Kennedy

and Eberhart, 2001). Particle Swarm Optimization is a population-based tech-

nique, inspired by the social behaviour of individuals (or particles) inside swarms

in nature, such as flocks of birds or schools of fish. Solutions of the problem are

modelled as members of the swarm which fly in the solution space. Evolution

of the swarm is obtained from the continuous movement of the particles that

constitute the swarm submitted to the effect of inertia and the attraction of the

63

2.3 Population-based metaheuristics

members who lead the swarm. Thus, Particle Swarm Optimization also belongs

to the class of evolutionary algorithms. However, unlike classic evolutionary ap-

proaches as Genetic Algorithms, it has no crossover and mutation operators and

is easy to implement, requiring few parameter settings and low computational

memory.

The standard Particle Swarm Optimization considers a swarm SW contain-

ing nsw particles (SW = 1, 2, . . . , nsw) in a d-dimensional continuous solution

space (Kennedy and Eberhart, 2001). Each i-th particle of the swarm has a po-

sition xi = (xi1, xi2, . . . , xij, . . . , xid), and a velocity vi = (vi1, vi2, . . . , vij, . . . , vid).

The position xi represents a solution to the problem, while the velocity vi gives

the rate of change for the position of particle i at the next iteration. Indeed,

considering iteration k, the position of particle i is adjusted according to the

following update position equation:

xk
i = xk−1

i + vk
i . (2.18)

Each particle i of the swarm communicates with a social environment or neigh-

bourhood, N(i) ⊆ S, representing the group of particles with which it communi-

cates, and which could change dynamically. In nature, a bird adjusts its position

in order to find a better position, according to its own experience and the experi-

ence of its companions. In the same manner, considering iteration k of the PSO

algorithm, each particle i updates its velocity reflecting the attractiveness of its

best position so far (bi), and the best position (gi) of its social neighbourhood

N(i), according to the following equation:

vk
i = c1ξv

k−1
i + c2ξ(bi − xk−1

i) + c3ξ(gi − xk−1
i). (2.19)

In particular, the parameter c1 ∈ [0, 1] represents the effect of inertia, whose

mission is to control the magnitude of the velocity avoiding an indefinite growth.

The parameters c2 ∈ [0, 1] and c3 ∈ [0, 1] are positive constant weights represent-

ing the degrees of confidence of particle i in the different positions (bi and gi)

that influence its dynamics (either c2 = c3 or c1 + c2 + c3 = 1 in many versions of

PSO). The term ξ refers to a random number with uniform distribution [0, 1] that

is independently generated at each iteration. The current position xi, the best

64

2.3 Population-based metaheuristics

position so far bi, and the best position of the social neighbourhood gi, behave,

with different weights c1, c2, and c3, like centres of attraction for each particle i.

Thus, the update position equation becomes (Kennedy and Eberhart, 1995):

xk
i = xk−1

i + c1ξv
k−1
i + c2ξ(bi − xk−1

i) + c3ξ(gi − xk−1
i). (2.20)

Further details of the implementation of Particle Swarm Optimization are

specified in Algorithm 2.16. The initial position xi and velocity vi for each parti-

cle i in the swarm SW are usually obtained at random. The position of a particle

Algorithm 2.16: Particle Swarm Optimization

Input: A fitness function f(·), the search space S, the positive constant weights c1 ∈ [0, 1], c2 ∈ [0, 1],

c3 ∈ [0, 1] that influence the dynamics of the swarm;

Output: A solution g∗ ∈ S;

Initialisation:

- Let s ∈ S be a generic solution;

- Let g∗ ∈ S be the best position to date;

- Define a neighbourhood structure N(·);
- Set the size nsw of the swarm SW = (1, 2 . . . , nsw);

begin
Generate the initial swarm SW with positions at random:

X = [x1, x2, . . . , xnsw] ←Generate-Swarm-At-Random(S);

Initialize the velocity of each particle at random: ∀i ∈ SW , vi ← random();

Evaluate the fitness function of each individual in the swarm:

(f(x1), f(x2), . . . , f(xnsw)) ←Evaluate(x1, x2, . . . , xnsw);

Initialize the best position so far for each particle: ∀i ∈ SW , bi ← xi;

Extract the best position of the social neighbourhood of each particle: ∀i ∈ SW ,

gi ←Extract-the-Best(SW , N(i), f(·));
Extract the best position to date among all the particles: g∗ ←Extract-the-Best(SW , X, f(·));
repeat

Select at random a number between 0 and 1: ξ ← random[0, 1);

for i ← 1 to nsw do

Update the velocity of particle i: vk
i = c1ξvk−1

i + c2ξ(bi − xk−1
i) + c3ξ(gi − xk−1

i);

Update the position of particle i: xk
i = xk−1

i + vk
i ;

if f(xi) < f(bi) then
Update the best position so far for the given particle i: bi ← xi;

end

end

Extract the best position of the social neighbourhood of each particle: ∀i ∈ SW ,

gi ←Extract-the-Best(SW , N(i), f(·));
Extract the best position among all the particles: s ← Extract-the-Best(SW , X, f(·));
if f(s) < f(g∗) then

Update the best position to date among all the particles: g∗ ← s;

end
until termination conditions ;

⇒ Return(g∗).
end

65

2.3 Population-based metaheuristics

in the swarm is encoded as a feasible solution to the specific problem. At each

iteration, each particle updates its best position so far (bi), and the best position

of its social neighbourhood (gi). In order to update bi, different neighbourhood

structures N(·) can be selected (Kennedy and Eberhart, 2001). In the original

PSO implementation by Kennedy and Eberhart (1995), the particles that con-

stitute the neighbourhood of another particle are chosen at random. The neigh-

bourhoods are newly generated at each iteration, when the best global position g∗

does not improve. Another possibility is to associate a given probability to each

particle to constitute the neighbourhood of another particle. In addition to the

random selection of neighbourhoods, two other common topologies are the ring

and the star neighbourhood structures (Kennedy and Eberhart, 2001). In the ring

neighbourhood structure, each particle interacts just with the previous and the

following particles (cyclic arrangement of the particles), i.e. N(i) = {i−1, i, i+1},
∀i ∈ SW . In the star neighbourhood structure, each particle interacts with all

the particles of the swarm, i.e. N(i) = SW = {1, 2 . . . , i, . . . , nsw}, ∀i ∈ SW .

In the successive step, the random number ξ is selected (ξ ← random[0, 1)),

and the position of each particle iteratively updated according to Equation 2.20.

The particle with the best position in the new swarm is extracted (s ← Extract-

the-Best(SW , X, f(·))), and it is compared to the particle with best position to

date (g∗). If f(s) < f(g∗) then the best position to date is updated (g∗ ← s).

The attractors bi and gi are updated again, and the same procedure is repeated

iteratively. The entire algorithm continues until the user termination conditions

are satisfied, producing the best position to date as output (g∗).

Since, in the words of the inventors of PSO, it is not possible to “throw to

fly” particles in a discrete space (Kennedy and Eberhart, 1995), several Discrete

Particle Swarm Optimization (DPSO) methods have been proposed for combina-

torial optimization problems. For example, in the DPSO proposed by Kennedy

and Eberhart (1997) for problems with binary variables, the position of each

particle is a vector xi = (xi1, xi2, . . . , xij, . . . , xid) of the d-dimensional binary so-

lution space, xi ∈ {0, 1}d, but the velocity is still a vector vi of the d-dimensional

continuous space, vi ∈ <d. A DPSO whose particles at each iteration are affected

alternatively by its best position and the best position among its neighbours was

proposed by Al-kazemi and Mohan (2002). Pampara et al. (2005) solved binary

66

2.3 Population-based metaheuristics

problems by combining continuous PSO and Angle Modulation with only four

parameters. Furthermore, several PSO variants applied to problems where the

solutions are permutations were considered in (Onwubolu and Clerc, 2004; Pang

et al., 2004; Secrest, 2001). The multi-valued PSO proposed by Pugh and Mar-

tinoli (2006) deals with variables with multiple discrete values. The position

of each particle is a mono-dimensional array in the case of a continuous PSO,

a 2-dimensional array in the case of a DPSO, and a 3-dimensional array for a

multi-valued PSO. Indeed, the position of particle i in the multi-valued PSO is

expressed by the term xijk, representing the probability that the i-th particle, in

the j-th iteration, takes the k-th value. Another DPSO was proposed in (Correa

et al., 2006) for feature selection problems, which are problems whose solutions

are sets of items. In this DPSO, the velocity vectors consist of positive numbers

representing the relative likelihood of the corresponding binary component of the

positions of the particles. The position of each particle is updated by randomly

generating changes according to these likelihoods, and then continuing in similar

way to the standard PSO. A new DPSO proposed in (Moreno-Pérez et al., 2007)

and (Mart́ınez-Garćıa and Moreno-Pérez, 2008) does not consider any velocity

since, from the lack of continuity of the movement in a discrete space, the notion

of velocity loses sense; however they kept the attraction of the best positions.

They interpret the weights of the updating equation as probabilities that, at each

iteration, each particle has a random behaviour, or acts in a way guided by the

effect of an attraction. The moves in a discrete or combinatorial space are jumps

from one solution to another. The attraction causes the given particle to move

towards this attractor if it results in an improved solution. An inspiration from

the nature for this process is found in frogs, which jump from a lily pad to a pad

in a pool. Thus, this new discrete PSO is called also Jumping Particle Swarm

Optimization.

Particle Swarm Optimization and its variants are an extremely interesting ar-

eas of research. Particle Swarm Optimization is a nature-inspired algorithm which

uses also the concept of fitness, as do all evolutionary computation paradigms.

Unique to the concept of Particle Swarm Optimization is flying potential solu-

tions through hyperspace, accelerating toward “better” solutions. Much of the

success of PSO seems to lie in the agents’ tendency to hurtle past their target.

67

2.4 Hybrid metaheuristics

The stochastic factors allow thorough search of spaces between regions that have

been found to be relatively good, and the momentum effect caused by modify-

ing the extant velocities rather than replacing them results in overshooting, or

exploration of unknown regions of the problem domain. Another reason that

makes PSO attractive is that there are few parameters to adjust. One version,

with slight variations, works well in a wide variety of applications. Particle Swarm

Optimization has been used for approaches that can be used across a wide range of

applications, as well as for specific applications focused on a specific requirement.

In recent years, it has been successfully applied in many research and applica-

tion areas. In several cases, it is demonstrated that PSO gets better results in

a faster and cheaper way, compared with other optimization methods (Kennedy

and Eberhart, 2001).

2.4 Hybrid metaheuristics

A current trend in metaheuristics is the integration of single-solution methods

with population-based methods. In this section, a brief description of the most

important hybrid approaches is given. Generally, it is possible to divide hybrid

methods into the three following classes (Blum and Roli, 2003).

1) The first type of hybrid metaheuristics, called components exchange among

metaheuristics, consists of methods that include components from different meta-

heuristics, usually from a single-point method and a population-based one. The

strength of population-based methods is the concept of recombining solutions,

explicitly in most of evolutionary algorithms through recombination operators,

implicitly in Ant Colony Optimization and Estimation of Distribution Algorithms

for the nature of their mechanisms. The recombination follows a criterion of mix-

ing high-quality solutions in the hope of finding better solutions, on the followed

direction. The recombination in population-based methods allows “big” guided

steps in the search space, usually larger than the ones performed by single-solution

methods. Some single-solution methods, such as Iterated Local Search and Vari-

able Neighbourhood Search, also perform “big” steps, but resulting from random

mechanisms called “kick moves” or “perturbations”, indicating the absence of

guidance. Instead, the strength of single-solution methods is generally based

68

2.4 Hybrid metaheuristics

on embedded local search mechanisms, to strictly explore promising regions of

the search space. In this way, the danger of being close to good solutions but

“missing” them is not as high as in population-based methods. Many success-

ful applications of evolutionary algorithms and nature-inspired algorithms also

make use of local search procedures. Summarizing, population-based methods

are better at identifying promising areas in the search space, whereas trajectory

methods are superior in exploring specific zones of the domain. Thus, hybrid

metaheuristics, combining the advantages of population-based methods with the

power of single-solution methods, are often very successful (Blum and Roli, 2003).

2) The second form of hybridization, called cooperative search, consists of a

search carried out by different algorithms, approximate or complete ones, ex-

changing information about states, models, entire sub-problems, solutions or

other search space characteristics. Cooperative algorithms can be either different

search techniques, or instances of the same algorithm with different settings of

the model or the parameters, or algorithms in parallel execution with a variable

level of communication. Cooperative Search also receives much attention as a

result of the rapid growth of parallel implementations of metaheuristics.

3) The last class of hybridization is called integration of metaheuristics and

systematic (or complete) search methods. This class includes very effective hybrids

for real-world applications. There are three main approaches for the integration

of metaheuristics, especially single-solution methods, and systematic techniques,

such as constraint programming and tree search methods. The first approach

consists of their sequential application and/or their interleaved execution. For

example, the metaheuristic may produce some solutions which are then improved

by systematic search (or vice-versa, the systematic algorithm may generate partial

solutions which are completed by the metaheuristic). This procedure can also

be viewed as a loose form of cooperative search. The second approach uses a

complete method to efficiently explore a defined neighbourhood structure, instead

of randomly sampling it or simply enumerating all the neighbours. This approach

is particularly effective when the neighbourhood to explore is very large, because

it combines the advantages of a fast exploration, by using a metaheuristic, with

an efficient neighbourhood exploitation, performed by a systematic method. The

third possibility consists of introducing concepts or strategies from classes of

69

2.4 Hybrid metaheuristics

algorithms into others. A typical case is a probabilistic backtracking instead of

a deterministic one into a search-tree algorithm. This is carried out through the

introduction of the concepts of tabu list from Tabu Search, and aspiration criteria

from Simulated Annealing, into a search-tree algorithm, in order to manage the

list of open nodes to explore.

Successful examples of hybridization are the introduction of the concept of

memory in Simulated Annealing and Variable Neighbourhood Search, which, in

their standard form, are memory-less methods, through the integration with other

usage-memory metaheuristics, such as Tabu Search (Aarts et al., 1997). Tabu

Search, in general, is a rich source of ideas, which have been and are currently

adopted by other metaheuristics. Another way to produce hybrid metaheuris-

tics with Variable Neighbourhood Search is through the integration with exact

algorithms, in order to increase the intensification capability of its local search

phase (Hansen and Mladenović, 2003). GRASP may be successfully integrated

into other search techniques, due to its simplicity and, generally, high speed.

However, a basic GRASP does not use the history of the search process. The

only memory it requires is for storing the problem instance and for keeping the

best solution to date. This is one of the reasons why GRASP is often outper-

formed by other metaheuristics. Thus, another promising research direction is

trying to introduce concepts of memory in GRASP through other usage-memory

methods (Blum and Roli, 2003). An example of recent success of hybridiza-

tion in evolutionary algorithms includes the integration of Path Relinking as a

component for Tabu Search and GRASP (Glover and Kochenberger, 2003). Re-

garding the hybridization of nature-inspired algorithms, researchers have been

recently dealing with finding similarities between Ant Colony Optimization and

probabilistic learning algorithms such as Estimation of Distribution Algorithms.

Furthermore, connections of Ant Colony Optimization to Stochastic gradient de-

scent algorithms represent a research area of growing interest. In conclusion,

there is a need for the hybridization of metaheuristics to be examined in detail in

order to be able to produce hybrid metaheuristics that perform better than their

“pure” parents in specific circumstances.

70

I have been impressed with the
urgency of doing. Knowing is not
enough; we must apply. Being
willing is not enough; we must do.

Leonardo da Vinci

Chapter 3

Minimum labelling spanning tree

problem

In this chapter, heuristics for the minimum labelling spanning tree (MLST) prob-

lem are studied. The problem is to find a spanning tree using edges that are as

similar as possible. Given an undirected labelled connected graph, the minimum

labelling spanning tree problem seeks a spanning tree whose edges have the small-

est number of distinct labels. This problem has been shown to be NP-hard (Chang

and Leu, 1997). A Greedy Randomized Adaptive Search Procedure (GRASP), a

Variable Neighbourhood Search (VNS), and a hybrid local search method (HY-

BRID) are proposed in this chapter. HYBRID is obtained by combining Variable

Neighbourhood Search with another classic metaheuristic: Simulated Annealing

(SA). The proposed methods are compared to other algorithms recommended in

the literature: Modified Genetic Algorithm (MGA) and Pilot Method (PILOT).

Nonparametric statistical tests show that the proposed heuristics outperform the

other algorithms tested. Furthermore, a comparison with the results provided

by an exact approach shows that these heuristics quickly obtain optimal or near-

optimal solutions.

3.1 Description of the problem

The minimum labelling spanning tree (MLST) problem is an NP-hard problem in

which, given a graph with labelled (or coloured) edges, one seeks a spanning tree

71

3.1 Description of the problem

with the least number of labels (or colours). Such a model can represent many

real-world problems in telecommunications networks, power networks, and mul-

timodal transportation networks. For example, in telecommunications networks,

there are many different types of communications media, such as optical fibre,

coaxial cable, microwave, and telephone line (Tanenbaum, 1989). A communi-

cations node may communicate with different nodes by choosing different types

of communications media. Given a set of communications network nodes, the

problem is to find a spanning tree (a connected communications network) that

uses as few communications types as possible. This spanning tree will reduce the

construction cost and the complexity of the network.

The MLST problem can be formulated as a network or graph problem. Con-

sider a labelled connected undirected graph G = (V,E, L), where V is the set of

n nodes, E is the set of m edges, and L is the set of ` labels. In the telecom-

munications example (Tanenbaum, 1989), the vertices represent communications

nodes, the edges communications links, and the labels communications types.

Each edge in E has a label in a finite set L that identifies the communications

type. The objective is to find a spanning tree that uses the smallest number of

different types of edges. Define LT to be the set of different labels of the edges

in a spanning tree T . The labelling can be represented by a function fL : E → L

for all edges e ∈ E or by a partition PL of the edge set; the sets of the partitions

are those consisting of the edges with the same label.

Another example is given by multimodal transportation networks (Van-Nes,

2002). In such problems, it is desirable to provide a complete service using the

minimum number of companies. The multimodal transportation network is rep-

resented by a graph where each edge is assigned a label, denoting a different

company managing that edge. The aim is to find a spanning tree of the graph

using the minimum number of labels. The interpretation is that all nodes rep-

resenting termini are connected without cycles, using the minimum number of

companies.

The minimum labelling spanning tree problem is formally defined as follows:

72

3.1 Description of the problem

MLST problem: Given a labelled graph G = (V, E, L), where V

is the set of n nodes, E is the set of m edges, and L is the set of

` labels, find a spanning tree T of G such that |LT | is minimized,

where LT is the set of labels used in T .

Although a solution to the MLST problem is a spanning tree, it is helpful to

first consider connected subgraphs. A feasible solution is defined as a set of labels

C ⊆ L, such that all the edges with labels in C represent a connected subgraph

of G and span all the nodes in G. If C is a feasible solution, then any spanning

tree of C has at most |C| labels. Moreover, if C is an optimal solution, then

any spanning tree of C is a minimum labelling spanning tree. Thus, in order to

solve the MLST problem, it is preferable to seek a feasible solution with the least

number of labels (Xiong et al., 2005b).

The upper left graph of Figure 3.1 is an example of an input graph with the

optimal solution shown on the upper right. The lower part of Figure 3.1 shows

examples of feasible solutions.

Figure 3.1: The top two graphs show a sample graph and its MLST solution.
The bottom three graphs show some feasible solutions.

The rest of the chapter is organised as follows. In the next section, the lit-

erature of the problem is reviewed. In Section 3.3 the details of the heuristics

considered in this chapter are presented: ones recommended in the literature

(the Modified Genetic Algorithm by Xiong et al. (2006), and the Pilot Method

73

3.2 Literature review

by Cerulli et al. (2005)), and some new approaches to the MLST problem pro-

posed in this chapter (a Greedy Randomized Adaptive Search Procedure, a basic

Variable Neighbourhood Search, and a hybrid local search method obtained by

combining Variable Neighbourhood Search and Simulated Annealing metaheuris-

tics). Section 3.4 includes the experimental analysis of the comparison of these

metaheuristics, and the chapter ends with some conclusions in Section 3.5. The

basic concepts of metaheuristics and combinatorial optimization were presented

in Chapter 2, but, for further information, the reader is referred to (Voß et al.,

1999; Glover and Kochenberger, 2003; Gendreau and Potvin, 2005).

3.2 Literature review

In communications network design, it is often desirable to obtain a tree that is

“most uniform” in some specified sense. Motivated by this observation, Chang

and Leu (1997) introduced the minimum labelling spanning tree problem. They

also proved that it is an NP-hard problem and provided a polynomial-time heuris-

tic, the maximum vertex covering algorithm (MVCA), to find (possibly sub-

optimal) solutions. This heuristic begins with an empty graph. It then adds

the label whose edges cover as many isolated vertices as possible until there are

no isolated vertices. The heuristic solution is an arbitrary spanning tree of the re-

sulting graph. However, with this version of MVCA, it is possible that, although

all the nodes of the graph are visited, it does not yield a connected graph and

thus fails.

Krumke and Wirth (1998) proposed a corrected version of MVCA, depicted

in Algorithm 3.1. This begins with an empty graph and successively adds at

random one label from those labels that result in the least number of connected

components. The procedure continues until only one connected component is

left, i.e. when only a connected subgraph is obtained.

Figure 3.2 shows how this version of MVCA works on the graph of Figure 3.1.

In the initial step, label 1 is added because it gives the least number of connected

components (3 components). In the second step, all the three remaining labels

(2, 3 and 4) produce the same number of components (2). In this case, the

algorithm selects at random and, for example, adds label 3. At this time, all the

74

3.2 Literature review

Algorithm 3.1: Revised MVCA (Krumke and Wirth, 1998)

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let C ← 0 be the initially empty set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of H = (V, E(C));

begin

while Comp(C) > 1 do
Select the unused label c ∈ (L− C) that minimizes Comp(C ∪ {c});
Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end

⇒ Take any arbitrary spanning tree T of H = (V, E(C)).
end

nodes of the graph are visited, but the subgraph is still disconnected. The old

version of Chang and Leu (1997) would stop here, resulting in an error. However,

the MVCA version of Krumke and Wirth (1998) finally adds label 2 to get only

one connected component (equivalently, label 4 could have been added instead

of label 2). Summarizing, the final solution is {1, 2, 3}, which is worse than the

optimal solution {2, 3} of Figure 3.1.

Figure 3.2: Example illustrating the steps of the revised MVCA.

75

3.2 Literature review

Krumke and Wirth (1998) proved that MVCA can yield a solution no greater

than (1+2 log n) times optimal, where n is the total number of nodes. Later, Wan

et al. (2002) obtained a better bound for the greedy algorithm introduced by Krumke

and Wirth (1998). The algorithm was shown to be a (1+log(n−1))-approximation

for any graph with n nodes (n > 1).

Brüggemann et al. (2003) used a different approach; they applied local search

techniques based on the concept of j-switch neighbourhoods to a restricted version

of the MLST problem. In addition, they proved a number of complexity results

and showed that if each label appears at most twice in the input graph, the MLST

problem is solvable in polynomial-time.

Xiong et al. (2005a) derived tighter bounds than those proposed by Wan et al.

(2002). For any graph with label frequency bounded by b, they showed that the

worst-case bound of MVCA is the b-th-harmonic number

Hb =
b∑

i=1

1

i
= 1 +

1

2
+

1

3
+ . . . +

1

b
; (3.1)

Later, they constructed a worst-case family of graphs such that the MVCA

solution is exactly Hb times the optimal solution. Since b ≤ (n − 1) (since

otherwise the subgraph induced by the labels of maximum frequency contains a

cycle and one can safely remove edges from the cycle) and Hb < (1 + log(n− 1)),

the tight bound Hb obtained is, therefore, an improvement on the previously

known performance bound of (1 + log(n− 1)) given by Wan et al. (2002).

The usual rule of Krumke and Wirth (1998) to select the label that minimizes

the total number of connected components at each step, results in fast and high-

quality solutions. The problem with this classic approach occurs when more

than one label with same resulting minimum number of connected components is

detected, in a specific step. Since, frequently, there are many labels reaching this

minimum value, the results mainly depend on the rule chosen to select a candidate

from this set of ties. If the initial label encountered from this set is chosen, the

results are affected by the sorting of the labels. Therefore, different executions of

the algorithm may result in different solutions, with a slightly different number

of labels.

76

3.2 Literature review

Other heuristic approaches to the MLST problem are proposed in the litera-

ture. For example, Xiong et al. (2005b) presented a Genetic Algorithm (GA) to

solve the MLST problem, outperforming MVCA in most cases.

Subsequently, Cerulli et al. (2005) applied the Pilot Method, a greedy heuristic

developed by Duin and Voß (1999) and subsequently extended in (Voß et al.,

2004), to the MLST problem. Considering different sets of instances of the MLST

problem, Cerulli et al. (2005) compared this method with other metaheuristics

(Reactive Tabu Search, Simulated Annealing, and an ad-hoc implementation of

Variable Neighbourhood Search). Their Pilot Method obtained the best results

in most of the cases. It generates high-quality solutions to the MLST problem,

but running times are quite large (especially if the number of labels is high).

Xiong et al. (2006) implemented modified versions of MVCA focusing on the

initial label added. For example, after the labels have been sorted according to

their frequencies, from highest to lowest, the modified version tries only the most

promising 10% of the labels at the initial step. Afterwards, it runs MVCA to

determine the remaining labels and then it selects the best of the |L|/10 resulting

solutions (where L is the set of possible labels for all edges). Compared to the

Pilot Method of Cerulli et al. (2005), this version can potentially reduce the

computational running time by about 90%. However, since a higher frequency

label may not always be the best place to start, it may not perform as well as the

Pilot Method. Another modified version by Xiong et al. (2006) is similar to the

previous one, except that it tries the most promising 30% of the labels at the initial

step. Then it runs MVCA to determine the remaining labels. Moreover, Xiong

et al. (2006) proposed another way to modify MVCA. They consider at each step

the three most promising labels, and assign a different probability of selection

that is proportional to their frequencies. Then, they randomly select one of these

candidates, and add it to the incomplete solution. In addition, Xiong et al. (2006)

presented a Modified Genetic Algorithm (MGA) that was shown to have the best

performance for the MLST problem in terms of solution quality and running time.

77

3.3 Exploited metaheuristics

3.3 Exploited metaheuristics

In this section, the details of the heuristics considered for the MLST problem are

specified. First, those that are reported in the literature to be the best performing

are considered, followed by some new approaches.

Xiong et al. (2005b) presented two slightly different Genetic Algorithms to

solve the MLST problem. They both were shown to be simple, fast, and effective.

In most cases, they also outperformed MVCA, the most popular MLST heuristic

in the literature at that time. Later, a Modified Genetic Algorithm (MGA) was

proposed in (Xiong et al., 2006). It outperformed the first two Genetic Algorithms

with respect to solution quality and running time. MGA is the first metaheuristic

that is considered.

Cerulli et al. (2005) applied the Pilot Method (PILOT) to the MLST prob-

lem. Comparing it with some other metaheuristic implementations (Reactive

Tabu Search, Simulated Annealing, and an ad-hoc implementation of Variable

Neighbourhood Search), it was the best performing in most of the test problems.

The Pilot Method of Cerulli et al. (2005) is the second metaheuristic considered

in this chapter. Then, some new approaches to the problem are presented. A new

heuristic for the problem based on Greedy Randomized Adaptive Search Procedure

(GRASP) is proposed. Basically, GRASP is a metaheuristic combining the power

of greedy local search with randomisation. A survey on GRASP is presented in

Section 2.2.3, but the reader is also referred to (Feo and Resende, 1995; Resende

and Ribeiro, 2003).

The remaining algorithms in this chapter are a basic Variable Neighbourhood

Search (VNS), and a hybrid local search method (HYBRID) obtained by com-

bining Variable Neighbourhood Search and Simulated Annealing (SA) metaheuris-

tics. For more details on the general implementations of Variable Neighbourhood

Search and Simulated Annealing see, respectively, Section 2.2.5 and Section 2.2.1.

3.3.1 Modified Genetic Algorithm

Genetic Algorithms are based on the principle of evolution, operations such as

crossover and mutation, and the concept of fitness (Holland, 1992). For a survey

on the basic concepts of Genetic Algorithms, the reader is referred to Section 2.3.1.

78

3.3 Exploited metaheuristics

In the MLST problem, fitness is defined as the number of distinct labels in

the candidate solution. After a number of generations, the algorithm converges

and the best individual, hopefully, represents a near-optimal solution. The de-

tails of the Modified Genetic Algorithm for the MLST problem are specified in

Algorithm 3.2.

Algorithm 3.2: The MGA for the MLST problem (Xiong et al., 2006)

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let C ← 0 be the initially empty set of used labels for each iteration;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Set the size nP of the population;

begin
(s[0], s[1], . . . , s[nP − 1]) ←Initialize-Population(G, nP);

repeat

for i ← 1 to nP /2 do

for j ← 1 to nP /2 do
t[1] ← s[j];

t[2] ← s[mod((j + i), nP)];

tcrossovered ←Crossover(t[1], t[2]);

tmutated ←Mutation(tcrossovered);

if tmutated < t[1] then
t[1] ← tmutated;

end

end

end
until termination conditions ;

C ←Extract-the-Best(s[0], s[1], . . . , s[nP − 1]);

Update H = (V, E(C));

⇒ Take any arbitrary spanning tree T of H = (V, E(C)).
end

An individual (or a chromosome) in a population is a feasible solution. Each

label in a feasible solution can be viewed as a gene. The initial population is gen-

erated by adding labels randomly to empty sets, until feasible solutions emerge.

Crossover and mutation operations are then applied in order to build one gen-

eration from the previous one. Crossover and mutation probability values are

set to 100%, which is at odds with an usual GA implementation. This means

that all the individuals within the current generation are selected as offsprings for

the crossover operation, and also as offsprings for the mutation operation. The

overall number of generations is chosen to be half of the initial population value.

79

3.3 Exploited metaheuristics

Therefore, in the Genetic Algorithm of Xiong et al. (2006) the only parameter to

tune is the population size.

The crossover operation builds one offspring from two parents which are fea-

sible solutions. Given the parents P1 ⊂ L and P2 ⊂ L, it begins by forming

their union P ← P1 ∪ P2. Then it adds labels from the subgraph P to the ini-

tially empty offspring until a feasible solution is obtained, by applying the revised

MVCA of Krumke and Wirth (1998) to the subgraph with labels in P , node set

V , and the edge set associated with P . On the other hand, the mutation oper-

ation consists of adding a new label at random, and next trying to remove the

labels (i.e., the associated edges), from the least frequently occurring label to the

most frequently occurring one, whilst retaining feasibility.

3.3.2 Pilot Method

The Pilot Method is a metaheuristic proposed by Duin and Voß (1999) and Voß

et al. (2004). It uses a basic heuristic as a building block or application process,

and then it tentatively performs iterations of the application process with respect

to a so-called master solution. The iterations of the basic heuristic are performed

until all the possible local choices (or moves) with respect to the master solution

are evaluated. At the end of all the iterations, the new master solution is obtained

by extending the current master solution with the move that corresponds to the

best result produced.

Considering a master solution M , for each element i /∈ M , the Pilot Method

extends tentatively a copy of M to a (fully grown) solution including i, built

through the application of the basic heuristic. Let f(i) denote the objective

function value of the solution obtained by including each element i /∈ M , and let

i∗ be the most promising of such elements, i.e. f(i∗) ≤ f(i), ∀i /∈ M . The element

i∗, representing the best local move with respect to M , is included in the master

solution by changing it in a minimal fashion, leading to a new master solution

M ← M ∪ {i∗}. On the basis of this new master solution M , new iterations of

the Pilot Method are started ∀i /∈ M , providing a new solution element i∗, and

so on. This look-ahead mechanism is repeated for all the successive stages of the

Pilot Method, until no further moves need to be added to the master solution,

80

3.3 Exploited metaheuristics

or until some termination conditions imposed by the user are satisfied. The last

master solution corresponds to the best solution to date and forms the output of

the procedure.

The details of the Pilot Method proposed by Cerulli et al. (2005) for the

MLST problem are specified in Algorithm 3.3. It starts from the null solution

Algorithm 3.3: The Pilot Method for the MLST problem (Cerulli et al., 2005)

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let M ← 0 be the initially empty master solution,

- Let H = (V, E(M)) be the subgraph of G restricted to V and edges with labels in M , where

E(M) = {e ∈ E : L(e) ∈ M};
- Let Comp(M) be the number of connected components of H = (V, E(M));

- Let M∗ ← L be a set of labels;

- Let H∗ = (V, E(M∗)) be the subgraph of G restricted to V and edges with labels in M∗, where

E(M∗) = {e ∈ E : L(e) ∈ M∗};
- Let i∗ be the best candidate move;

begin

while (not termination conditions) OR (Comp(M) > 1) do

foreach i ∈ (L−M) do
Add label i to the master solution: M ← M ∪ {i};
Update H = (V, E(M)) and Comp(M);

while Comp(M) > 1 do
Let S be the set of unused labels which minimize the number of connected

components, i.e. S = {e ∈ (L−M) : min Comp(M ∪ {e})};
Select at random a label u ∈ S;

Add label u to the solution: M ← M ∪ {u};
Update H = (V, E(M)) and Comp(M);

end

Local search(M);

if |M | < |M∗| then
Update the best candidate move i∗ ← i;

Keep the solution produced by the best move: M∗ ← M ;

end

Delete label i from the master solution: M ← M − {i};
Update H = (V, E(M)) and Comp(M);

end

Update the master solution with the best move: M ← M ∪ {i∗};
end

while Comp(M) > 1 do
Let S be the set of unused labels which minimize the number of connected components, i.e.

S = {e ∈ (L−M) : min Comp(M ∪ {e})};
Select at random a label u ∈ S;

Add label u to the solution: M ← M ∪ {u};
Update H = (V, E(M)) and Comp(M);

end

⇒ Take any arbitrary spanning tree T of H = (V, E(M)).
end

81

3.3 Exploited metaheuristics

(an empty set of labels) as master solution, uses the revised MVCA of Krumke

and Wirth (1998) as the application process, and evaluates the quality of a feasible

solution by choosing the number of labels included in the solution as the objective

function.

The method computes all the possible local choices from the master solution,

performing a series of iterations of the application process to the master solution.

This means that, at each step, it alternatively tries to add to the master solution

each label not yet included, and then applies MVCA in a greedy fashion from

then on (i.e. by adding at each successive step the label that minimizes the

total number of connected components), stopping when the resulting subgraph is

connected (note that, when the MVCA heuristic is applied to complete a partial

solution, in case of ties in the minimum number of connected components, a label

is selected at random within the set of labels producing the minimum number

of components). The Pilot Method successively chooses the best local move,

that is the label that, if included to the current master solution, produces the

feasible solution with the minimum objective function value (number of labels).

In case of ties, it selects one label at random within the set of labels with the

minimum objective function value. This label is then included in the master

solution, leading to a new master solution. If the new master solution is still

infeasible, the Pilot Method proceeds with the same strategy in this new step,

by alternatively adding to the master solution each label not yet included, and

then applying the MVCA heuristic to produce feasible solutions for each of these

candidate labels. Again, the best move is selected to be added to the master

solution, producing a new master solution, and so on. The procedure continues

with the same mechanism until a feasible master solution is produced, that is one

Algorithm 3.4: Procedure Local search(·)
Procedure Local search(M):

for j ← 1 to |M | do
Delete label j from the set M , i.e. M ← M − {j};
Update H = (V, E(M)) and Comp(M);

if Comp(M) > 1 then
Add label j to the set M , i.e. M ← M ∪ {j};
Update H = (V, E(M)) and Comp(M);

end

end

82

3.3 Exploited metaheuristics

representing a connected subgraph, or until the user termination conditions are

satisfied. The last master solution represents the output of the method. A local

search mechanism is further included at the end of the computation in order to

try to greedily drop labels whilst retaining feasibility (see Algorithm 3.4).

Since up to ` master solutions can be considered by this procedure, and up to `

local choices can be evaluated for each master solution, the overall computational

running time of the Pilot Method is O(`2) times the computational time of the

application process (i.e. the MVCA heuristic), leading to an overall complexity

O(`3n).

3.3.3 Greedy Randomized Adaptive Search Procedure

The difficulty with the classical version of MVCA is when it finds more than

one label with the same number of connected components. A question arises on

the label to be chosen. To find the best MVCA solution, alternatively each of

these labels should be added, continuing the same strategy in successive steps. In

this way, every possible local choice is computed, because all the solutions that

MVCA can produce are visited. But the execution time increases dramatically,

especially for low-density graphs with a high number of nodes and labels.

The Pilot Method is able to achieve a greater diversification of the search pro-

cess than the MVCA approach. This is because it alternatively tries every label

at each step, and not only labels within the set that minimize the total number

of connected components, as is the case with MVCA. Thus, the Pilot Method

is able to reach some solutions that MVCA would never consider. Instead, to

increase the intensification of the basic MVCA, it is possible to perform multiple

repetitions of the MVCA heuristic. In this way, more solutions that MVCA would

have produced are visited.

In this section a Greedy Randomized Adaptive Search Procedure (GRASP)

for the MLST problem is proposed, trying to unify multiple repetitions of the

MVCA heuristic with the Pilot Method strategy in order to obtain an optimal

balance between intensification and diversification capabilities.

GRASP is a recently exploited method combining the power of greedy heuris-

tics, randomisation, and local search. It is a multi-start two-phase metaheuristic

83

3.3 Exploited metaheuristics

for combinatorial optimization proposed by Feo and Resende (1995), basically

consisting of a construction phase and a local search improvement phase (for a

survey on GRASP see Section 2.2.3).

The solution construction mechanism builds an initial solution using a greedy

randomized procedure, whose randomness allows solutions in different areas of the

solution space to be obtained. Each solution is randomly produced step-by-step

by uniformly adding one new element from a candidate list (RCLα: restricted

candidate list of length α) to the current solution. Subsequently, a local search

phase is applied (such as Simulated Annealing, Tabu Search) to try to improve

the current best solution. This two-phase process is iterative, continuing until

the user termination condition such as the maximum allowed CPU time, the

maximum number of iterations, or the maximum number of iterations between

two successive improvements, is reached. Several new components have extended

the scheme of GRASP (reactive GRASP, parameter variations, bias functions,

memory and learning, improved local search, path relinking, hybrids,. . .). These

components are presented and discussed in (Resende and Ribeiro, 2003).

The proposed GRASP implementation for the MLST problem is specified in

Algorithm 3.5: Greedy Randomized Adaptive Search Procedure for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let C ← 0 be the initially empty set of used labels for each iteration;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ ← L be the global set of used labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C) be the number of connected components of H = (V, E(C));

begin

repeat
Set C ← 0 and update H = (V, E(C));

Construction phase(C);

Local search(C);

if |C| < |C′| then
Move C′ ← C;

Update H′ = (V, E(C′));
end

until termination conditions ;

⇒ Take any arbitrary spanning tree T of H′ = (V, E(C′)).
end

84

3.3 Exploited metaheuristics

Algorithm 3.5. The greedy criterion of the construction phase of GRASP (Con-

struction phase() procedure) is based on the number of connected components

produced by the labels, and a value-based restricted candidate list is used (Re-

sende and Ribeiro, 2003). This involves placing in the list only the candidate

labels having a greedy value (number of connected components) not greater than

a user-defined threshold, α, whose values can vary dynamically during the search

process. The value of the threshold α and its tuning during the iterations of the

algorithm need to be chosen in an appropriate way. Indeed, a small value of α

results in few labels in the restricted candidate list, giving a large intensification

capability and a small diversification capability. This means that the resulting

algorithm is very fast, but it can easily become trapped at a local optimum.

Conversely, a large value of α produces an algorithm with a large diversification

capability, but a short intensification capability, because many candidate labels

are included in the restricted candidate list. In this implementation for the MLST

problem (Algorithm 3.6), an adequate trade-off between intensification and di-

versification capabilities has been found by considering the following scheme. In

order to fill the restricted candidate list, the threshold is set equal to the mini-

mum number of connected components produced by the candidate labels. This

means that only the labels producing the least number of connected components

constitute the restricted candidate list. Furthermore, after two iterations, com-

plete randomisation is used to choose the initial label to add, taking inspiration

from the Pilot Method. This corresponds to setting the threshold to +∞, and

Algorithm 3.6: Procedure Construction phase(·)
Procedure Construction phase(C):

Let RCLα ← 0 be the restricted candidate list of length α;

if Number of iterations > 2 then
Set RCLα ← L and α ← `;

Select at random a label c ∈ RCLα;

Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end

while Comp(C) > 1 do
Set RCLα ← {c ∈ L|c minimizes Comp(C ∪ {c})};
Select at random a label c ∈ RCLα;

Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end

85

3.3 Exploited metaheuristics

all the labels of the graph are present within the restricted candidate list (length

α = total number of labels, `). To intensify the search for the remaining labels

to add, the list is filled considering only the labels leading to the minimum total

number of connected components, as in the previous iterations.

At the end of the construction phase, a local search phase is included (Local

search(C) procedure). It simply consists of trying to drop some labels, one by one,

from the current solution C whilst retaining feasibility (see Algorithm 3.7). Local

search gives a further improvement to the intensification phase of the algorithm.

The entire algorithm proceeds until the user termination conditions are satisfied.

Algorithm 3.7: Procedure Local search(·)
Procedure Local search(C):

for i ← 1 to |C| do
Delete label i from the set C, i.e. C ← C − {i};
Update H = (V, E(C)) and Comp(C);

if Comp(C) > 1 then
Add label i to the set C, i.e. C ← C ∪ {i};

end

Update H = (V, E(C)) and Comp(C);

end

3.3.4 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a new and widely applicable metaheuris-

tic based on dynamically changing neighbourhood structures during the search

process. VNS does not follow a trajectory, but it searches for new solutions in

increasingly distant neighbourhoods of the current solution, jumping only if a

better solution than the current best solution is found (Hansen and Mladenović,

1997, 2001, 2003). For a survey on VNS see Section 2.2.5.

At the starting point, it is required to define a suitable neighbourhood struc-

ture. The simplest and most common choice is a structure in which the neigh-

bourhoods have increasing cardinality: |N1(C)| < |N2(C)| < ... < |Nkmax(C)|.
The process of changing neighbourhoods when no improvement occurs diversifies

the search. In particular the choice of neighbourhoods of increasing cardinality

yields a progressive diversification. The VNS approach can be summarized as:

“One Operator, One Landscape”, meaning that promising zones of the search

86

3.3 Exploited metaheuristics

space given by a specific neighbourhood may not be promising for other neigh-

bourhoods (landscape). A local optimum with respect to a given neighbourhood

may not be locally optimal with respect to another neighbourhood.

VNS provides a general framework and many variants exist for specific require-

ments. The proposed implementation for the MLST is described in Algorithm 3.8.

Algorithm 3.8: Variable Neighbourhood Search for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let C ← 0 be the global set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ be a set of labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of connected components of H′ = (V, E(C′));
begin

C ←Generate-Initial-Solution-At-Random();

repeat
Set k ← 1 and kmax ← (|C|+ |C|/3);

while k < kmax do
C′ ←Shaking phase(Nk(C));

Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end
until termination conditions ;

Update H = (V, E(C));

⇒ Take any arbitrary spanning tree T of H = (V, E(C)).
end

Given a labelled graph G = (V, E, L) with n vertices, m edges, and ` labels, each

solution is encoded by a binary string, i.e. C = (c1, c2, . . . , c`) where

ci =

{
1 if label i is in solution C
0 otherwise

(∀i = 1, . . . , `). (3.2)

The algorithm starts from an initial feasible solution C generated at random

and lets parameter k vary during the execution. The successive shaking phase

(Shaking phase(Nk(C)) procedure) represents the core idea of VNS: it changes

the neighbourhood structure when the local search is trapped at a local minimum.

87

3.3 Exploited metaheuristics

This is implemented by the random selection of a point C ′ within the neighbour-

hood Nk(C) of the current solution C. The random point C ′ is generated in order

to avoid cycling, which might occur if a deterministic rule is used.

In the shaking phase, in order to impose a neighbourhood structure on the so-

lution space S, comprising all possible solutions, the distance considered between

any two such solutions C1, C2 ∈ S, is the Hamming distance:

ρ(C1, C2) = |C1 − C2| =
∑̀
i=1

λi (3.3)

where λi = 1 if label i is included in one of the solutions but not in the other,

and 0 otherwise, ∀i = 1, ..., `. Then, given a solution C, its k-th neighbourhood,

Nk(C), is considered as all the different sets having a Hamming distance from C

equal to k labels, where k = 1, 2, . . . , kmax, and kmax represents the size of the

shaking. In a more formal way, the k-th neighbourhood of a solution C is defined

as Nk(C) = {S ⊂ L : (ρ(C, S)) = k}, where k = 1, ..., kmax.

The value of kmax is an important parameter to tune in order to obtain an

optimal balance between intensification and diversification capabilities. Choosing

a small value for kmax produces a high intensification capability and a small

diversification capability, resulting in a fast algorithm, but with a high probability

of being trapped at a local minimum. Conversely, a large value for kmax decreases

the intensification capability and increases the diversification capability, resulting

in a slower algorithm, but able to escape from local minima. Computational

experience indicates that the value kmax ← (|C| + |C|/3) gives a good trade-off

between these two factors.

In the shaking phase considered for the MLST problem (see Algorithm 3.9), in

order to select a solution in the k-th neighbourhood of a solution C, the algorithm

randomly adds further labels to C, or removes labels from C, until the resulting

solution has a Hamming distance equal to k with respect to C. Addition and

deletion of labels at this stage have the same probability of being chosen. For this

purpose, a random number is selected between 0 and 1 (rnd ← random[0, 1]).

If this number is smaller than 0.5, the algorithm proceeds with the deletion of

a label from C. Otherwise, an additional label is included at random in C from

88

3.3 Exploited metaheuristics

Algorithm 3.9: Procedure Shaking phase(·)
Procedure Shaking phase(Nk(C)):

Set C′ ← C;

for i ← 1 to k do
Select at random a number between 0 and 1: rnd ← random[0, 1];

if rnd ≤ 0.5 then
Delete at random a label c′ ∈ C′ from C′, i.e. C′ ← C′ − {c′} ;

else
Add at random a label c′ ∈ (L− C) to C′, i.e. C′ ← C′ ∪ {c′};

end

Update H′ = (V, E(C′)) and Comp(C′);
end

the set of unused labels (L− C). The procedure is repeated until the number of

addition/deletion operations is exactly equal to k.

The successive local search (Local search(C ′) procedure, see Algorithm 3.10)

consists of two steps. In the first step, since deletion of labels often gives an

infeasible incomplete solution, additional labels may be added in order to restore

feasibility. In this case, addition of labels follows the MVCA criterion of adding

the label with the minimum number of connected components. Note that in case

of ties in the minimum number of connected components, a label not yet included

in the partial solution is chosen at random within the set of labels producing the

minimum number of components (i.e. u ∈ S where S = {e ∈ (L − C ′) : min

Comp(C ′∪{e})}). Then, the second step of the local search tries to delete labels

one by one from the specific solution, whilst maintaining feasibility.

Algorithm 3.10: Procedure Local search(·)
Procedure Local search(C′):
while Comp(C′) > 1 do

Let S be the set of unused labels which minimize the number of connected components, i.e.

S = {e ∈ (L− C′) : min Comp(C′ ∪ {e})};
Select at random a label u ∈ S;

Add label u to the set of used labels: C′ ← C′ ∪ {u};
Update H′ = (V, E(C′)) and Comp(C′);

end

for i ← 1 to |C′| do
Delete label i from the set C′, i.e. C′ ← C′ − {i};
Update H′ = (V, E(C′)) and Comp(C′);
if Comp(C′) > 1 then

Add label i to the set C′, i.e. C′ ← C′ ∪ {i};
end

Update H′ = (V, E(C′)) and Comp(C′);
end

89

3.3 Exploited metaheuristics

After the local search phase, if no improvements are obtained (|C ′| ≥ |C|),
the neighbourhood structure is increased (k ← k+1) giving a progressive diversi-

fication (|N1(C)| < |N2(C)| < ... < |Nkmax(C)|). Otherwise, the algorithm moves

to the improved solution (C ← C ′) and sets the first neighbourhood structure

(k ← 1). Then the procedure restarts with the shaking and the local search

phases, continuing iteratively until the user termination conditions (maximum

allowed CPU time, maximum number of iterations, or maximum number of iter-

ations between two successive improvements) are satisfied.

3.3.5 Hybrid local search

A current trend in the area of combinatorial optimization is the integration of

good characteristics from one or more metaheuristics within the implementation

of another “pure” one, in order to improve its performance. Often, this produces

new methods that cannot be classified within a defined heuristic class, but are

referred to as hybrid metaheuristics (Glover and Kochenberger, 2003; Gendreau

and Potvin, 2005).

For example, a current trend is the integration of trajectory methods within

population-based ones. The strength of population-based methods is the concept

of recombining solutions. It allows the population-based methods to perform

“big” guided steps in the search space, usually larger than the ones performed

by trajectory methods. The strength of trajectory methods is based on a local

search procedure which is able to strictly explore a promising region in the search

space. In this way, the danger of being close to good solutions but “missing”

them is not as high as in population-based methods. Summarizing, population-

based methods tend to be better at identifying promising areas in the search

space, whereas trajectory methods tend to be superior in exploring specific zones

of the domain. Thus, hybrid local search methods, combining the advantages

of population-based methods with the power of trajectory methods, are often

very successful (Gendreau and Potvin, 2005). For a survey on hybridization of

metaheuristics, see Section 2.4.

In many cases, hybrid algorithms are more complex to implement compared

to pure ones. Thus, the application of hybrid local search to a combinatorial

90

3.3 Exploited metaheuristics

optimization problem must be justified by establishing its effective performance

with respect to that problem.

In this section a hybrid local search method obtained by combining Variable

Neighbourhood Search and Simulated Annealing is considered, with a view to ob-

taining improved results for the MLST problem. Simulated Annealing has been

applied to several combinatorial problems with success, such as the Quadratic As-

signment problem and the Job Shop Scheduling problem (Gendreau and Potvin,

2005). Rather than as a stand-alone algorithm, it is nowadays used as a compo-

nent in hybrid metaheuristics to improve performance in specific applications, as

in the case of the MLST problem.

To obtain this hybrid method, a new local search mechanism for the MLST

problem is first introduced. This local search is based on Variable Neighbourhood

Search and is named Complementary Local Search. Then, Complementary Local

Search is modified by adding another mechanism, the Probabilistic MVCA heuris-

tic, that is inspired by Simulated Annealing. The resulting algorithm represents

the hybrid local search method proposed in this section.

- Complementary Local Search

The first variant with respect to the basic Variable Neighbourhood Search pro-

posed in this section consists of introducing a new local search mechanism, named

Complementary Local Search. As in the previous section, given a labelled graph

G = (V, E, L), with n vertices, m edges, and ` labels, each solution is encoded by

a binary string, i.e. C = (c1, c2, . . . , c`) where

ci =

{
1 if label i is in solution C
0 otherwise

(∀i = 1, . . . , |L|). (3.4)

In order to impose a neighbourhood structure on the solution space S, com-

prising all possible solutions, the distance considered between any two such solu-

tions C1, C2 ∈ S, is the Hamming distance:

ρ(C1, C2) = |C1 − C2| =
∑̀
i=1

λi (3.5)

where λi = 1 if label i is included in one of the solutions but not in the other,

and 0 otherwise, ∀i = 1, ..., `.

91

3.3 Exploited metaheuristics

Given a solution C, Complementary Local Search extracts a solution from

the complementary space of C, and then replaces the current solution with the

solution extracted. The complementary space of a solution C is defined as the

set of all the labels that are not contained in C, that is (L − C). To yield the

solution, Complementary Local Search applies a constructive heuristic, such as

the MVCA, to the subgraph of G with labels in the complementary space of the

current solution. Then, the basic Variable Neighbourhood Search is applied in

order to improve the resulting solution. Given C, its k-th neighbourhood, Nk(C),

is considered as all the different sets having a Hamming distance from C equal

to k labels, where k = 1, 2, . . . , kmax, and where kmax represents the size of the

shaking phase. In order to select a solution in the k-th neighbourhood of a solution

C, the algorithm randomly adds further labels to C, or removes labels from C,

until the resulting solution has a Hamming distance equal to k with respect to

C. Addition and deletion of labels at this stage have the same probability of

being chosen. In a more formal way, the k-th neighbourhood of a solution C is

defined as Nk(C) = {S ⊂ L : (ρ(C, S)) = k}, where k = 1, ..., kmax. Note that

Complementary Local Search stops if either a feasible solution C is obtained, or

the set of unused colours contained in the complementary space is empty, (i.e.

(complementary space−C) ← 0), producing a final infeasible solution. In this

case, several mechanisms may be imposed by the user to deal with infeasibility.

In order to illustrate the Complementary Local Search, consider the example

shown in Figure 3.3. Given an initial random solution X0, the algorithm searches

for new solutions in increasingly distant neighbourhoods of X0. In this example,

no better solutions are detected, and the current solution is still X0. Now, the

Complementary Local Search extracts a solution from the complementary space

of X0, defined as (L−X0). Let the new solution be Xcompl
0 . Then, the algorithm

searches for new solutions in the neighbourhoods of Xcompl
0 . In this example, a

better solution X1 is found. The algorithm continues with this procedure until

the termination conditions are satisfied. In the example, the final solution is

denoted by X2.

Complementary Local Search is proposed in order to improve the diversifica-

tion of the basic Variable Neighbourhood Search for the MLST problem. Comple-

mentary Local Search has been compared to the previous algorithms, resulting in

92

3.3 Exploited metaheuristics

Figure 3.3: Example illustrating the steps of Complementary Local Search.

good performance. However, in order to seek further improvements, Complemen-

tary Local Search is modified by introducing concepts of the Simulated Annealing

metaheuristic, resulting in the hybrid local search method that follows.

- The hybrid local search method

Variable Neighbourhood Search provides a general framework and many variants

have been proposed in the literature to try to improve its performance in some

circumstances (Hansen and Mladenović, 2003). For example, Pérez-Pérez et al.

(2007) proposed a hybridization between VNS and a path-relinking metaheuristic

to solve the p-hub median problem, while Pacheco et al. (2007) proposed mixed

VNS and Tabu Search for variable selection and the determination of the coef-

ficients for these variables that provide the best linear discrimination function,

with the objective of obtaining a high classification success rate.

Although hybridizing a metaheuristic may increase the complexity of the im-

plementation, a more advanced VNS version for the MLST problem is considered,

93

3.3 Exploited metaheuristics

obtained by introducing the main concepts of Simulated Annealing within Com-

plementary Local Search.

In particular, another heuristic is proposed to yield solutions from the com-

plementary space of the current solution, in order to further improve the diver-

sification by allowing worse components to be added to incomplete solutions.

This heuristic is called Probabilistic MVCA. The introduction of a probabilistic

element within the Probabilistic MVCA heuristic is inspired by Simulated An-

nealing (SA). However, the Probabilistic MVCA does not work with complete

solutions but with partial solutions created with components added at each step.

The resulting algorithm that combines Complementary Local Search and Proba-

bilistic MVCA, represents a hybridization between VNS and SA metaheuristics.

The Probabilistic MVCA heuristic could be classified as another version of

MVCA, but with a probabilistic choice of the next label. It extends basic greedy

construction heuristic by allowing moves to worse solutions. Starting from an

initial solution, successively a candidate move is randomly selected; this move is

accepted if it leads to a solution with a better objective function value than the

current solution, otherwise the move is accepted with a probability that depends

on the deterioration ∆ of the objective function value.

Following the SA criterion, the acceptance probability is computed according

to the Boltzmann function as exp(−∆/T), using the temperature (T) as control

parameter. The value of T is initially high, which allows many worse moves to be

accepted, and is gradually reduced following a specific cooling schedule. The aim

is to allow, with a specified probability, worse components with a higher number

of connected components to be added to incomplete solutions.

Probability values assigned to each label are inversely proportional to the

number of components they give. So the labels with a lower number of connected

components will have a higher probability of being chosen. Conversely, labels

with a higher number of connected components will have a lower probability of

being chosen. Thus, the possibility of choosing less promising labels is allowed.

Summarizing, at each step the probabilities of selecting labels giving a smaller

number of components will be higher than the probabilities of selecting labels

with a higher number of components. Moreover, these differences in probabilities

increase step by step as a result of the reduction of the temperature for the

94

3.3 Exploited metaheuristics

cooling schedule. It means that the difference between the probabilities of two

labels giving different numbers of components is higher as the algorithm proceeds.

The probability of a label with a high number of components will decrease as the

algorithm proceeds and will tend to zero. In this sense, the search becomes

MVCA-like.

As an example, consider a graph with four labels a, b, c, and d. Starting from

an empty incomplete solution, the first label is added. The numbers of connected

components the labels give are evaluated. Suppose they give a ⇒ 8, b ⇒ 4,

c ⇒ 6, d ⇒ 2 components. The smallest number of components is 2 given by

d. Call this label s. To select the next label to add, it is necessary to compute

the probabilities for each label. For a generic candidate label k, to evaluate the

probability of it being added to the current solution C, the Boltzmann function

exp(−∆/T) needs to be computed, that is exp
(
−Comp(C∪k)−Comp(C∪s)

T

)
, where

Comp(C ∪ k) is the number of connected components given by adding the label

k, and Comp(C ∪ s) is the minimum number of connected components, given by

adding the label s.

For simplicity, consider a linear cooling law for the temperature T , that is

T|C| = 1
|C|+1

, where C is the current incomplete solution. The temperature T will

have value 1/1 = 1 in the initial step (that is when the initial label needs to be

added), 1/2 = 0.5 in the second step, 1/3 = 0.33 in the third step, and so on.

Therefore, in the initial step the Boltzmann values for each label are: a ⇒ 0.0024,

b ⇒, c ⇒ 0.018, d ⇒ 1. After having evaluated the Boltzmann values, they are

normalized to lie in the interval [0, 1], giving the probabilities for each label to

be selected. Thus, the probabilities (expressed as percentages) are: a ⇒ 0.2%,

b ⇒ 11.7%, c ⇒ 1.6%, d ⇒ 86.5%. One label is selected at random according to

these probabilities. Suppose label c is selected.

As the current solution is not a single connected component, a second label

needs to be added. In this second step the probabilities are computed again, but

with a temperature equal to 0.5. Suppose the numbers of connected components

that the remaining labels give are: a ⇒ 3, b ⇒ 2, d ⇒ 2. The smaller number

of components is 2 given by both b and d. Thus, in this second step (T = 0.5),

the Boltzmann function for a generic candidate label k to be added is given by

exp(−∆/T) = exp (−Comp(C∪k)−2)
0.5

), resulting in the following values: a ⇒ 0.135,

95

3.3 Exploited metaheuristics

b ⇒ 1, d ⇒ 1. They are normalized to lie in the interval [0, 1], and resulting in

the probabilities (expressed as percentages): a ⇒ 6.3%, b ⇒ 46.8%, d ⇒ 46.8%.

One label is selected at random according to these probabilities, and so on. The

algorithm proceeds until only one single connected component is obtained.

Obviously, in a complex problem such as the MLST problem, the linear cooling

law T|C| = 1
|C|+1

for the temperature is not satisfactory. After having tested

different cooling laws, the best performance was obtained by using a geometric

cooling schedule: Tk+1 = α · Tk = αk · T0, where α ∈ [0, 1]. This cooling law is

very fast for the MLST problem, yielding a good balance between intensification

and diversification. The initial temperature value T0 and the value of α need to

be evaluated experimentally.

A VNS implementation using the Probabilistic MVCA as a constructive heuris-

tic has been tested. However, the best results were obtained by combining Com-

plementary Local Search with the Probabilistic MVCA, obtaining the hybrid

metaheuristic proposed in this section. The Probabilistic MVCA is applied both

in the local search phase, to restore feasibility by adding labels to incomplete

solutions, and in Complementary Local Search, to obtain a solution from the

complementary space of the current solution.

The details of the implementation of this hybrid local search method are spec-

ified in Algorithm 3.11. It starts from an initial feasible solution generated at

random, denoted by BestC . Then the Complementary(·) procedure is applied to

BestC , as shown in Algorithm 3.12, to obtain a solution C from the complemen-

tary space of BestC by means of the Probabilistic MVCA constructive heuristic.

For the geometric schedule in this procedure, computational experiments have

shown that T0 = |BestC | and α = 1/|BestC |, where BestC is the current best

solution, are values that performed well. So, the resulting cooling law is

TComplementary
(|C|+1) =

TComplementary
(0)

α|C|
=

1

|BestC |(|C|−1)
. (3.6)

The Complementary procedure stops if either a feasible solution C is ob-

tained, or the set of unused colours contained in the complementary space is

empty (i.e. (Compl Space− C) = 0), producing a final infeasible solution. Sub-

sequently, the same shaking phase used for the basic VNS (Section 3.3.4) is ap-

96

3.3 Exploited metaheuristics

Algorithm 3.11: Hybrid local search method for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialization:

- Let BestC ← 0 be the global set of labels;

- Let HBEST = (V, E(BestC)) be the subgraph of G restricted to V and edges with labels in BestC ,

where E(BestC) = {e ∈ E : L(e) ∈ BestC};
- Let C ← 0 be the set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of of H = (V, E(C));

- Let C′ be a set of labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of connected components of H′ = (V, E(C′));
- Let Compl Space = (L−BestC) the complementary space of the best solution BestC ;

begin
BestC ←Generate-Initial-Solution-At-Random();

Local search(BestC);

repeat
Extract a solution from the complementary space of BestC : C ←Complementary(BestC);

while (|C| < |BestC |) AND (C is a feasible solution) do
Move BestC ← C;

Extract another complementary solution: C ←Complementary(BestC);

end

Set k ← 1 and kmax ← |C|+ |C|/3;

while k < kmax do
C′ ←Shaking phase(Nk(C));

Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end

if |C| < |BestC | then
Move BestC ← C;

end
until termination conditions ;

Update HBEST = (V, E(BestC));

⇒ Take any arbitrary spanning tree T of HBEST = (V, E(BestC)).
end

plied to the resulting solution C (Shaking phase(Nk(C)) procedure, see Algo-

rithm 3.9). It consists of the random selection of a point C ′ in the neighbourhood

Nk(C) of the current solution C (Nk(C) = {S ⊂ L : (ρ(C, S)) = k}, where

k = 1, 2, ..., kmax). For the MLST problem, computational experience indicates

that the value kmax ← (|C|+ |C|/3) gives a good trade-off between intensification

97

3.3 Exploited metaheuristics

Algorithm 3.12: Procedure Complementary(·)
Procedure Complementary(BestC):

Set C ← 0;

while (Comp(C) > 1)AND((Compl Space− C) 6= 0) do
Let s ∈ (Compl Space− C) be the label that minimizes Comp(C ∪ {s});
Geometric cooling schedule for the temperature:

T Complementary(|C|+ 1) =
T Complementary(0)

α|C| where

{
T Complementary(0) = |BestC |
α = 1/|BestC |

;

foreach c ∈ (Compl Space− C) do
Calculate the probabilities P (c) for each label, normalizing the values given by the Boltzmann

function: exp
(
− (Comp(C∪{c})−Comp(C∪{s}))

T Complementary(|C|+1)

)
where s ∈ (Compl Space− C) is the label

which minimizes Comp(C ∪ {s});
end

Select at random an unused label u ∈ (Compl Space− C) following the probabilities P (·);
Add label u to the set of used labels: C ← C ∪ {u};
Update H = (V, E(C)) and Comp(C);

end

and diversification of the search process. At each iteration of the shaking phase, in

order to select a solution in the k-th neighbourhood of a solution C, the algorithm

randomly adds further labels to C, or removes labels from C, until the resulting

solution has a Hamming distance equal to k with respect to C. Addition and

deletion of labels at this stage have the same probability of being chosen. For this

purpose, a random number is selected between 0 and 1 (rnd ← random[0, 1]).

If this number is smaller than 0.5, the algorithm proceeds with the deletion of

a label from C. Otherwise, an additional label is included at random in C from

the set of unused labels (L− C). The procedure is repeated until the number of

addition/deletion operations is exactly equal to k.

The successive local search (Local search(·) procedure, see Algorithm 3.13)

is the same as that used in the previous VNS (Section 3.3.4). Since either the

Complementary Local Search, or the deletion of labels in the shaking phase, can

produce an infeasible incomplete solution, the first step of the local search consists

of including additional labels in the current solution in order to restore feasibility,

if needed. The addition of labels at this step is according to the Probabilistic

MVCA constructive heuristic. For the geometric schedule in the local search,

computational experiments have shown that T0 = |BestC |2 and α = 1/|BestC |,
where BestC is the current best solution, are values that performed well. The

98

3.3 Exploited metaheuristics

Algorithm 3.13: Procedure Local search(·)
Procedure Local search(C′):
while Comp(C′) > 1 do

Let s ∈ (L− C′) be the label that minimizes Comp(C′ ∪ {s});
Geometric cooling schedule for the temperature:

T Local search
(|C′|+1)

=
T Local search
(0)

α|C′|
where

{
T Local search(0) = |BestC |2
α = 1/|BestC |

;

foreach c ∈ (L− C′) do
Calculate the probabilities P (c) for each label, normalizing the values given by the Boltzmann

function: exp

(
− (Comp(C′∪{c})−Comp(C′∪{s}))

T Local search(|C′|+1)

)
where s ∈ (L− C′) is the label which

minimizes Comp(C′ ∪ {s});
end

Select at random an unused label u ∈ (L− C′) following the probabilities P (·);
Add label u to the set of used labels: C′ ← C′ ∪ {u};
Update H′ = (V, E(C′)) and Comp(C′);

end

for i ← 1 to |C′| do
Delete label i from the set C′, i.e. C′ ← C′ − {i};
Update H′ = (V, E(C′)) and Comp(C′);
if Comp(C′) > 1 then

Add label i to the set C′, i.e. C′ ← C′ ∪ {i};
end

Update H′ = (V, E(C′)) and Comp(C′);
end

corresponding geometric cooling law is

TLocal search
(|C′|+1) =

TLocal search
(0)

α|C′|
=

1

|BestC |(|C′|−2)
. (3.7)

Then, the second step of the local search tries to delete labels one by one from

the specific solution, whilst maintaining feasibility.

Afterwards, if no improvements are obtained (|C ′| > |C|), the neighbourhood

structure is changed (k ← k + 1) giving a progressive diversification (|N1(C)| <
|N2(C)| < ... < |Nkmax(C)|). Otherwise (i.e. if |C ′| < |C|), the algorithm moves

to the solution C ′ (C ← C ′) restarting the search with the smallest neighbour-

hood (k ← 1). The algorithm proceeds with the same procedure until the user

termination conditions (maximum allowed CPU time, maximum number of iter-

ations, or maximum number of iterations between two successive improvements)

are satisfied.

99

3.4 Computational results

3.4 Computational results

In this section, the metaheuristics are compared in terms of solution quality and

computational running time. The metaheuristics are identified with the abbre-

viations: PILOT (Pilot Method), MGA (Modified Genetic Algorithm), GRASP

(Greedy Randomized Adaptive Search Procedure), VNS (Variable Neighbour-

hood Search), HYBRID (Hybrid local search method). All the algorithms have

been implemented using the C++ programming language (Microsoft Visual C++

2005).

Different sets of instances of the problem have been generated at random

in order to evaluate how the algorithms are influenced by the parameters, the

structure of the network, and the distribution of the labels on the edges. The

parameters considered are the number of edges of the graph (m), the number

of nodes of the graph (n), and the number of labels assigned to the edges (`).

Computational investigations of the behaviour of algorithms for graph theoretic

problems generally use randomly generated test problems. Such problems have

known statistical properties and the number of generated instances is under the

control of the investigator. In addition, randomly generated test data is often

publicly available and can therefore be used in computational studies.

The authors of (Cerulli et al., 2005), who kindly provided data for use in the

experiments considered in this chapter, are strongly acknowledged. In the follow-

ing computations, run on a Pentium Centrino microprocessor at 2.0 GHz with

512 MB RAM, different datasets are considered, each one containing 10 instances

of the problem with the same set of values for the parameters n, `, and m. For

each dataset, solution quality is evaluated as the average objective function value

for the 10 problem instances. A maximum allowed CPU time (max-CPU-time),

determined with respect to the dimension of the problem instance, is chosen as

the stopping condition for all the metaheuristics. For MGA, a variable number

of iterations for each instance is used, determined such that the computations

take approximately max-CPU-time for the specific dataset. Selection of the max-

imum allowed CPU time as the stopping criterion is made in order to have a

direct comparison of all the metaheuristics with respect to the quality of their

solutions.

100

3.4 Computational results

All the heuristics run for max-CPU-time and, in each case, the best solution

is recorded. The computational times reported in the tables are the average times

at which the best solutions are obtained. The reported times have precision of

±5 ms. Where possible, the results of the metaheuristics are compared to the

exact solution, identified with the label EXACT.

The Exact Method is an A* or backtracking procedure to test the subsets of

L. This search method performs a branch and prune procedure in the partial

solution space based on a recursive procedure Test that attempts to find a better

solution from the current incomplete solution. The main program that solves the

MLST problem calls the Test procedure with an empty set of labels. The details

are specified in Algorithm 3.14.

Algorithm 3.14: Exact Method for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;

Output: A spanning tree T ;

Initialisation:

- Let C ← 0 be the initially empty set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C∗ ← L be the global set of used labels;

- Let H∗ = (V, E(C∗)) be the subgraph of G restricted to V and edges with labels in C∗, where

E(C∗) = {e ∈ E : L(e) ∈ C∗};
- Let Comp(C) be the number of connected components of H = (V, E(C));

begin
Call Test(C);

⇒ Take any arbitrary spanning tree T of H∗ = (V, E(C∗)).
end

Procedure Test(C):

if |C| < |C∗| then
Update Comp(C);

if Comp(C) = 1 then
Move C∗ ← C;

else if |C| < |C∗| − 1 then

foreach c ∈ (L− C) do
Try to add label c : Test(C ∪ {c});

end

end

end

In order to reduce the number of test sets, it is more convenient to use a

good approximate solution for C∗ in the initial step, instead of considering all

the labels. Another improvement that avoids the examination of a large number

of incomplete solutions consists of rejecting every incomplete solution that cannot

101

3.4 Computational results

be completed to get only one connected component. Note that if an incomplete

solution C ′ with a number of labels |C ′| = |C∗| − 2 is evaluated, the algorithm

should try to add the labels one by one to check if it is possible to find a better

solution for C∗ with a smaller dimension, that is |C ′| = |C∗| − 1. To complete

this solution C ′, a label with a frequency at least equal to the actual number

of connected components minus 1 needs to be added. If this requirement is not

satisfied, the incomplete solution can be rejected, speeding up the search process.

The running time of this Exact Method grows exponentially, but if either the

problem size is small or the optimal objective function value is small, the running

time is reasonable and the method obtains the exact solution. The complexity

of the instances increases with the dimension of the graph (number of nodes and

labels), and the reduction in the density of the graph. For the computational

tests considered in this chapter, the optimal solution is reported unless a single

instance requires more than 3 hours of CPU time. In such a case, not found (NF)

is reported.

3.4.1 Experimental analysis

In the considered computations, two different groups of datasets have been com-

puted, including instances with a number of vertices, n, and a number of labels,

`, from 20 up to 500. All these instances are available from the author (Con-

soli, 2007a). The number of edges, m, is obtained indirectly from the density d

of edges whose values are chosen to be 0.8, 0.5, and 0.2. Analysing the perfor-

mance of the algorithms considered, for a single dataset a metaheuristic should

be considered worse than another one if either it obtains a larger average objec-

tive function value, or an equal average objective function value but in a greater

computational time.

Group 1 examines small instances with the number of vertices equal to the

number of labels. These values are chosen to be between 20 and 50 in steps of

10. Thus, the datasets considered are n = ` = 20, 30, 40, 50, and d = 0.8,

0.5, 0.2, for a total of 12 datasets (120 instances). Computational results are

presented in Table 3.1, which reports the average objective function values found

102

3.4 Computational results

Table 3.1: Computational results for Group 1 (max-CPU-time for heuristics =
1000 ms)

Parameters Average objective function values
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 2.4 2.4 2.4 2.4 2.4 2.4
20 20 0.5 3.1 3.2 3.1 3.1 3.1 3.1

0.2 6.7 6.7 6.7 6.7 6.7 6.7
0.8 2.8 2.8 2.8 2.8 2.8 2.8

30 30 0.5 3.7 3.7 3.7 3.7 3.7 3.7
0.2 7.4 7.4 7.4 7.4 7.4 7.4
0.8 2.9 2.9 2.9 2.9 2.9 2.9

40 40 0.5 3.7 3.7 3.7 3.7 3.7 3.7
0.2 7.4 7.6 7.4 7.4 7.4 7.4
0.8 3 3 3 3 3 3

50 50 0.5 4 4 4.1 4 4 4
0.2 8.6 8.6 8.6 8.6 8.6 8.6

TOTAL: 55.7 56 55.8 55.7 55.7 55.7

Parameters Computational times (milliseconds)
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 0 0 15.6 1.6 0 0
20 20 0.5 0 1.6 22 0 0 0

0.2 11 3.1 23.4 0 1.6 0
0.8 0 3 9.4 1.6 0 1.5

30 30 0.5 0 3.1 26.5 0 0 0
0.2 138 4.7 45.4 1.5 5.2 3.1
0.8 2 6.3 12.5 1.5 0 3.1

40 40 0.5 3.2 7.9 28.2 1.5 3.1 6.2
0.2 100.2∗103 10.8 120.3 15.6 9.6 1.6
0.8 3.1 17.1 21.8 3 0 3.1

50 50 0.5 21.9 20.2 531.3 9.4 4.1 6.2
0.2 66.3∗103 17.2 93.6 3.2 11.9 8

TOTAL: 166.7∗103 95 950 38.9 35.5 32.7

by the heuristics for the datasets of Group 1, and the corresponding average

computational times, with a max-CPU-time of 1 second.

Looking at this table, all the heuristics performed well for the Group 1 in-

stances. However, MGA is considerably slower than the other metaheuristics, as

a result of a poor intensification capability and an excessive diversification capa-

103

3.4 Computational results

bility for these instances. PILOT is faster than MGA but it produces slightly

worse solutions with respect to solution quality. It exhibits an opposite behaviour

to that of MGA, being characterised by a limited diversification capability which

sometimes does not allow the search process to escape from local optima. The

performance of GRASP, VNS, and HYBRID are comparable for these trivial in-

stances of the problem. They are able to obtain all the exact solutions in very

short running times and are the best performing heuristics for Group 1 in terms

of solution quality and computational running time.

Group 2 considers larger instances of the MLST problem with a fixed number

of vertices, and a number of labels ` = 0.25 · n, 0.5 · n, n, 1.25 · n. Thus, the

datasets of Group 2 are n = 100, 200, 500 vertices, ` = 0.25 · n, 0.5 · n, n, 1.25 · n
labels, and d = 0.8, 0.5, 0.2 density, for a total of 36 datasets (360 instances).

Furthermore, a max-CPU-time of 20 seconds has been considered for Group 2

with n = 100; of 60 seconds for Group 2 with n = 200; and of 300 seconds for

Group 2 with n = 500. Average objective function values and the corresponding

average computational times are reported in Tables 3.2 - 3.3 - 3.4 respectively.

For all the Group 2 instances with n = 100, looking at Table 3.2, the best

performance is obtained by VNS which produces the solutions with the best

solution quality and the shortest running times. Next in performance ranking

is HYBRID which produces solutions with the same quality of those produced

by VNS, although for the instance [n = 100, ` = 125, d = 0.2] is quite slow.

GRASP also performs well, obtaining the same solutions as VNS and HYBRID,

with the exception for the instance [n = ` = 100, d = 0.2]. As in Group 1, PILOT

and MGA obtain worse solutions and their defects of excessive diversification and

poor intensification for MGA and, conversely, of excessive intensification and poor

diversification for PILOT are demonstrated.

Table 3.3 and Table 3.4, with larger instances of the problem (Group 2 with

n = 200, and Group 2 with n = 500) show the same relative behaviour for all

the metaheuristics considered. VNS, HYBRID, and GRASP are always the best

performing methods, indicating an optimal tuning between intensification and

diversification of the search process, which evidently is not obtained by PILOT

and MGA which obtain the worst solution in terms of quality and computational

running time. VNS and HYBRID always obtain the solutions with the best

104

3.4 Computational results

Table 3.2: Computational results for Group 2 with n = 100 (max-CPU-time for
heuristics = 20∗103 ms)

Parameters Average objective function values
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 1.8 1.8 1.8 1.8 1.8 1.8
25 0.5 2 2 2 2 2 2

0.2 4.5 4.5 4.5 4.5 4.5 4.5
0.8 2 2 2 2 2 2

50 0.5 3 3.1 3 3 3 3
100 0.2 6.7 6.9 6.7 6.7 6.7 6.7

0.8 3 3 3 3 3 3
100 0.5 4.7 4.7 4.7 4.7 4.7 4.7

0.2 NF 10.1 9.9 9.8 9.7 9.7
0.8 4 4 4 4 4 4

125 0.5 5.2 5.4 5.2 5.2 5.2 5.2
0.2 NF 11.2 11.1 11 11 11

TOTAL: - 58.7 57.9 57.7 57.6 57.6

Parameters Computational times (milliseconds)
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 9.4 4.7 26.5 0 0 0
25 0.5 14 12.6 29.7 4.6 0 4.5

0.2 34.3 23.2 45.3 9.3 3.1 4.8
0.8 17.8 67.3 23.5 6.4 7.7 12.6

50 0.5 23.5 90.7 106.2 51.6 42.4 21.7
100 0.2 10.2∗103 103.2 148.3 57.8 49.7 26.5

0.8 142.8 378.1 254.7 61 215 146.9
100 0.5 2.4∗103 376.2 300 28.2 114.7 75.9

0.2 NF 399.9 9.4∗103 1.2∗103 414.8 514
0.8 496.9 565.7 68.7 9.4 10.1 20.2

125 0.5 179.6∗103 576.3 759.4 595.4 551.1 345.4
0.2 NF 634.5 2∗103 562.9 420.4 1.2∗103

TOTAL: - 3.2∗103 13.2∗103 2.6∗103 1.8∗103 2.4∗103

quality, but they lose a lot, sometimes, in terms of computational running time

with respect to GRASP (see for example the instances [n = ` = 200, d = 0.2],

[n = ` = 500, d = 0.2], and [n = 500, ` = 625, d = 0.2]). From this analysis,

perhaps GRASP is slightly lacking in terms of exploration of the search space

with respect to the VNS and HYBRID approaches. HYBRID and VNS consis-

105

3.4 Computational results

Table 3.3: Computational results for Group 2 with n = 200 (max-CPU-time for
heuristics = 60∗103 ms)

Parameters Average objective function values
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 2 2 2 2 2 2
50 0.5 2.2 2.2 2.2 2.2 2.2 2.2

0.2 5.2 5.2 5.2 5.2 5.2 5.2
0.8 2.6 2.6 2.6 2.6 2.6 2.6

100 0.5 3.4 3.4 3.4 3.4 3.4 3.4
200 0.2 NF 8.3 8.3 8.1 7.9 7.9

0.8 4 4 4 4 4 4
200 0.5 NF 5.5 5.4 5.4 5.4 5.4

0.2 NF 12.4 12.4 12.2 12 12
0.8 4 4 4 4.1 4 4

250 0.5 NF 6.3 6.3 6.3 6.3 6.3
0.2 NF 13.9 14 13.9 13.9 13.9

TOTAL: - 69.8 69.8 69.4 68.9 68.9

Parameters Computational times (milliseconds)
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 29.7 90.7 26.5 20.5 0 0
50 0.5 32.7 164.1 68.8 14.2 17.2 34.4

0.2 5.4∗103 320.4 326.6 37.5 241.3 232.8
0.8 138.6 876.5 139.3 45.3 123.2 140.8

100 0.5 807.8 1.2∗103 1.6∗103 176.6 151.1 159.4
200 0.2 NF 1.3∗103 2.2∗103 667.2 1.7∗103 2.9∗103

0.8 22.5∗103 5.9∗103 204.6 43.6 32 79.7
200 0.5 NF 5.6∗103 16.1∗103 885.6 971.9 876.1

0.2 NF 5∗103 12.7∗103 9.4∗103 12.8∗103 33.7∗103

0.8 20.6∗103 9.1∗103 2.2∗103 4.9∗103 1.1∗103 1.5∗103

250 0.5 NF 8.4∗103 17.6∗103 506 3.4∗103 2.3∗103

0.2 NF 8∗103 26.4∗103 1.4∗103 3.2∗103 1.5∗103

TOTAL: - 45.9∗103 79.6∗103 18.1∗103 23.7∗103 43.4∗103

tently produce equally good solutions. However, the motivation to introduce a

high diversification capability in HYBRID is to obtain improved performance in

large problem instances. Inspection of Table 3.4 shows that this aim is achieved:

HYBRID is faster than VNS for large problem instances. Conversely, for smaller

problem instances (see Tables 3.1 - 3.3), in general VNS obtains solutions with

106

3.4 Computational results

Table 3.4: Computational results for Group 2 with n = 500 (max-CPU-time for
heuristics = 300∗103 ms)

Parameters Average objective function values
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 2 2 2 2 2 2
125 0.5 2.6 2.6 2.6 2.6 2.6 2.6

0.2 NF 6.3 6.2 6.2 6.2 6.2
0.8 3 3 3 3 3 3

250 0.5 NF 4.2 4.3 4.2 4.1 4.1
500 0.2 NF 9.9 10.1 9.9 9.9 9.9

0.8 NF 4.8 4.7 4.7 4.7 4.7
500 0.5 NF 6.7 7.1 6.5 6.5 6.5

0.2 NF 15.9 16.6 15.9 15.8 15.8
0.8 NF 5.1 5.4 5.1 5.1 5.1

625 0.5 NF 8.1 8.3 7.9 7.9 7.9
0.2 NF 18.5 19.1 18.4 18.3 18.3

TOTAL: - 87.1 89.4 86.4 86.1 86.1

Parameters Computational times (milliseconds)
n ` d EXACT PILOT MGA GRASP VNS HYBRID

0.8 370 3.4∗103 18 152 17.1 45
125 0.5 597 6.6∗103 2.6∗103 455 1.1∗103 560

0.2 NF 11.9∗103 57.1∗103 4∗103 3.9∗103 3.7∗103

0.8 5.3∗103 35.49∗103 516 248 142.3 490
250 0.5 NF 65.3∗103 28∗103 583 84∗103 26.9∗103

500 0.2 NF 156.4∗103 181.2∗103 3.3∗103 5.1∗103 10.2∗103

0.8 NF 200.5∗103 117.5∗103 28.1∗103 22.3∗103 8.6∗103

500 0.5 NF 190.1∗103 170.9∗103 90.9∗103 32.3∗103 110.2∗103

0.2 NF 300.6∗103 241.8∗103 20.2∗103 139.7∗103 50.3∗103

0.8 NF 184.3∗103 51.9∗103 4.9∗103 16.1∗103 970
625 0.5 NF 200.9∗103 222.2∗103 35.7∗103 44.7∗103 33.9∗103

0.2 NF 289.9∗103 297.8∗103 53.1∗103 155.5∗103 60∗103

TOTAL: - 1645.3∗103 1371.5∗103 213.8∗103 504.9∗103 395.9∗103

shorter computational running than HYBRID.

Considering only solution quality, the average values of the objective function

of the metaheuristics among all the considered datasets are: PILOT = 5.66, MGA

= 5.68, GRASP = 5.61, VNS = 5.59, HYBRID = 5.59. Thus, the best ranking

with respect to the solution quality (from the best to the worst) is: VNS and

107

3.4 Computational results

HYBRID, followed respectively by GRASP, PILOT, and MGA.

3.4.2 Statistical analysis of the results

Computing only the average objective function values of the metaheuristics over

multiple data does not provide a full comparison between them. Averages are

susceptible to outliers: they can allow excellent performance on some datasets to

compensate for an overall bad performance. There may be situations in which

such behaviour is desired. However, in general, algorithms that behave well on

as many problems as possible are preferred.

Tests to determine the statistical significance of differences between the per-

formances of the metaheuristics have been carried out (Hollander and Wolfe,

1999). The issue of statistical tests for comparison of algorithms on multiple

datasets was theoretically and empirically reviewed by Demśar (2006). The null-

hypothesis being tested is that the metaheuristics have equal mean performance

and the observed differences are merely random. The alternative hypothesis is

that the algorithms have different mean performances of statistical significance.

The most common statistical method for testing differences between more

than two algorithms is Analysis of Variance (ANOVA) (see Hollander and Wolfe

(1999) and Demśar (2006) for more details). Since ANOVA is based on assump-

tions that are violated in this context, the Friedman test (Friedman, 1940), that

is the non-parametric equivalent of ANOVA, and its corresponding Nemenyi post-

hoc test (Nemenyi, 1963), are used.

According to the Friedman test, the statistical significance of differences be-

tween the metaheuristics is examined by testing whether the measured average

ranks are significantly different from the overall mean rank. In particular, the

version of the Friedman test developed by Iman and Davenport (1980) is used,

which considers a powerful test statistic FF (Appendix B). If the equivalence

of the algorithms is rejected, the Nemenyi post-hoc test is applied in order to

perform pairwise comparisons.

To perform the Friedman and Nemenyi tests, the ranks of the algorithms for

each dataset are evaluated, with a rank of 1 assigned to the best performing

algorithm, rank 2 to the second best one, and so on. The average ranks for

108

3.4 Computational results

each metaheuristic among the 48 datasets are: PILOT = 4.23, MGA = 4.45,

GRASP = 2.3, VNS = 2, HYBRID = 2.02. According to the ranking, VNS is

the best performing algorithm, immediately followed by HYBRID and GRASP,

then PILOT and MGA achieving the worst results.

Now, the statistical significance of differences between these ranks are anal-

ysed. Consider the version by Iman and Davenport (1980) for the Friedman test

for k = 5 algorithms and N = 48 datasets. The value of the FF test statistic,

which is distributed according to the F -distribution with (k−1, (k−1)(N−1)) =

(4, 188) degrees of freedom, is computed. This value is 72.08, which is greater

than the critical value (3.42 for α = 1%, where α is the significance level of the test

expressed as percentage). Thus, a significant difference between the performance

of the metaheuristics exists, according to the Friedman test.

As the equivalence of the algorithms is rejected, the Nemenyi post-hoc test is

applied. Considering a significance level α = 1%, the critical value is q0.01
∼= 3.26.

The critical difference (CD) for the Nemenyi test is

CD = 3.26 ·
√

5 · 6
6 · 48

∼= 1.05; (3.8)

The differences between the average ranks of the metaheuristics are reported in

Table 3.5. From this table, two groups of metaheuristics are identified. The first

group includes VNS, HYBRID, and GRASP, while the second group includes PI-

LOT and MGA. Considering a significance level α = 1%, the algorithms within

each group have comparable performance according to the Nemenyi test since, in

Table 3.5: Pairwise differences of the average ranks of the algorithms (Critical
difference = 1.05 for a significance level α = 1% for the Nemenyi test)
ALGORITHM VNS HYBRID GRASP PILOT MGA
(average rank) (2) (2.02) (2.3) (4.23) (4.45)

VNS (2) - 0.02 0.3 2.23 2.45
HYBRID (2.02) - - 0.28 2.21 2.43
GRASP (2.3) - - - 1.93 2.15
PILOT (4.23) - - - - 0.22
MGA (4.45) - - - - -

109

3.4 Computational results

each case, the value of the test statistic is less than the critical difference. Con-

versely, two algorithms belonging to different groups have significantly different

performance according to the Nemenyi test. Summarizing, from the Friedman

and Nemenyi statistical tests, VNS, HYBRID, and GRASP have comparable

performance, and they are the best performing algorithms. On the other hand,

PILOT and MGA have comparable performance, but worse than VNS, HYBRID,

and GRASP.

Another way to compare the performance of the algorithms is to count the

number of times they generate the optimal solution. In particular, counting the

overall number of exact solutions obtained is a good approach to estimating the

diversification capability of each metaheuristic. The Exact Method obtains the

exact solution for all problem instances of 32 datasets, among the overall 48

datasets; for the remaining sets NF is reported. Therefore, the total number of

instances in which the exact solution was obtained is: 32× 10 = 320.

The percentages of the number of optimal solutions obtained by the meta-

heuristics among the 320 instances are (ranking from the best to the worst algo-

rithm): VNS = 100, HYBRID = 100, GRASP = 99.7, MGA = 99.7, PILOT =

97.5.

VNS and HYBRID obtain all the optimal solutions, underlying a high ex-

ploration capability even for complex instances. In the same way, GRASP and

MGA offer very good results, missing only 1 solution out of 320, although MGA

is extremely time consuming. With 8 cases (out of 320), PILOT fails to find the

global optimum and became trapped at a local optimum.

Furthermore, some optima reached by the metaheuristics require a greater

computational time than required by the Exact Method, thus nullifying the pur-

pose of the metaheuristics. In this sense the best performances are obtained

again by VNS, HYBRID, and GRASP, all of which require less computational

time than the Exact Method among the 32 datasets. In contrast, PILOT and

MGA obtain the optimal solution but in a time that exceeds that of the Exact

Method in 11 and 18 datasets, respectively. Although MGA reaches more exact

solutions than PILOT, it is computationally more burdensome.

From this further analysis, the results reinforce the conclusion that VNS,

HYBRID, and GRASP are effective metaheuristics for the MLST problem. Fur-

110

3.5 Conclusions and further research

thermore, the algorithm which appears to be the most suitable for the proposed

problem is VNS, thanks to the following features: ease of implementation, user-

friendly code, high-quality of the solutions, and shorter computational running

times.

3.5 Conclusions and further research

In this chapter, several metaheuristics for the minimum labelling spanning tree

(MLST) problem have been studied. In particular, the metaheuristics recom-

mended in the literature have been examined and implemented: the Modified

Genetic Algorithm (MGA) by Xiong et al. (2006) and the Pilot Method (PI-

LOT) by Cerulli et al. (2005). Furthermore, some new implementations for the

MLST problem have been proposed: a Greedy Randomized Adaptive Search Pro-

cedure (GRASP), a basic Variable Neighbourhood Search (VNS), and a hybrid

local search method (HYBRID) obtained by combining Variable Neighbourhood

Search with Simulated Annealing (SA).

Computational experiments were performed using different instances of the

MLST problem to evaluate how the algorithms are influenced by the parameters,

the structure of the network, and the distribution of the labels on the edges. Ap-

plying the nonparametric statistical tests of Friedman (1940) and Nemenyi (1963),

it has been concluded that VNS, HYBRID, and GRASP have significantly better

performance than the other methods recommended in the literature with respect

to solution quality and running time. Furthermore, this result has been reinforced

by comparing the metaheuristics with an exact approach. VNS, HYBRID, and

GRASP obtain a large number of optimal or near-optimal solutions, showing an

enhanced diversification capability.

The results indicate that VNS, HYBRID, and GRASP are fast and extremely

effective metaheuristics for the MLST problem. In addition, VNS is particularly

recommended for the proposed problem because of its simplicity and its ability

to obtain high-quality solutions in short computational running times.

Future research will consist of trying to further improve the performance of

these procedures (for example through hybridization with other metaheuristics)

particularly for large instances of the problem. For this purpose, an algorithm

111

3.5 Conclusions and further research

based on Ant Colony Optimization (ACO) is currently under study in order to

try to obtain a larger diversification capability by extending the current greedy

MVCA local search. Indeed, a proper ACO implementation may allow moves

to worse solutions by providing an alternative probabilistic solution construction

mechanism.

112

You know more than you think
you know, just as you know less
than you want to know.

Oscar Wilde

Chapter 4

Minimum labelling Steiner tree

problem

This chapter presents a study on heuristic solution approaches to the minimum

labelling Steiner tree (MLSteiner) problem, an NP-hard graph problem related

to the minimum labelling spanning tree problem. Given an undirected labelled

connected graph, the aim is to find a spanning tree covering a given subset of

nodes of the graph, whose edges have the smallest number of distinct labels.

Such a model may be used to represent many real-world problems in telecommu-

nications and multimodal transportation networks. Several metaheuristics are

proposed and evaluated. They outperform the Pilot Method (PILOT), which is

the heuristic recommended by the literature for the MLSteiner problem (Cerulli

et al., 2006). Further experimental analysis shows that some of the proposed

heuristics (a Greedy Randomized Adaptive Search Procedure (GRASP), a Vari-

able Neighbourhood Search (VNS), and a hybrid local search method (HYBRID)

obtained by combining Variable Neighbourhood Search with Simulated Annealing

(SA)) are effective approaches for the MLSteiner problem, obtaining high-quality

solutions in short computational running times.

4.1 Introduction

This chapter focuses on the minimum labelling Steiner tree (MLSteiner) problem,

a generalization of the minimum labelling spanning tree (MLST) problem, already

113

4.1 Introduction

discussed in Chapter 3, to the case where not necessarily all but only a subset of

required nodes need to be spanned. In particular, given a graph with labelled (or

coloured) edges, the MLSteiner problem seeks a subgraph which spans a subset

of nodes (basic nodes) of the graph, and whose edges have the least number of

distinct labels (or colours).

As with the MLST problem, the MLSteiner problem has many applications in

real-world problems. For example, in telecommunications networks, a node may

communicate with other nodes by means of different types of communications

media. Considering a set of basic nodes that must be connected, the construction

cost may be reduced, in some situations, by connecting the basic nodes with the

smallest number of possible communications types (Tanenbaum, 1989).

Another example is given by multimodal transportation networks (Van-Nes,

2002). A multimodal transportation network can be represented by a graph

where a label is assigned to each edge, denoting a different company managing

that edge, and each node represents a different location. It is often desirable to

provide a complete service between a basic set of locations, without cycles, using

the minimum number of companies, in order to minimize the cost.

The minimum labelling Steiner tree problem is formally defined as a network

or graph problem as follows:

MLSteiner problem: Let G = (V, E, L) be a labelled, connected,

undirected graph, where V is the set of nodes, E is the set of

edges, that are labelled on the set L of labels, and let Q ⊆ V be

a set of nodes that must be connected (basic nodes). The aim is

to find a subgraph T connecting all the basic nodes Q such that

|LT | is minimized, where LT is the set of labels used in T .

The MLSteiner problem is NP-hard by reduction from the MLST problem, as

the MLSteiner problem is the special case of the MLST problem when Q = V .

Figure 4.1 shows an example of an input graph, where the solid vertices represent

the basic nodes. The minimum labelling Steiner tree solution of this example is

shown in Figure 4.2.

In this chapter, several new metaheuristics for the MLSteiner problem are

proposed: a Greedy Randomized Adaptive Search Procedure, a Discrete Particle

Swarm Optimization, a Variable Neighbourhood Search, and a hybrid local search

114

4.1 Introduction

Figure 4.1: Example of an input graph of the MLSteiner problem.

method, which is a hybridization between Variable Neighbourhood Search and

Simulated Annealing metaheuristics. Computational results for these approaches

are compared to those from the Pilot Method, which is considered to be the best

performing heuristic in the current literature (Cerulli et al., 2006), and with those

Figure 4.2: Minimum labelling Steiner tree solution for the graph of Figure 4.1.

115

4.2 Origin of the problem

from an Exact Method.

The structure of the chapter is as follows. First the problem and its origins

are described, reviewing the associated literature. As the minimum labelling

Steiner tree problem is a direct extension of the well-known Steiner tree problem

and of the minimum labelling spanning tree problem, these basic problems are

discussed. Details of the methods considered are presented in Section 4.3. Sec-

tion 4.4 contains a computational analysis and evaluation and, finally, conclusions

are described in Section 4.5. The basic concepts of metaheuristics and combina-

torial optimization were presented in Chapter 2, but, for further information, the

reader is referred to (Voß et al., 1999; Glover and Kochenberger, 2003; Gendreau

and Potvin, 2005).

4.2 Origin of the problem

The minimum labelling Steiner tree problem was introduced by Cerulli et al.

(2006). It is a graph combinatorial optimization problem extending the well-

known Steiner tree problem and the minimum labelling spanning tree problem

(already discussed in Chapter 3).

Given a graph with positive-weighted edges, and with a subset of basic nodes,

the Steiner tree (Steiner) problem consists of finding a minimum-weight tree

spanning all the basic nodes. This problem dates back to Fermat, who formulated

it as a geometric problem: find a point p in the Euclidean plane minimizing the

sum of the distances to three given points. This was solved before 1640 by

Torricelli (Krarup and Vajda, 1997). Subsequently Steiner worked on the general

problem for n points. More details appears in (Hwang et al., 1992). Expositions

on the difficulty of the Steiner problem can be found in (Karp, 1975; Garey et al.,

1977), while several heuristics for the Steiner problem in graphs are reported

in (Grimwood, 1994; Voß, 2000).

A large number of real-world applications of the Steiner problem exist, most

of them relate to network design (Winter, 1987) and telecommunications (Voß,

2006). Steiner problems arising in the layout of connection structures in networks,

such as topological network design, location, and in VLSI (Very Large Scale

Integrated) circuit design, are discussed in (Korte et al., 1990; Francis et al.,

116

4.3 Description of the algorithms

1992). Furthermore, analogies can be drawn between minimum Steiner trees and

minimum energy configurations in certain physical systems (Miehle, 1958).

The MLSteiner problem was first considered by Cerulli et al. (2006) as an

extension of the Steiner problem and the MLST problem. They also compared

their Pilot Method with some other metaheuristics for the MLSteiner problem:

Tabu Search, Simulated Annealing, and some implementations of Variable Neigh-

bourhood Search. From their analysis, the Pilot Method was shown to be the

best performing heuristic for the problem (Cerulli et al., 2006).

The success of the heuristic solution approaches for the MLST problem pro-

posed in Chapter 3 provided the motivation for considering the implementation

of similar approaches for the MLSteiner problem, and this is the focus of the work

reported in this chapter.

4.3 Description of the algorithms

This section introduces an Exact Method for the MLSteiner problem, and analy-

ses the Pilot Method (PILOT) by Cerulli et al. (2006). It then describes the main

features of other metaheuristics proposed for the MLSteiner problem: a Greedy

Randomized Adaptive Search Procedure (GRASP), a Discrete Particle Swarm Op-

timization (DPSO), a Variable Neighbourhood Search (VNS), and a hybrid local

search method (HYBRID) obtained by combining Variable Neighbourhood Search

with Simulated Annealing (SA).

Before going into the details of these algorithms, it is useful to define the

concept of a Steiner component (Cerulli et al., 2006). Given an undirected, con-

nected, labelled input graph, a Steiner component is a connected subgraph of

the input graph containing at least one basic node. This concept will be used

throughout the section.

4.3.1 Exact Method

The Exact Method (EXACT) for the MLSteiner problem is based on a backtrack-

ing procedure, as with the Exact Method for the MLST problem (see Chapter 3).

Given a labelled connected undirected graph G = (V,E, L) with n vertices, m

117

4.3 Description of the algorithms

edges, ` labels, and a subset Q ⊆ V of basic nodes, EXACT performs a branch

and prune procedure in the partial solution space based on a recursive proce-

dure, Test. The details are specified in Algorithm 4.1.

Algorithm 4.1: Exact Method for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels, Q ⊆ V

basic nodes;

Output: A tree T ;

Initialization:

- Let C ← 0 be the initially empty set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C∗ ← L be the global set of used labels;

- Let H∗ = (V, E(C∗)) be the subgraph of G restricted to V and edges with labels in C∗, where

E(C∗) = {e ∈ E : L(e) ∈ C∗};
- Let Comp(C) be the number of Steiner components of C, i.e. the number of connected components of

the subgraph (Q, E(C));

begin
Call Test(C);

⇒ Take any arbitrary spanning tree T of H∗ = (V, E(C∗)).
end

Procedure Test(C):

if |C| < |C∗| then
Update Comp(C);

if Comp(C) ← 1 then
Move C∗ ← C;

else if |C| < |C∗| − 1 then

foreach c ∈ (L− C) do
Try to add label c : Test(C ∪ {c});

end

end

end

The procedure Test starts from an empty set of labels and iteratively builds

a solution by adding labels one by one until all the basic nodes, Q ⊆ V , are

connected. In this method, all the possible combinations of labels are considered,

and so its running time is computationally burdensome. The running time grows

exponentially with the dimension of the graph (number of nodes and labels), and

the reduction in the density of the graph.

In order to speed up this method, the following procedure is adopted. Let

C∗ ⊆ L be a current solution, and C ′ ⊆ L be an incomplete solution to evaluate.

If the dimension of C ′ is equal to |C∗|−2, the algorithm should try to add all the

labels one by one to check if it is possible to find a better solution for C∗ with

118

4.3 Description of the algorithms

a smaller dimension, that is |C∗| − 1. Instead of trying to add all the labels one

by one to complete C ′, the algorithm only considers the labels with a frequency

at least equal to the actual number of connected components minus 1 (in other

words only the candidate labels which may yield a connected graph if added to

the incomplete solution C ′ are considered). If this requirement is not satisfied,

the incomplete solution can be rejected, speeding up the search process.

If either the problem size is small or the optimal objective function value is

small, the running time of this exact approach is acceptable and it is possible to

obtain the exact solution.

4.3.2 Pilot Method

The Pilot Method (PILOT) metaheuristic was first introduced by Duin and Voß

(1999) for the Steiner tree problem, and was applied with success to several

combinatorial optimization problems (Voß et al., 2004). The core idea of this

metaheuristic is to exhaust tentatively all the possible choices with respect to a

reference solution, called the master solution, by means of a basic constructive

heuristic. For each possible choice, the basic heuristic (or application process)

works as a building block for the master solution, by adding components until a

feasible solution is obtained. When all the possible choices have been evaluated,

the master solution is updated with the best choice, and the procedure proceeds

iteratively until the user termination conditions are reached. Further details are

included in (Voß et al., 2004).

Cerulli et al. (2005) applied the Pilot Method to the MLST problem (see

Chapter 3) and, following the same procedure, to the MLSteiner problem (Cerulli

et al., 2006). They also performed a comparison between PILOT and other ad-hoc

metaheuristics (Tabu Search, Simulated Annealing, and Variable Neighbourhood

Search) for different instances of the MLSteiner problem (Cerulli et al., 2006).

From their computational analysis, the Pilot Method obtained the best results.

The details of the Pilot Method proposed by Cerulli et al. (2006) for the

MLSteiner problem are specified in Algorithm 4.2. PILOT starts from the null

solution (an empty set of labels) as master solution, M . Then, for each element

i /∈ M , it tries to extend tentatively a copy of M to a (fully grown) feasible

119

4.3 Description of the algorithms

Algorithm 4.2: The Pilot Method for the MLSteiner problem (Cerulli et al., 2006)

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,

Q ⊆ V basic nodes;

Output: A tree T ;

Initialization:

- Let M ← 0 be the initially empty master solution;

- Let H = (V, E(M)) be the subgraph of G restricted to V and edges with labels in M , where

E(M) = {e ∈ E : L(e) ∈ M};
- Let Comp(M) be the number of Steiner components of H = (V, E(M));

- Let M∗ ← L be a set of labels;

- Let H∗ = (V, E(M∗)) be the subgraph of G restricted to V and edges with labels in M∗, where

E(M∗) = {e ∈ E : L(e) ∈ M∗};
- Let i∗ be the best candidate move;

begin

while (not termination conditions) OR (Comp(M) > 1) do

foreach i ∈ (L−M) do
Add label i to the master solution: M ← M ∪ {i};
Update H = (V, E(M)) and Comp(M);

while Comp(M) > 1 do
Let S be the set of unused labels which minimize the number of Steiner

components, i.e. S = {e ∈ (L−M) : min Comp(M ∪ {e})};
Select at random a label u ∈ S;

Add label u to the solution: M ← M ∪ {u};
Update H = (V, E(M)) and Comp(M);

end

Local search(M);

if |M | < |M∗| then
Update the best candidate move i∗ ← i;

Keep the solution produced by the best move: M∗ ← M ;

end

Delete label i from the master solution: M ← M − {i};
Update H = (V, E(M)) and Comp(M);

end

Update the master solution with the best move: M ← M ∪ {i∗};
end

while Comp(M) > 1 do
Let S be the set of unused labels which minimize the number of Steiner components, i.e.

S = {e ∈ (L−M) : min Comp(M ∪ {e})};
Select at random a label u ∈ S;

Add label u to the solution: M ← M ∪ {u};
Update H = (V, E(M)) and Comp(M);

end

⇒ Take any arbitrary spanning tree T of H = (V, E(M)).
end

solution including i, built by the application process. The application process is

a greedy procedure which, at each step, inserts in the partial solution the label

producing the minimum number of Steiner components at that specific step, and

stopping when a feasible solution is obtained. At the end of the execution of the

120

4.3 Description of the algorithms

application process, a local search mechanism is included to try to greedily drop

labels (i.e., the associated edges), from the least frequently occurring label to the

most frequently occurring one, whilst retaining feasibility (see Algorithm 3.4).

The number of labels produced by the feasible solution obtained from M ←
M ∪ {i} is used as objective function for each candidate i /∈ M . When all the

possible candidate labels with respect to the master solution have been evaluated,

a candidate i∗ with minimum objective function value is added to the master

solution (M ← M ∪ {i∗}). On the basis of this new master solution M , new

iterations of the Pilot Method are started ∀i /∈ M , providing a new solution

element i∗, and so on.

This mechanism is repeated for all the successive stages of the Pilot Method,

until no further labels need to be added to the master solution (i.e., a feasible

master solution is produced). Alternatively, some user termination conditions,

such as the maximum allowed CPU time or the maximum number of iterations,

may be imposed in order to allow the algorithm to proceed until these conditions

are satisfied. The last master solution corresponds to the best solution to date

and it is produced as the output of the method.

Note that, when the application process is applied to complete a partial so-

lution, in case of ties in the minimum number of Steiner components, a label is

selected at random within the set of labels producing the minimum number of

components. Furthermore, note that no external parameters need to be tuned by

the user for the Pilot Method.

4.3.3 Greedy Randomized Adaptive Search Procedure

GRASP (Greedy Randomized Adaptive Search Procedure) is an iterative meta-

heuristic consisting of two phases: a construction phase, followed by a local search

phase (for a survey on GRASP see Section 2.2.3). The construction phase builds

a feasible solution by applying a randomized greedy procedure. The randomized

greedy procedure builds a solution by iteratively creating a candidate list of ele-

ments that can be added to the partial solution, and then randomly selecting an

element from this list.

121

4.3 Description of the algorithms

The candidate list (RCLα: Restricted Candidate List of length α) is created

by evaluating the elements not yet included in the partial solution. A greedy

function, depending on the specifications of the problem, is used to perform this

evaluation. Only the best elements, according to this greedy function, are in-

cluded in RCLα.

At each iteration one new element is randomly selected from RCLα, added to

the current solution, and the candidate list is updated. The construction phase

stops when a feasible solution is obtained. The obtained solution is not necessarily

locally optimal, so a local search phase is included to try to improve it. This two-

phase process is iterative, continuing until the user termination condition such

as the maximum allowed CPU time, the maximum number of iterations, or the

maximum number of iterations between two successive improvements, is reached.

The final result of GRASP is the best solution found to date.

The GRASP proposed for the MLSteiner problem takes inspiration from the

GRASP proposed for the MLST problem (see Section 3.3.3). Its implementation

is specified in Algorithm 4.3. For the construction phase of GRASP (Construc-

Algorithm 4.3: Greedy Randomized Adaptive Search Procedure for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels, Q ⊆ V

basic nodes;

Output: A tree T ;

Initialization:

- Let C ← 0 be the initially empty set of used labels for each iteration;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ ← L be the global set of used labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C) be the number of Steiner components of C, i.e. the number of connected components of

the subgraph (Q, E(C));

begin

repeat
Set C ← 0 and update H = (V, E(C));

Construction phase(C);

Local search(C);

if |C| < |C′| then
Move C′ ← C;

Update H′ = (V, E(C′));
end

until termination conditions ;

⇒ Take any arbitrary spanning tree T of H′ = (V, E(C′)).
end

122

4.3 Description of the algorithms

tion phase() procedure, see Algorithm 4.4), a value-based restricted candidate

list is used in order to select the labels to be placed in RCLα. This is an exten-

sion of the classic greedy criterion used in GRASP, consisting of placing in the

list only the candidate labels having a greedy value (the number of Steiner com-

ponents in the case of the MLSteiner problem) not greater than a user-defined

threshold (Resende and Ribeiro, 2003). In the proposed implementation, com-

plete randomization is used to choose the initial label to add. This corresponds

to setting the threshold to +∞, meaning that the candidate list is filled with all

the labels of the graph (length α = total number of labels). For the remaining

labels to add, the list is formed by considering only the labels that result in the

minimum number of Steiner components at the specific step, in order to further

intensify the search process. This means fixing the threshold as the minimum

number of Steiner components produced by the candidate labels at the specific

step (i.e. only the labels producing the least number of Steiner components at

that step constitute the candidate list).

Algorithm 4.4: Procedure Construction phase(·)
Procedure Construction phase(C):

Let RCLα ← 0 be the restricted candidate list of length α;

Set RCLα ← L and α ← `;

Select at random a label c ∈ RCLα;

Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

while Comp(C) > 1 do
Set RCLα ← {c ∈ L|c minimizes Comp(C ∪ {c})};
Select at random a label c ∈ RCLα;

Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end

At the end of the construction phase of GRASP, the successive local search

phase (Local search(C) procedure, see Algorithm 3.7) consists of trying to greedily

drop some labels (i.e. the associated edges) from the current solution, whilst

retaining feasibility. It yields a further improvement to the intensification phase

of the algorithm.

123

4.3 Description of the algorithms

4.3.4 Discrete Particle Swarm Optimization

Over the years, evolutionary and nature-inspired algorithms have been widely

used as robust techniques for solving hard combinatorial optimization problems.

Their behaviour is directed by the evolution of a population searching for the

optimum. Particle Swarm Optimization (PSO) is a a population-based meta-

heuristic proposed by Kennedy and Eberhart (1995). As is the case with Genetic

Algorithms, PSO is an evolutionary algorithm, inspired by the social behaviour of

individuals (or particles) inside swarms occurring in nature, such as flocks of birds

or schools of fish. Being inspired by the principles of natural evolution, Particle

Swarm Optimization is also a main representative of the class of nature-inspired

algorithms. Unlike classic evolutionary approaches as Genetic Algorithms, it has

no crossover and mutation operators, is easy to implement, and requires few pa-

rameter settings and low computational memory. For a survey on PSO, the reader

is referred to Section 2.3.6.

The standard PSO (Kennedy and Eberhart, 2001) considers a swarm SW con-

taining nsw particles (SW = 1, 2, . . . , nsw) in a d-dimensional continuous solution

space. Each i-th particle of the swarm has a position xi = (xi1, xi2, . . . , xij, . . . , xid)

associated with it, and a velocity vi = (vi1, vi2, . . . , vij, . . . , vid). The position xi

represents a solution for the problem, while the velocity vi gives the change rate

for the position of particle i in the next iteration. Indeed, considering an iteration

k, the position of particle i is adjusted according to

xk
i = xk−1

i + vk
i . (4.1)

Each particle i of the swarm communicates with a social environment or neigh-

bourhood N(i) ⊆ SW , which may change dynamically and represents the group

of particles with which particle i communicates. In nature, a bird adjusts its po-

sition in order to find a better position, according to its own experience and the

experience of its companions. In the same manner, consider an iteration k of the

PSO algorithm. Each particle i updates its velocity reflecting the attraction of

its best position so far (bi) and the best position (gi) of its social neighbourhood

N(i), following the equation:

vk
i = c1ξv

k−1
i + c2ξ(bi − xk−1

i) + c3ξ(gi − xk−1
i). (4.2)

124

4.3 Description of the algorithms

The parameters ci are positive constant weights applied to the three factors

that influence the velocity of the particle i, while the term ξ refers to a random

number with uniform distribution in [0, 1) that is independently generated at

each iteration.

Since the original PSO is applicable to optimization problems with continu-

ous variables, several adaptations of the method to discrete problems, known as

Discrete Particle Swarm Optimization (DPSO), have been proposed (Kennedy

and Eberhart, 1997). In this section the DPSO procedure introduced by Moreno-

Pérez et al. (2007) is used. This DPSO considers a swarm SW containing nsw

particles (SW = 1, 2, . . . , nsw) whose positions xi evolve in the discrete solution

space, jumping from a solution to another. In such a case, the notion of velocity

used in the standard PSO loses its meaning, and is not considered. Furthermore,

the weights of the updating equation used in the standard PSO are interpreted as

probabilities that, at each iteration, each particle has a random behaviour, or acts

in a manner guided by the effect of attractors. The effect of the attraction of a

position causes the given particle to jump towards this attractor. An inspiration

from nature for this process is found in frogs, which jump from lily pad to lily

pad in a pool.

Given a particle i, three attractors are considered: its own best position (bi),

the best position of its social neighbourhood (gi), and the global best position (g∗).

Indeed, considering a generic iteration k, the update equation for the position xi

of a particle i is:

xk
i = c1x

k−1
i ⊕ c2bi ⊕ c3gi ⊕ c4g

∗. (4.3)

The meaning of this equation is that, at the k-th iteration, the i-th particle

with position xi performs random jumps with respect to its current position with

probability c1, improving jumps approaching bi with probability c2, improving

jumps approaching gi with probability c3, and improving jumps approaching g∗

with probability c4. Note that exactly one type of jump is performed at each

iteration. In order to implement this operation, a random number ξ is generated

in order to select the type of jump to be chosen. A jump approaching an attractor

consists of modifying a feature of the current solution with the corresponding

feature of the selected attractor (or giving an arbitrary value in the case of the

125

4.3 Description of the algorithms

random jump). For the MLSteiner problem the features of a solution are the

labels that are included in the solution, while the parameters c1, c2, c3, and c4,

are set to 0.25.

Further details of the DPSO proposed for the MLSteiner problem are specified

in Algorithm 4.5. The position of a particle in the swarm is encoded as a feasible

Algorithm 4.5: Discrete Particle Swarm Optimization for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels, Q ⊆ V

basic nodes;

Output: A tree T ;

Initialization:

- Let C ← 0 be a set of labels, initially empty;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Set the size nsw of the swarm SW ;

begin
Generate the initial swarm SW with positions at random:

X = [x1, x2, . . . , xnsw] ←Generate-Swarm-At-Random(G);

Update the vector of the best positions B = [b1, b2, . . . , bnsw] ← X;

Extract the best position among all the particles: g∗ ← Extract-the-Best(SW , X);

repeat

for i ← 1 to nsw do

if i ← 1 then
Initialize the best position of the social neighbourhood of i: gi ← `;

else
Update the best position of the social neighbourhood of i: gi ← gi−1;

end

Select at random a number between 0 and 1: ξ ← random[0, 1);

if ξ ∈ [0, 0.25) then selected ← xi;

else if ξ ∈ [0.25, 0.5) then selected ← bi;

else if ξ ∈ [0.5, 0.75) then selected ← gi;

else if ξ ∈ [0.75, 1) then selected ← g∗;
Combine the given particle i and the selected particle: xi ← Combine(xi, selected);

Local search(i, xi);

if |xi| < |bi| then
Update the best position of the given particle i: bi ← xi;

end

if |xi| < |gi| then
Update the best position of the social neighbourhood of i: gi ← xi;

end

if |xi| < |g∗| then
Update the global best position to date: g∗ ← xi;

end

end
until termination conditions ;

Set C ← g∗;
Update H = (V, E(C));

⇒ Take any arbitrary spanning tree T of H = (V, E(C)).
end

126

4.3 Description of the algorithms

solution to the MLSteiner problem. The initial positions X = [x1, x2, . . . , xnsw] of

the swarm SW , containing nsw particles, are generated by starting from empty

sets of labels and adding, at random, labels until feasible solutions emerge. The

position xi of a particle i is a 0-1 vector denoting which labels are present in

particle i. Then, for each particle of the swarm, a random number ξ between

0 and 1 is selected. Considering the i-th particle of the swarm, if ξ belongs to

[0, 0.25) the current position of the given particle is selected (selected ← xi) in

order to perform a random jump. Otherwise, if ξ is in [0.25, 0.5) the best position

to date (bi) of the given particle is selected (selected ← best s(p)) as attractor for

the movement of xi. Instead, if ξ ∈ [0.5, 0.75) the selected attractor is the best

position gi of the social neighbourhood, interpreted as the best position obtained

within the swarm in the current iteration. For the remaining case, if ξ ∈ [0.75, 1)

the selected attractor is the best position to date obtained by all the particles,

which is called the global best position to date (g∗).

Algorithm 4.6: Procedure Combine(xi, selected)

Procedure Combine(xi, selected):

Select a random integer between 0 and |xi|: ψ ← Random(0, |xi|);
for j ← 1 to ψ do

Select at random a number between 0 and 1: ξ ←Random(0, 1);

if ξ ≤ 0.5 then
Select at random a label c′ ∈ xi;

Delete label c′ from the the position of the given particle: xi ← xi − {c′};
else

Select at random a label c′ ∈ selected;

Add label c′ to the position of the given particle i: xi ← xi ∪ {c′};
end

end

while Comp(xi) > 1 do
Select at random an unused label u ∈ (L− xi);

Add label u to the position of the given particle i: xi ← xi ∪ {u};
end

Afterwards, the i-th particle with current position xi performs a jump ap-

proaching the selected attractor by means of the procedure Combine (Algo-

rithm 4.6). This procedure first selects a random integer ψ between 0 and |xi|.
Successively, it either drops some labels from xi, or randomly picks up some la-

bels from the selected attractor and adds to xi, until ψ labels have been added

or deleted with respect to xi. Note that if an infeasible xi is obtained at this

127

4.3 Description of the algorithms

stage, further labels are added at random to xi in order to restore feasibility.

At the end of the procedure Combine, a local search procedure is applied to the

resulting particle (Local-Search(i, xi)), in order to try to delete some labels from

xi whilst retaining the feasibility. Then all the attractors (bi, gi, g∗) are updated,

and the same procedure is repeated for all the particles in the swarm. The entire

algorithm continues until the user termination conditions are satisfied.

4.3.5 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is an effective metaheuristic introduced

by Hansen and Mladenović (1997) (for a survey on VNS see Section 2.2.5). The

basic idea behind this method is to define a neighbourhood structure for the solu-

tion space, and to explore different increasingly distant neighbourhoods whenever

a local optimum is reached by a prescribed local search.

At the starting point, a set of kmax (a parameter) neighbourhoods (Nk, with

k = 1, 2, ..., kmax), is selected. A stopping condition is determined (either the

maximum allowed CPU time, or the maximum number of iterations, or the max-

imum number of iterations between two successive improvements), and an initial

feasible solution found (at random, in this case). Denoting by Nk(C) the set of

solutions in the k-th neighbourhood of the solution C, the simplest and most com-

mon choice is a structure in which the neighbourhoods have increasing cardinality:

|N1(C)| < |N2(C)| < ... < |Nkmax(C)|. The process of changing neighbourhoods

when no improvement occurs diversifies the search. In particular the choice of

neighbourhoods of increasing cardinality yields a progressive diversification.

Although a VNS for the MLSteiner was implemented by Cerulli et al. (2006),

our implementation is motivated by the successful VNS proposed for the MLST

problem in Chapter 3. The two approaches mainly differ in the implementation of

the neighbourhood structures, in the way the initial solution is obtained, and in

the maximum size of the shaking phase kmax, among others. The VNS by Cerulli

et al. (2006) uses three different neighbourhood structures (k - Switch Neighbour-

hood, k - Covering Neighbourhood, k - Mixed Neighbourhood, see (Cerulli et al.,

2006) for more details), in order to check whether one neighbourhood is better

128

4.3 Description of the algorithms

than another. For each neighbourhood, the procedure starts from an initial fea-

sible solution provided by a greedy algorithm, and then tries to find an improved

solution by selecting one of the neighbourhoods considered. After a specified

number of iterations, another neighbourhood is chosen to be explored in subse-

quent iterations. For each neighbourhood, the parameter kmax varies during the

execution, determined by kmax ← min(|C|, |L|
4

), where C is the current feasible

solution and L is the set of labels. In contrast, our VNS implementation for the

MLSteiner is specified in Algorithm 4.7.

Before going into detail, consider the following notation. Given a labelled

graph G = (V, E, L), with n vertices, m edges, ` labels, and Q ⊆ V basic nodes,

Algorithm 4.7: Variable Neighbourhood Search for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,

Q ⊆ V basic nodes;

Output: A tree T ;

Initialization:

- Let C ← 0 be the global set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ be a set of labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of Steiner components of C′, i.e. the number of connected components

of the subgraph (Q, E(C′));
begin

C ←Generate-Initial-Solution-At-Random();

repeat
Set k ← 1 and kmax ← (|C|+ |C|/3);

while k < kmax do
C′ ←Shaking phase(Nk(C));

Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end
until termination conditions ;

Update H = (V, E(C));

⇒ Take any arbitrary spanning tree T of H = (V, E(C)).
end

129

4.3 Description of the algorithms

each solution is encoded by a binary string, i.e. C = (c1, c2, ..., c`) where

ci =

{
1 if label i is in solution C
0 otherwise

(∀i = 1, . . . , `). (4.4)

Now, define the solution space, S, as the set of all the possible solutions, and let

ρ(C1, C2) = |C1 − C2| =
∑̀
i=1

λi (4.5)

be the Hamming distance between any two solutions C1 and C2, where λi = 1 if

label i is included in one of the solutions but not in the other, and 0 otherwise,

∀i = 1, ..., `. The k-th neighbourhood induced by (S, ρ), of a given solution C,

may be defined as

Nk(C) = {S ⊂ L : (ρ(C, S)) = k} (∀k = 1, ..., kmax). (4.6)

The parameter kmax represents the size of the neighbourhood structure and, ac-

cording to our experience, the value kmax ← (|C| + |C|/3) is the best choice for

the MLSteiner problem.

Looking at Algorithm 4.7, after defining the neighbourhood structure and

obtaining the initial random solution C, the algorithm applies a shaking phase

(Shaking phase(Nk(C)) procedure), letting parameter k vary throughout the ex-

ecution. The shaking phase (see Algorithm 3.9) consists of the random selection

of a solution C ′ in the neighbourhood Nk(C) of the current solution C, with the

intention of providing a better starting point for the successive local search phase.

In order to select a solution in the k-th neighbourhood of a solution C, the

algorithm randomly adds further labels to C, or removes labels from C, until the

resulting solution has a Hamming distance equal to k with respect to C. Addition

and deletion of labels at this stage have the same probability of being chosen. For

this purpose, a random number is selected between 0 and 1 (rnd ← random[0, 1]).

If this number is smaller than 0.5, the algorithm proceeds with the deletion of

a label from C. Otherwise, an additional label is included at random in C from

the set of unused labels (L− C). The procedure is repeated until the number of

addition/deletion operations is exactly equal to k.

The shaking phase represents the core idea of VNS, that of changing the

neighbourhood structure when the local search is trapped at a local minimum.

130

4.3 Description of the algorithms

The successive local search (Local search(C ′) procedure) is the same local search

for the VNS implementation used for the MLST problem (see Algorithm 3.10).

It basically consists of two steps. In the first step, since deletion of labels often

gives an infeasible incomplete solution, additional labels may be added in order

to restore feasibility. In this case, addition of labels follows the MVCA criterion

of adding the label with the minimum number of connected components. Note

that in case of ties in the minimum number of connected components, a label

not yet included in the partial solution is chosen at random within the set of

labels producing the minimum number of components (i.e. u ∈ S where S =

{e ∈ (L−C ′) : min Comp(C ′ ∪ {e})}). Then, the second step of the local search

tries to delete labels one by one from the specific solution, whilst maintaining

feasibility.

After the local search phase, if no improvements are obtained (|C ′| ≥ |C|), the

neighbourhood is increased (k ← k + 1), resulting in a higher diversification of

the search process. Otherwise, if |C ′| < |C|, the algorithm moves to the improved

solution (C ← C ′), restarting the search with the smallest neighbourhood (k ←
1). The algorithm proceeds until the established stopping conditions are reached.

4.3.6 Hybrid local search

Although hybridizing a metaheuristic may increase the complexity of the imple-

mentation, a more advanced VNS version is considered for the MLSteiner prob-

lem, with a view to obtaining improved results. For this purpose, a hybrid local

search method (HYBRID) is used, in order to improve the diversification of the

search process. The motivation for introducing a high diversification capability is

to obtain a better performance in large problem instances. HYBRID is a variant

of the hybrid local search method proposed for the MLST problem in Chapter 3,

that is a hybridization between Variable Neighbourhood Search and Simulated

Annealing. The details of HYBRID are specified in Algorithm 4.8.

The algorithm starts from an initial feasible solution (BestC) generated at

random. Then the Complementary Local Search, already introduced for the

MLST problem in Section 3.3.5, is applied (Complementary(·) procedure, see

Algorithm 3.12). It consists of extracting a solution from the complementary

131

4.3 Description of the algorithms

Algorithm 4.8: Hybrid local search method for the MLSteiner problem

Input: A labelled, undirected, connected graph G = (V, E, L), with n vertices, m edges, ` labels,

Q ⊆ V basic nodes;

Output: A tree T ;

Initialization:

- Let BestC ← 0 be the global set of labels;

- Let HBEST = (V, E(BestC)) be the subgraph of G restricted to V and edges with labels in BestC ,

where E(BestC) = {e ∈ E : L(e) ∈ BestC};
- Let C ← 0 be the set of used labels;

- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where

E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of Steiner components of C, i.e. the number of connected components of

the subgraph (Q, E(C));

- Let C′ be a set of labels;

- Let H′ = (V, E(C′)) be the subgraph of G restricted to V and edges with labels in C′, where

E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of Steiner components of C′, i.e. the number of connected components

of the subgraph (V, E(C′));
- Let Compl Space = (L−BestC) the complementary space of the best solution BestC ;

begin
BestC ←Generate-Initial-Solution-At-Random();

Local search(BestC);

repeat
Extract a solution from the complementary space of BestC : C ←Complementary(BestC);

while |C| < |BestC | AND (C is a feasible solution) do
Move BestC ← C;

Extract another complementary solution: C ←Complementary(BestC);

end

Set k ← 1 and kmax ← |C|+ |C|/3;

while k < kmax do
C′ ←Shaking phase(Nk(C));

Local search(C′);
if |C′| < |C| then

Move C ← C′;
Restart with the first neighbour: k ← 1;

else
Increase the size of the neighbourhood structure: k ← k + 1;

end

end

if |C| < |BestC | then
Move BestC ← C;

end
until termination conditions ;

Update HBEST = (V, E(BestC));

⇒ Take any arbitrary spanning tree T of HBEST = (V, E(BestC)).
end

space of the current solution. Given the solution BestC , its complementary space

(Compl Space) is defined as the set of all the labels that are not contained in

BestC , that is (L−BestC).

132

4.3 Description of the algorithms

To yield the solution, Complementary Local Search applies a constructive

heuristic to the subgraph of G with labels in (Compl Space). In the proposed

implementation, the Probabilistic MVCA heuristic, already introduced in Sec-

tion 3.3.5 for the MLST problem, is used. The Probabilistic MVCA uses an

idea similar to the basic one of the Simulated Annealing metaheuristic (Aarts

et al., 2005): the introduction of probabilities for the choice of the next labels to

add to incomplete solutions. Thus, it further improves the diversification of the

search process because it allows the possibility of adding worse components at

each iteration. The introduction of this probabilistic element makes HYBRID a

hybridization between VNS and Simulated Annealing.

The Probabilistic MVCA begins from an initial solution, and successively se-

lects a candidate move at random. This move is accepted if it leads to a solution

with a better objective function value than the current solution, otherwise the

move is accepted with a probability that depends on the deterioration ∆ of the

objective function value. Consider a label x. The deterioration ∆ of the objective

function value is (Comp(x) − Compmin), where Comp(x) represents the num-

ber of Steiner components obtained by inserting x in the partial solution, and

Compmin is the minimum number of Steiner components at the specific step.

Thus, following the criteria of Simulated Annealing, the acceptance probability

is computed according to the Boltzmann function as exp(−∆/T), using a tem-

perature T as control parameter (Kirkpatrick et al., 1983). Probability values

assigned to each label are inversely proportional to the number of Steiner compo-

nents they give. The labels with a lower number of Steiner components will have

a higher probability of being chosen. Conversely, labels with a higher number

of Steiner components will have a lower probability of being chosen. Thus the

possibility of choosing less promising labels to be added to incomplete solutions

is allowed.

The value of the parameter T is initially high, which allows many worse moves

to be accepted, and is gradually reduced following a geometric cooling schedule:

TComplementary
(|C|+1) ←

TComplementary
(|C|)

α
←

TComplementary
(0)

α|C|
, (4.7)

where experimentally it was found that the values TComplementary(0) ← |BestC |
and α ← 1/|BestC | produce good results. This cooling schedule is very fast for

133

4.3 Description of the algorithms

the MLSteiner problem, yielding a good balance between intensification and di-

versification. At each step, the probabilities of selecting labels giving a smaller

number of Steiner components will be higher than the probabilities of selecting

labels with a higher number of Steiner components. Furthermore, these differ-

ences in probabilities increase step by step as a result of the reduction of the

temperature given by the cooling schedule. It means that the difference between

the probabilities of two labels giving different numbers of Steiner components is

higher as the algorithm proceeds.

The Complementary procedure stops if either a feasible solution C is obtained,

or the set of unused colours contained in the complementary space is empty (i.e.

(Compl Space − C) = 0), producing a final infeasible solution. After the Com-

plementary procedure, a shaking phase similar to the one used for the basic VNS

is applied to the resulting solution, denoted by C (see Algorithm 3.9). It consists

of the random selection of a point C ′ in the neighbourhood Nk(C) of the current

solution C. For the proposed implementation, given a solution C, its k-th neigh-

bourhood Nk(C) is considered as all the different sets of labels that are possible to

obtain from C by randomly adding further labels to C, or by removing labels from

C, until the resulting solution has a Hamming distance equal to k with respect to

C, where k = 1, 2, ..., kmax. In a more formal way, the k-th neighbourhood of a so-

lution C is defined as Nk(C) = {S ⊂ L : (ρ(C, S)) = k}, where k = 1, 2, ..., kmax.

Computational experience indicates that the value kmax ← (|C|+ |C|/3) gives a

good trade-off between intensification and diversification of the search process.

Addition and deletion of labels at this stage have the same probability of be-

ing chosen. For this purpose, a random number is selected between 0 and 1

(rnd ← random[0, 1]). If this number is smaller than 0.5, the algorithm proceeds

with the deletion of a label from C. Otherwise, an additional label is included at

random in C from the set of unused labels (L − C). The procedure is repeated

until the number of addition/deletion operations is exactly equal to k.

Since either the Complementary procedure, or the deletion of labels in the

shaking phase, can produce an infeasible solution, additional labels may be added

in order to restore feasibility in the first step of the successive local search (Lo-

cal search(C ′) procedure, see Algorithm 3.13). Addition of labels at this step is

according to the Probabilistic MVCA heuristic, as in the Complementary Local

134

4.4 Computational results

Search. For the geometric schedule in the local search, computational experi-

ments have shown that T0 ← |BestC |2 and α ← 1/|BestC |, where BestC is the

current best solution, are values that performed well. The corresponding geomet-

ric cooling law is

TLocal search
(|C′|+1) ←

TLocal search
(0)

α|C′|
← 1

|BestC |(|C′|−2)
. (4.8)

Afterwards, the second step of the local search tries to delete labels one by one

from the specific solution, whilst maintaining feasibility.

At this stage, if no improvements are obtained, i.e. if |C ′| ≥ |C|, the neigh-

bourhood structure is increased (k ← k+1), yielding a progressive diversification

(|N1(C)| < |N2(C)| < ... < |Nkmax(C)|). Otherwise, the algorithm moves to the

solution C ′ restarting the search with the smallest neighbourhood (k ← 1). Af-

ter the entire shaking phase, the Complementary procedure is applied again to

the actual best solution (BestC) and the algorithm continues iteratively with the

same procedure until the user termination conditions are satisfied.

4.4 Computational results

To test the performance and the efficiency of the algorithms presented in this sec-

tion, several instances of the MLSteiner problem have been randomly generated

with respect to the number of nodes (n), the density of the graph (d), the number

of labels (`), and the number of basic nodes (q). In the considered experiments,

48 different datasets have been computed, each one containing 10 instances of the

problem (yielding a total of 480 instances), with n = 100, 500 nodes, ` = 0.25 ·n,

0.5 ·n, n, 1.25 ·n labels, and q = 0.2 ·n, 0.4 ·n basic nodes. The number of edges,

m, is obtained indirectly from the density d, whose values are chosen to be 0.8,

0.5, and 0.2. The complexity of the instances increases with the dimension of the

graph (number of nodes, number of basic nodes, and number of labels), and the

reduction in the density of the graph. All the data considered are available from

the author in (Consoli, 2007b).

For each dataset, solution quality is evaluated as the average objective func-

tion value among the 10 problem instances. A maximum allowed CPU time,

135

4.4 Computational results

called max-CPU-time, is chosen as the stopping condition for all the metaheuris-

tics, determined experimentally with respect to the dimension of the problem

instance. For the Discrete Particle Swarm Optimization, a swarm of 100 parti-

cles is considered and a variable number of iterations for each instance is used,

determined such that the computations take approximately max-CPU-time for

the specific dataset. Selection of the maximum allowed CPU time as the stopping

criterion is made in order to have a direct comparison of the metaheuristics with

respect to the quality of their solutions.

Computational experiments are reported in Tables 4.1 - 4.4. All the com-

putations have been made on a Pentium Centrino microprocessor at 2.0 GHz

with 512 MB RAM. In each table, the first three columns show the parameters

characterizing the different datasets (n, `, d), while the values of q determine the

different tables. The remaining columns give the computational results of the al-

gorithms considered, identified with the abbreviations: EXACT (Exact Method),

PILOT (Pilot Method), GRASP (Greedy Randomized Adaptive Search Proce-

dure), DPSO (Discrete Particle Swarm Optimization), VNS (Variable Neighbour-

hood Search), HYBRID (hybrid local search method). All the algorithms have

been implemented using the C++ programming language (Microsoft Visual C++

2005).

All the metaheuristics run for the max-CPU-time specified in each table and,

in each case, the best solution is recorded. The computational times reported in

the tables are the average times at which the best solutions are obtained. For the

Exact Method, a time limit of 3 hours is used. If an exact solution is not found

within this time limit for any instance within a dataset, a not found status (NF)

is reported. All the reported times have precision of ±5 ms. It is interesting to

note that in all the problem instances for which the Exact Method obtains the

solution, also VNS, HYBRID, and DPSO yielded the exact solution.

For each dataset in the tables, the performance of an algorithm is considered

better than another one if either it obtains a smaller average objective function

value, or an equal average objective function value but in a shorter computational

running time. Thus, according to this evaluation, the algorithms are ranked for

each dataset, assigning a rank of 1 to the best performing algorithm, rank 2 to

136

4.4 Computational results

Table 4.1: Computational results for n = 100 and q = 0.2 · n (max-CPU-time
for heuristics = 5000 ms)

Parameters Average objective function values
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 1 1 1 1 1 1
25 0.5 1.5 1.5 1.5 1.5 1.5 1.5

0.2 2.1 2.1 2.1 2.1 2.1 2.1
0.8 1.9 1.9 1.9 1.9 1.9 1.9

50 0.5 2 2 2 2 2 2
100 0.2 3.2 3.2 3.2 3.2 3.2 3.2

0.8 2 2 2 2 2 2
100 0.5 3 3 3 3 3 3

0.2 4.6 4.6 4.6 4.6 4.6 4.6
0.8 2.8 2.8 2.8 2.8 2.8 2.8

125 0.5 3.3 3.3 3.3 3.3 3.3 3.3
0.2 5.2 5.4 5.3 5.2 5.2 5.2

TOTAL: 32.6 32.8 32.7 32.6 32.6 32.6

Parameters Computational times (milliseconds)
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 14.7 14.1 6.7 1.6 1.5 1.5
25 0.5 26.3 20.3 6.3 3.2 4.7 4.8

0.2 16.2 15.6 4.7 6.1 4.6 6.2
0.8 59.4 56.1 9.4 6.4 1.6 7.9

50 0.5 66.3 67.2 6.1 10.9 4.7 7.8
100 0.2 40.6 75.1 15.6 15.7 1.5 9.5

0.8 306.3 270.3 40.6 75.1 28.2 43.8
100 0.5 251.6 275.1 7.6 31.2 7.3 12.6

0.2 0.9∗103 314.1 32.8 45.3 32.9 40.4
0.8 78.2 381.2 14.1 48.4 15.3 32.8

125 0.5 451.5 443.9 93.8 157.7 96.9 218.8
0.2 4.7∗103 518.8 68.8 322 136 162.4

TOTAL: 6.9∗103 2.5∗103 306.5 723.6 335.2 548.5

the second best one, and so on. Obviously, if the Exact Method records a NF for

a dataset, the worst rank is assigned to it in the specified dataset.

The average ranks of the algorithms, among the datasets considered, are (from

the best one to the worst one with respect to the average ranks): EXACT =

5.49, PILOT = 5.21, GRASP = 2.56, DPSO = 3.88, VNS = 1.38, HYBRID =

137

4.4 Computational results

Table 4.2: Computational results for n = 100 and q = 0.4 · n (max-CPU-time for
heuristics = 6000 ms)

Parameters Average objective function values
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 1 1 1 1 1 1
25 0.5 1.9 1.9 1.9 1.9 1.9 1.9

0.2 3 3 3 3 3 3
0.8 2 2 2 2 2 2

50 0.5 2.2 2.2 2.2 2.2 2.2 2.2
100 0.2 4.3 4.4 4.3 4.3 4.3 4.3

0.8 3 3 3 3 3 3
100 0.5 3.6 3.6 3.6 3.6 3.6 3.6

0.2 NF 6.5 6.4 6.4 6.4 6.4
0.8 3 3 3 3 3 3

125 0.5 4 4 4 4 4 4
0.2 NF 7 6.9 6.9 6.9 6.9

TOTAL: - 41.6 41.3 41.3 41.3 41.3

Parameters Computational times (milliseconds)
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 24.7 15.6 6.3 9.3 1.6 4.6
25 0.5 29.7 21.7 6.4 6.4 1.6 1.5

0.2 36.9 29.8 3.2 23.6 3 9.3
0.8 60.9 53 7.2 20.4 3.1 7.9

50 0.5 117.2 76.6 15.1 34.3 17.2 23.4
100 0.2 314.1 111 34.4 45.1 28.1 29.7

0.8 175 260.9 10.9 39.2 9.4 17.4
100 0.5 389.1 312.5 38.4 96.8 32.3 39.7

0.2 NF 472 79.8 350 79.7 99.9
0.8 354.6 440.7 18.7 57.6 23.4 20.3

125 0.5 479.6 507.8 73.4 67.1 60.9 70.4
0.2 NF 811 177.8 411 191.7 197

TOTAL: - 3.1∗103 471.6 1.2∗103 459.8 521.1

2.48. According to the ranking, VNS is the best performing algorithm, followed

respectively by HYBRID, GRASP, DPSO, PILOT, and finally EXACT. The

motivation to introduce a high diversification capability in HYBRID is to obtain

a better performance in large problem instances. Inspection of Table 4.4 shows

that this aim is achieved.

138

4.4 Computational results

Table 4.3: Computational results for n = 500 and q = 0.2 · n (max-CPU-time for
heuristics = 500∗103 ms)

Parameters Average objective function values
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 1.1 1.1 1.1 1.1 1.1 1.1
125 0.5 2 2 2 2 2 2

0.2 3 3 3 3 3 3
0.8 2 2 2 2 2 2

250 0.5 2.9 2.9 2.9 2.9 2.9 2.9
500 0.2 NF 4.4 4.3 4.3 4.3 4.3

0.8 3 3 3 3 3 3
500 0.5 NF 3.9 3.9 4 3.9 3.9

0.2 NF 6.8 6.8 6.9 6.7 6.7
0.8 NF 3.8 3.8 3.8 3.8 3.8

625 0.5 NF 4.8 4.8 4.8 4.7 4.7
0.2 NF 8 8 7.9 7.9 8

TOTAL: - 45.7 45.6 45.7 45.3 45.4

Parameters Computational times (milliseconds)
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 1.5∗103 1.2∗103 173.4 3.4∗103 172.2 404.7
125 0.5 2.1∗103 2.5∗103 149.8 575 26.5 104.8

0.2 4.1∗103 7.1∗103 318.8 5.9∗103 265.7 634.4
0.8 13.6∗103 17.4∗103 270 9.7∗103 115.6 859.4

250 0.5 37.3∗103 46.8∗103 334.6 8.8∗103 148.4 301.6
500 0.2 NF 48.1∗103 14.5∗103 36.7∗103 11.9∗103 17∗103

0.8 300.8∗103 304.4∗103 2.3∗103 22.1∗103 1.8∗103 1.9∗103

500 0.5 NF 325.8∗103 109.7∗103 106.5∗103 85.7∗103 388.6∗103

0.2 NF 425.2∗103 17.9∗103 170.4∗103 27.7∗103 29∗103

0.8 NF 465.6∗103 36.9∗103 180.2∗103 32.8∗103 51.9∗103

625 0.5 NF 403∗103 2.5∗103 110.4∗103 6.7∗103 9.4∗103

0.2 NF 399.3∗103 36.7∗103 285.7∗103 79.5∗103 36.2∗103

TOTAL: - 2446.4∗103 221.8∗103 940.4∗103 246.8∗103 536.3∗103

To analyse the statistical significance of differences between these ranks, the

same procedure was followed as that for the MLST problem in Section 3.4, which

makes use of the Friedman test (Friedman, 1940) and its corresponding Nemenyi

post-hoc test (Nemenyi, 1963), is applied. In particular, the version of the Fried-

man test developed by Iman and Davenport (1980) is used, which considers a

139

4.4 Computational results

Table 4.4: Computational results for n = 500 and q = 0.4 · n (max-CPU-time for
heuristics = 600∗103 ms)

Parameters Average objective function values
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 1.9 1.9 1.9 1.9 1.9 1.9
125 0.5 2 2 2 2 2 2

0.2 NF 4.1 4.1 4.1 4.1 4.1
0.8 2 2 2 2 2 2

250 0.5 3 3 3 3 3 3
500 0.2 NF 6.2 6.1 6.3 6.1 6.1

0.8 NF 3.7 3.7 3.7 3.7 3.7
500 0.5 NF 5 5 5 5 5

0.2 NF 9.9 9.9 9.9 9.8 9.8
0.8 NF 4 4 4 4 4

625 0.5 NF 5.8 5.8 5.7 5.7 5.7
0.2 NF 11.5 11.5 11.4 11.2 11.3

TOTAL: - 59.1 59 59 58.5 58.6

Parameters Computational times (milliseconds)
n ` d EXACT PILOT GRASP DPSO VNS HYBRID

0.8 218.8 1.1∗103 231 778.2 187.5 93.9
125 0.5 2.8∗103 2.6∗103 230 4.3∗103 184.2 218.7

0.2 NF 8.3∗103 1.1∗103 8.8∗103 853 3.3∗103

0.8 44.6∗103 20.2∗103 615.7 12.5∗103 393.7 1.2∗103

250 0.5 48.8∗103 49.8∗103 864.2 13.4∗103 650 3.1∗103

500 0.2 NF 48.7∗103 20.4∗103 122.2∗103 38.1∗103 24.8∗103

0.8 NF 201.1∗103 13.1∗103 19.4∗103 12.1∗103 13.7∗103

500 0.5 NF 193.1∗103 5.5∗103 19.6∗103 4.9∗103 5∗103

0.2 NF 579.7∗103 75.9∗103 195.3∗103 258.4∗103 133.3∗103

0.8 NF 384∗103 6.9∗103 18.5∗103 6.2∗103 6.5∗103

625 0.5 NF 421.2∗103 50.5∗103 32.6∗103 321.5∗103 12.7∗103

0.2 NF 397.9∗103 95.4∗103 232.1∗103 115.9∗103 68.6∗103

TOTAL: - 2307.7∗103 270.7∗103 679.5∗103 739.3∗103 272.5∗103

powerful test statistic FF (Appendix B). For more details on the issue of statisti-

cal tests for comparison of algorithms over multiple datasets see (Hollander and

Wolfe, 1999; Demśar, 2006).

According to the version by Iman and Davenport (1980) for the Friedman

test (Appendix B), and considering a significance level α = 1% for this test, a

140

4.4 Computational results

significant difference between the performance of the metaheuristics, with respect

to the evaluated ranks, exists. Since the equivalence of the algorithms is rejected,

the Nemenyi post-hoc test is applied (Appendix B) in order to perform pairwise

comparisons. It considers the performance of two algorithms significantly different

if their corresponding average ranks differ by at least a specific threshold critical

difference (CD). In this case, considering a significance level of the Nemenyi test

of α = 1%, this critical difference is CD = 1.29. The differences between the

average ranks of the algorithms are reported in Table 4.5.

Table 4.5: Pairwise differences of the average ranks of the algorithms (Critical
difference = 1.29 for a significance level of α = 1% for the Nemenyi test)
ALGORITHM VNS HYBRID GRASP DPSO PILOT EXACT
(average rank) (1.38) (2.48) (2.56) (3.88) (5.21) (5.49)

VNS (1.38) - 1.1 1.18 2.5 3.83 4.11
HYBRID (2.48) - - 0.08 1.4 2.73 3.01
GRASP (2.56) - - - 1.32 2.65 2.93
DPSO (3.88) - - - - 1.33 1.61
PILOT (5.21) - - - - - 0.28
EXACT (5.49) - - - - - -

From this table, it is possible to identify three groups of algorithms with

different performance. The best performing group consists of VNS, HYBRID, and

GRASP, because they obtain the smallest ranks which are significantly different

from the ranks of the remaining algorithms. The remaining groups are, in order,

DPSO, and then PILOT and EXACT.

Within the group with the best performance, VNS seems to outperform HY-

BRID and GRASP, because it has the best rank. Furthermore, its pairwise differ-

ences in the ranks with respect to HYBRID (i.e., 1.1) and GRASP (i.e., 1.18) are

extremely close to the critical difference (CD = 1.29) considering a significance

level of α = 1% for the Nemenyi test. With a a significance level of α = 5%,

the critical difference would be CD = 1.09, and the rank of VNS would be sig-

nificantly different with respect to the ranks of HYBRID and GRASP (because

their pairwise differences in the ranks are bigger than CD = 1.09).

Summarizing, from the Friedman and Nemenyi statistical tests, VNS, HY-

BRID, and GRASP have comparable performance, and they are the best perform-

141

4.5 Conclusions

ing heuristics for the MLSteiner problem. They are extremely effective, obtaining

high-quality solutions in short computational running times. Furthermore, the

algorithm which appears to be the most suitable for the proposed problem is

VNS. Although a VNS for the MLSteiner, along with other heuristic approaches,

was implemented by Cerulli et al. (2006), it has been shown that our VNS imple-

mentation is fast, simple, and particularly effective for the MLSteiner problem.

The superiority of Variable Neighbourhood Search with respect to the other al-

gorithms is further evidenced by its ease implementation and simplicity.

4.5 Conclusions

In this chapter the minimum labelling Steiner tree (MLSteiner) problem has been

considered. It is an extension of the minimum labelling spanning tree problem

to the case where only a subset of specified nodes, the basic nodes, need to be

connected. The MLSteiner problem is NP-hard, and therefore heuristics and

approximate solution approaches with performance guarantees are of interest.

Some metaheuristics for the problem have been presented: a Greedy Random-

ized Adaptive Search Procedure (GRASP), a Discrete Particle Swarm Optimiza-

tion (DPSO), a Variable Neighbourhood Search (VNS), and a hybrid local search

method (HYBRID) obtained by combining Variable Neighbourhood Search with

Simulated Annealing (SA). Considering a wide range of problem instances, these

metaheuristics have been compared to the Pilot Method (PILOT) by Cerulli et al.

(2006), the most popular MLSteiner heuristic in the literature. Based on this ex-

perimental analysis, all the proposed procedures clearly outperformed PILOT

and, in particular, the best performance was obtained by VNS, HYBRID, and

GRASP. It was shown that the proposed metaheuristics are fast and extremely

effective for the MLSteiner problem, obtaining high-quality solutions in short

computational times. Furthermore, the algorithm which appears to be the most

suitable for the proposed problem is VNS, thanks to the following features: ease

of implementation, user-friendly code, high-quality of the solutions, and shorter

computational running times. This analysis provides further evidence of the abil-

ity of VNS to deal with NP-hard combinatorial problems.

142

Measure what is measurable, and
make measurable what is not so.

Galileo Galilei

Chapter 5

Quartet method of hierarchical

clustering

Given a set of objects and their pairwise distances, we wish to determine a visual

representation of the data. We use the quartet paradigm to compute a hierarchy

of clusters of the objects. The method is based on an NP-hard graph optimization

problem called the minimum quartet tree cost problem. This chapter presents

and compares several metaheuristic approaches to approximate the optimal hi-

erarchy. The performance of the algorithms is tested through extensive compu-

tational experiments and it is shown that the Reduced Variable Neighbourhood

Search metaheuristic is the most effective approach to the problem, obtaining

high quality solutions in short computational running times.

5.1 Introduction

The problem of grouping similar objects to produce a classification (or cluster-

ing) (Kaufman and Rousseeuw, 2005) goes back to primitive times when early

humans realized that many individual objects shared certain properties such as

being edible, or poisonous, or ferocious, etc. A classification scheme may simply

represent a convenient method for organizing a large data set so that it can be

more easily understood and information retrieved more efficiently. If the data

can validly be summarized by a small number of groups of objects, referred to

143

5.1 Introduction

as clusters or classes, then the group labels may provide a very concise descrip-

tion of patterns of similarities and differences in the data. In natural sciences

such as biology and zoology, the practice of classifying organisms is generally

known as taxonomy. Numerical techniques for deriving classifications, named as

cluster analysis or segmentation, originated largely in these areas (Kaufman and

Rousseeuw, 2005).

Clusters are groups of objects that are similar according to a specific metric.

There are various ways to cluster. A major class of cluster analysis techniques is

represented by hierarchical clustering methods (Kaufman and Rousseeuw, 2005).

Conceptually simple, hierarchical clustering is among the best known methods

in this setting, and the most natural way to represent relations among data sets.

In a hierarchical clustering method the data are not partitioned into a particular

number of classes at a single step. Instead, a series of partitions takes place,

which may run from a single cluster containing all objects, to n clusters each

containing a single object. Hierarchical clustering methods may be classified as

agglomerative methods, which proceed by a series of fusions of the n objects into

groups, and divisive methods, which separate the n objects successively into finer

groupings. Hierarchical clustering techniques have been employed in many dif-

ferent disciplines, such as social science, engineering, medicine, biology, planning,

management, and even literature (Kaufman and Rousseeuw, 2005). For example,

hierarchical clustering methods are used by ecologists to determine which plots

in a forest are similar with respect to the vegetation growing on them; by med-

ical researchers to determine which diseases have similar patterns of incidence;

by market researchers to determine which brands of products the public per-

ceives similarly; by archeologists to investigate the relationship between various

types of artefact; by industrial engineers to find the best layout for a factory’s

machines; by sociologists to build ontologies of famous individuals (politicians,

artists, historical persons, and so on).

Hierarchical classifications produced by either the agglomerative or the divi-

sive approach may be represented by a two dimensional diagram known as den-

drogram (Diestel, 2000), which illustrates the fusions or divisions made at each

successive stage of analysis. The dendrogram, or tree diagram, is a mathematical

way to represent the complete clustering procedure by means of a tree structure.

144

5.1 Introduction

A dendrogram has the objects attached as leaves (i.e. nodes at the bottom-most

level of the tree (degree = 1)), the internal nodes or inner nodes (i.e. nodes that

are not leaves (degree > 1)) representing the structure of the clusters, and the

length of the stems (path lengths) representing the distances among the clusters.

The arrangement of leaves, internal nodes, and stems determines the topology of

the dendrogram, whose branches show the relationships among the objects to be

clustered. The clustering level of an object with respect to another is determined

by the number of stems between the corresponding leaves. There are many dif-

ferent types of dendrograms (Diestel, 2000). In some there are limits placed on

the degrees of the internal nodes. In others, additions are made to the structure,

by labelling the nodes, or by orienting, ordering or assigning lengths to the edges.

For example, a dendrogram is said to be ordered if the edges incident to each node

are assigned a fixed order. Unordered trees are of dominant interest in clustering

contexts because edge orderings have no effect on the path lengths between the

nodes in the tree. A dendrogram is directed if each edge connecting two nodes

has a direction, otherwise it is undirected. In directed dendrograms, a node is a

parent node if it has an outgoing edge directed towards another node, called child

node. Note that a node may be a parent with respect to a neighbouring node

and, at the same time, a child with respect to another. A node which has only

outgoing incident edges is referred to as a root node (i.e. a node that is never a

child). A directed dendrogram is rooted if it contains exactly one root node. The

root node can be used to further induce ancestry relations between nodes. Nodes

near the root become “ancestors” of those reached from them via edges going

“away from the root”. A dendrogram without such a special internal node is said

to be unrooted (i.e. there is no distinction between parent and child nodes) and

is often displayed in a more free form.

Since all agglomerative hierarchical techniques ultimately reduce the data to

a single cluster containing all the individuals, and the divisive techniques will

finally split the entire set of data into n groups each containing a single indi-

vidual, the investigator wishing to have a solution with an “optimal” number of

clusters will need to decide when to stop. The tricky problem of deciding on the

correct number of clusters represents a difficulty in most hierarchical clustering

methods. Our aim is to analyse data sets for which the number of clusters is not

145

5.1 Introduction

known a priori. Thus, this chapter focusses on the quartet method of hierarchical

clustering (Cilibrasi and Vitányi, 2005, 2006) which, given a set of objects to

be classified, does not require the number of clusters to be given as input, but

produces a hierarchy of the objects according to a specific cost evaluation.

Given n ≥ 4 objects to cluster, the quartet method of hierarchical clustering

accepts as input a distance matrix, which is a matrix containing the distances,

taken pairwise, among the n objects. It is therefore a symmetric n × n matrix

containing non-negative reals, normalized between 0 and 1, as entries. The value

1 represents the largest distance between two objects. The quartet method pro-

duces a dendrogram with a special topology, called a full unrooted binary tree

with n ≥ 4 leaves. A dendrogram is a full unrooted binary tree if all the inter-

nal nodes have degree exactly three and there is no distinction between parent

and child nodes (Furnas, 1984; Diestel, 2000). In order to visually represent the

distance matrix as well as possible, the quartet method of hierarchical clustering

places the n objects to be clustered as leaves of the full unrooted binary tree, such

that objects with a short relative distance will be represented close to each other

in the tree. A full unrooted binary tree with n ≥ 4 leaves will have exactly n− 2

internal nodes, and consequently will have a total of 2n − 2 nodes. This special

dendrogram is sometimes called boron tree (or ternary tree), since such a tree,

with 2n − 2 total nodes, has n − 2 nodes of valency 3 (corresponding to boron

atoms) and n nodes of valency 1 (corresponding to hydrogen atoms). Boron trees

are of primary interest in clustering contexts because, of all trees with a fixed

number of nodes, they have the richest internal structure (most differentiated

paths between nodes). They are therefore the most sensitive for representing the

structure of a set of objects (Furnas, 1984).

Figure 5.1 shows a simple example on how the quartet method by Cilibrasi and

Vitányi (2005, 2006) classifies n = 8 objects from completely different domains

by means of a full unrooted binary tree. The left part of Figure 5.1 is an example

of an input distance matrix created arbitrarily by the authors. The right part of

Figure 5.1 shows the boron tree of the optimal hierarchy of the n = 8 objects. The

two famous bands Metallica and Radiohead form a cluster. Then Kaka, Seedorf,

and Ancelotti, who belong to the same football club (A.C. Milan) form another

cluster, with Kaka and Seedorf closer together as players, and coach Ancelotti

146

5.1 Introduction

Figure 5.1: The left part shows an example of a distance matrix in input to the
quartet method of hierarchical clustering. The right part shows the boron tree
representing the optimal hierarchy.

further away. The final cluster is that of Sergio Consoli, Gijs Geleijnse, and Jan

Korst, who are research scientists, co-authors of (Consoli et al., 2008a).

The rest of the chapter is organised as follows. In Section 5.2, the quartet

method and the related literature are described in depth. This method constructs

the boron tree approximating the optimal hierarchy according to the input dis-

tance matrix. The quartet method of hierarchical clustering is based on an NP-

hard graph optimization problem, called the minimum quartet tree cost (MQTC)

problem (Cilibrasi and Vitányi, 2005, 2006). In Section 5.3, we present the details

of several metaheuristics which find approximate solutions to the problem: the

heuristic recommended in the literature (the Randomized Hill Climbing by Cili-

brasi and Vitányi (2005, 2006)), and four new approaches to the quartet method

(Greedy Randomized Adaptive Search Procedure, Simulated Annealing, Variable

Neighbourhood Search, and Reduced Variable Neighbourhood Search). Section 5.4

includes the experimental analysis of the evaluation of these metaheuristics, and

the chapter ends with some conclusions (Section 5.5). The basic concepts of

147

5.2 The quartet method of hierarchical clustering

metaheuristics and combinatorial optimization were presented in Chapter 2, but,

for further information, the reader is referred to (Voß et al., 1999; Glover and

Kochenberger, 2003; Gendreau and Potvin, 2005).

5.2 The quartet method of hierarchical cluster-

ing

A fundamental problem in computational biology which has been widely studied

in recent years is the reconstruction of evolutionary trees from biological data. An

evolutionary tree, also called a phylogenetic tree, is a dendrogram which shows

the evolutionary relationships between various biological species or other entities

that are believed to have a common ancestor. In an evolutionary tree, each node

with descendants represents the most recent common ancestor of the descendants,

and the edge lengths in some trees correspond to time estimates. Each node is

called a taxonomic unit or taxon. The compelling need for having efficient com-

putational tools to solve this biological problem has attracted much attention to

the analysis of the quartet paradigm for inferring evolutionary trees (Felsenstein,

1981). Quartet methods utilize topological information on sets of four objects,

representing taxa, to infer an evolutionary tree. Given a set N of n ≥ 4 objects,

the number of sets of four objects from the set N is given by:(
n

4

)
=

n!

4!(n− 4)!
=

n(n− 1)(n− 2)(n− 3)

24
. (5.1)

For each set of four objects {a, b, c, d} ∈ N , there exist exactly three different

dendrograms with four leaves (i.e. two internal nodes), also known as simple

quartet topologies : ab|cd, ac|bd, ad|bc (Figure 5.2). The vertical bar in a simple

quartet topology divides the two pairs of objects, where each pair is represented

by two leaf nodes, labelled by the corresponding objects and attached to the same

internal node. For example, in the simple quartet topology ab|cd, the objects a

and b are connected to the same internal node, differently from c and d which

are connected to another internal node. Thus, considering the set N of n ≥ 4

objects, the total number of possible simple quartet topologies is:

3 ·
(

n

4

)
=

n(n− 1)(n− 2)(n− 3)

8
. (5.2)

148

5.2 The quartet method of hierarchical clustering

Figure 5.2: The three different simple quartet topologies of the generic set
{a, b, c, d} of objects.

The quartet methods proceed by first estimating the topology of each quar-

tet of taxa and then recombining the inferred simple quartet topologies into an

evolutionary tree. A major difficulty in this approach derives from the fact that

quartet topology inference methods often make mistakes, and thus may result in

a set Q of simple quartet topologies that is not consistent with any evolutionary

tree. A full unrooted binary tree t is consistent with respect to a simple quartet

topology ab|cd if and only if the path from a to b does not cross the path from

c to d (Felsenstein, 1981). We refer to ab|cd as a simple quartet topology being

embedded in the tree t. For example, the full unrooted binary tree in Figure 5.1 is

consistent with the simple quartet topology Seedorf, Radiohead | Sergio Consoli,

Jan Korst. However, it is not consistent with the quartet topology Ancelotti,

Sergio Consoli | Metallica, Jan Korst.

The problem of recombining the quartet topologies of Q to form an estimate

of the correct evolutionary tree is naturally formulated as an optimization prob-

lem that looks for an evolutionary tree t maximizing the number of consistent

simple quartet topologies Qt (i.e. max Q∩Qt). This problem, referred to as max-

imum quartet consistency (MQC) problem, has been shown to be NP-hard (Steel,

1992). Jiang et al. (2000) proved that the MQC problem admits a polynomial

time approximation scheme by using the technique of smooth integer polynomial

programming and by exploiting the natural denseness of the set Q. However,

this scheme only guarantees an evolutionary tree that may deviate from Q by εn4

quartet topologies for any small constant ε > 0, where n is the number of taxa.

Due to these results, most quartet methods are heuristics which attempt to

solve the MQC problem, or some variants of the MQC problem with weaker op-

149

5.2 The quartet method of hierarchical clustering

timization requirements. For example, Strimmer and von Haeseler (1996) formu-

lated the MQC problem as what they call a “tree-puzzling problem” by providing

the simple quartet topologies with a probability value to be inferred. Then, a

set of simple quartet topologies is selected at random according to these proba-

bilities to form the maximum-likelihood evolutionary tree. Berry et al. (1999)

reported an interesting result. They presented two “quartet cleaning” algorithms

for correcting bounded numbers of quartet errors (i.e. incorrect inferences of

simple quartet topologies) for many popular quartet methods. Exact approaches

to the MQC problem are presented in (Ben-Dor et al., 1998), where the prob-

lem is solved by using dynamic programming and a geometric algorithm, and

in (Weyer-Menkhoff et al., 2005), where the problem is reformulated as an in-

teger linear programming problem. However, these approaches are not able to

solve problems with more than 15-20 taxa.

Cilibrasi et al. (2004) introduced a quartet method for hierarchically clus-

tering data from different domains, not necessarily evolutionary data. This pa-

per proposed a robust automatic music classification procedure consisting of two

steps. The first step consists of extracting the Normalized Compression Distances

(NCD) (Li and Vitányi, 1997) among some considered pieces of music. The Nor-

malized Compression Distance is a similarity metric based on string compression

which mimics the ideal performance of Kolmogorov complexity (Li and Vitányi,

1997). NCD is able to extract consistent pairwise distances among the pieces of

music without considering numerical features related to pitch, rhythm, harmony,

or other intrinsic information, as in other popular automatic music classification

methods in the literature. The second step consists of creating an efficient visu-

alization of the extracted pairwise distances by means of the quartet method of

hierarchical clustering. To substantiate the claims of universality and robustness

of this automatic classification method, evidence of other successful applications

in areas as diverse as genomics, virology, languages, literature, handwriting, as-

tronomy and combinations of objects from completely different domains, were

reported in (Cilibrasi and Vitányi, 2005). In particular, Cilibrasi and Vitányi

(2007) reported an interesting application of this theory, consisting of the auto-

matic extraction of similarities among words and phrases from the World Wide

Web (WWW) using Google page counts. The WWW is the largest information

150

5.2 The quartet method of hierarchical clustering

source on earth, and the context information entered by millions of independent

users provides automatic semantics of useful quality.

In (Cilibrasi and Vitányi, 2006), the authors presented the quartet method

of hierarchical clustering in a more formal way. They showed the main concepts,

components, advantages and disadvantages of the method, particularly underlin-

ing the similarities and differences with respect to other methods from biological

phylogeny. Cilibrasi and Vitányi (2006) also showed that the quartet method

of hierarchical clustering is based on the minimum quartet tree cost (MQTC)

problem, and provided a Randomized Hill Climbing metaheuristic to obtain ap-

proximate solutions. Several experiments with natural data, like genomic and

phylogenetic data, texts or music, and data of completely different types, were

further presented. The Randomized Hill Climbing produced good approximate

solutions for small sets of objects (up to 40-50 objects), but for larger sets the

performance was poor.

5.2.1 Mathematical formulation

Given a set N of n ≥ 4 objects as points in a space provided with a distance

measure, the associated symmetric distance matrix n× n has as entries the pair-

wise distances between the objects, normalized between 0 and 1. To extract a

hierarchy of clusters from the distance matrix, the quartet method by (Cilibrasi

and Vitányi, 2005, 2006) determines a full unrooted binary tree that visually

represents the symmetric distance matrix as well as possible according to a cost

measure. This representation allows useful information to be extracted from the

data and clusters of data to be related to each other.

Considering the set N of n ≥ 4 objects, the quartet method of hierarchi-

cal clustering associates a real valued cost with each simple quartet topology by

means of a cost function C : Q → <+, where Q is the set of simple quartet topolo-

gies. The cost assigned to each simple quartet topology is defined as the sum of

the distances (taken from the distance matrix) between each pair of neighbouring

leaves (Cilibrasi and Vitányi, 2005, 2006). For example, the cost associated with

the simple quartet topology ab|cd is

Cab|cd = d(a, b) + d(c, d), (5.3)

151

5.2 The quartet method of hierarchical clustering

where d(a, b) and d(c, d) indicate, respectively, the distances between the two

neighbouring objects (a and b) and (c and d), obtained from the distance matrix.

Consider the set Γ of full unrooted binary trees with 2n−2 nodes (i.e. n leaves

and n − 2 internal nodes), obtained by placing the n objects to cluster as leaf

nodes of the trees. For each boron tree t ∈ Γ, precisely one of the three possible

simple quartet topologies for any set of four leaves is consistent (Cilibrasi and

Vitányi, 2005, 2006). Thus, for each t ∈ Γ, there exist precisely
(

n
4

)
consistent

quartet topologies (one for each set of four objects) embedded in t (Cilibrasi and

Vitányi, 2005, 2006). Let Qt be the set of such
(

n
4

)
quartet topologies embedded

in t. Then, the cost associated with a boron tree t ∈ Γ is defined as the sum of

the costs of its
(

n
4

)
consistent simple quartet topologies, that is

Ct =
∑

∀{ab|cd}∈Qt

Cab|cd (5.4)

In most cases, it is not possible to create a boron tree which embeds all the

simple quartet topologies with the minimum cost for all the sets of four objects

(especially for a large number of objects n), due to inconsistency. Thus, it is a

matter of making the most balanced choice of the quartet topologies to embed.

This is the goal of the quartet method of hierarchical clustering: trying to find (or

approximate as closely as possible) the boron tree t ∈ Γ with the minimum total

cost. This boron tree t will embed the combination of
(

n
4

)
“possible” (consistent)

simple quartet topologies of Q with the minimum costs, with respect to a full

unrooted binary tree representation of the distance matrix. This optimization

problem is called minimum quartet tree cost (MQTC) problem (Cilibrasi and

Vitányi, 2005, 2006), and can be formally defined as follows:

MQTC problem: Given a set N of n ≥ 4 objects to be clustered,

and a symmetric distance matrix n × n containing their pair-

wise distances, find the full unrooted binary tree t ∈ Γ with the

minimum total cost Ct, i.e. min Ct = min
(∑

∀{ab|cd}∈Qt
Cab|cd

)
.

In a hierarchical clustering context, we do not even have a priori knowledge

that certain simple quartet topologies are objectively true and must be embedded.

Thus, the quartet method by Cilibrasi and Vitányi (2005, 2006) assigns a cost

value to each simple quartet topology, in order to express the relative importance

152

5.2 The quartet method of hierarchical clustering

of the simple quartet topologies to be embedded in the full unrooted binary tree

having the n objects as leaves. The boron tree t ∈ Γ with the minimum cost Ct,

produced by the quartet method, balances the importance of embedding different

quartet topologies against others, leading to a boron tree that visually represents

the symmetric distance matrix n× n as well as possible.

The MQTC may be normalized as follows (Cilibrasi and Vitányi, 2005, 2006).

Consider the list of all possible four-tuples of n ≥ 4 objects in N under consid-

eration. For each set of four objects {a, b, c, d} ∈ N , among the three possible

simple quartet topologies, extract the one with the minimum cost and that with

the maximum cost. Denote these costs as, respectively, mabcd and Mabcd, that is:

mabcd = min {Cab|cd, Cac|bd, Cad|bc},

Mabcd = max {Cab|cd, Cac|bd, Cad|bc}. (5.5)

The best (minimal) total cost, m, associated with t ∈ Γ is calculated as the

sum of the
(

n
4

)
minimum costs mabcd of each set of four objects {a, b, c, d} ∈ N ,

that is:

m =
∑

∀{a,b,c,d}∈N

mabcd. (5.6)

Similarly, the worst (maximal) total cost, M , associated with t ∈ Γ is the sum of

the
(

n
4

)
maximum costs Mabcd of each set of four objects {a, b, c, d} ∈ N :

M =
∑

∀{a,b,c,d}∈N

Mabcd. (5.7)

In most cases, these cost values m and M can not be really attained for any

t ∈ Γ (especially with a large number of objects n) and represent, respectively, a

lower bound (m) and an upper bound (M) for the cost function Ct, that is m ≤
Ct ≤ M, ∀t ∈ Γ. For a better and more uniform comparison of the costs associated

with different boron tree representations of different numbers of objects, the cost

function is now rescaled linearly such that the best (minimal) cost maps to 1,

and the worst (maximal) cost maps to 0. The rescaled cost function is called

normalized tree benefit score St (Cilibrasi and Vitányi, 2005, 2006), and is defined

as follows:

St =
M − Ct

M −m
∈ [0, 1], ∀t ∈ Γ. (5.8)

153

5.3 Exploited metaheuristics

The goal of the quartet method of hierarchical clustering is to find a boron

tree t ∈ Γ with a maximum value of St, which is to say, the lowest total cost Ct. In

order to compare uniformly the solutions of instances of the quartet method with

different sizes, the MQTC can be reformulated with respect to the normalized

tree benefit score as follows (Cilibrasi and Vitányi, 2005, 2006):

MQTC problem: Given a set N of n ≥ 4 objects to be clustered,

and a symmetric distance matrix n × n containing their pair-

wise distances, find the full unrooted binary tree t ∈ Γ with the

maximum normalized tree benefit score St (i.e. max St).

Considering a set N of n ≥ 4 objects, all the possible representations of the

distance matrix by means of a boron tree t ∈ Γ will have a best normalized tree

benefit score less than one in most of cases (St < 1, that is Ct > m), especially

for a large number of objects n and noise in the distance matrix. The value

(1 − St) gives an estimation on how large is the distortion produced by a boron

tree representation of the distance matrix, resulting from the quartet method of

hierarchical clustering. Trying to find the boron tree t ∈ Γ with the maximum St

value (minimum Ct value) is the goal of the MQTC problem. This boron tree t will

visually represent the distance matrix n×n as faithfully as possible by using the

quartet method representation. As shown in (Cilibrasi and Vitányi, 2005, 2006),

the minimum quartet tree cost problem is an NP-hard optimization problem by

reduction from the maximum quartet consistency problem (Steel, 1992; Jiang

et al., 2000). Therefore, any practical approach to obtain or approximate the

optimal solution requires heuristics. In the next section, several metaheuristics

for the problem considered are presented and discussed in detail.

5.3 Exploited metaheuristics

This section describes the main features of the metaheuristics considered in this

chapter for the minimum quartet tree cost problem. First, the best performing

method from the literature is reported, the Randomized Hill Climbing (RHC)

by Cilibrasi and Vitányi (2005, 2006). The remaining heuristics are new ap-

proaches to the quartet method of hierarchical clustering. They are a Greedy

154

5.3 Exploited metaheuristics

Randomized Adaptive Search Procedure (GRASP), a Simulated Annealing (SA)

approach, a Variable Neighbourhood Search (VNS), and a Reduced Variable Neigh-

bourhood Search (RVNS).

Before examining these methods in detail, it is useful to specify the notation

used within the implementations of these algorithms. Given a full unrooted binary

tree, its internal nodes can be classified as terminal nodes, which are internal

nodes connected to two leaves and another internal node, transition nodes, which

are internal nodes connected to one leaf node and two other internal nodes, and

cross nodes, which are internal nodes connected to three other internal nodes

(no attached leaf nodes). For example, the boron tree in Figure 5.1 has three

terminal nodes which are connected to pairs of leaves with labels Seedorf and

Kaka, Metallica and Radiohead, Gijs Geleijnse and Jan Korst, two transition

nodes which are connected to the leaves with labels Sergio Consoli and Ancelotti,

and one cross node which is not connected to any leaf. Furthermore, a branch

of a full unrooted binary tree is defined as the subgraph, delimited between one

terminal node and one cross node, containing only transition nodes. For example,

the boron tree of Figure 5.1 contains three branches, each one rooted at the only

cross node of the tree and finishing with one of the three terminal nodes. The first

branch is attached to the leaves Metallica and Radiohead, another is attached to

the leaves Sergio Consoli, Gijs Geleijnse, and Jan Korst, and the last branch is

attached to the leaves Ancelotti, Seedorf, and Kaka.

5.3.1 Randomized Hill Climbing

The Randomized Hill Climbing (RHC) proposed by Cilibrasi and Vitányi (2005,

2006) for the quartet method of hierarchical clustering combines a basic Hill

Climbing heuristic with randomization by using parallelized Genetic Program-

ming (Glover and Kochenberger, 2003), where undirected trees evolve in a ran-

dom walk driven by a prescribed fitness function (Cilibrasi and Vitányi, 2006).

The details of this RHC for the quartet method are specified in Algorithm 5.1.

The algorithm starts by selecting at random a full unrooted binary trees t ∈ Γ

with 2n − 2 nodes (i.e. n leaves and n − 2 internal nodes), obtained by plac-

ing the n ≥ 4 objects to cluster as leaves. This boron tree t is used as basis

155

5.3 Exploited metaheuristics

Algorithm 5.1: Randomized Hill Climbing for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree t with 2n− 2 nodes;

Initialisation:

- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal

nodes), obtained by placing the n ≥ 4 objects to cluster as leaves;

- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;

- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;

begin
Generate the initial boron tree t ∈ Γ at random: t ←Generate-At-Random(Γ);

Evaluate the normalized tree benefit score of t: St ←Evaluate(t);

repeat
Set t′ ← t;

Select the number k of simple mutations with fat-tail probability distribution

p(k) = c/k(log k)2 where 1/c =
∑∞

k=1 1/k(log k)2;

for i ← 1 to k do
Apply a simple mutation to t′: t′ ←Simple-Mutation(t′);
Increase i: i ← i + 1;

end

Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Move t ← t′;
end

until termination conditions ;

⇒ The full unrooted binary tree t ∈ Γ.
end

for further searching. The costs of the consistent quartet topologies embedded

in t are calculated, and then the normalized tree benefit score St is computed

(St ←Evaluate(t)). Afterwards, solution t is assigned to another boron tree t′,

which will be used as a support solution at each iteration of the search process.

Then, a number k is picked up by a fat-tail probability distribution p(k) (Cilibrasi

and Vitányi, 2005, 2006):

p(k) =
c

k(log k)2
, where

1

c
=

∞∑

k=1

1

k(log k)2
. (5.9)

A fat tail probability distribution p(k) with the fattest tail possible has been

chosen, in order to concentrate maximal probability also on the larger values of

k, trying to minimize the likelihood of being trapped at a local minimum. For

more details see (Cilibrasi and Vitányi, 2005, 2006).

In order to search for a better solution, a k-mutation is applied to the support

solution t′. A k-mutation is defined as a sequence of k simple mutations, where a

156

5.3 Exploited metaheuristics

simple mutation, or 1-mutation, is one of three possible transformations (Cilibrasi

and Vitányi, 2005, 2006):

1. A leaf swap, which consists of randomly choosing two leaf nodes and swap-

ping them;

2. A subtree swap, which consists of randomly choosing two internal nodes

and swapping the subtrees rooted at those nodes;

3. A subtree transfer, whereby a randomly chosen subtree (possibly a transi-

tion node) is detached and reattached in another place, maintaining arity invari-

ant.

Note that each of these simple mutations keeps the number of leaf nodes and

internal nodes in the tree invariant. Only the structure of the boron tree and

the positions of the nodes are changed. Considering the support boron tree t′, a

k-mutation is composed by choosing one of the three possible simple mutations

with equal probability. Leaves and internal nodes for each simple mutation are

selected completely at random. Boron trees which are close to t′, in terms of

number of simple mutation steps in between, are examined often, intensifying

the search process, while boron trees that are far away from the original tree will

eventually be examined, but not very frequently, diversifying the search process.

The normalized tree benefit score of the new solution t′, obtained by the k-

mutation, is evaluated (St′), and is compared to the normalized tree benefit score

(St) of the best solution to date t. If an improved boron tree is obtained (St′ > St),

the best solution to date is updated with the new solution (t ← t′), otherwise

the search restarts with the current t. This procedure continues iteratively until

the termination conditions imposed by the user are satisfied and, at the end of

the algorithm, the best boron tree to date t ∈ Γ is produced as output of the

procedure.

5.3.2 Greedy Randomized Adaptive Search Process

The GRASP (Greedy Randomized Adaptive Search Procedure) methodology was

developed in the late 1980s, and the acronym was coined by Feo and Resende

(1989). It was first used to solve set covering problems, but was then extended

to a wide range of combinatorial optimization problems (Pitsoulis and Resende,

157

5.3 Exploited metaheuristics

2002). GRASP is basically a multi-start two-phase metaheuristic, consisting of

a construction phase and a local search phase (for a survey on GRASP see Sec-

tion 2.2.3). The details are specified in Algorithm 5.2.

Algorithm 5.2: Greedy Randomized Adaptive Search Procedure for the quartet method of hierarchical

clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree t with 2n− 2 nodes;

Initialisation:

- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal

nodes), obtained by placing the n ≥ 4 objects to cluster as leaves;

- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;

- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;

- Let RCLα be the restricted candidate list of length α;

begin
Generate the initial boron tree t ∈ Γ at random: t ←Generate-At-Random(Γ);

Evaluate the normalized tree benefit score of t: St ←Evaluate(t);

repeat
Set t′ ← ∅;
Construction phase(t′, RCLα);

Local search(t′);
Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Move t ← t′;
end

until termination conditions ;

⇒ The full unrooted binary tree t ∈ Γ.
end

The algorithm starts by selecting at random a full unrooted binary trees t ∈ Γ

with 2n − 2 nodes, obtained by placing the n ≥ 4 objects to cluster as leaves.

The costs of the consistent quartet topologies embedded in t are evaluated, and

then the normalized tree benefit score St is computed (St ←Evaluate(t)). Then,

the Construction phase(t′, RCLα) procedure builds another boron tree t′ ∈ Γ

by using a greedy randomized mechanism, whose randomness allows solutions in

different areas of the solution space to be obtained. Initially the partial solution

consists of n vertices with no edges, where each object is assigned to a vertex

as a rooted tree of size one. Then, the greedy randomized mechanism obtains a

full unrooted binary tree t′ by iteratively creating a candidate list of distances

(RCLα: Restricted Candidate List of length α), and then by randomly selecting

a distance from this list and connecting the corresponding objects in t′. The

connections are made by adding a path of length two between the roots of the

158

5.3 Exploited metaheuristics

two subgraphs containing the objects, with the new vertex becoming the new

root node. The candidate list is created by evaluating the distances between the

objects that are not yet connected within the partial boron tree t′, and then by

including the shortest α of such distances in the list. At each iteration one new

distance is randomly selected from RCLα, the corresponding pair of objects are

connected within the current boron tree t′, and the candidate list is updated. The

construction phase stops when a full unrooted binary tree t′ is obtained.

GRASP is effective if the solution construction mechanism samples the most

promising regions by using an appropriate value of α. In general, α can be limited

either by the number of distances in the list, or by their quality with respect to the

best candidate distance. The extreme cases for the size of the candidate list are:

α = 1 and α = (n−1)!, the total number of relative distances between the objects.

In the first case, only the best distance not yet included in the partial boron tree

t′ is added to the restricted candidate list, and the construction mechanism is

equivalent to a deterministic greedy heuristic. In the case of α = (n − 1)!, the

candidate list is filled with all the relative distances between the n objects, and

the construction mechanism is equivalent to a random walk, because complete

randomization is used to choose the next element to add to the partial solution.

Thus, it is important to make a good tuning of α in order to obtain an optimal

balance between the intensification and diversification capabilities of the search

process. Our experience indicates that 5 ≤ α ≤ 10 produces good results for the

quartet method of hierarchical clustering.

The construction phase stops when a full unrooted binary tree t′ is obtained.

The produced solution t′ is not necessarily locally optimal, so the Local search(t′)

procedure tries to improve it. This phase uses a local search mechanism which,

iteratively, tries to replace the current boron tree t′ with a better neighbouring

boron tree, until no better solution can be found. Different strategies may be

used in order to evaluate the neighbourhood structure. In our implementation,

we consider each internal node and the neighbouring nodes having Manhattan

distance equals to one with respect to the node considered (one-neighbourhood

structure with respect to the Manhattan distance), that is we consider the internal

nodes which are directly connected to the internal node considered. Then, a

transformation of each pair of selected internal nodes is performed, aimed at

159

5.3 Exploited metaheuristics

producing small changes in the topology of the boron tree t′ considered, checking

whether these modifications improve the normalized tree benefit score of t′.

The internal nodes are selected following a specific order. First, all the ter-

minal nodes are evaluated in order to improve each single branch of the current

boron tree t′. After selecting a terminal node, all the successive transition nodes

belonging to the corresponding branch of the tree are evaluated, starting from

the ones that are closer to the terminal node and stopping when the cross node

delimiting the current branch is reached. For each selected internal node, the

algorithm tries to exchange its attached leaf (or leaves in case of the terminal

node) with the leaves attached to the one-neighbouring internal nodes (accord-

ing to the Manhattan distance). In Figure 5.3 is shown an example where the

two leaves C and H attached to two one-neighbouring transition nodes are ex-

changed, while in Figure 5.4 the leaf node H attached to a transition node is

exchanged with the leaf node L attached to the one-neighbouring terminal node.

Figure 5.3: Example showing the exchange of two leaves attached to two one-
neighbouring transition nodes.

The exchange of two leaves is retained if the normalized tree benefit score of t′

improves. After selecting all the terminal nodes and trying to improve the cor-

responding branches, the algorithm selects all the remaining cross nodes. For

each cross node, the algorithm tries to move each one-neighbouring transition

node from the corresponding branch containing the transition node to the two

other branches rooted at the selected cross node (see Figure 5.5). In the case of

another neighbouring cross node, the algorithm alternatively swaps one branch

160

5.3 Exploited metaheuristics

Figure 5.4: Example showing the exchange of two leaves attached to a transition
node and to the one-neighbouring terminal node.

Figure 5.5: Example showing the move of a transition node to another branch of
the one-neighbouring cross node.

of one cross node with another branch of the other cross node (see Figure 5.6).

Again, each modification of the boron tree t′ is retained if it produces a benefit

in the normalized tree benefit score St′ .

After exhausting all the cross nodes, the local search stops because all the

internal nodes have been evaluated (best improvement strategy) and, hopefully,

the obtained boron tree t′ will represent an improved solution with respect to

the boron tree previously obtained by the construction phase. Afterwards, if the

normalized tree benefit score of t′ is better than that of the best boron tree to date

t (i.e. St′ > St), the best boron tree to date is updated with the new solution

161

5.3 Exploited metaheuristics

Figure 5.6: Example showing the exchange of two branches of two one-
neighbouring cross nodes.

(t ← t′). The entire algorithm proceeds iteratively until the user termination

conditions are satisfied, and produces the best boron tree to date t ∈ Γ as output

of the procedure.

Success of a particular GRASP implementation depends on a number of dif-

ferent factors, such as the efficiency of the randomized greedy procedure used, the

choice of the neighbourhood structure, and the implementation of the local search

technique. The full unrooted binary trees obtained by our GRASP are usually of

good quality because GRASP offers fast local convergence (high intensification

capability) as a result of the greedy aspect of the procedure used in the construc-

tion phase, and of the local search mechanism; and also a large exploration of the

solution space (high diversification capability) for the randomization used in the

selection of a new element from RCLα.

5.3.3 Simulated Annealing

Simulated Annealing (SA) is a descent heuristic with non-deterministic search

developed by Kirkpatrick et al. (1983). In contrast to classical descent methods,

where only modifications to the current solution that decrease the cost function

162

5.3 Exploited metaheuristics

value are accepted, modifications that increase the value of the cost function are

allowed in SA (for a survey on Simulated Annealing see Section 2.2.1).

SA exploits an analogy between the way in which a metal cools and freezes into

a minimum energy crystalline structure (the annealing process) and the search for

a minimum in a more general system, forming the basis of an efficient optimisation

technique for combinatorial and other problems. SA seeks to minimise an energy

function (the cost function); free variables in SA are like particles in the metal, and

“low energy” configurations correspond to high quality solutions of the problem,

obtained by slowly reducing a temperature parameter (T) by means of a cooling

rule (or cooling schedule). The dependency is such that the current solution is

always replaced by a new one if this modification reduces the cost function value,

while a modification increasing the cost function value by ∆ is only accepted with

a probability exp(−∆/T) (Boltzmann function), using the temperature T as a

control parameter. At the beginning of the algorithm, at a high temperature T ,

the probability of accepting an increase in the cost function value is high (uphill

moves), allowing many worse moves to be accepted. Conversely, this probability

gets lower as the temperature T is decreased (downhill moves) during the search

process by means of the cooling rule.

The details of the implementation of our Simulated Annealing for the quar-

tet method are specified in Algorithm 5.3. For the problem considered, we im-

plemented a non-monotonic SA cooling schedule (Osman, 1993), which requires

specification of the following: (i) starting and final temperatures (Ts and Tf);

(ii) decrement rule for updating the temperature T after each iteration; (iii) oc-

casional increment rule for updating the temperature T every Nreset iterations

with a reset temperature Treset (in order to avoid the system being locked at local

optima).

The algorithm starts by selecting at random a full unrooted binary tree t ∈ Γ

with 2n−2 nodes, obtained by placing the n ≥ 4 objects to cluster as leaves, with

cost Ct and normalized tree benefit score St. Then, the starting and final temper-

atures, Ts and Tf , are set to the maximum and minimum estimated variations of

the cost function, ∆max and ∆min, evaluated heuristically by means of the Test-

Cycle(t) procedure. This procedure considers the base moves that each internal

node of t can perform with its neighbouring internal nodes (one-neighbourhood

163

5.3 Exploited metaheuristics

Algorithm 5.3: Simulated Annealing for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree tbest with 2n− 2 nodes;

Initialisation:

- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal

nodes), obtained by placing the n ≥ 4 objects to cluster as leaves;

- For each x ∈ Γ, let Cx be the cost associated with x and Sx ∈ [0, 1] the corresponding normalized tree

benefit score;

- Let ∆min and ∆max be the minimum and the maximum estimated variations of the cost function;

- Let T be the temperature parameter, Ts be the starting temperature value, Tf be the final

temperature value, Tbest be the best temperature value, Treset be the reset temperature value, α be the

geometric cooling rate;

- Let i be the number of iterations of the algorithm;

- Let Nreset = 2.5·105

n2 + 200 be the number of reset iterations;

- Let t ∈ Γ be the full unrooted binary tree used at each iteration;

- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;

begin
Generate the initial boron tree t ∈ Γ at random: t ←Generate-At-Random(Γ);

Evaluate the cost of t and its normalized tree benefit score: (Ct, St) ←Evaluate(t);

Evaluate the minimum and the maximum estimated variations of the cost function:

(∆min, ∆max) ←Test-Cycle(t);

Move tbest ← t, and set T ← Treset ← Ts ← ∆max, Tf ← ∆min, i ← 1;

repeat
Move t′ ← t;

Select at random an integer between 0 and n− 2: λ ← Random(0, n-2);

for j ← 1 to λ do
Perform a base move with respect to t′: t′ ←Base-Move(t′);
Increase j: j ← j + 1;

end

Evaluate the cost of t′ and its normalized tree benefit score: (Ct′ , St′) ←Evaluate(t′);
if St′ > St then

Move t ← t′;
if St > Stbest then

Move tbest ← t and set Tbest ← T ;

end

else
Select at random a real number between 0 and 1: ξ ← Random(0, 1);

if ξ < exp
(
−Ct′−Ct

T

)
then

Move t ← t′;
end

end

Geometric decrement rule for the temperature: T = Ts · α(i mod Nreset)/Nreset , where

α = Tf /Ts;

if (i mod Nreset) = 0 then
Occasional increment rule for the temperature: Treset ← max(Treset/2, Tbest);

Set T ← Ts ← Treset;

end

Increase the number of iterations: i ← i + 1;
until termination conditions ;

⇒ The full unrooted binary tree tbest ∈ Γ.
end

164

5.3 Exploited metaheuristics

structure with respect to the Manhattan distance). The alterations of the cost

function corresponding to the performed base moves are evaluated, retaining the

maximum and the minimum variations in ∆max and ∆min.

Given an internal node and its neighbouring internal nodes, the possible base

moves that can be performed depend on the types of internal node pairs. In the

case of:

1. two transition nodes → either the attached leaves are exchanged (see

Figure 5.3), or they are transformed into one cross node and one terminal node

connected to the corresponding leaves (see Figure 5.7);

Figure 5.7: Transformation of two one-neighbouring transition nodes into one
terminal node and one cross node.

2. one terminal node and one transition node→ the leaf of the transition node

is exchanged with one of the two leaves of the terminal node (see Figure 5.4);

3. one terminal node and one cross node → they are transformed into two

transition nodes with the two leaves of the terminal node attached (see Fig-

ure 5.8);

4. one transition node and one cross node → the transition node is moved in

one of the other two branches of the cross node (see Figure 5.5);

5. two cross nodes → one branch of one cross node is swapped with a branch

of the other cross node (see Figure 5.6).

When Tf and Ts are evaluated, the algorithm continues by assigning the value

of Ts to the current temperature T and to the reset temperature Treset, and by

165

5.3 Exploited metaheuristics

Figure 5.8: Transformation of one terminal node and the one-neighbouring cross
node into two transition nodes.

making a copy of t to another boron tree t′ that will be modified by means of

a random move. A random move is defined as a set of consecutive base moves,

whose number is a random integer λ selected between 0 and n− 2. The random

move starts by selecting a random internal node and one of its neighbouring

internal nodes, and performing a base move with this pair of nodes. Then, to

perform the successive base move, the algorithm selects one of the two internal

nodes considered, and another neighbouring internal node that must be different

from the two internal nodes already considered. The procedure continues until λ

consecutive base moves are produced.

The cost and the normalized tree benefit score of the new boron tree t′ are

evaluated, (Ct′ , St′) ←Evaluate(t′). If St′ > St, the solution t is assigned to the

boron tree t′, storing the best solution to date in tbest, and the temperature at

which this boron tree is obtained in Tbest. Otherwise, if the new boron tree t′ is

worse than t (St′ < St), the algorithm moves to t′ with a probability that depends

on the Boltzmann function exp(−∆/T) = exp(−(Ct′ − Ct)/T).

The non-monotonic SA cooling schedule that we use for the quartet method,

decreases, at each iteration i of the algorithm, the temperature T according to

the following geometric cooling rule:

T = Ts · α(i mod Nreset)/Nreset , where α = Tf/Ts < 1 (5.10)

166

5.3 Exploited metaheuristics

and where (i mod Nreset) represents the arithmetic remainder of the integer divi-

sion between the number of iterations i and the number of reset iterations Nreset.

Every Nreset iterations (i.e. when (i mod Nreset) = 0) the temperature T and the

starting temperature Ts are reset to a larger value, Treset, to allow the algorithm

to escape from local optima (T ← Ts ← Treset). Treset is chosen as the maximum

value between Treset/2 and Tbest, while Nreset is a user defined parameter (our

experience indicates that the value Nreset = (2.5 · 105)/n2 + 200 produces good

results). This cooling schedule and its implementation is in contrast to classical

SA schemes. From our experience, the considered non-monotonic cooling sched-

ule outperformed other different SA cooling schedules for the quartet method.

Note that the importance of non-monotonic search has been widely discussed

in (Glover, 1986) as a basic feature of Tabu Search methods.

Subsequently, the algorithm restarts with the same procedure by setting t′ ←
t, continuing iteratively until the user termination conditions are satisfied. At

the end, the best boron tree to date, tbest, is produced as the output of the SA

algorithm.

5.3.4 Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a recent metaheuristic for solving com-

binatorial optimization problems based on dynamically changing neighbourhood

structures during the search process (Hansen and Mladenović, 1997, 2003). VNS

does not follow a trajectory, but it searches for new solutions in increasingly dis-

tant neighbourhoods of the current solution, jumping only if a better solution

than the current best solution is found (for a survey on VNS see Section 2.2.5).

The proposed VNS for the quartet method of hierarchical clustering is spec-

ified in Algorithm 5.4. At the starting point, a full unrooted binary tree t ∈ Γ

with 2n− 2 nodes, obtained by placing the n ≥ 4 objects to cluster as leaves, is

generated at random. Then, the shaking phase, which represents the core idea

of VNS, is applied to t. A shaking phase of size k consists of the random se-

lection of another boron tree t′ within the neighbourhood Nk(t) of the current

solution t. To obtain t′ from Nk(t), the algorithm performs k consecutive base

moves, already defined in Section 5.3.3. The first base move is performed to

167

5.3 Exploited metaheuristics

Algorithm 5.4: Variable Neighbourhood Search for the quartet method of hierarchical clustering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree t with 2n− 2 nodes;

Initialisation:

- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal

nodes), obtained by placing the n ≥ 4 objects to cluster as leaves;

- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;

- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;

- Let k be the current size of the shaking phase, and kmax be the maximum size of the shaking phase;

- Let i be the number of iterations between two successive improvements;

- Let iupdate = 1.25·105

n2 + 50 be the number of update iterations for kmax;

begin
Generate the initial boron tree t ∈ Γ at random: t ←Generate-At-Random(Γ);

Evaluate the normalized tree benefit score of t: St ←Evaluate(t);

Set i ← 0 and kmax ← 2;

repeat
Set k ← 1;

while k < kmax do
Move t′ ← t;

for j ← 1 to k do
Shake t′ by performing a base move: t′ ←Base-Move(t′);
Increase j: j ← j + 1;

end

Local search(t′);
Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Restart with the first neighbourhood structure: k ← 1;

Move t ← t′;
Set i ← 0;

else
Increase the current size of the shaking phase: k ← k + 1;

Increase the number of iterations between two successive improvements: i ← i + 1;

end

end

if i >= iupdate then
Increase the maximum size of the shaking phase: kmax ← kmax + 1;

Set i ← 0;

end
until termination conditions ;

⇒ The full unrooted binary tree t ∈ Γ.
end

a randomly selected internal node and one of its neighbouring internal nodes

(one-neighbourhood structure with respect to the Manhattan distance). Then,

to perform the successive base move, the algorithm selects one of the two internal

nodes considered, and another neighbouring internal node that must be different

from the two internal nodes already considered, and so on. The procedure is

repeated until k consecutive base moves are performed.

168

5.3 Exploited metaheuristics

The shaking phase aims to change the neighbourhood structure when the al-

gorithm is trapped at a local optimum. The solution t′ is generated at random in

order to avoid cycling, which might occur if a deterministic rule is used. Suitable

neighbourhood structures need to be defined for the shaking phase. The simplest

and most common choice consists of neighbourhoods with increasing cardinality:

|N1(·)| < |N2(·)| < ... < |Nkmax(·)|, where kmax represents the maximum size of

the shaking phase. Let k be the current size of the shaking phase. The algo-

rithm starts by selecting the first neighbourhood (k ← 1) and, at each iteration,

it increases the parameter k if a better solution is not obtained (k ← k + 1),

until the largest neighbourhood is reached (k ← kmax). The process of changing

neighbourhoods when no improvement occurs diversifies the search. In partic-

ular, the choice of neighbourhoods of increasing cardinality yields a progressive

diversification of the search process.

The boron tree t′ produced by the shaking phase, represents the starting

point for the successive local search phase, which tries to improve, if possible, the

solution t′. The local search considered (Local search(t′)) is a first improvement

strategy. It considers each internal node of t′ and each of its neighbouring internal

nodes, and computes all the base moves that can be performed with the selected

pair of nodes (as with the shaking phase, the local search phase uses a one-

neighbourhood structure with respect to the Manhattan distance for the selection

of the neighbouring internal nodes). The local search stops either when a base

move which improves the normalized tree benefit cost of t′, St′ , is produced, or

when all the internal nodes of t′ have been evaluated without having improved

St′ .

If an improved boron tree t′ is produced by the shaking and the local search

phases (St′ > St), it becomes the best solution to date (t ← t′) and the algorithm

restarts from the first neighbourhood (k ← 1) of the best solution t. Other-

wise, if no improvements are obtained (St′ < St), the neighbourhood structure

is increased (k ← k + 1) giving a progressive diversification of the search pro-

cess. Parameter k is increased until the maximum size of the shaking phase,

kmax, is reached. When this happen, k is re-initialized to the first neighbourhood

(k ← 1). The correct setting of kmax is an important user task. For the quar-

tet method, a simple reactive schema for the efficient tuning of kmax has been

169

5.3 Exploited metaheuristics

implemented (Battiti et al., 2008). At the starting point, kmax is set to a small

value (kmax ← 2) and is increased (kmax ← kmax + 1) every iupdate iterations

between two consecutive improvements. Our experience indicates that the value

iupdate = (1.25 · 105)/n2 + 50 produces good results. For more details on reactive

search techniques, the reader is referred to (Battiti et al., 2008). The algorithm

proceeds iteratively until the user termination conditions are satisfied, producing

the best boron tree to date, t, as the output of the procedure.

5.3.5 Reduced Variable Neighbourhood Search

Reduced Variable Neighbourhood Search (RVNS) is a variant of the basic VNS

algorithm, that has been shown to be successful for many combinatorial problems

where local optima with respect to one or several neighbourhoods are relatively

close to each other (Hansen and Mladenović, 2003).

The Reduced Variable Neighbourhood Search is obtained from VNS where

random solutions are selected from the neighbourhoods Nk(·) of the current so-

lution, without being followed by a local search phase. Therefore, it is a typical

example of a pure stochastic heuristic. In practice, RVNS is akin to a clas-

sic Monte-Carlo method, but is a more systematic approach (Mladenović et al.,

2003). It is useful especially for very large problem instances for which the local

search of the basic VNS is costly, as in the case of the quartet method of hier-

archical clustering. Hansen and Mladenović (2003) observed that, in RVNS, the

best values for the maximum size of the shaking phase (i.e. parameter kmax) are

often small values.

The details of the Reduced Variable Neighbourhood Search for the quartet

method are specified in Algorithm 5.5. The algorithm starts by selecting at

random a full unrooted binary trees t ∈ Γ with 2n−2 nodes, obtained by placing

the n ≥ 4 objects to cluster as leaves, with normalized tree benefit score St. Then,

the same shaking phase of the VNS specified in Section 5.3.4 is applied. It selects

at random another boron tree t′ from the neighbourhood Nk(t) of the current

solution t, by performing k consecutive base moves. Again, a one-neighbourhood

structure with respect to the Manhattan distance, for the selection of the internal

nodes, is used. At the beginning, the first neighbourhood (k ← 1) is selected

170

5.3 Exploited metaheuristics

Algorithm 5.5: Reduced Variable Neighbourhood Search for the quartet method of hierarchical clus-

tering

Input: A symmetric distance matrix d containing the n× n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree t with 2n− 2 nodes;

Initialisation:

- Let Γ be the class of full unrooted binary trees with 2n− 2 nodes (i.e. n leaves and n− 2 internal

nodes), obtained by placing the n ≥ 4 objects to cluster as leaves;

- For each x ∈ Γ, let Sx ∈ [0, 1] be the normalized tree benefit score of x;

- Let t′ ∈ Γ be a full unrooted binary tree used as support solution at each iteration;

- Let k be the current size of the shaking phase, and kmax be the maximum size of the shaking phase;

begin
Generate the initial boron tree t ∈ Γ at random: t ←Generate-At-Random(Γ);

Evaluate the normalized tree benefit score of t: St ←Evaluate(t);

Set kmax arbitrarily;

repeat
Set k ← 1;

while k < kmax do
Move t′ ← t;

for j ← 1 to k do
Shake t′ by performing a base move: t′ ←Base-Move(t′);
Increase j: j ← j + 1;

end

Evaluate the normalized tree benefit score of t′: St′ ←Evaluate(t′);
if St′ > St then

Restart with the first neighbourhood structure: k ← 1;

Move t ← t′;
else

Increase the current size of the shaking phase: k ← k + 1;

end

end
until termination conditions ;

⇒ The full unrooted binary tree t ∈ Γ.
end

and, at each iteration, the parameter k is increased (k ← k + 1) whenever the

solution obtained is not an improvement to the current best solution, until the

maximum size of the shaking phase (kmax) is reached. Note that, in contrast to

the VNS in the previous section, the setting of kmax in RVNS does not require

any complicate schema, because its values are often small values (say kmax = 2

or 3). Thus, parameter kmax is set arbitrarily by the user through computational

experience. As already stated, no local search phase is applied after the shaking

phase. Throughout the execution of the algorithm, the best solution to date is

stored as the boron tree t, which will be produced as output of the algorithm

when the user termination conditions are met.

171

5.4 Experimental results

5.4 Experimental results

In this section, the metaheuristics proposed for the quartet method of hierarchical

clustering are compared in terms of solution quality and computational running

time. We identify the metaheuristics with the abbreviations: RHC (Random-

ized Hill Climbing), GRASP (Greedy Randomized Adaptive Search Procedure),

SA (Simulated Annealing), VNS (Variable Neighbourhood Search), RVNS (Re-

duced Variable Neighbourhood Search). All the algorithms that we propose have

been implemented using the C++ programming language (Microsoft Visual C++

2005). For the Randomized Hill Climbing, we have used the open-source software

released in the public domain by the authors (Cilibrasi, 2007b). All the compu-

tations have been made on a Pentium Centrino microprocessor at 2.0 GHz with

512 MB RAM.

In our experiments, we considered 26 different datasets with a number of

objects to cluster (n) from 10 up to 224. Data from different fields have been

considered in order to evaluate how the algorithms are influenced by the na-

ture of the objects. First we considered data without inconsistency, that is data

for which the exact solution is known and have a normalized tree benefit score

equals to one, in order to test the accuracy of the quartet-based tree reconstruc-

tion. These data were produced artificially as described in Section 5.4.1. Then,

in Section 5.4.2 we considered some examples from nature obtained from (Cili-

brasi, 2007a,b), concerning a study in genomics with DNA sequences of different

placental mammalian species. Section 5.4.3 contains data with real geographic

distances between famous cities, while Section 5.4.4 contains data obtained by

mining of the WWW through an automatic web information extraction method

by Geleijnse et al. (2006). Specifically, we have focussed on data concerning

musical artists. All the instances of the problem are available online from the

authors (Consoli, 2008).

For each dataset, given a boron tree t produced by the quartet method, solu-

tion quality is evaluated by means of its normalized tree benefit score St ∈ [0, 1].

The quartet method of hierarchical clustering tries to find the solution which

maximizes the St value, which is to say, the lowest total cost Ct. A maximum

allowed CPU time (max-CPU-time), determined with respect to the dimension of

172

5.4 Experimental results

the problem instance, is chosen as the stopping condition for all the metaheuris-

tics. Experimentally, for problem instances with a number of objects n ≤ 100,

we set max-CPU-time to one hour (3600 sec). For larger instances (n ≥ 100),

max-CPU-time is set to 10 hours (36000 sec). Selection of the maximum allowed

CPU time as the stopping criterion is made in order to have a direct comparison

of the metaheuristics with respect to the quality of their solutions.

Our results are reported in Tables 5.1 - 5.4. In each table, the first column

shows the number n of objects of the datasets considered, while the kind of data

determines the different tables. The last row shows the averages, respectively, of

the normalized tree benefits score and of the computational running times among

the group of data instances considered. All the metaheuristics run for max-CPU-

time and, in each case, the normalized tree benefit score of the best solution is

recorded. The computational times reported in the tables are the times at which

the best solutions are obtained. The reported times have precision of ±1 sec.

Analysing the performance of the algorithms considered, for a single dataset a

metaheuristic should be considered better than another if either it obtains a larger

normalized tree benefit score, or an equal normalized tree benefit score but in a

smaller computational running time.

5.4.1 Testing the quartet-based tree reconstruction

In this section, we test whether the quartet-based tree reconstruction heuristic is

reliable and accurate on clean consistent data with known solutions. We used the

same procedure by Cilibrasi and Vitányi (2005, 2006) to generate data instances

with corresponding optimal boron trees t having normalized tree benefit score

equal to one, St = 1. To obtain these data, we used the “rand” pseudo-random

number generator from the C++ programming language (Microsoft Visual C++

2005), and derived a metric from it by defining the distance, d(x, y), between two

objects x and y, as follows (Cilibrasi and Vitányi, 2005, 2006):

d(x, y) =

{
L(x, y) + 1

n
if x 6= y,

0 otherwise,
(5.11)

where L(x, y) is the length of the path from x to y, expressed by the number

of edges which connect the leaves of the boron tree where the two objects are

173

5.4 Experimental results

assigned. Obviously, the entries in the diagonal of the distance matrix are all

zeros, since d(x, y) = 0 if x = y. All the boron trees t constructed artificially

with this procedure have optimal score St = 1. Figure 5.9 shows an example of

a full unrooted binary tree t with 10 objects and St = 1 generated at random by

means of this procedure.

Figure 5.9: Randomly generated full unrooted binary tree t with 10 objects and
St = 1.

We generated data instances with a number of objects n from 10 to 100, set-

ting the max-CPU-time for the heuristics to one hour (3600 sec). Computational

results, reporting the normalized tree benefit scores found by the heuristics and

the corresponding computational times, are presented in Table 5.1. Looking at

this table, for n = 10 and n = 20 all the heuristics obtained the exact solution

(St = 1). However, RHC was considerably slower than the other metaheuristics.

For n > 20, the performance of RHC was extremely poor, obtaining solutions

with extremely low quality in very high computational running times. SA, VNS,

174

5.4 Experimental results

Table 5.1: Computational results for artificial data with optimal normalized tree
benefit score equals to one (max-CPU-time for heuristics = 36000 sec)

Size Normalized tree benefit score

n RHC GRASP SA VNS RVNS

10 1 1 1 1 1

20 1 1 1 1 1

30 0.99441 1 1 1 1

40 0.98297 0.99234 1 1 1

50 0.92642 0.99641 1 1 1

60 0.75907 0.99308 1 1 1

70 0.71672 0.99956 1 1 1

80 0.58044 0.99289 1 1 1

90 0.45588 0.98964 1 1 1

100 0.39074 0.98332 1 1 1

AVERAGE: 0.78066 0.99472 1 1 1

Size Computational times (seconds)

n RHC GRASP SA VNS RVNS

10 4.81 0.21 0.31 0.24 0.04

20 666.37 11.18 1.71 7.48 0.42

30 2749.09 1.12 7.93 9.95 0.86

40 3272.73 100.32 24.66 39.01 8.41

50 3331.79 663.61 42.62 187.35 10.61

60 3411.07 517.13 181.30 180.9 38.72

70 3569.81 838.13 115.68 272.49 38.86

80 3524.89 266.56 248.79 723.59 66.88

90 3419.11 871.79 255.65 570.28 101.51

100 3492.53 978.05 3491.96 932.67 115.013

AVERAGE: 2744.22 424.81 437.06 292.396 38.13

and RVNS always produced the exact solutions (St = 1) for all the instances

considered in Table 5.1, in very short computational times. In particular, RVNS

was always faster than the other heuristics among all the datasets, indicating an

optimal tuning between intensification and diversification of the search process,

175

5.4 Experimental results

while SA was extremely slow for the instance n = 100 with a time of 3491.96

sec. The performance of GRASP is between the poor performing RHC and the

high performing SA, VNS, RVNS. The solution quality of GRASP decreases as

the problem instance increases, but not as badly as for RHC, while the computa-

tional times are comparable with those of SA. Summarizing, the average values

of the normalized tree benefit score of the metaheuristics among the instances of

Table 5.1, ranking from the best to the worst performing algorithm, are: RVNS

= 1, VNS = 1, SA = 1, GRASP = 0.99472, RHC = 0.78066 (in case of ties in

the average normalized tree benefit scores, an algorithm is considered better than

another if it has a smaller average computational time).

5.4.2 Testing on examples from nature

In evolutionary biology the timing and origin of the major extant placental clades

(groups of organisms that have evolved from a common ancestor) continues to

fuel debate and research (Rokas et al., 2003). As the complete genomes of var-

ious species become available, it has become possible to do whole genome phy-

logeny (Felsenstein, 1981; Ben-Dor et al., 1998). Traditional phylogenetic meth-

ods on individual genes depended on multiple alignment of the related proteins

and on the model of evolution of individual amino acids. Neither of these is prac-

tically applicable to the genome level. In absence of such models, a method which

can compute the shared information between two sequences is useful because bi-

ological sequences encode information, and the occurrence of evolutionary events

(such as insertions, deletions, point mutations, rearrangements, and inversions)

separating two sequences sharing a common ancestor will result in the loss of

their shared information (Rokas et al., 2003).

This section considers a study in genomics with DNA sequences of different

placental mammalian species, obtained from (Cilibrasi, 2007a,b). The distance

matrices from the genomic data were computed as NCD distances by using the au-

tomated software method by Cilibrasi and Vitányi (2005, 2006), who downloaded

the whole mitochondrial genomes of the placental mammalian species from the

GenBank Database on the World Wide Web. Three sets of data with n = 10,

176

5.4 Experimental results

n = 24, and n = 34 were considered, with a max-CPU-time for the heuristics of

one hour (3600 sec). Computational results are reported in Table 5.2.

Table 5.2: Computational results for examples from nature (DNA sequences of
different placental mammalian species) (max-CPU-time for heuristics = 36000 sec)

Size Normalized tree benefit score

n RHC GRASP SA VNS RVNS

10 0.99979 0.99979 0.99979 0.99979 0.99979

24 0.99575 0.99588 0.99588 0.99588 0.99588

34 0.98488 0.98782 0.98792 0.98792 0.98792

AVERAGE: 0.99347 0.99450 0.99453 0.99453 0.99453

Size Computational times (seconds)

n RHC GRASP SA VNS RVNS

10 6.72 0.078 1.84 0.172 0.00

24 934.42 16.56 6.69 4.48 2.08

34 3352.01 228.702 32.78 65.28 10.61

AVERAGE: 1431.05 81.78 13.77 23.31 4.23

Looking at the table, all the heuristics obtained almost the same normalized

tree benefit scores. However, as in the previous set of instances, RHC was con-

siderably slower than the other metaheuristics, showing limited intensification

and diversification capabilities of the search process. The average values of the

normalized tree benefit scores, ranking from the best to the worst performing

algorithm, are: RVNS = 0.99453, VNS = 0.99453, SA = 0.99453, GRASP =

0.99450, RHC = 0.99347 (again, in case of ties in the average normalized tree

benefit scores, an algorithm is considered better than another if it has a shorter

average computational time). RHC obtains the worst average normalized tree

benefit score, and the worst average computational running time (1431.05 sec).

The best performance in terms of solution quality and computational running

time is obtained again by RVNS. Figure 5.10 shows the full unrooted binary tree

t obtained by RVNS for the instance with n = 24 placental mammals, with a

normalized tree benefit score of St = 0.99588 obtained in just 2.08 sec. The inter-

pretation is that objects in a given subtree are pairwise closer (more similar) to

177

5.4 Experimental results

Figure 5.10: The full unrooted binary tree t obtained by RVNS for the instance
with n = 24 mammals, with a normalized tree benefit score of St = 0.99588
obtained in 2.08 sec.

each other than any of those objects in a disjoint subtree. Roughly, it is possible

to identify the following groups among the placental mammals considered: Pri-

mates (Chimpanzee, Pygmy Chimpanzee, Human, Gorilla, Orangutan, Sumatran

Orangutan, Gibbon); Ferungulates (Grey Seal, Harbor Seal, Brown Bear, Polar

Bear, Cat, Horse, White Rhino, Cow, Finback Whale, Blue Whale); Marsupionta

(Wallaroo, Opossum, Platypus, Echidna, House Mouse, Rat, Carp).

178

5.4 Experimental results

5.4.3 Testing on geographic distances

In this section, the metaheuristics were compared by considering some famous

cities as objects to cluster. Thus, the distances between the objects are real geo-

graphic distances between the cities considered, normalized in the interval [0, 1].

We considered data instances with a number of objects n from 13 to 37, set-

ting the max-CPU-time for the heuristics to one hour (3600 sec). Computational

results are presented in Table 5.3.

Table 5.3: Computational results for geographic distances between cities (max-
CPU-time for heuristics = 36000 sec)

Size Normalized tree benefit score

n RHC GRASP SA VNS RVNS

13 0.96843 0.96843 0.96843 0.96843 0.96843

22 0.93507 0.93507 0.93507 0.93507 0.93507

24 0.92459 0.92429 0.92459 0.92459 0.92459

25 0.98760 0.98760 0.98760 0.98760 0.98760

35 0.98203 0.94395 0.98367 0.98367 0.98367

37 0.90552 0.88094 0.91973 0.91973 0.91973

AVERAGE: 0.95054 0.94004 0.95318 0.95318 0.95318

Size Computational times (seconds)

n RHC GRASP SA VNS RVNS

13 67.46 6.21 5.42 0.55 0.27

22 1365.22 198.49 15.42 17.26 3.14

24 803.61 311.80 15.46 17.61 3.29

25 1752.89 25.36 8.98 52.81 2.84

35 2686.73 996.63 89.72 43.27 10.75

37 3434.06 1480.82 74.94 53.53 32.94

AVERAGE: 1684.99 503.22 34.99 30.84 8.87

We observe that the normalized tree benefit score obtained by the heuristics

deteriorates by increasing the size n of the problem instance to cluster, as a result

of a higher inconsistency produced by the full unrooted binary tree representation

of the distance matrices used by the quartet method. The average values of the

179

5.4 Experimental results

normalized tree benefit scores, ranking from the best to the worst performing al-

gorithm, are: RVNS = 0.95318, VNS = 0.95318, SA = 0.95318, RHC = 0.95054,

GRASP = 0.94004 (as in the previous sections, in case of ties in the average

normalized tree benefit scores, an algorithm is considered better than another

if it has a shorter average computational time). Again, the best performances

are obtained by RVNS, VNS, and SA, which obtain the largest normalized tree

benefit scores in the shortest computational running times. In particular, the

best performing heuristic is again RVNS, which is considerable faster (average

computational time: 8.87 sec) than VNS and SA (average computational times:

30.84 sec and 34.99 sec, respectively). The performance of RHC and GRASP are

quite poor. RHC is considerably slower than all the other metaheuristics (aver-

age computational time: 1684.99 sec), but it produces slightly better solutions

with respect to GRASP in terms of normalized tree benefit score. For these data

instances, GRASP produces solutions of poor quality although being faster than

RHC, as a result of a poor diversification capability and an excessive intensifica-

tion capability which sometimes do not allow the search process to escape from

local optima.

In Figure 5.11, the full unrooted binary tree t obtained by RVNS for the

instance with n = 37, which contains the distances among some famous European

cities, is illustrated. The normalized tree benefit score of this example is St =

0.91973, obtained by RVNS in 32.94 sec. Figure 5.11 represents an intuitive visual

example of the way of clustering data hierarchically by means of the quartet

method. Cities that have short relative distances are assigned to close positions

of the boron tree. For instance, the Italian cities of Rome, Naples, Venice, Genoa,

are placed in close positions of t, followed by Nice (that belongs to France but is

extremely close to the Italian border) and Turin, and then Milan. Similarly, the

Netherlands cities of Amsterdam, The Hague, Rotterdam, Antwerp, and Brussels

belongs to the same group, and so on. Similarly, Figure 5.12 shows the full

unrooted binary tree t obtained by RVNS for the instance with n = 25, which

contains the distances among some famous Asian cities. The normalized tree

benefit score of this example is St = 0.98760, obtained by RVNS in 2.84 sec.

180

5.4 Experimental results

Figure 5.11: The full unrooted binary tree t with St = 0.91973 obtained by RVNS
in 32.94 sec for the instance with n = 37 European cities.

181

5.4 Experimental results

Figure 5.12: The full unrooted binary tree t with St = 0.98760 obtained by RVNS
in 2.84 sec for the instance with n = 25 Asian cities.

5.4.4 Testing on data extracted from the World Wide

Web

In this section, we consider data obtained by mining of the WWW through an

automatic web information extraction method by Geleijnse et al. (2006). Specifi-

cally, we have focussed on data concerning musical artists, in order to easily show

subjective artist categories such as genre of the music that they produce.

182

5.4 Experimental results

Geleijnse et al. (2006) use the assumption that related artists often share the

same category (working hypothesis). Alternatively, if two artists are both known

for the same category (e.g. romantic music), it is expected that they would occur

often in the same context within the World Wide Web. To obtain a metric which

expresses the similarity between each pair of artists a and b, selected from a given

set of artists A, Geleijnse et al. (2006) count the number of co-occurrences of a

and b, co(a, b), within the WWW by means of, either a Page-count-based mapping

(PCM), a Pattern-based mapping (PM), or a Document-based mapping (DM). In

this chapter a PCM is used, where the number of co-occurrences of a pair of

artists (a, b) ∈ A is the number of Google hits for queries “a′′, “b′′. Note that the

estimated numbers of Google hits can fluctuate which may lead to unexpected

results (Geleijnse et al., 2006).

After having collected the number of co-occurrences for each pair of artists in

A, Geleijnse et al. (2006) derive a similarity metric among the artists by defining

a scoring function, T (a, b), between two different artists (a, b) ∈ A, as follows:

T (a, b) =
co(a, b)

1 +
∑

y∈A,y 6=a co(a, y) ·∑x∈A,x6=b co(x, b)
. (5.12)

This similarity metric is inspired by the theory of “pointwise mutual infor-

mation” (for more details see (Manning and Schütze, 1999)). Note that this

similarity metric is symmetric in its arguments and that all the elements in the

diagonal are forced to 1. As the metric between two objects approaches zero, the

less the similarity between the two artists. For each (a, b) ∈ A, the similarity

metric T (a, b) is converted into a distance metric d(a, b), as follows:

d(a, b) = 1− T (a, b). (5.13)

In this way, a symmetric distance matrix, suitable input for the quartet method,

is produced.

Our results are presented in Table 5.4, which considers data instances with

number of artists n from 15 to 224. For small problem instances (n ≤ 100),

max-CPU-time for the heuristics is set to one hour (3600 sec), while for the last

two large instances with n > 100, (i.e. n = 150 and n = 224), a max-CPU-

time of 10 hours (36000 sec) is imposed. The average values of the normalized

183

5.4 Experimental results

Table 5.4: Computational results for data concerning distances between musical
artists extracted from the World Wide Web (max-CPU-time for heuristics = 36000
sec)

Size Normalized tree benefit score

n RHC GRASP SA VNS RVNS

15 0.95273 0.95273 0.95273 0.95273 0.95273

25 0.92218 0.92080 0.92218 0.92190 0.92218

50 0.75077 0.90511 0.92244 0.92244 0.92252

100 0.43476 0.85988 0.88736 0.88212 0.88731

150 0.42591 0.74047 0.84214 0.84132 0.84614

224 0.40341 0.71262 0.80045 0.80080 0.80849

AVERAGE: 0.64829 0.84860 0.88788 0.88689 0.88990

Size Computational times (seconds)

n RHC GRASP SA VNS RVNS

15 41.21 1.25 1.63 0.78 0.25

25 1107.81 12.68 13.13 19.13 2.34

50 3469.89 103.51 65.79 112.19 35.37

100 3525.28 94.91 3033.53 2735.55 884.31

150 34809.11 4580.45 34261.51 24425.52 17896.95

224 21652.34 34357.02 24292.81 35360.20 35299.22

AVERAGE: 10767.61 6524.97 10278.07 10442.23 9019.74

tree benefit scores, ranking from the best to the worst performing algorithm, are:

RVNS = 0.88990, SA = 0.88788, VNS = 0.88689, GRASP = 0.84860, RHC =

0.64829; while the average computational running times, from the fastest to the

slowest, are (in sec): GRASP = 6524.97, RVNS = 9019.74, SA = 10278.07, VNS

= 10442.23, RHC = 10767.61.

As in the previous experimental analysis, the table shows approximately the

same relative behaviour for all the metaheuristics considered. RVNS obtains

the solutions with the best normalized tree benefit scores, followed by SA and

VNS, then GRASP, and finally RHC, which produces extremely poor results

(average normalized tree benefit score: 0.64829). In addition, the computational

running times (average computational time: 10767.61 sec) are poor. For the data

184

5.4 Experimental results

instances considered in this section, GRASP is on average faster than the other

algorithms, because it converges prematurely to local optima from where it is not

able to escape, producing solutions of poor quality. SA and VNS produce results

close to those of RVNS in terms of solution quality and computational running

times, indicating an optimal tuning between intensification and diversification of

the search process, which evidently is not obtained by GRASP and RHC. VNS

obtains slightly worse solutions than those obtained by SA, perhaps lacking a

bit in terms of exploration of the search space with respect to the SA approach.

As in Section 5.4.3, it is interesting to note the effect of the data inconsistency

in the normalized tree benefit score obtained by the heuristics as n becomes

larger. For example, for n = 224, it is not possible to produce a solution having

normalized tree benefit score larger than 0.80849, that is obtained by RVNS in a

very high computational time (35299.22 sec)! This further analysis underlines the

limit of the quartet method to process data instances larger than, approximately,

n = 100 objects to cluster. For n > 100, the heuristics often produce results with

inadequate normalized tree benefit scores in very high computational running

times.

Summarizing, for all the problem instances considered containing objects to

cluster of different nature, analysed in Sections 5.4.1 - 5.4.4, all the metaheuristics

that we propose (RVNS, VNS, SA, GRASP) clearly outperformed the Random-

ized Hill Climbing by Cilibrasi and Vitányi (2005, 2006), the heuristic recom-

mended in the literature for the quartet method of hierarchical clustering. In

particular, the best performance in terms of normalized tree benefit score and

computational running time were obtained by RVNS. This is the most effective

heuristic for the minimum quartet tree cost problem. As shown in our experi-

ments, RVNS is able to produce the most accurate full unrooted binary trees,

capable of representing the symmetric distance matrices. From our analysis, it

has been shown that our Reduced Variable Neighbourhood Search is fast and

particularly effective for the quartet method of hierarchical clustering.

185

5.5 Conclusions

5.5 Conclusions

In this chapter we considered the quartet method of hierarchical clustering which,

given a set of objects to be classified and a symmetric distance matrix containing

their pairwise distances, produces the optimal hierarchy of the objects without

knowing a priori the number of clusters to be produced. The optimal hierarchy

produced by the quartet method is visualized by means of a special dendrogram

topology, called full unrooted binary tree (or boron tree, or ternary tree), which

visually represents the distance matrix as closely as possible, according to a spec-

ified cost evaluation.

In order to produce the optimal hierarchy through a boron tree, the quartet

method of hierarchical clustering needs to solve a graph optimization problem,

called the minimum quartet tree cost problem. A Greedy Randomized Adap-

tive Search Procedure, a Simulated Annealing approach, a Variable Neighbour-

hood Search, and a Reduced Variable Neighbourhood Search have been presented

for this problem. Considering a wide range of problem instances, we compared

these metaheuristics with the Randomized Hill Climbing by Cilibrasi and Vitányi

(2005, 2006), the most popular heuristic in the literature for the quartet method

of hierarchical clustering. Based on this experimental analysis, all the proposed

procedures clearly outperformed the Randomized Hill Climbing and, in partic-

ular, the best performance was obtained by Reduced Variable Neighbourhood

Search. Reduced Variable Neighbourhood Search was shown to be a fast, sim-

ple, and particularly effective metaheuristic for the quartet method of hierarchical

clustering, obtaining high-quality solutions in short computational running times.

This analysis provides further evidence of the ability of variable neighbourhood

heuristics to deal with NP-hard combinatorial problems.

Future research will consist of trying to further improve the performance of

these procedures (for example through hybridization with other metaheuristics)

particularly for large instances of the problem. Furthermore, an exact approach

to the minimum quartet tree cost problem is currently under study in order to

produce the optimal hierarchy of the objects by means of the quartet method of

hierarchical clustering. However, as the problem is NP-hard, an exact approach

will be successful, in practise, just for very small instances of the problem.

186

I don’t want to achieve
immortality through my work. I
want to achieve it through not
dying.

Woody Allen

Chapter 6

Conclusions

The research reported in this thesis has focussed on the development and appli-

cation of metaheuristics for problems in graph theory. The aim of this work is

twofold. On the one hand, it has sought to bring together, in a systematic and

consistent way, several features of different metaheuristic techniques. The most

important and efficient metaheuristics, from classical to novel approaches, were

presented in Chapter 2. This chapter covered many theoretical and practical

aspects of metaheuristics, outlining their main concepts and components, simi-

larities and differences, advantages and disadvantages. Different classes of meta-

heuristics were specified and, in particular, the most important single-solution

and population-based metaheuristics were presented and extensively discussed.

The two very significant forces of intensification and diversification that play an

important role in the behaviour of a metaheuristic were highlighted. The im-

portance of hybridization and integration of metaheuristics were discussed. In

addition, the thesis addresses some recently proposed combinatorial optimization

problems formulated on graphs, and presents appropriate metaheuristics to ob-

tain near-optimal solutions. These problems constitute some new and interesting

research areas, and are able to represent many real-world problems.

Several metaheuristics for the minimum labelling spanning tree (MLST) prob-

lem are presented in Chapter 3. Specifically, the metaheuristics recommended in

the literature, the Modified Genetic Algorithm (MGA) by Xiong et al. (2006)

and the Pilot Method (PILOT) by Cerulli et al. (2005), were examined and

187

implemented. Some new implementations of metaheuristics for the MLST prob-

lem were further proposed: a Greedy Randomized Adaptive Search Procedure

(GRASP), a basic Variable Neighbourhood Search (VNS), and a hybrid local

search method (HYBRID) obtained by combining Variable Neighbourhood Search

with Simulated Annealing (SA). The nonparametric statistical tests of Friedman

(1940) and Nemenyi (1963) were applied, in order to compare the performance

of the algorithms considered on a wide range of problem instances. The results

indicated that VNS, HYBRID, and GRASP have significantly better performance

than the other methods recommended in the literature with respect to solution

quality and running time. Furthermore, this result has been reinforced by com-

paring the metaheuristics with an exact approach. In addition, it was shown

that VNS is particularly recommended for the proposed problem because of its

simplicity and its ability to obtain high-quality solutions in short computational

running times.

A similar study was presented in Chapter 4 for the minimum labelling Steiner

tree (MLSteiner) problem, another graph problem related to the minimum la-

belling spanning tree problem and to the well-known Steiner tree problem. Some

metaheuristics for the problem were presented: a Greedy Randomized Adaptive

Search Procedure (GRASP), a Discrete Particle Swarm Optimization (DPSO), a

Variable Neighbourhood Search (VNS), and a hybrid local search method (HY-

BRID) obtained by combining Variable Neighbourhood Search with Simulated

Annealing (SA). Considering a wide range of problem instances, these meta-

heuristics were compared to the Pilot Method (PILOT) by Cerulli et al. (2006),

the most popular MLSteiner heuristic in the literature. Based on this experimen-

tal analysis, all the proposed procedures clearly outperformed PILOT and, in

particular, the best performance was obtained by VNS, HYBRID, and GRASP.

In addition, it was shown that VNS is the most effective approach to the prob-

lem, thanks to the following features: ease of implementation, user-friendly code,

high-quality of the solutions, and shorter computational running times.

Finally, Chapter 5 considered the quartet method of hierarchical clustering

which, given a set of objects to be classified and a symmetric distance matrix

containing their pairwise distances, produces the optimal hierarchy of the objects

188

without knowing a priori the number of clusters to be produced. The optimal hier-

archy produced by the quartet method is visualized by means of a special dendro-

gram topology, called a full unrooted binary tree (or boron tree, or ternary tree),

which visually represents the distance matrix as closely as possible, according to

a specified cost evaluation. Because the quartet method is based on an NP-hard

graph optimization problem, called minimum quartet tree cost (MQTC) problem,

any practical approach to obtain or approximate the optimal solutions requires

heuristics. Thus, a Greedy Randomized Adaptive Search Procedure (GRASP),

a Simulated Annealing (SA) approach, a Variable Neighbourhood Search (VNS),

and a Reduced Variable Neighbourhood Search (RVNS) were presented for the

MQTC problem. The performance of the proposed algorithms was tested through

extensive computational experiments and comparison with the Randomized Hill

Climbing (RHC) by Cilibrasi and Vitányi (2005, 2006), the most popular heuris-

tic in the literature for the quartet method of hierarchical clustering. Based

on this experimental analysis, all the proposed procedures clearly outperformed

RHC and, in particular, the best performance was obtained by RVNS. Reduced

Variable Neighbourhood Search was shown to be a fast, simple, and particularly

effective metaheuristic for the quartet method of hierarchical clustering, obtain-

ing the best performance in terms of solution quality and computational running

time.

This thesis is intended to provide both researchers and practitioners with

a broadly applicable, up to date coverage of metaheuristic methodologies that

have proven to be successful in a wide variety of graph theoretic models, and

that hold particular promise for success in the future. The study of the graph

problems considered in this thesis represent some new and relevant research areas

in combinatorial optimization and metaheuristics. The metaheuristics used to

solve these problems serve as illustrations in showing the importance and the

potential of metaheuristic approaches to deal with these classes of problems. In

addition, thorough analysis of the implementation of these methods provided

insights into the implementation of metaheuristic strategies for other complex

graph problems. With this thesis, the author hopes to encourage an even wider

adoption of metaheuristic methods for solving graph problems, and to stimulate

research that may lead to additional innovations in metaheuristic procedures.

189

All men by nature desire to know.

Aristotle

Appendix A

Computational complexity

Most combinatorial optimization problems can be classified as problems in the

complexity class P and NP-hard problems (Garey and Johnson, 1979). In com-

putational complexity theory, the class P consists of all those decision problems

that can be solved on a “deterministic sequential Turing-machine” in an amount

of time that is bounded by a polynomial p(|x|) in the size of the input x; the

class NP consists of all those decision problems whose positive solutions x can

be verified in polynomial time p(|x|) given the right information, or equivalently,

whose solution can be found in polynomial time p on a “non-deterministic Turing-

machine”.

We say that there is a “polynomial time many-one reduction” from a decision

problem L1 to a decision problem L2, denoted by L1 ∝ L2, if there exists a

function f that is computable in polynomial time such that

x ∈ L1 ⇔ f(x) ∈ L2. (A.1)

A problem L1 in NP is said to be NP-Complete if for every L2 ∈ NP,

L2 ∝ L1. Because ∝ is transitive, to prove NP-Completeness of L1 it is enough

to show that some NP-Complete problem L2 satisfies L2 ∝ L1.

A version of reducibility that may be applied to problems that are not nec-

essarily decision problems is now defined. A problem P1 is “Turing reducible”

to P2, written P1 ∝T P2 if the existence of a polynomial time algorithm for P2

implies that there is a polynomial time algorithm for P1. Given a subroutine for

P2 running in polynomial time, we can solve P1 in polynomial time.

190

A problem P is NP-hard (Non-deterministic Polynomial-time hard) if ∃L ∈
NP−Complete such that L ∝ P . The notion of NP-hardness plays an important

role in the discussion about the relationship between the complexity classes P

and NP, because if it is possible to find an algorithm that solves one of these

problems L1 in polynomial time, it should be possible to construct a polynomial

time algorithm for any problem L2 ∈ NP by first performing the reduction from L2

to L1 and then running the polynomial time algorithm. This would be equivalent

stating “P = NP”, and thus to solve the biggest open question in theoretical

computer science concerning the relationship between these two classes. However

it is widely suspected that there are no polynomial time algorithms for NP-hard

problems, although this has never been proved (Garey and Johnson, 1979).

Figure A.1 illustrates the complexity classes NP, P and NP-Complete, assum-

ing that P 6= NP. The NP-Complete complexity class contains the most difficult

problems in NP, in the sense that they are the ones most likely not to be in P.

For more details see (Garey and Johnson, 1979) in which many NP-Complete

problems are classified.

Figure A.1: Diagram of complexity classes.

191

If the facts don’t fit the theory,
change the facts.

Albert Einstein

Appendix B

Statistical tests

Friedman test (Friedman, 1940): The Friedman test is a non-parametric sta-

tistical test that examines the existence of significant differences between the

performance of multiple algorithms over different datasets. Given k algorithms

and N datasets, it ranks the algorithms for each dataset separately, and tests

whether the measured average ranks are significantly different from the mean

rank. The statistic used by Friedman (1940) is

χ2
F =

12 ·N
k · (k + 1)

·
[∑

j

R2
j −

k · (k + 1)

4

]
, (B.1)

which follows a Chi-Square distribution with (k − 1) degrees of freedom.

Iman and Davenport (1980) developed a more powerful version of the Fried-

man test by considering the following statistic:

F 2
F =

(N − 1) · χ2
F

N · (k − 1)− χ2
F

, (B.2)

which is distributed according to the F -distribution with (k−1) and (k−1)·(N−1)

degrees of freedom. For more details, see (Demśar, 2006).

Nemenyi test (Nemenyi, 1963): The Nemenyi test is used to perform pairwise

comparisons of multiple algorithms over different datasets (Nemenyi, 1963). The

performance of two algorithms is considered significantly different if the corre-

sponding average ranks differ by at least the critical difference (CD):

CD = qα ·
√

k · (k + 1)

6 ·N , (B.3)

192

where k is the number of the metaheuristics, N the number of datasets, qα the

critical value, and α the significance level of the statistical test. For more details,

see (Demśar, 2006).

193

References

E. Aarts and J. Korst (1988). Simulated annealing and boltzmann machines: A

stochastic approach to combinatorial optimization and neural computing. John

Wiley & Sons, Chichester. 17

E. Aarts, J. Korst, and W. Michiels (2005). Simulated annealing. In E. K.

Burke and G. Kendall, editors, Search methodologies: Introductory tutorials in

optimization and decision support techniques, pages 187–210. Springer Verlag.

17, 133

E. H. L. Aarts, J. H. M. Korst, and P. J. M. V. Laarhoven (1997). Simulated

annealing. In E. H. L. Aarts and J. K. Lenstra, editors, Local search in com-

binatorial optimization, pages 91–120. John Wiley & Sons, Chichester. 18,

70

B. Al-kazemi and C. K. Mohan (2002). Multi-phase discrete particle swarm

optimization. In Fourth International Workshop on Frontiers in Evolutionary

Algorithms, Kinsale, Ireland. 66

D. Avis, A. Hertz, and O. Marcotte (2005). Graph theory and combinatorial

optimization. Springer-Verlag, New York. 1, 7

R. Battiti, M. Brunato, and F. Mascia (2008). Reactive search and intelligent

optimization, volume 45 of Operations Research/Computer Science Interfaces

Series. Springer-Verlag, New York. 170

A. Ben-Dor, B. Chor, D. Graur, R. Ophir, and D. Pelleg (1998). Constructing

phylogenies from quartets: Elucidation of eutherian superordinal relationships.

Journal of Computational Biology, 5(3):377–390. 150, 176

194

admapgssc
Text Box
NOTE: At the end of each reference is a list of page numbers of this thesis in which the references are cited.

REFERENCES

V. Berry, T. Jiang, P. Kearney, M. Li, and T. Wareham (1999). Quartet cleaning:

Improved algorithms and simulations. In H.-M. Voigt, W. Ebeling, I. Rechen-

berg, and H.-P. Schwefel, editors, Algorithms - Proceedings 7th European Sym-

posium on Algorithms (ESA’99), volume 1643 of Lecture Notes in Computer

Science, pages 313–324. Springer-Verlag, Berlin, Germany. 150

C. Blum and A. Roli (2003). Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–

308. 55, 63, 68, 69, 70

T. Brüggemann, J. Monnot, and G. J. Woeginger (2003). Local search for the

minimum label spanning tree problem with bounded colour classes. Operations

Research Letters, 31:195–201. 76

V. Cerny (1985). Thermodynamical approach to the traveling salesman prob-

lem: an efficient simulation algorithm. Journal of Optimization Theory and

Applications, 45:41–51. 15

R. Cerulli, A. Fink, M. Gentili, and S. Voß (2005). Metaheuristics comparison for

the minimum labelling spanning tree problem. In B. L. Golden, S. Raghavan,

and E. A. Wasil, editors, The Next Wave on Computing, Optimization, and

Decision Technologies, pages 93–106. Springer-Verlag, New York. 74, 77, 78,

81, 100, 111, 119, 187

R. Cerulli, A. Fink, M. Gentili, and S. Voß (2006). Extensions of the minimum

labelling spanning tree problem. Journal of Telecommunications and Informa-

tion Technology, 4:39–45. 113, 115, 116, 117, 119, 120, 128, 142, 188

R. S. Chang and S. J. Leu (1997). The minimum labelling spanning trees. Infor-

mation Processing Letters, 63(5):277–282. 71, 74, 75

R. Cilibrasi (2007a). Statistical inference through data compression. Ph.D. thesis,

Institute for Logic, Language and Computation, Universiteit van Amsterdam,

The Netherlands. 172, 176

R. Cilibrasi (2007b). The Complearn toolkit. [online]. URL

http://www.complearn.org/. 172, 176

195

REFERENCES

R. Cilibrasi and P. M. B. Vitányi (2005). Clustering by compression. IEEE

Transactions on Information Theory, 51(4):1523–1545. 146, 147, 150, 151,

152, 153, 154, 155, 156, 157, 173, 176, 185, 186, 189

R. Cilibrasi and P. M. B. Vitányi (2006). A new quartet tree

heuristic for hierarchical clustering. In D. V. Arnold, T. Jansen,

M. D. Vose, and J. E. Rowe, editors, Theory of Evolutionary Al-

gorithms, Dagstuhl Seminar Proceedings, Dagstuhl, Germany. URL

http://drops.dagstuhl.de/opus/volltexte/2006/598. 146, 147, 151, 152,

153, 154, 155, 156, 157, 173, 176, 185, 186, 189

R. Cilibrasi and P. M. B. Vitányi (2007). The google similarity distance. IEEE

Transactions on Knowledge and Data Engineering, 19(3):370–383. 150

R. Cilibrasi, P. M. B. Vitányi, and R. de Wolf (2004). Algorithmic clustering of

music based on string compression. Computer Music Journal, 28(4):49–67. 150

A. Colorni, M. Dorigo, and V. Maniezzo (1992). Distributed optimization by ant

colonies. In F. J. Varela and P. Bourgine, editors, Toward a Practice of Au-

tonomous Systems: Proceedings of the First European Conference on Artificial

Life, pages 134–142. The MIT Press, Cambridge, MA. 56

S. Consoli (2007a). Test datasets for the minimum labelling spanning tree prob-

lem. [online]. URL http://www.sergioconsoli.com/MLSTP.htm. 102

S. Consoli (2008). Test datasets for the quartet method of hierarchical clustering.

[online]. URL http://www.sergioconsoli.com/Quartet.htm. 172

S. Consoli (2007b). Test datasets for the minimum labelling Steiner tree problem.

[online]. URL http://www.sergioconsoli.com/MLSteiner.htm. 135

S. Consoli, K. Darby-Dowman, G. Geleijnse, J. Korst, and S. Pauws (2008a).

Heuristic approaches for the quartet method of hierarchical clustering. IEEE

Transactions on Knowledge and Data Engineering, submitted. 5, 147

196

REFERENCES

S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008b).

Greedy randomized adaptive search and variable neighbourhood search for the

minimum labelling spanning tree problem. European Journal of Operational

Research, accepted for publication. doi: 10.1016/j.ejor.2008.03.014. 5

S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008c).

Solving the minimum labelling spanning tree problem using hybrid local search.

Optimization Methods and Software, submitted. Special Issue EURO XXII

conference. 5

S. Consoli, K. Darby-Dowman, N. Mladenović, and J. A. Moreno-Pérez (2008d).

Variable neighbourhood search for the minimum labelling Steiner tree problem.

Annals of Operations Research, accepted for publication. 5

S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović (2008e).

Discrete particle swarm optimization for the minimum labelling Steiner tree

problem. In N. Krasnogor, G. Nicosia, M. Pavone, and D. Pelta, editors,

Nature Inspired Cooperative Strategies for Optimization, volume 129 of Studies

in Computational Intelligence, pages 313–322. Springer-Verlag, New York. 5

S. Consoli, J. A. Moreno-Pérez, K. Darby-Dowman, and N. Mladenović (2008f).

Discrete particle swarm optimization for the minimum labelling Steiner tree

problem. Natural Computing, submitted. Special Issue NICSO conference. 5

E. S. Correa, A. A. Freitas, and C. G. Johnson (2006). A new discrete particle

swarm algorithm applied to attribute selection in a bioinformatic data set. In

Proceedings of GECCO 2006, pages 35–42. 67

C. Darwin (1859). The origin of species by means of natural selection or the

preservation of favoured races in the struggle for life. John Murray, London,

6th edition. 11, 36

J. Demśar (2006). Statistical comparison of classifiers over multiple data sets.

Journal of Machine Learning Research, 7:1–30. 108, 140, 192, 193

R. Diestel (2000). Graph theory. Springer-Verlag, New York. 144, 145, 146

197

REFERENCES

M. Dorigo and T. T. Stützle (2004). Ant colony optimization. The MIT Press,

Cambridge, MA. 56, 58, 62, 63

C. Duin and S. Voß (1999). The pilot method: A strategy for heuristic repetition

with applications to the Steiner problem in graphs. Networks, 34(3):181–191.

77, 80, 119

H. Everett (1957). “Relative state” formulation of quantum mechanics. Reviews

of Modern Physics, 29(3):454–462. 44

J. Felsenstein (1981). Evolutionary trees from DNA sequences: a maximum

likelihood approach. Journal of Molecular Evolution, 17(6):368–376. 148, 149,

176

T. A. Feo and M. G. C. Resende (1989). A probabilistic heuristic for a compu-

tationally difficult set covering problem. Operations Research Letters, 8:67–71.

21, 157

T. A. Feo and M. G. C. Resende (1995). Greedy randomized adaptive search

procedures. Journal of Global Optimization, 6(2):109–133. 22, 78, 84

R. P. Feynman and A. R. Hibbs (1965). Quantum mechanics and path integrals.

McGraw-Hill Companies. 43

R. L. Francis, L. F. McGinnis, and J. A. White (1992). Facility layout and

location: an analytical approach. Prentice-Hall, Englewood Cliffs, New Jersey.

116

M. Friedman (1940). A comparison of alternative tests of significance for the

problem of m rankings. Annals of Mathematical Statistics, 11:86–92. 108, 111,

139, 188, 192

G. W. Furnas (1984). The generation of random, binary unordered trees. Journal

of Classification, 1(1):187–233. 146

M. R. Garey and D. S. Johnson (1979). Computers and intractability : A guide

to the theory of NP-completeness. W. H. Freeman, New York. 190, 191

198

REFERENCES

M. R. Garey, R. L. Graham, and D. S. Johnson (1977). The complexity of

computing Steiner minimal trees. SIAM Journal on Applied Mathematics, 32:

835–859. 116

G. Geleijnse, J. Korst, and V. de Boer (2006). Instance classification

using co-occurrences on the web. In Proceedings of the ISWC 2006

workshop on Web Content Mining (WebConMine), Athens, GA. URL

http://www.dse.nl/~gijsg/webconmine.pdf. 172, 182, 183

M. Gendreau and J.-Y. Potvin (2005). Metaheuristics in combinatorial optimiza-

tion. Annals of Operations Research, 140(1):189–213. 7, 18, 74, 90, 91, 116,

148

F. Glover (1986). Future paths for integer programming and links to artificial

intelligence. Computers and Operations Research, 13:533–549. 18, 20, 167

F. Glover and G. A. Kochenberger (2003). Handbook of metaheuristics. Kluwer

Academic Publishers, Norwell, MA. 7, 21, 40, 41, 42, 70, 74, 90, 116, 148, 155

F. Glover, M. Laguna, and R. Mart́ı (2000). Fundamentals of scatter search and

path relinking. Control and Cybernetics, 39(3):653–684. 53, 54

F. Glover, M. Laguna, and R. Mart́ı (2003). Scatter search and path relinking:

Advances and applications. In F. Glover and G. A. Kochenberger, editors,

Handbook of metaheuristics, chapter 1, pages 1–36. Kluwer Academic Publish-

ers, Norwell, MA. 53, 56

D. E. Goldberg, K. Deb, and B. Korb (1991). Don’t worry, be messy. In Proceed-

ings of the 4th International Conference on Genetic Algorithms, pages 24–30,

La Jolla, CA. Morgan-Kaufmann. 38

G. R. Grimwood (1994). The Euclidean Steiner tree problem: Simulated anneal-

ing and other heuristics. Master’s thesis, Victoria University, Wellington, New

Zealand. URL http://www.isor.vuw.ac.nz/~{}geoff/thesis.html. 116

P. Hansen and N. Mladenović (1997). Variable neighbourhood search. Computers

and Operations Research, 24:1097–1100. 27, 86, 128, 167

199

REFERENCES

P. Hansen and N. Mladenović (2001). Variable neighbourhood search: Principles

and applications. European Journal of Operational Research, 130:449–467. 27,

32, 86

P. Hansen and N. Mladenović (2003). Variable neighbourhood search. In F. Glover

and G. A. Kochenberger, editors, Handbook of metaheuristics, chapter 6, pages

145–184. Kluwer Academic Publishers, Norwell, MA. 27, 30, 31, 32, 70, 86, 93,

167, 170

Y. C. Ho and D. L. Pepyne (2002). Simple explanation of the no-free-lunch

theorem and its implications. Journal of Optimization Theory and Applications,

115(3):549–570. doi: 10.1023/A:1021251113462. 3

J. H. Holland (1975). Adaptation in natural and artificial systems: An introduc-

tory analysis with applications to biology, control, and artificial intelligence.

University of Michigan Press, Ann Harbor. 38

J. H. Holland (1992). Adaptation in natural and artificial systems: An introduc-

tory analysis with applications to biology, control, and artificial intelligence.

The MIT Press, Cambridge, MA. 38, 41, 78

M. Hollander and D. A. Wolfe (1999). Nonparametric statistical methods. John

Wiley & Sons, New York, 2nd edition. 108, 140

F. K. Hwang, D. S. Richards, and P. Winter (1992). The Steiner tree problem.

North-Holland, Amsterdam, Netherlands. 116

R. L. Iman and J. M. Davenport (1980). Approximations of the critical region

of the Friedman statistic. Communications in Statistics, 9:571–595. 108, 109,

139, 140, 192

T. Jiang, P. Kearney, and M. Li (2000). A polynomial time approximation scheme

for inferring evolutionary trees from quartet topologies and its application.

SIAM Journal on Computing, 30(6):1942–1961. 149, 154

R. M. Karp (1975). On the computational complexity of combinatorial problems.

Networks, 5:45–68. 116

200

REFERENCES

L. Kaufman and P. J. Rousseeuw (2005). Finding groups in data: An introduction

to cluster analysis (Wiley Series in Probability and Statistics). John Wiley &

Sons, Chichester. 143, 144

J. Kennedy and R. Eberhart (1997). A discrete binary version of the particle

swarm algorithm. In IEEE Conference on Systems, Man, and Cybernetics,

volume 5, pages 4104–4108. 66, 125

J. Kennedy and R. Eberhart (1995). Particle swarm optimization. In Proceedings

of the 4th IEEE International Conference on Neural Networks, pages 1942–

1948, Perth, Australia. 63, 65, 66, 124

J. Kennedy and R. Eberhart (2001). Swarm Intelligence. Morgan Kaufmann

Publishers, San Francisco, CA. 63, 64, 66, 68, 124

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated

annealing. Science, 220(4598):671–680. 15, 133, 162

B. Korte, H. J. Prömel, and A. Steger (1990). Steiner trees in VLSI-layout. In

B. Korte, L. Lovász, H. J. Prömel, and A. Schrijver, editors, Paths, Flows, and

VLSI-Layout, pages 185–214. Springer-Verlag, Berlin, Germany. 116

J. Krarup and S. Vajda (1997). On Torricelli’s geometrical solution to a problem

of Fermat. IMA Journal of Management Mathematics, 8(3):215–224. 116

S. O. Krumke and H. C. Wirth (1998). On the minimum label spanning tree

problem. Information Processing Letters, 66(2):81–85. 74, 75, 76, 80, 82

P. Larrañaga and J. A. Lozano (2001). Estimation of distribution algorithms: A

new tool for evolutionary optimization. Kluwer Academic Publishers, Boston.

51, 52

M. Li and P. M. B. Vitányi (1997). An introduction to Kolmogorov complexity

and its applications. Springer-Verlag, New York, 2nd edition. 150

H. R. Lourenço, O. C. Martin, and T. Stützle (2003). Iterated local search.

In F. Glover and G. A. Kochenberger, editors, Handbook of metaheuristics,

volume 57, pages 320–353. Kluwer Academic Publishers, Norwell, MA. 24, 27

201

REFERENCES

C. D. Manning and H. Schütze (1999). Foundations of statistical natural language

processing. The MIT Press, Cambridge, MA. 183

F. J. Mart́ınez-Garćıa and J. A. Moreno-Pérez (2008). Jumping Frogs Opti-

mization: a new swarm method for discrete optimization. Tech. Rep. DEIOC

3/2008, Department of Statistics, O.R. and Computing, University of La La-

guna, Tenerife, Spain. 67

H. Mühlenbein and G. Paaß (1996). From recombination of genes to the es-

timation of distributions i. binary parameters. In H.-M. Voigt, W. Ebeling,

I. Rechenberg, and H.-P. Schwefel, editors, Parallel problem solving from na-

ture - PPSN IV, volume 1141/1996 of Lecture Notes in Computer Science,

pages 178–187. Springer-Verlag, Berlin, Germany. 50

W. Miehle (1958). Link-minimization in networks. Operations Research, 6:232–

243. 117

N. Mladenović, J. Petrović, V. Kovačević-Vujčić, and M. Čangalović (2003). Solv-

ing spread spectrum radar polyphase code design problem by tabu search and

variable neighbourhood search. European Journal of Operational Research, 151

(2):389–399. 170

J. A. Moreno-Pérez, J. P. Castro-Gutiérrez, F. J. Mart́ınez-Garćıa, B. Melián,

J. M. Moreno-Vega, and J. Ramos (2007). Discrete Particle Swarm Opti-

mization for the p-median problem. In Proceedings of the 7th Metaheuristics

International Conference, Montréal, Canada. 67, 125

P. Moscato (1989). On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Tech. Rep. 826, Caltech Concurrent

Computation Program, California Institute of Technology, Pasadena, CA. 42,

43

A. Narayanan (1999). Quantum computing for beginners. In Proceedings of the

IEEE Congress on Evolutionary Computation, volume 3, pages 2231–2238. 44,

45, 46

202

REFERENCES

A. Narayanan and M. Moore (1996). Quantum-inspired genetic algorithms. In

Proceedings of the IEEE International Conference on Evolutionary Computa-

tion, pages 61–66. 43, 44

P. B. Nemenyi (1963). Distribution-free multiple comparisons. Ph.D. thesis,

Princeton University, New Jersey. 108, 111, 139, 188, 192

G. C. Onwubolu and M. Clerc (2004). Optimal operating path for automated

drilling operations by a new heuristic approach using particle swarm optimisa-

tion. International Journal of Production Research, 42(3):473–491. 67

I. H. Osman (1993). Metastrategy simulated annealing and tabu search algo-

rithms for the vehicle routing problem. Annals of Operations Research, 41:

421–451. 163

J. Pacheco, S. Casado, and L. Nuñez (2007). Use of VNS and TS in classifica-

tion: variable selection and determination of the linear discrimination function

coefficients. IMA Journal of Management Mathematics, 18(2):191–206. 93

G. Pampara, N. Franken, and A. P. Engelbrecht (2005). Combining particle

swarm optimisation with angle modulation to solve binary problems. In Pro-

ceedings of the IEEE Congress on Evolutionary Computing, volume 1, pages

89–96. 66

W. Pang, K. Wang, C. Zhou, and L. Dong (2004). Fuzzy discrete particle swarm

optimization for solving traveling salesman problem. In Proceedings of the 4th

International Conference on Computer and Information Technology (CIT04),

volume 1, pages 89–96. IEEE Computer Society. 67

L. S. Pitsoulis and M. G. C. Resende (2002). Greedy randomized adaptive search

procedure. In P. Pardalos and M. G. C. Resende, editors, Handbook of Applied

Optimization, pages 168–183. Oxford University Press. 22, 157

M. Pérez-Pérez, F. Almeida-Rodŕıguez, and J. M. Moreno-Vega (2007). A hybrid

VNS-path relinking for the p-hub median problem. IMA Journal of Manage-

ment Mathematics, 18(2):157–171. 93

203

REFERENCES

J. Pugh and A. Martinoli (2006). Discrete multi-valued particle swarm optimiza-

tion. In Proceedings of IEEE Swarm Intelligence Symposium, volume 1, pages

103–110. 67

M. G. C. Resende and C. C. Ribeiro (2003). Greedy randomized adaptive search

procedure. In F. Glover and G. Kochenberger, editors, Handbook of meta-

heuristics, pages 219–249. Kluwer Academic Publishers, Norwell, MA. 24, 78,

84, 85, 123

A. Rokas, B. L. Williams, N. King, and S. B. Carroll (2003). Genome-scale

approaches to resolving incongruence in molecular phylogenies. Nature, 425

(6960):798–804. 176

B. R. Secrest (2001). Traveling salesman problem for surveillance mission us-

ing particle swarm optimization. Master’s thesis, School of Engineering and

Management of the Air Force Institute of Technology, USA. 67

P. W. Shor (1994). Algorithms for quantum computation: Discrete logarithms

and factoring. In Proceedings of the IEEE Symposium on Foundations of Com-

puter Science, pages 124–134. 44

M. A. Steel (1992). The complexity of reconstructiong trees from qualitative

characters and subtrees. Journal of Classification, 9:91–116. 149, 154

K. Strimmer and A. von Haeseler (1996). Quartet puzzling: A quartet maximum-

likelihood method for reconstructing tree topologies. Moleculare Biology and

Evolution, 13(7):964–969. 150

T. Stützle (2006). Iterated local search for the quadratic assignment problem.

European Journal of Operational Research, 174(3):1519–1539. doi: 10.1016/j.

ejor.2005.01.066. 24, 27

T. Stützle (1999). Iterated local search for the quadratic assignment problem.

Tech. Rep. AIDA-99-03, FG Intellektik, FB Informatik, TU Darmstadt, Ger-

many. 24

204

REFERENCES

H. Talbi, A. Draa, and M. Batouche (2004). A new quantum-inspired genetic al-

gorithm for solving the travelling salesman problem. In Proceedings of the IEEE

International Conference on Industrial Technology, volume 3, pages 1192–1197.

49

A. S. Tanenbaum (1989). Computer networks. Prentice-Hall, Englewood Cliffs,

New Jersey. 72, 114

C. R. Reeves G. D. Smith V. J. Rayward-Smith, I. H. Osman (1996). Modern

heuristic search methods. John Wiley & Sons, Chichester. 8

R. Van-Nes (2002). Design of multimodal transport networks: A hierarchical

approach. Delft University Press. 72, 114

S. Voß (2000). Modern heuristic search methods for the Steiner tree problem in

graphs. In D.-Z. Du, J. M. Smith, and J. H. Rubinstein, editors, Advances in

Steiner tree, pages 283–323. Kluwer Academic Publishers, Boston. 116

S. Voß (2006). Steiner tree problems in telecommunications. In M. Resende

and P.M. Pardalos, editors, Handbook of optimization in telecommunications,

chapter 18, pages 459–492. Springer Science, New York. 116

S. Voß, S. Martello, I. H. Osman, and C. Roucairol (1999). Meta-heuristics.

Advanced and trends local search paradigms for optimization. Kluwer Academic

Publishers, Norwell, MA. 7, 8, 74, 116, 148

S. Voß, A. Fink, and C. Duin (2004). Looking ahead with the pilot method.

Annals of Operations Research, 136:285–302. 77, 80, 119

C. Voudouris (1997). Guided local search for combinatorial optimisation problems.

Ph.D. thesis, Department of Computer Science, University of Essex, United

Kingdom. 32

C. Voudouris and E. Tsang (1999). Guided local search and its application to the

traveling salesman problem. European Journal of Operational Research, 113

(2):469–499. 32, 33, 35

205

REFERENCES

Y. Wan, G. Chen, and Y. Xu (2002). A note on the minimum label spanning

tree. Information Processing Letters, 84:99–101. 76

J. Weyer-Menkhoff, C. Devauchelle, A. Grossmann, and S. Grünewald (2005).

Integer linear programming as a tool for constructing trees from quartet data.

Computational Biology and Chemistry, 29(3):196–203. 150

P. Winter (1987). Steiner problem in networks: a survey. Networks, 17:129–167.

116

D. H. Wolpert and W. G. Macready (1997). No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1:67–82. 2

Y. Xiong, B. Golden, and E. Wasil (2005a). Worst case behavior of the mvca

heuristic for the minimum labelling spanning tree problem. Operations Research

Letters, 33(1):77–80. 76

Y. Xiong, B. Golden, and E. Wasil (2005b). A one-parameter genetic algorithm

for the minimum labelling spanning tree problem. IEEE Transactions on Evo-

lutionary Computation, 9(1):55–60. 73, 77, 78

Y. Xiong, B. Golden, and E. Wasil (2006). Improved heuristics for the min-

imum labelling spanning tree problem. IEEE Transactions on Evolutionary

Computation, 10(6):700–703. 73, 77, 78, 79, 80, 111, 187

206

