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Abstract

Simulation Optimization (SO) refers to the optimization of an objective function subject to constraints,
both of which can be evaluated through a stochastic simulation. To address specific features of a particular
simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs,
homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can
imagine, there exist several competing algorithms for each of these classes of problems. This document
emphasizes the difficulties in simulation optimization as compared to mathematical programming, makes
reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used,
reviews some of the diverse applications that have been tackled by these methods, and speculates on future
directions in the field.
Keywords: Simulation optimization; Optimization via simulation; Derivative-free optimization

1 Introduction

Advances in modeling and availability of cheap
computational power have enabled the science,
engineering, and business research communities to
make use of simulations to model phenomena and
systems. It is only natural that there be a great
interest in manipulating degrees of freedom in the
simulations to optimize them.

The term Simulation Optimization (SO) is an
umbrella term for techniques used to optimize
stochastic simulations. Simulation optimization
involves the search for those specific settings of the
input parameters to a stochastic simulation such
that a target objective, which is a function of the
simulation output, is, without loss of generality,

minimized.
As opposed to mathematical programming, SO

does not assume that an algebraic description of
the simulation is available—the simulation may
be available as a black box that only allows the
evaluation of the objective and constraints for a
particular input. In fact, many SO algorithmic
approaches solely depend on such input-output data
from the simulation in their search for optimal input
settings.

In addition, many large-scale and/or detailed
simulations may be expensive to run, in terms of
time, money, or resources. As a result, there
is also a need to perform few simulations in this
search for optimal parameters. Outputs from these
stochastic simulations are not deterministic, and
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usually follow some output distribution, which may
or may not vary across the parametric space. This
uncertainty or variability in output also adds to
the challenge of optimization, as it becomes harder
to discern the quality of the parametric input in
the presence of this output noise. In addition,
when an algebraic description of the simulation
is not accessible, derivative information is usually
unavailable, and the estimation of derivatives from
the use of finite differences may not be suitable
due to noisy outputs and the expensive nature of
simulations.

The nature of the stochastic simulations under
study will determine the specific technique chosen
to optimize them. The simulations, which are
often discrete-event simulations, may be partially
accessible to us in algebraic form, or may be purely
available as an input-output model (as a black
box); they may have single or multiple outputs;
they may have deterministic or stochastic output(s);
they may involve discrete or continuous parameters;
and they may or may not involve explicit, or even
implicit/hidden constraints.

A very general simulation optimization problem
can be represented by (P1).

min Eω[f(x, y, ω)]

s.t. Eω[g(x, y, ω)] ≤ 0

h(x, y) ≤ 0

xl ≤ x ≤ xu

x ∈ R
n, y ∈ D

m.

(P1)

The function f can be evaluated through simulation
for a particular instance of the continuous inputs x,
discrete inputs y, and a realization of the random
variables in the simulation, the vector ω (which may
or may not be a function of the inputs, x and y).
Similarly, the constraints defined by the vector-valued
function g are also evaluated with each simulation
run. In this formulation, expected values for these
stochastic functions are used. There may be other
constraints (represented by h) that do not involve
random variables, as well as bound constraints on
the decision variables.

The relaxation of any of these conditions would
constitute a problem that would fall under the
purview of SO. Most algorithms focus on problems
that either have solely discrete choices, or solely
continuous decisions to make. Each constraint may
be thought of as representing additional outputs
from the simulation that need to be taken into
consideration. In addition, there may be bound
constraints imposed on decision variables, that may
either be available or obtained from domain-specific

knowledge. Relatively few existing algorithms
attempt to address both discrete and continuous
choices simultaneously, although some broad classes
of approaches naturally lend themselves to be
applicable in either, and therefore both, settings.
Further, the discrete variables may either be binary,
integer-ordered, or categorical and lie in some discrete
space D.

As can be seen, the formulation P1 is extremely
general, and therefore a wide variety of applications
fall under the scope of simulation optimization.
Various applications of simulation optimization in
diverse research fields are tabulated in Section 2.

Another common assumption is that f is a
real-valued function and g is a real vector-valued
function, both of whose expected values may or
may not be smooth or continuous functions. The
most common objective in SO is to optimize the
expected value of some performance metric, but other
objective functions may be appropriate depending
on the application. For instance, an objective
that minimizes risk could be a possible alternative,
in which case one would incorporate some sort of
variance measure as well into the objective.

This paper is an updated version of Amaran et al.
[4] and is meant to be a survey of available techniques
as well as recent advances in simulation optimization.
The remainder of the introduction section provides a
literature survey of prior reviews, and elaborates on
the relationship of simulation optimization to math-
ematical programming, derivative-free optimization,
and machine learning. Section 2 provides a glimpse
into the wide variety of applications of simulation
optimization that have appeared in the literature.
Section 3 focuses on various algorithms for discrete
and continuous simulation optimization, provides
basic pseudocode for major categories of algorithms,
and provides comprehensive references for each type
of algorithm. Section 4 provides a listing of available
software for simulation optimization and Section
5 discusses means to compare their performance.
Section 6 summarizes the progress of the field, and
outlines some current and future topics for research.

1.1 Prior reviews of simulation optimization

Several review papers (cf. [135, 99, 174, 15, 59, 29,
7, 16, 191, 61, 60, 194, 62, 9, 88, 5, 152]), books and
research monographs (cf. [186, 171, 115, 35]), and
theses (cf. [12, 53, 45, 30, 58, 104]) have traced the
development of simulation optimization.

Meketon [135] provides a classification of algo-
rithmic approaches for optimization over simulations
based on how much information or structure about
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the underlying model is known. The paper surveys
the progress of the field between 1975 and 1987,
and focuses on continuous simulation optimization.
Andradóttir [7] provides a tutorial on gradient-based
procedures for continuous problems. Carson and
Maria [29] and Azadivar [16] also give brief outlines
of and pointers to prevailing simulation optimization
algorithms.

Fu et al. [61] contains several position
statements of eminent researchers and practitioners
in the field of simulation, where the integration
of simulation with optimization is discussed. The
issues addressed include generality vs. specificity
of an algorithm, the wider scope of problems
that simulation optimization methodologies have the
potential to address, and the need for integrating
provably convergent algorithms proposed by the
research community with metaheuristics often used
by commercial simulation software packages.

Of the more recent surveys, Fu [59] provides an
excellent tutorial on simulation optimization, and
focuses on continuous optimization problems more
than discrete optimization problems. The paper
focuses specifically on discrete-event simulations.
Fu [60] provides a comprehensive survey of the
field and its scope—the paper outlines the different
ways in which optimization and simulation interact,
gives examples of real-world applications, introduces
simulation software and the optimization routines
that each of them use, provides a very basic tutorial
on simulation output analysis and convergence theory
for simulation optimization, elaborates on algorithms
for both continuous and discrete problems, and
provides pointers to many useful sources. Fu et
al. [62] provide a concise, updated version of all of
this, and also talk about estimation of distribution
algorithms.

Tekin and Sabuncuoglu [194] provide a table that
analyzes past review papers and the techniques they
focus on. Apart from providing detailed updates on
advances in approaches and algorithms, the paper
also lists references that attempt to compare different
SO techniques. Hong and Nelson [88] classify
simulation optimization problems into those with (1)
a finite number of solutions; (2) continuous decision
variables; and (3) discrete variables that are integer-
ordered. The paper describes procedures for each
of these classes. Perhaps the most recent survey,
[5], classifies simulation optimization algorithms and
provides a survey of methods as well as applications
appearing in the literature between 1995 and 2010.

The present paper provides an overview of
techniques, and briefly outlines well-established
methods with pointers to more detailed surveys,

while expounding on more recent methods in
a concise manner. Though several reviews
exist, we catalog the most recent developments—
the emergence of derivative-free optimization and
its relationship with simulation optimization, the
appearance of simulation test-beds for comparing
algorithms, the recent application of simulation
optimization in diverse fields, the development of
and interest in related techniques and theory by the
machine learning community and the optimization
community, as well as the sheer unprecedented nature
of recent interest in optimizing over simulations. A
reflection of a surge in recent interest is evidenced
by the fact that more than half of the works we
reference were published in the last decade. The
intent is to not only trace the progress of the field,
but to provide an update on state-of-the-art methods
and implementations, point the familiar as well as
the uninitiated reader to relevant sources in the
literature, and to speculate on future directions in
the field.

1.2 A note on terminology and scope

As simulation optimization involves the use of
algorithms that arose from widely differing fields
(Section 3), has relationships to many diverse
disciplines (Section 1.3), and has been applied to
many different practical applications from biology
to engineering to logistics (Section 2), it is not
surprising that it is known by various names
in different fields. It has also been referred
to as simulation-based optimization, stochastic
optimization, parametric optimization, black-box
optimization, and Optimization via Simulation
(OvS), where the continuous and discrete versions
are accordingly known as Continuous Optimization
via Simulation (COvS) and Discrete Optimization
via Simulation (DOvS). Each algorithmic technique
may also go by different names, and we attempt to
reconcile these in Section 3.

Inputs to the simulation may be variously
referred to as parameter settings, input
settings, variables, controls, solutions, designs,
experiments (or experimental designs), factors,
or configurations. Outputs from the simulation
are called measurements, responses, performance
metrics, objective values, simulation replications,
realizations, or results. The performance of a
simulation may also be referred to as an experiment,
an objective function evaluation, or simply a
function evaluation. We will use the term ‘iteration’
to refer to a fixed number of function evaluations
(usually one) performed by a simulation optimization
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algorithm.

A note of caution while using SO methods is to
incorporate as much domain specific knowledge as
possible in the use of an SO algorithm. This may
be in terms of (1) screening relevant input variables,
(2) scaling and range reduction of decision variables,
(3) providing good initial guesses for the algorithm;
and (4) gleaning information from known problem
structure, such as derivative estimates.

Table 1 classifies the techniques that are usually
most suitable in practice for different scenarios in
the universe of optimization problems. Certain
broad classes of algorithms, such as random search
methods, may be applicable to all of these types
of problems, but they are often most suitable when
dealing with pathological problems (e.g., problems
with discontinuities, nonsmoothness) and are often
used because they are relatively easy to implement.

The possibilities of combining simulation and
optimization procedures are vast: simulation with
optimization-based iterations; optimization with
simulation-based iterations; sequential simulation
and optimization; and alternate simulation and
optimization are four such paradigms. A recent
paper by Figueira and Almada-Lobo [56] delves
into the taxonomy of such problems, and provides
a guide to choosing an appropriate approach for
a given problem. As detailed by Meketon [135],
different techniques may be applicable or more
suitable depending on how much is known about
the underlying simulation, such as its structure or
associated probability distributions. We focus on
approaches that are applicable in situations where
all the optimization scheme has to work with are
evaluations of f(x, y, ω) and g(x, y, ω), or simply,
observations with noise.

1.3 Relationship to other fields

Mathematical Programming. As men-
tioned earlier, most mathematical programming
methods rely on the presence of an algebraic model.
The availability of an algebraic model has many
obvious implications to a mathematical programming
expert, including the ability to evaluate a function
quickly, the availability of derivative information, and
the possibility of formulating a dual problem. None of
these may be possible to do/obtain in an SO setting.

In the case with continuous decisions, derivative
information is often hard to estimate accurately
through finite differences, either due to the stochastic
noise associated with objective function evaluations,

or due to the large expense associated with obtaining
function evaluations, or both. The inherent
stochasticity in output also renders automatic
differentiation (AD) [161, 76] tools not directly
applicable. Moreover, automatic differentiation
may not be used when one has no access to
source code, does not possess an AD interface to
proprietary simulation software, and, of course, when
one is dealing with a physical experiment. The
lack of availability of derivative information has
further implications—it complicates the search for
descent directions, proofs of convergence, and the
characterization of optimal points.

Simulation optimization, like stochastic program-
ming, also attempts to optimize under uncertainty.
However, stochastic programming differs in that
it makes heavy use of the model structure itself
[27]. Optimization under uncertainty techniques that
make heavy use of mathematical programming are
reviewed in [175].

Derivative-Free Optimization. Both
Simulation Optimization and Derivative-Free
Optimization (DFO) are referred to in the literature
as black-box optimization methods. Output
variability is the key factor that distinguishes SO
from DFO, where the output from the simulation is
deterministic. However, there are many approaches
to DFO that have analogs in SO as well (e.g., response
surfaces, direct search methods, metaheuristics), cf.
Section 3.

Another distinction is that most algorithms in
DFO are specifically designed keeping in mind that
function evaluations or simulations are expensive.
This is not necessarily the case with SO algorithms.

With regard to rates of convergence, SO
algorithms are generally inefficient and convergence
rates are typically very slow. In general, one would
expect SO to have a slower convergence rate than
DFO algorithms simply because of the additional
complication of uncertainty in function evaluations.
As explained in [43], some DFO algorithms, under
certain assumptions, expect rates that are closer
to linear than quadratic, and therefore early
termination may be suitable. As described in some
detail by [59], the best possible convergence rates
for SO algorithms are generally O(1/

√
k), where

k is the number of samples. This is true from the
central limit theorem that tells us the rate at which
the best possible estimator converges to the true
expected function value at a point. This implies
that though one would ideally incorporate rigorous
termination criteria in algorithm implementations,
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Table 1: Terminology of optimization problems

Algebraic model available Unknown/complex
problem
structure

Deterministic Traditional math program-
ming (linear, integer, and
nonlinear programming)

Derivative-
free
optimization

Uncertainty present Stochastic programming, ro-
bust optimization

Simulation
optimization

most practical applications have a fixed simulation
or function evaluation budget that is reached first.

Machine Learning. Several subcommunities
in the machine learning community address problems
closely related to simulation optimization. Tradi-
tional machine learning settings assume the avail-
ability of a fixed dataset. Active learning methods
[40, 178] extend machine learning algorithms to the
case where the algorithms are allowed to query an
oracle for additional data to infer better statistical
models. Active learning is closely related in that
this choice of sampling occurs at every iteration in
a simulation optimization setting as well. The focus
of active learning is usually to learn better predictive
models rather than to perform optimization.

Reinforcement learning [190] is broadly concerned
with what set of actions to take in an environment to
maximize some notion of cumulative reward. Rein-
forcement learning methods have strong connections
to information theory, optimal control, and statistics.
The similarity with simulation optimization is that
the common problem of exploration of the search
space vs. exploitation of known structure of the
cost function arises. However, in the reinforcement
learning setting, each action usually also incurs a
cost, and the task is to maximize the accumulated
rewards from all actions—as opposed to finding a
good point in the parameter space eventually.

Policy gradient methods [155] are a subfield of
reinforcement learning, where the set of all possible
sequences of actions form the policy space, and a
gradient in this policy space is estimated and a
gradient ascent-type method is then used to move
to a local optimum. Bandit optimization [68]
is another subfield of reinforcement learning that
involves methods for the solution to the multi-armed
bandit problem. The canonical example involves a

certain number of slot machines, and a certain total
budget to play them. Here, each choice of sample
corresponds to which slot machine to play. Each
play on a slot machine results in random winnings.
This setting is analogous to discrete simulation
optimization (DOvS) over finite sets, although with
a different objective [158]. Again, in DOvS over
finite sets, we are only concerned with finding the
best alternative eventually, whereas the cumulative
winnings is the concern in the multi-armed bandit
problem.

Relationship to other fields. Most, if
not all, simulation optimization procedures have
elements that are derived from or highly related to
several other fields. Direct search procedures and
response surface methodologies (RSM) have strong
relationships with the field of experimental design.
RSM, sample path optimization procedures, and
gradient-based methods heavily incorporate ideas
from mathematical programming. RSM also involves
the use of nonparametric and Bayesian regression
techniques, whereas estimation of distribution
algorithms involves probabilistic inference, and
therefore these techniques are related to statistics
and machine learning. Simulation optimization
has been described as being part of a larger field
called computational stochastic optimization. More
information is available at [157].

2 Applications

SO techniques are most commonly applied to either
(1) discrete-event simulations, or (2) systems of
stochastic nonlinear and/or differential equations.

As mentioned in [59], discrete event simulations
can be used to model many real-world systems such
as queues, operations, and networks. Here, the



Simulation optimization: A review of algorithms and applications 6

simulation of a system usually involves switching or
jumping from one state to another at discrete points
in time as events occur. The occurrence of events is
modeled using probability distributions to model the
randomness involved.

Stochastic differential equations may be used to
model phenomena ranging from financial risk [137]
to the control of nonlinear systems [183] to the
electrophoretic separation of DNA molecules [39].

With both discrete-event simulations and stochas-
tic differential equation systems, there may be
several parameters that one controls that affect
some performance measure of the system under
consideration, which are essentially degrees of
freedom that may be optimized through SO
techniques. Several applications of SO from diverse
areas have been addressed in the literature and we
list some of them in Table 2.

3 Algorithms

Algorithms for SO are diverse, and their applicability
may be highly dependent on the particular applica-
tion. For instance, algorithms may (1) attempt to
find local or global solutions; (2) address discrete
or continuous variables; (3) incorporate random
elements or not; (4) be tailored for cases where
function evaluations are expensive; (5) emphasize
exploration or exploitation to different extents; (6)
assume that the uncertainty in simulation output
is homoscedastic or that it comes from a certain
probability distribution; or (7) rely on underlying
continuity or differentiability of the expectation (or
some function of a chosen moment) of the simulation
output. The sheer diversity of these algorithms
also makes it somewhat difficult to assert which one
is better than another in general, and also makes
it hard to compare between algorithms or their
implementations.

As mentioned in Section 1.3, many algorithms that
are available for continuous simulation optimization
have analogs in derivative-based optimization and
in derivative-free optimization, where function
evaluations are deterministic. In any case, the key
lies in the statistics of how noise is handled, and
how it is integrated into the optimization scheme.
We will provide pointers to references that are
applicable to simulation optimization in particular.
A comprehensive review of methods for derivative-
free optimization is available in [166].

Each major subsection below is accompanied by
pseudocode to give researchers and practitioners
unfamiliar with the field an idea of the general

approach taken by each of these algorithms. Many
of the sections include pointers to convergence
proofs for individual algorithms. Optimality
in simulation optimization is harder to establish
than in mathematical programming or derivative-
free optimization due to the presence of output
variability. Notions of optimality for simulation
optimization are explored in [59]; for the discrete
case, [206], for instance, establishes conditions for
local convergence, where a point being ‘better’
than its 2m + 1 neighboring solutions is said to
be locally optimal. There has also been some
work in establishing Karush-Kuhn-Tucker (KKT)
optimality conditions for multiresponse simulation
optimization [24]. Globally convergent algorithms
will locate the global optimal solution eventually, but
assuring this would require all feasible solutions to be
evaluated through infinite observations; in practice,
a convergence property that translates to a practical
stopping criterion may make more sense [88].

Based on their scope, the broad classes of
algorithms are classified in Table 3. Algorithms
are classified based on whether they are applicable
to problems with discrete/continuous variables, and
whether they focus on global or local optimization.
However, there may be specific algorithms that have
been tweaked to make them applicable to a different
class as well, which may not be captured by this table.

3.1 Discrete optimization via simulation

Discrete optimization via simulation is concerned
with finding optimal settings for variables that can
only take discrete values. This may be in the form
of integer-ordered variables or categorical variables
[153]. Integer-ordered variables are allowed to take
on integer or discrete values within a finite interval,
where the order of these values translates to some
physical interpretation. For example, this could be
the number of trucks available for vehicle routing,
or the set of standard pipe diameters that are
available for the construction of a manufacturing
plant. Categorical variables refer to more general
kinds of discrete decisions, ranging from conventional
on-off (0-1 or binary) variables to more abstract
decisions such as the sequence of actions to take
given a finite set of actions. It should be noted
that though integer-ordered variables, for instance,
may be logically represented using binary variables,
it may be beneficial to retain them as integer-ordered
to exploit correlations in objective function values
between adjacent integer values.

A rich literature in DOvS has developed over
the last 50 years, and the specific methods
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Table 2: Partial list of published works that apply simulation optimization

Domain of application Application and citations

Operations Buffer location [132], nurse scheduling [193], inventory
management [120, 176], health care [11], queuing
networks [63, 25, 138]

Manufacturing PCB production [48], engine manufacturing [192],
production planning [107, 114], manufacturing-cell
design [98], kanban sizing [79]

Medicine and biology Protein engineering [168], cardiovascular surgery [202],
breast cancer epidemiology [55], bioprocess control [197,
165], ECG analysis [67], medical image analysis [136]

Engineering Welded beam design [209], solid waste management
[210], pollution source identification [14], chemical supply
chains [103], antenna design [159], aerodynamic design
[203, 205, 204, 122], distillation column optimization
[162], well placement [18], servo system control [160],
power systems [54], radar analysis [108]

Computer science, networks,
electronics

Server assignment [125], wireless sensor networks [49],
circuit design [130], network reliability [123]

Transportation and logistics Traffic control and simulation [211, 17, 151],
metro/transit travel times [83, 148], air traffic control
[119, 96]

Table 3: Classification of simulation optimization algorithms

Algorithm class Discrete Continuous Local Global

Ranking and selection × ×
Metaheuristics × × ×
Response surface methodology × × ×
Gradient-based methods × ×
Direct search × × ×
Model-based methods × × × ×
Lipschitzian optimization × ×
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developed are tailored to the specific problem setting.
Broadly, methods are tailored for finite or for very
large/potentially infinite parameter spaces.

3.1.1 Finite parameter spaces

In the finite case, where the number of alternatives is
small and fixed, the primary goal is to decide how to
allocate the simulation runs among the alternatives.
In this setting, there is no emphasis on ‘search’,
as the candidate solution pool is small and known;
each iteration is used to infer the best, in some
statistical sense, simulation run(s) to be performed
subsequently.

The optimization that is desired may differ
depending on the situation, and could involve:

1. The selection of the best candidate solution
from a finite set of alternatives;

2. The comparison of simulation performance
measures of each alternative to a known
standard or control; or

3. The pairwise comparison between all solution
candidates.

Item (1) is referred to as the ranking and selection

problem. Items (2) and (3) are addressed under
literature on multiple comparison procedures, with
the former referred to as multiple comparisons with

a control.

Ranking and Selection. In traditional
ranking and selection, the task is to minimize the
number of simulation replications while ensuring a
certain probability of correct selection of alternatives.
Most procedures try to guarantee that the design
ultimately selected is better than all competing
alternatives by δ with a probability at least 1 −
α. δ is called the indifference zone, and is the
value deemed to be sufficient to distinguish between
expected performance among solution candidates.

Conventional procedures make use of the Bon-
ferroni inequality which relates probabilities of the
occurrence of multiple events with probabilities
of each event. Other approaches involve the
incorporation of covariance induced by, for example,
the use of common random numbers to expedite the
algorithmic performance over the more conservative
Bonferroni approach. Kim and Nelson [111, 112]
and Chick [38] provide a detailed review and
provide algorithms and procedures for this setting.
Extensions of fully sequential ranking and selection
procedures to the constrained case have been
explored as well, e.g., [10].

An alternative formulation of the ranking and
selection of the problem would be to try to do the
best within a specified computational budget, called
the optimal computing budget allocation formulation
[33]. Chen et al. [36] present more recent work, while
the stochastically constrained case is considered in
[129].

Recent work [95] in the area of DOvS over finite
sets provides a quick overview of the field of ranking
and selection, and considers general probability dis-
tributions and the presence of stochastic constraints
simultaneously.

A basic ranking and selection procedure [112] is
outlined in Algorithm 1, where it is assumed that
independent data comes from normal distributions
with unknown, different variances.

Algorithm 1 Basic ranking and selection
procedure for SO

Require: Confidence level 1−α, indifference
zone parameter δ

1: Take n0 samples from each of the 1, . . . , K
potential designs

2: Compute sample means, t̄k,n0
and sample

variances, Sk, for each of the designs
3: Determine how many new samples, Nk :=

max
{
n0,

⌈
ψ2S2

k

δ2

⌉}
, to take from each

system, where the Rinott constant ψ is
obtained from [21]

4: Select the system with the best new
sample mean, t̄k,Nk+n0

.

Multiple comparison procedures. Here,
a number of simulation replications are performed on
all the potential designs, and conclusions are made by
constructing confidence intervals on the performance
metric. The main ideas and techniques for multiple
comparisons in the context of pairwise comparisons,
or against a known standard are presented in [86],
[59], and [90]. Recent work in multiple comparisons
with a control include [110] and [146], which provide
fully sequential and two-stage frequentist procedures
respectively; and [201], which addresses the problem
using a Bayesian approach.

Comprehensive treatment of ranking and selection
and multiple comparison procedures may be found
in Goldsman and Nelson [74] and Bechhofer et al.
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[21]. A detailed survey that traces the development
of techniques in simulation optimization over finite
sets is available in [194].

3.1.2 Large/Infinite parameter spaces

To address DOvS problems with a large number of
potential alternatives, algorithms that have a search
component are required. Many of the algorithms
that are applicable to the continuous optimization
via simulation case are, with suitable modifications,
applicable to the case with large/infinite parameter
spaces. These include (1) ordinal optimization
(2) random search methods and (3) direct search
methods.

Ordinal optimization methods [84] are suitable
when the number of alternatives is too large to
find the globally optimal design in the discrete-event
simulation context. Instead, the task is to find a
satisfactory solution with some guarantees on quality
(called alignment probability) [127]. Here, the focus
is on sampling a chosen subset of the solutions and
evaluating them to determine the best among them.
The key lies in choosing this subset such that it
contains a subset of satisfactory solutions. The
quality or satisfaction level of this selected subset can
be quantified [34]. A comparison of subset selection
rules is presented in [100] and the multi-objective case
is treated in [195].

Random search methods include techniques such
as simulated annealing (e.g., [3]), genetic algorithms,
stochastic ruler methods (e.g., [208]), stochastic
comparison (e.g., [75]), nested partitions (e.g.,
[182]), ant colony optimization (e.g., [52, 51]),
and tabu search (e.g., [71]). Some of these—
simulated annealing, genetic algorithms, and tabu
search—are described in Section 3.6). Ant
colony optimization is described under model-based
methods (cf. Section 3.7.2). Proofs of global
convergence, i.e., convergence to a global solution,
or local convergence are available for most of these
algorithms [88] (note that these definitions differ from
mathematical programming where global convergence
properties ensure convergence to a local optimum

regardless of the starting point).
Nested partition methods [181] attempt to

adaptively sample from the feasible region. The
feasible region is then partitioned, and sampling
is concentrated in regions adjudged to be the
most promising by the algorithm from a pre-
determined collection of nested sets. Hong and
Nelson propose the COMPASS algorithm [87] which
uses a unique neighborhood structure, defined as
the most promising region that is fully adaptive

rather than pre-determined; a most promising ‘index’
is defined that classifies each candidate solution
based on a nearest neighbor metric. More recently,
the Adaptive Hyberbox Algorithm [207] claims
to have superior performance on high-dimensional
problems (problems with more than ten or fifteen
variables); and the R-SPLINE algorithm [198],
which alternates between a continuous search on
a continuous piecewise-linear interpolation and a
discrete neighborhood search, compares favorably as
well.

A review of random search methods is presented in
[8, 149]. Recent progress, outlines of basic algorithms,
and pointers to specific references for some of these
methods are presented in [26], [88], and [145].

Direct search methods such as pattern search and
Nelder-Mead simplex methods are elaborated on in
Section 3.5.

3.2 Response surface methodology

Response surface methodology (RSM) is typically
useful in the context of continuous optimization
problems and focuses on learning input-output rela-
tionships to approximate the underlying simulation
by a surface (also known as a metamodel or surrogate
model) for which we define a functional form. This
functional form can then be made use of by leveraging
powerful derivative-based optimization techniques.
The literature in RSM is vast and equivalent
approaches have variously been referred to as multi-
disciplinary design optimization, metamodel-based
optimization, and sequential parameter optimization.
RSM was originally developed in the context of
experimental design for physical processes [28], but
has since been applied to computer experiments.
Metamodel-based optimization is a currently popular
technique for addressing simulation optimization
problems [20, 115].

Different response surface algorithms differ in the
choice between regression and interpolation; the
nature of the functional form used for approximation
(polynomials, splines, Kriging, radial basis functions,
neural networks); the choice of how many and where
new samples must be taken; and how they update the
response surface.

RSM approaches can either (1) build surrogate
models that are effective in local regions, and
sequentially use these models to guide the search, or;
(2) build surrogate models for the entire parameter
space from space-filling designs, and then use them
to choose samples in areas of interest, i.e., where
the likelihood of finding better solutions is good
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Algorithm 2 Basic RSM procedure

Require: Initial region of approximation X ,
choice of regression surface r

1: while under simulation budget and not
converged do

2: Perform a design of experiments in
relevant region, using k data points

3: ti ← simulate(xi), i = {1, . . . , k}
{Evaluate noisy function f(xi, ω)}

4: λ∗ ← argminλ
∑

(ti − r(xi, λ))
2

{Fit regression surface r through points
using squared loss function}

5: x∗ ← {argminx r(x, λ
∗) : x ∈ X}

{Optimize surface}
6: Update set of available data points

and region of approximation
7: end while

according to a specified metric. A generic framework
for RSM is presented in Algorithm 2.

Classical sequential RSM. Originally,
RSM consisted of a Phase I, where first-order
models were built using samples from a design of
experiments. A steepest descent rule was used to
move in a certain direction, and this would continue
iteratively until the estimated gradient would be
close to zero. Then, a Phase II procedure that
built a more detailed quadratic model would be
used for verifying the optimality of the experimental
design. A thorough introduction to response surface
methodology is available in [142]. Recent work in
the field includes automating RSM [143, 147] and
the capability to handle stochastic constraints [13].

Bayesian global optimization. These
methods seek to build a global response surface,
commonly using techniques such as Kriging/Gaussian
process regression [173, 163]. Subsequent samples
chosen based on some sort of improvement metric
may balance exploitation and exploration. The
seminal paper by Jones et al. [102] which introduced
the EGO algorithm for simulations with deterministic
output, uses Kriging to interpolate between function
values, and chooses future samples based on an
expected improvement metric [140]. Examples of
analogs to this for simulation optimization are
provided in [93, 118]. The use of Kriging for

simulation metamodeling is explored in [22, 117,
116]. Other criteria that have been used to
choose samples are most probable improvement [139],
knowledge gradient for continuous parameters [177],
and maximum information gain [189].

Trust region methods. Trust region meth-
ods [42] can be used to implement sequential RSM.
Trust regions provide a means of controlling the
region of approximation, providing update criteria
for surrogate models, and are useful in analyzing
convergence properties. Once a metamodel or
response surface, g, is built around a trust region
center xi, trust region algorithms involve the solution
of the trust-region subproblem (mins g(xi + s) : s ∈
B(xi,∆)), where B is a ball defined by the center-
radius pair (xi,∆). There are well-defined criteria to
update the trust region center and radius [42] that
will define the subsequent region of approximation.

The use of trust regions in simulation optimization
is relatively recent, and has been investigated to
some extent [46, 32]. Trust-region algorithms have
been used, for example, to optimize simulations of
urban traffic networks [151].

3.3 Gradient-based methods

Stochastic approximation methods or gradient-based
approaches are those that attempt to descend
using estimated gradient information. Stochastic
approximation techniques are one of the oldest
methods for simulation optimization. Robbins and
Monro [167] and Kiefer and Wolfowitz [109] were
the first to develop stochastic approximation schemes
in the early 1950s. These procedures initially were
meant to be used under very restrictive conditions,
but much progress has been made since then.

These methods can be thought of being analogous
to steepest descent methods in derivative-based
optimization. One may obtain direct gradients or
may estimate gradients using some finite difference
scheme. Direct gradients may be calculated by
a number of methods: (1) Perturbation Analysis
(specifically, Infinitesimal Perturbation Analysis)
(PA or IPA), (2) Likelihood Ratio/Score Function
(LR/SF), and (3) Frequency Domain Analysis
(FDA). Detailed books on these methods are
available in the literature [85, 69, 172, 156, 65] and
more high-level descriptions are available in papers
[194, 60]. Most of these direct methods, however, are
either applicable to specific kinds of problems, need
some information about underlying distributions, or
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are difficult to apply. Fu [60] outlines which methods
are applicable in which situations, and Tekin and
Sabuncuoglu [194] discuss a number of applications
that have used these methods.

Stochastic approximation schemes attempt to
estimate a gradient by means of finite differences.
Typically, a forward difference estimate would
involve sampling at least n + 1 distinct points,
but superior performance has been observed by
simultaneous perturbation estimates that require
samples at just two points [185], a method
referred to as Simultaneous Perturbation Stochastic
Approximation (SPSA). The advantage gained in
SPSA is that the samples required are now
independent of the problem size, and, interestingly,
this has been shown to have the same asymptotic
convergence rate as the naive method that requires
n + 1 points [184]. A typical gradient-based scheme
is outlined in Algorithm 3.

Algorithm 3 Basic gradient-based proce-
dure

Require: Specify initial point, x0. Define
initial parameters such as step size (α),
distances between points for performing
finite difference, etc.

1: i← 0
2: while under simulation budget and not

converged do
3: Perform required simulations, tjii ←

simulate(xi), with ji replications to

estimate gradient, Ĵ , using either IPA,
LR/SF, FDA or finite differences

4: xi+1 ← xi − αĴ
5: i← i+ 1
6: end while

Recent extensions of the SPSA method include
introducing a global search component to the
algorithm by injecting Monte Carlo noise during
the update step [134], and using it to solve
combined discrete/continuous optimization problems
[199]. Recent work also addresses improving Jacobian
as well as Hessian estimates in the context of the
SPSA algorithm [187]. Much of the progress in
stochastic approximation has been cataloged in the
proceedings of the Winter Simulation Conference
over the years (http://informs-sim.org/). A
recent review of stochastic approximation methods is
available in [188], and an excellent tutorial and review

of results in stochastic approximation is presented in
[154].

3.4 Sample path optimization

Sample path optimization involves working with an
estimate of the underlying unknown function, as
opposed to the function itself. The estimate is
usually a consistent estimator such as the sample
mean of independent function evaluations at a point,
or replications. For instance, one may work with
Fn = 1

n

∑n

i=1
f(x, y, ωi), instead of the underlying

function E[f(x, y, ω)] itself. It should be noted that
the functional form of Fn is still unknown, it is just
that Fn can be observed or evaluated at a point in the
search space visited by an algorithm iteration. The
alternative name of sample average approximation
reflects this use of an estimator.

As the algorithm now has to work with an esti-
mator, a deterministic realization of the underlying
stochastic function, sophisticated techniques from
traditional mathematical programming can now be
leveraged. Sample path methods can be viewed as the
use of deterministic optimization techniques within
a well-defined stochastic setting. Yet another name
for them is stochastic counterpart. Some of the
first papers using sample path methods are [82] and
[179]. Several papers [172, 37, 77, 180, 46] discuss
convergence results and algorithms in this context.

3.5 Direct search methods

Direct search can be defined as the sequential
examination of trial solutions generated by a
certain strategy [89]. As opposed to stochastic
approximation, direct search methods rely on direct
comparison of function values without attempting
to approximate derivatives. Direct search methods
typically rely on some sort of ranking of quality of
points, rather than on function values.

Most direct search algorithms developed for
simulation optimization are extensions of ideas for
derivative-free optimization. A comprehensive review
of classical and modern methods is provided in
[121]. A formal theory of direct search methods for
stochastic optimization is developed in [196]. Direct
search methods can be tailored for both discrete
and continuous optimization settings. Pattern search
and Nelder-Mead simplex procedures are the most
popular direct search methods. There is some
classical as well as relatively recent work done on
investigating both pattern search methods [196, 6,
131] and Nelder-Mead simplex algorithms [144, 19,
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94, 31] and their convergence in the context of
simulation optimization.

These methods remain attractive as they are
relatively easy to describe and implement, and are
not affected if a gradient does not exist everywhere,
as they do not rely on gradient information. Since
conventional procedures can be affected by noise,
effective sampling schemes to control the noise are
required. A basic Nelder-Mead procedure is outlined
in Algorithm 4.

Algorithm 4 Basic Nelder-Mead simplex
procedure for SO

Require: A set of n − 1 points in the
parameter space to form the initial
simplex

1: while under simulation budget and not
converged do

2: Generate a new candidate solution,
xi, through simplex centroid reflections,
contractions or other means

3: t
ji
i ← simulate(xi), i = {i − n +

1, . . . , i}, ji = {1, . . . , Ni} {Evaluate
noisy function f(x, ω) Ni times, where Ni

is determined by some sampling scheme}
4: Calculate

∑
ji
t
ji
i

Ni
, or some similar

metric to determine which point (i.e.,
with the highest metric value) should be
eliminated

5: end while

3.6 Random search methods

3.6.1 Genetic algorithms

Genetic algorithms use concepts of mutation and
selection [164, 200]. In general, a genetic algorithm
works by creating a population of strings and each
of these strings are called chromosomes. Each of
these chromosome strings is basically a vector of point
in the search space. New chromosomes are created
by using selection, mutation and crossover functions.
The selection process is guided by evaluating the
fitness (or objective function) of each chromosome
and selecting the chromosomes according to their
fitness values (using methods such as mapping onto
Roulette Wheel). Additional chromosomes are then
generated using crossover and mutation functions.

The cross over and mutation functions ensure that
a diversity of solutions is maintained. Genetic
algorithms are popular as they are easy to implement
and are used in several commercial simulation
optimization software packages (Table 4). The
GECCO (Genetic and Evolutionary Computation
Conference) catalogs progress in genetic algorithms
and implementations.

3.6.2 Simulated annealing

Simulated Annealing uses a probabilistic method
that is derived from the annealing process in which
the material is slowly cooled so that, while its
structure freezes, it reaches a minimum energy state
[113, 23]. Starting with a current point i in a
state j, a neighborhood point i′ of the point i is
generated. The algorithm moves from point i to i′

using a probabilistic criteria that is dependent on
the ‘temperature’ in state j. This temperature is
analogous to that in physical annealing, and serves
here as a control parameter. If the solution at i′

is better than the existing solution, then this new
point is accepted. If the new solution is worse than
existing solution, then the probability of accepting
the point is defined as exp(−(f(i′) − f(i))/T (j)),
where f(.) is the value of objective function at a
given point, and T (j) is temperature at the state
j. After a certain number of neighborhood points
are evaluated, the temperature is decreased and new
state is j + 1 is created. Due to the exponential
form, the probability of acceptance of a neighborhood
point is higher at high temperature, and is lower as
temperature is reduced. In this way, the algorithm
searches for a large number of neighborhood points
in the beginning, but a lower number of points as
temperature is reduced.

Implementation of simulated annealing procedures
require choosing parameters such as the initial and
final temperatures, the rate of cooling, and number of
function evaluations at each temperature. A variety
of cooling ‘schedules’ have been suggested in [41]
and [78]. Though simulated annealing was originally
meant for optimizing deterministic functions, the
framework has been extended to the case of stochastic
simulations [2]. The ease of implementing a simulated
annealing procedure is high and it remains a popular
technique used by several commercial simulation
optimization packages.

3.6.3 Tabu search

Tabu search [70] uses special memory structures
(short-term and long-term) during the search
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process that allow the method to go beyond local
optimality to explore promising regions of the
search space. The basic form of tabu search
consists of a modified neighborhood search procedure
that employs adaptive memory to keep track of
relevant solution history, together with strategies for
exploiting this memory [66]. More advanced forms of
tabu search and its applications are described in [72].

3.6.4 Scatter search

Scatter search and its generalized form, path
relinking, were originally introduced by Glover
and Laguna [73]. Scatter search differs from
other evolutionary approaches (such as Genetic
Algorithms (GA)) by using strategic designs and
search path construction from a population of
solutions as compared to randomization (by crossover
and mutation in GA). Similar to Tabu search, Scatter
Search also utilize adaptive memory in storing best
solutions [73, 133]. Algorithm 5 provides the scatter
search algorithm.

3.7 Model-based methods

Model-based simulation optimization methods at-
tempt to build a probability distribution over the
space of solutions and use it to guide the search
process.

3.7.1 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) [126]
are model-based methods that belong to the
evolutionary computation field. However, generation
of new candidate solutions is done by sampling from
the inferred probability distribution over the space of
solutions, rather than, say, a genetic operator such
as crossover or mutation. A comprehensive review of
estimation of distribution algorithms is presented in
[64]. EDAs usually consider interactions between the
problem variables and exploit them through different
probability models.

Cross-entropy methods and Model Reference
Adaptive Search (MRAS) are discussed next and can
be seen as specific instances of EDAs.

Cross-Entropy Methods. Cross-entropy
methods first sample randomly from a chosen
probability distribution over the space of decision
variables. For each sample, which is a vector defining
a point in decision space, a corresponding function
evaluation is obtained. Based on the function values

Algorithm 5 Basic scatter search procedure
for SO

Require: An initial set of trial points x ∈
P , chosen to be diversified according to a
pre-specified metric

1: tj ← simulate(xj), where j = 1, . . . , |P |
2: k ← 0
3: Use a comparison procedure (such as

ranking and selection) to gather the best
b solutions (based on objective value
or diversity) from the current set of
solutions P , called the reference set, Rk

4: R−1 = ∅

5: while under simulation budget and Rk 6=
Rk−1 do

6: k ← k + 1
7: Choose Si ⊂ R, where i = 1, . . . , r
{Use a subset generation procedure to
select r subsets of set R, to be used as a
basis for generating new solution points}

8: for i = 1 to r do
9: Combine the points in Si, to form

new solution points, xj , where j ∈ J =
|P |+1, . . . , |P |+J , using weighted linear
combinations, for example

10: tj ← simulate(xj), j ∈ J
{sample the objective function at new
trial solutions}

11: Update sets Rk, P
12: end for
13: end while
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observed, a pre-defined percentile of the best samples
are picked. A new distribution is built around
this ‘elite set’ of points via maximum likelihood
estimation or some other fitting method, and the
process is repeated. One possible method that
implements cross-entropy is formally described in
Algorithm 6.

Algorithm 6 Pseudocode for a simple cross-
entropy implementation

Require: θ, an initial set of parameters for
a pre-chosen distribution p(x; θ) over the
set of decision variables; k, a number
of simulations to be performed; e, the
number of elite samples representing the
top δ percentile of the k samples

1: while under simulation budget and not
converged do

2: for i = 1→ k do
3: sample xi from p(x; θ)
4: ti ← simulate(xi)
5: end for
6: E ← ∅
7: for i = 1→ e do
8: Ej ← argmaxi/∈E ti
9: end for
10: p(x; θ)← fit(xE)
11: end while

The method is guaranteed (probabilistically) to
converge to a local optimum, but it also incorporates
an exploration component as random samples are
obtained at each step. However, the intuition
behind the selection of subsequent samples can be
shown to be analogous to minimizing the Kullback-
Leibler divergence (KL-divergence) between the
optimal importance sampling distribution and the
distribution used in the current iterate [171].

There exist variants of the cross-entropy method
to address both continuous [124] and discrete
optimization [170] problems. A possible modification
is to use mixtures of distributions from current and
previous iterations, with the current distribution
weighted higher. This can be done by linearly
interpolating the mean covariance in the case of
Gaussian distributions. This also helps in avoiding
singular covariance matrices. Cross-entropy can
also deal with noisy function evaluations, with
irrelevant decision variables, and constraints [124]. If

decision variables are correlated, the covariance of the
distribution will reflect this.

The immediately apparent merits of cross-entropy
methods are that they are easy to implement,
require few algorithmic parameters, are based on
fundamental principles such as KL-divergence and
maximum likelihood, and give consistently accurate
results [124]. A potential drawback is that cross-
entropy may require a significant number of new
samples at every iteration. It is not clear as to
how this would affect performance if samples were
expensive to obtain. The cross-entropy method has
analogs in simulated annealing, genetic algorithms,
and ant colony optimization, but differs from each of
these in important ways [44].

More detailed information on the use of cross-
entropy methods for optimization can be found
in [44], a tutorial on cross-entropy and in
[171], a monograph. The cross-entropy webpage,
http://iew3.technion.ac.il/CE/ provides up-to-date
information on progress in the field.

Model reference adaptive search
(MRAS). The MRAS method [91, 92] is closely
related to the cross-entropy method. It also works
by minimizing the Kullback-Leibler divergence to
update the parameters of the inferred probability
distribution. However, the parameter update
step involves the use of a sequence of implicit
probability distributions. In other words, while the
cross-entropy method uses the optimal importance
sampling distribution for parameter updates, MRAS
minimizes the KL-divergence with respect to the
distribution in the current iteration, called the
reference model.

Covariance Matrix Adaptation–Evolu-
tion Strategy (CMA-ES). In the CMA-
ES algorithm [81], new samples are obtained from a
multivariate normal distribution, and inter-variable
dependencies are encoded in the covariance matrix.
The CMA-ES method provides a way to update the
covariance matrix. Updating the covariance matrix
is analogous to learning an approximate inverse
Hessian, as is used in Quasi-Newton methods in
mathematical programming. The update of the
mean and covariance is done by maximizing the
likelihood of previously successful candidate solutions
and search steps, respectively. This is in contrast to
other EDAs and the cross-entropy method, where the
covariance is updated by maximizing the likelihood
of the successful points. Other sophistications such
as step-size control, and weighting of candidate
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solutions are part of modern implementations [80].

3.7.2 Ant colony optimization

Ant colony optimization methods [52, 51] are heuris-
tic methods that have been used for combinatorial
optimization problems. Conceptually, they mimic the
behavior of ants to find shortest paths between their
colony and food sources. Ants deposit pheromones
as they walk; and are more likely to choose paths
with higher concentration of pheromones. This
phenomenon is incorporated in a pheromone update
rule, which increases the pheromone content in
components of high-quality solutions, and causes
evaporation of pheromones in less favorable regions.
Probability distributions are used to make the
transition between each iteration. These methods
differ from EDAs in that they use an iterative
construction of solutions.

This and other algorithms that incorporate
self-organization in biological systems are said to use
the concept of ‘swarm intelligence’.

3.8 Lipschitzian optimization

Lipschitzian optimization is a class of space-
partitioning algorithms for performing global op-
timization, where the Lipschitz constant is pre-
specified. This enables the construction of global
search algorithms with convergence guarantees. The
caveat of having prior knowledge of the Lipschitz
constant is overcome by the DIRECT (DIviding
RECTangles) algorithm [101] for deterministic
continuous optimization problems. An adaptation of
this for noisy problems is provided in [47].

4 Software

4.1 Simulation optimization in commercial
simulation software

Many discrete-event simulation packages incorporate
some methodology for performing optimization.
A comprehensive listing of simulation software,
the corresponding vendors, and the optimization
packages and techniques they use can be found in
Table 4. More details on the specific optimization
routines can be found in [128]. OR/MS-Today, the
online magazine of INFORMS, conducts a biennial
survey of simulation software packages, the latest
of which is available at [150]. The survey lists
43 simulation software packages, and 31 of these

have some sort of optimization routine; fewer still
have black-box optimizers that interact with the
simulation.

4.2 Academic implementations of simulation
optimization

Table 5 contains a small subset of academic
implementations of SO algorithms, and classifies
them by type. Some of these are available
for download from the web, some have code
with suggested parameters in corresponding papers
themselves, and others are available upon request
from the authors.

5 Comparison of algorithms

As far as comparisons between algorithms are
concerned, the literature does not yet provide a
comprehensive survey of the performance of different
implementations and approaches on large test beds.
In this regard, simulation optimization lags behind
other optimization fields such as linear, integer,
and nonlinear programming, global optimization and
even derivative-free optimization, where the first
comprehensive comparison appeared in 2013 [166]. A
study of prior comparisons in simulation optimization
is provided by [194], but these comparisons are
fairly dated, are inconclusive about which algorithms
perform better in different situations, and compare
only a small subset of available algorithms. One
difficulty lies in the inherent difficulty of comparing
solutions between algorithms over true black-box
simulations, as one does not usually know the
true optimal point and can only compare between
noisy estimates observed by the solvers. Less
impeding difficulties, but difficulties nonetheless,
include the need to interface algorithms to a common
wrapper, the objective comparison with solvers that
incorporate random elements as their results may not
be reproducible, and lack of standard test simulations
for purposes of benchmarking.

The benchmarking of algorithms in mathematical
programming is usually done by performance profiles
[50], where the graphs show the fraction of problems
solved after a certain time. For derivative-free
algorithms, data profiles are commonly used [141],
where the fraction of problems solved after a
certain number of iterations (function evaluations)
or ‘simplex gradients’ is shown. The definition of
when a problem is ‘solved’ may vary—when the true
global optimum is known, the solutions found within
a certain tolerance of this optimal value may be called
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Table 4: Simulation optimization packages in commercial simulation software

Optimization
package

Vendor Simulation
software
supported

Optimization
methodology

AutoStat Applied Materials,
Inc.

AutoMod Evolutionary
strategy

Evolutionary
Optimizer

Imagine That, Inc. ExtendSim Evolutionary
strategy

OptQuest OptTek Systems,
Inc.

FlexSim, @RISK,
Simul8, Simio,
SIMPROCESS,
AnyLogic,
Arena, Crystal
Ball, Enterprise
Dynamics,
ModelRisk

Scatter search,
tabu search, neural
networks, integer
programming

SimRunner ProModel Corp. ProModel,
MedModel,
ServiceModel

Genetic algorithms
and evolutionary
strategies

RISKOptimizer Palisade Corp. @RISK Genetic algorithm

WITNESS
Optimizer

Lanner Group, Inc. WITNESS Simulated annealing,
tabu search, hill
climbing

GoldSim
Optimizer

GoldSim Technology
Group

GoldSim Box’s complex
method

Plant
Simulation
Optimizer

Siemens AG Siemens PLM soft-
ware

Genetic algorithm

ChaStrobeGA N/A Stroboscope Genetic algorithm

Global
Optimization
toolbox

The MathWorks SimEvents (Matlab) Genetic algorithms,
simulated annealing,
pattern search
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Table 5: Academic simulation optimization implementations

Algorithm Type Citation Year

Continuous

SPSA Stochastic approximation [185] 1992
SPSA 2nd
Order

Stochastic approximation [185] 1999

SKO Global response surface [93] 2006
CE method Cross-entropy [124] 2006
APS Nested partitioning [105] 2007
SNOBFIT Multi-start local response surface [97] 2008
CMA-ES Evolutionary strategy [80] 2011
KGCP Global response surface [177] 2011
STRONG Local response surface, trust region [32] 2011
GR Golden region search [106] 2011
SNM Direct search (Nelder-Mead) [31] 2012
DiceOptim Global response surface [169] 2012

Discrete

KG Global response surface [57] 2009
COMPASS Neighborhood search (integer-ordered problems) [206] 2010
R-SPLINE Neighborhood search (integer-ordered problems) [198] 2012

Discrete
and
continuous

MRAS Estimation of distribution [91, 92] 2005
NOMADm Mesh adaptive direct search [1] 2007

solutions, but when this optimum is not known, the
solvers that find the best solution (within a tolerance)
for a problem, with respect to the other solvers
being compared, may be said to have solved the
problem. The latter metric may also be used when
function evaluations are expensive, and no solver is
able to reach within this tolerance given the limited
simulation budget.

In both of these cases, the output of the
simulations are deterministic, and so it is clear as
to which algorithms have performed better than
others on a particular problem. In simulation
optimization, however, usually one does not know
the true solution for the black box system, nor does
one see deterministic output. All that one possesses
are mean values and sample variances obtained from
sample paths at different points. There does not

exist a standard method to compare simulation
optimization algorithms on large test beds. Many
papers perform several macroreplications and report
the macroreplicate average of the best sample means
(along with the associated sample variance) at the
end of the simulation budget. The issue with this is
that the performance of the algorithms with different
simulation budgets is not seen, as in the case of
performance or data profiles. Other papers report
the average number of evaluations taken to find a
sample mean that is within the global tolerance
for each problem. Here, results are listed for each
problem and one does not get an idea of overall
performance. In addition, the difference in sample
variance estimates is not highlighted. As simulation
optimization develops, there is also a need for
methods of comparison of algorithms on test beds
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with statistically significant number of problems.
With regard to standardized simulation testbeds,

to our knowledge, the only testbed that provides
practical simulations for testing simulation opti-
mization algorithms is available at www.simopt.org
[153]. At the point of writing this paper,
just 20 continuous optimization problems were
available from this repository. Most testing
and comparisons happen with classical test prob-
lems in nonlinear optimization (many of which
have been compiled in [166] and available at
http://archimedes.cheme.cmu.edu/?q=dfocomp), to
which stochastic noise has been added. There is a
need for more such repositories, not only for testing of
algorithms over statistically significant sizes of prob-
lem sets, but for comparison between different classes
of algorithms. The need for comparison is evident,
given the sheer number of available approaches to
solving simulation optimization problems, and the
lack of clarity and lack of consensus on which types
of algorithms are suitable in which contexts.

As observed by several papers [61, 194, 88], there
continues to exist a significant gap between research
and practice in terms of algorithmic approaches.
Optimizers bundled with simulation software, as
observed in Section 4, tend to make use of algorithms
which seem to work well but do not come with
provable statistical properties or guarantees of local
or global convergence. Academic papers, on the other
hand, emphasize methods that are more sophisticated
and prove convergence properties. One reason that
may contribute to this is that very few simulation
optimization algorithms arising from the research
community are easily accessible. We wholeheartedly
encourage researchers to post their executable files, if
not their source code. This could not only encourage
practitioners to use these techniques in practice,
but allow for comparisons between methods and
the development of standardized interfaces between
simulations and simulation optimization software.

6 Conclusions

The field of simulation optimization has progressed
significantly in the last decade, with several
new algorithms, implementations, and applications.
Contributions to the field arise from researchers and
practitioners in the industrial engineering/operations
research, mathematical programming, statistics and
machine learning, as well as the computer science
communities. The use of simulation to model
complex, dynamic, and stochastic systems has only
increased with computing power and availability of a

wide variety of simulation languages. This increased
use is reflected in the identification and application
of simulation and simulation optimization methods
to diverse fields in science, engineering, and business.
There also exist strong analogies between, and ideas
that may be borrowed from recent progress in related
fields. All of these factors, along with the ever
increasing number of publications and rich literature
in this area, clearly indicate the interest in the field of
simulation optimization, and we have tried to capture
this in this paper.

With increased growth and interest in the
field, there come also opportunities. Potential
directions for the field of simulation optimization
are almost immediately apparent. Apart from the
ability to handle simulation outputs from any well-
defined probability distribution, the effective use of
variance reduction techniques when possible, and
the improvement in theory and algorithms, there is
a requirement to address (1) large-scale problems
with combined discrete/continuous variables; (2)
the ability to effectively handle stochastic and
deterministic constraints of various kinds; (2) the
effective utilization of parallel computing at the
linear algebra level, sample replication level, iteration
level, as well as at the algorithmic level; (3) the
effective handling of multiple simulation outputs;
(4) the incorporation of performance measures
other than expected values, such as risk; (5)
the continued consolidation of various techniques
and their potential synergy in hybrid algorithms;
(6) the use of automatic differentiation techniques
in the estimation of simulation derivatives when
possible; (7) the continued emphasis on providing
guarantees of convergence to optima for local and
global optimization routines in general settings;
(8) the availability and ease of comparison of the
performance of available approaches on different
applications; and (9) the continued reflection of
sophisticated methodology arising from the literature
in commercial simulation packages.
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