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Abstract Based on an application in the field of server consolidation, we consider
the one-dimensional cutting stock problem with nondeterministic item lengths. After
a short introduction to the general topic we investigate the case of normally dis-
tributed item lengths in more detail. Within this framework, we present two lower
bounds as well as two heuristics to obtain upper bounds, where the latter are either
based on a related (ordinary) cutting stock problem or an adaptation of the first
fit decreasing heuristic to the given stochastical context. For these approximation
techniques, dominace relations are discussed, and theoretical perfomance results are
stated. As a main contribution, we develop a characterization of feasible patterns by
means of one linear and one quadratic inequality. Based on this, we derive two exact
modeling approaches for the nondeterministic cutting stock problem, and provide
results of numerical simulations.

Keywords Cutting and Packing · Server Consolidation · Normal Distribution ·
Nondeterministic Item Lengths · Integer Programming · HAEC

1 Introduction

Cloud computing and virtualization have enabled a large number of businesses to
share physical computing resources in data centers without compromising on their
privacy and security requirements; in particular, since their services or applications
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2 John Martinovic et al.

can be encapsulated inside secure virtual machines which can then execute on phys-
ical servers along with other virtual machines. In this way, computing resources can
be utilized efficiently and the setup and operating costs of IT infrastructure can be
reduced significantly. This approach has also contributed to the reduction of the
energy consumption of the IT infrastructure worldwide [1,8]. Nevertheless, for fear
of violating service level agreements (SLA) during peak times, independent studies
have revealed that cloud providers still supply more resources (servers) than actually
are required [9]. As a result, a large number of servers in data centers run idle or are
underutilized most of the time even though their power consumption in these states
amounts to more than 60 % of their peak power consumption [14,31].

One of the solutions for this problem is dynamic service consolidation [4,13]. By
estimating the aggregate resource demand of incoming workloads in a data center,
the cloud provider can allocate the optimal number of servers and turns off all idle or
underutilized servers. If a surge in workload is perceived or anticipated more servers
can be activated just in time.

Different optimization strategies have been proposed in the literature to enable dy-
namic service consolidation. One of these is the use of cutting stock problems [16,
18,23,27,30] (also known as bin packing problem (BPP), especially for highly het-
erogeneous input lengths and/or very small demand values) or variants of it. The
prevailing idea is that, given a certain number of distinct services (or jobs) each
requiring an amount ci of resources to process its workload, and a large number of
servers each having a maximum computing capacity of C, the cutting stock problem
strives to allocate the minimum number of servers which can handle the aggregate
workload, assuming that ci ≤ C holds for all i. In practice, many application-oriented
aspects can be added as additional objectives. For instance, one can either minimize
resource consumption but with the possibility of degrading performance (e.g., in
terms of job completion time or reduced resolution), or, alternatively, optimize the
performance of the services but with the possibility of underutilizing some of the
servers.

In the literature the cutting stock problem is used to deal with static workloads,
where the resource demand of a service does not change or change only slowly over
time. For instance, an early solution strategy based on the bin packing problem has
been dealt with in [10]. Due to the NP-hardness of these scheduling problems, many
publications also address approximation schemes, e.g., by fixing some job character-
istics [34]. Nowadays, work is done to improve the corresponding algorithms. Among
others, the parallelization of the solution strategies is addressed in [22], whereas the
porting to data centers is considered in [24,28].

Assuming static workloads, however, does not reflect the characteristics of typical
internet applications and data centers where the size of incoming workloads consid-
erably fluctuates over time [39]. In this paper, we therefore investigate the applica-
bility and usefulness of the cutting stock problem (or bin packing problem) to deal
with stochastic (non-deterministic) workloads. More precisely, we formally consider
a given list J1, . . . ,Jn of jobs (or services, tasks), hereinafter mostly referred to by
their indices i ∈ I := {1, . . . ,n}, and an (unlimited) number of servers (or proces-
sors, CPUs, machines) of capacity C ∈ N. Note that it is always possible to obtain
an equivalent problem instance where the capacity C is fixed to some specific value
(e.g., C = 1 or C = 100). Such a representation (for instance with C = 1) can be cho-
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Cutting Stock Problems with Nondeterministic Item Lengths 3

sen whenever the integrality of other input data is not important for the considered
solution strategy. Assuming that the resource demand (i.e., the workload) ci of any
service i ∈ I follows a given probability distribution Pi (e.g., a normal distribution
with parameters µi and σ2

i ), we aim at assigning the considered jobs to the lowest
possible number of servers, allowing the possibility of overloading these servers by a
certain amount1, as illustrated in Fig. 1. More rigorously, an assignment of jobs to
a server is called feasible, as long as a given maximum exceeding probability ε > 0 is
maintained.
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≈8.2 %

server utilization [%]
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d.

f.

Job J1: N (µ1 = 45,σ2
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Job J2: N (µ2 = 30,σ2
2 = 100)

Consolidated: N (µ1 + µ2,σ2
1 + σ2

2)

Fig. 1 A schematic of an assignment of two jobs (illustrated by their probability density
functions p.d.f.) to one server. The capacity is exceeded with probability of ≈ 8.2%.

Consequently, the given problem can be interpreted as a generalization of the well-
known cutting stock problem (CSP) with respect to nondeterministic item lengths,
hereinafter referred to as the nondeterministic cutting stock problem (or ND-CSP for
short). The CSP is one of the most important problems in combinatorial optimiza-
tion (see [17, Fig. 1] for the trend of related publications); the study of its structure
and applications already started in 1939, when Kantorovich [27] formulated the first
model to cope with that problem. Therein, based on an upper bound for the number
of bins, an assignment model with binary and integer variables is proposed. In 1961,
Gilmore and Gomory introduced a pattern-based approach [23], whose continuous
relaxation is known to be very tight [36]. But, particularly for instances of large size,
this model cannot be tackled by standard ILP solvers due to its possibly huge number
of variables. However, observe that at least the continuous relaxation of this model
can efficiently be dealt with by means of column generation [35]. In order to solve the
ILP, branch-and-price techniques (see [5] or [37]) can be applied. Note that, in this
case, the computational behavior strongly depends on the choice of an appropriate
branching rule. A further way to tackle the integer problem is the consideration of
other modeling approaches, most notably the arcflow model [16] and the one-cut
model [20]. Good overviews and surveys on theoretical and numerical properties of
these approaches are provided by [16,17,30]. In recent years, a significant body of
work has also been done to investigate and improve the corresponding models [7,30]
and algorithms [6].

1 Alternatively, this goal also corresponds to the latency of execution since a server utilization
(significantly) exceeding C is manifested in the form of latency.
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4 John Martinovic et al.

Contrary to that, stochastical aspects of the cutting stock problem have only been
considered with respect to the objective value coefficients [32], lower bounds and
the asymptotic behaviour for uniformly distributed item lengths [29], expected value
based analyses of certain heuristics [11], or uncertainty in the order of appearance
[33]. To the best of our knowledge, there is no related work concerning exact solution
approaches to cutting stock problems (or bin packing problems) with nondetermin-
istic item sizes.

The paper is organized as follows: in the next section, we briefly repeat the most
important definitions and assumptions for the optimization problem under consid-
eration. Most importantly, the relationship to the ordinary bin packing problem is
discussed, and the assumption of normally distributed input data is justified from
different perspectives. As a main contribution, we present a compact characterization
of the pattern set (see Sect. 3) that (later) leads to two exact modeling approaches
with binary variables, linear and quadratic constraints (see Sect. 5). In Sect. 4, we
show how lower and upper bounds for the optimal objective value of the ND-CSP
can be obtained, where the latter are based on both a deterministic cutting stock
problem and an adapted first fit decreasing algorithm. Moreover, simulation results
and an outlook on future research are provided.

2 Preliminaries and Assumptions

As described in the introductory section, the considered server consolidation problem
can be interpreted as a nondeterministic cutting stock problem. Since the assignment
of jobs to servers rather corresponds to the perspective of a packing problem (than
a cutting scenario), from now on, the terminology of the bin packing problem will
be applied for the sake of an easier comprehension. To define the problem under
consideration, we formally use c := (c1, . . . , cn)> and P := (P1, . . . ,Pn):

Definition 1 A tuple E = (n, c,C,P , ε) consisting of n ∈ N items of random size
ci with probability distribution Pi (i ∈ I), a (deterministic) bin capacity C and a
maximum exceeding probability (MEP) ε > 0 is called instance of the nondetermin-
istic cutting stock problem (ND-CSP). Thereby, the item sizes ci are assumed to be
(mutually) stochastically independent.

In accordance with the ideas mentioned in the introduction, the objective of the
ND-CSP is to determine the minimal number of bins that is required to pack all
given items in a feasible way. Thereby, of course, not only the total number of bins
but also the specific assignments of items to these bins is of interest.

Definition 2 Any assignment of items to a single bin, that respects the MEP con-
dition, is called (feasible) pattern. More precisely, for B := {0, 1} and an instance
E = (n, c,C,P , ε) of the ND-CSP, a pattern can be represented by a binary vector
a ∈ Bn with P

[
c>a > C

]
≤ ε, where the i-th component of a indicates whether

item i ∈ I is packed or not.

Then, we have the following relationships between the terms used for the bin packing
and the server consolidation perspective:

– An item of the ND-CSP corresponds to a job of the consolidation problem.
– The bin (of capacity C) refers to a server (of capacity C).
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Cutting Stock Problems with Nondeterministic Item Lengths 5

– A (feasible) pattern corresponds to a (feasible) consolidation.

A first important property concerning the solvability of an instance is given by the
following theorem.

Theorem 1 Let E = (n, c,C,P , ε) be an instance of the ND-CSP. Then, the in-
stance is solvable if and only if P [ci > C] ≤ ε holds for all i ∈ I.

Proof If P [ci > C] ≤ ε holds for all i ∈ I, an arbitrary item i ∈ I can be assigned
to one single bin without violating the MEP condition. Hence, there exists at least
one feasible solution. Since there are at most finitely many (feasible) patterns, the
ND-CSP is solvable. If we assume that P [ci > C] > ε holds for some i ∈ I, then there
is no possibility to pack this item into a bin. Hence, the problem is not solvable. ut

Consequently, we formally have to demand that P [ci > C] ≤ ε holds for all i ∈ I in
order to ensure solvability, but this property is always given in practically relevant
scenarios (like the application to server consolidation).

In order to interpret the MEP condition for a pattern, we have to know the particular
distribution of the random variable c>a which is given by

P(a) := ×
i∈I: ai=1

Pi, (1)

where the product sign shall be interpreted as the convolution. Note that, in the
general case, this formula will lead to very hard integrals which may not possess
a closed-form solution. A more detailed consideration of possible distributions that
are “stable” under the convolution operator (in some sense) is part of the following
remark.

Remark 1 In general, there are not many probability distributions that can be chosen
for the workloads ci in order to allow an exact calculation of the convolution formula
(1), see2 [3]. Besides, most of these distributions

– either require some (or even all) of the distribution parameters to be equal for
all jobs i ∈ I (e.g., the gamma distribution, the exponential distribution or
the binomial distribution), meaning that every workload ci is (almost) based on
exactly the same specific distribution,

– or cannot be reasonably interpreted for our intended practical purposes (e.g., the
Bernoulli distribution).

However, the Poisson distribution, the Cauchy distribution and the normal distribu-
tion are not affected by these two restrictions. Note that, in the first two cases, the
problem under consideration can be reformulated as a (possibly slightly modified)
ordinary bin packing problem:

– Consider workloads ci ∼ POI(λi) following a Poisson distribution for all i ∈
I. Then, we have c>a ∼ POI

(∑
i∈I aiλi

)
for any pattern vector a ∈ Bn.

Additionally, for any given ε ∈ (0, 1) there is a uniquely defined λ(ε) ∈ R+, so

2 A good and concise overview can also be found at https://en.wikipedia.org/wiki/List_
of_convolutions_of_probability_distributions.
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6 John Martinovic et al.

that P [X > C] ≤ ε is true whenever X ∼ POI(λ) with λ ≤ λ(ε) holds. Due to
this observation, the feasibility condition can be stated as∑

i∈I

aiλi ≤ λ(ε),

which corresponds to an ordinary bin packing condition with modified capacity
λ(ε).

– Consider workloads ci ∼ CAU(si, ti) following a Cauchy distribution for all i ∈ I.
Then, we have c>a ∼ CAU

(∑
i∈I aisi,

∑
i∈I aiti

)
for any pattern vector a ∈ Bn.

Additionally, for any fixed ε ∈ (0, 1) the quantile function QX(ε) of a Cauchy
distribution X ∼ CAU(s, t) is given by

QX(ε) = t+ s · tan
(
π

(
ε− 1

2

))
.

Due to this observation, we have

P [c>a > C] ≤ ε ⇐⇒ C ≥ Qc>a(1− ε)

⇐⇒ C ≥
∑
i∈I

aiti +

(∑
i∈I

aisi

)
tan
(
π

(
1− ε− 1

2

))
⇐⇒ C ≥

∑
i∈I

ai

[
ti + si tan

(
π

(
1
2 − ε

))]
,

meaning that we obtain an ordinary bin packing constraint.

The key property used in the previous examples is given by the fact that there is
no nonlinearity with respect to those parameters of the convolution that are used
for the quantile function. More precisely, the feasibility condition of any kind of
distribution whose parameters are inherited in a completely linear way will result
in a (modified) bin packing problem. Hence, besides exact solution approaches also
well-known heuristic methods can be used to obtain (nearly) optimal solutions.

Remark 2 As regards the ordinary bin packing problem, the objective value FFD(E)
(of a given instance E) obtained by the FFD heuristic is known to satisfy

OPT (E) ≤ FFD(E) ≤
⌊

11
9 ·OPT (E) + 6

9

⌋
,

where OPT (E) denotes the optimal value of E, see [19]. Hence, very good approxi-
mations can be obtained assuming that the presorting of items is done with respect
to the possibly modified item sizes wi, i ∈ I, like

wi = ti + si tan
(
π

(
1
2 − ε

))
for the case of a Cauchy distribution.
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Cutting Stock Problems with Nondeterministic Item Lengths 7

For the normal distribution, linearity only holds for the parameters µ and σ2, but not
for σ itself. Since the latter is important to obtain the quantiles of the (standardized)
normal distribution, this case cannot be treated by state-of-the-art solution methods
and requires a separate investigation. Consequently, we henceforth assume the item
lengths to be normally distributed random variables, i.e., we have ci ∼ N (µi,σ2

i ) for
all i ∈ I. This assumption may not hold for specific practical problems, but many
realistic workloads or server utilization characteristics exhibit normal distributions,
see for instance [25,39]. Hence, this assumption is not too restrictive. Another reason
(that may sometimes be applicable) to consider normally distributed workloads is
given by the following approximation argument:

Remark 3 In a few scenarios it may be known (e.g., based on practical experience,
heuristic solutions or appropriate estimations) that there is an optimal solution ex-
hibiting a sufficiently large number M ∈ N of jobs on each required server. Then, the
distribution of c>a (for the corresponding pattern vectors a) can be approximated
by the normal distribution as a consequence of the central limit theorem (CLT).
Moreover, Cramér’s Theorem [12] then implies that also the given workloads ci can
be considered to be normally distributed without changing the optimal value.

3 On the Characterization of Patterns

In order to ease the notation, we define µ = (µ1, . . . ,µn)> and σ = (σ2
1 , . . . ,σ2

n)>,
where µi and σ2

i represent the mean and the variance of the workload ci of job i ∈ I,
respectively. Our investigations are based on the following well-known result:

Lemma 1 Let X ∼ N (µX ,σ2
X) be a normally distributed random variable with

mean µX and variance σ2
X . Moreover, consider an arbitrary but fixed ε ∈ (0, 1).

Then there is a uniquely defined qε ∈ R such that

P [X > µX + qε · σX ] = ε (2)

holds3. This value qε does not depend on µX and σ2
X .

Note that the assertions of Lemma 1 would hold for any random variable X with
mean µ and variance σ2 except that qε might be nonunique if the distribution func-
tion of X is not strictly monotonically increasing. Moreover, it can possibly be rec-
ommendable to use a reasonably rounded up approximation q̃ε for qε. In this case,
we would have to use the relation

P [X > µX + q̃ε · σX ] ≤ ε

in (2) which still leads to feasible patterns.

For normally distributed workloads, the convolution formula (1) from the previous
section can easily be computed:

Lemma 2 For each vector a ∈ Bn, the random variable c>a is normally distributed
with

c>a ∼ N (µ(a),σ2(a)) := N (µ>a,σ>a).
3 More precisely, we have qε = QX(1−ε), where QX is the quantile function of X ∼ N (0, 1).
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8 John Martinovic et al.

Most commonly, this observation is shown by means of the corresponding character-
istic functions. However, a survey of different proofs of this well-known result can be
found in [21]. Based on this lemma, we obtain the following statement.

Lemma 3 A vector a ∈ Bn represents a pattern if and only if C ≥ µ>a+qε ·
√
σ>a

holds.

Proof Because of Lemma 1, we obtain the equivalence

P
[
c>a > C

]
≤ ε⇐⇒ C ≥ µ(a) + qε ·

√
σ2(a).

Then the statement immediately follows from µ(a) = µ>a and σ2(a) = σ>a. ut

Hence, the set P (E) of all patterns of an instance E can be described by

P (E) =
{
a ∈ Bn

∣∣∣µ>a+ qε ·
√
σ>a ≤ C

}
. (3)

Note that a pattern refers to one possibility to assign a subset of jobs to a single
server. Unfortunately, the current representation of the pattern set is nonlinear and,
therefore, rather inappropriate for off-the-shelf solution methods that are known
from ordinary cutting and packing problems.

To overcome this problem we now derive a more appropriate representation of the
pattern set. Based on Lemma 3, we obtain that the condition

C − µ(a) ≥ qε
√
σ>a (4)

ensures the pattern property of a vector a ∈ Bn. A more suitable characterization
is given by the following main contribution.

Theorem 2 Assume that 0 < ε ≤ 0.5 holds. Then, a vector a ∈ Bn represents a
pattern if and only if∑

i∈I

(
q2
ε · σ2

i + 2Cµi − µ2
i

)
ai − 2

∑
i∈I

∑
j>i

µiµjaiaj ≤ C2 (5)

and C ≥ µ(a) hold.

Proof Let a ∈ Bn represent a pattern. Since 0 < ε ≤ 0.5 holds, we have qε ≥ 0 by
(2). Therefore, inequality (4) leads to C ≥ µ(a). By squaring both sides of (4) we
obtain

(C − µ(a))2 ≥ (qε ·
√
σ>a)2 = q2

ε · σ>a = q2
ε ·
∑
i∈I

σ2
i ai. (6)

According to µ(a) = µ>a, the term (C − µ(a))2 on the left hand side results in

C2 − 2C
∑
i∈I

µiai +
∑
i∈I

µiai

)2

= C2 − 2C
∑
i∈I

µiai +
∑
i∈I

∑
j∈I

µiµjaiaj

= C2 −
∑
i∈I

(
2Cµi − µ2

i

)
ai + 2

∑
i∈I

∑
j>i

µiµjaiaj ,
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Cutting Stock Problems with Nondeterministic Item Lengths 9

where ai = a2
i for binary ai was used in the last line. So far, we have transformed

condition (4) into

C2 −
∑
i∈I

(
2Cµi − µ2

i

)
ai + 2

∑
i∈I

∑
j>i

µiµjaiaj ≥ q2
ε ·
∑
i∈I

σ2
i ai.

Rearranging the terms leads to (5).
Note that, for the reverse direction, the same steps can be applied. Thereby, the
property C ≥ µ(a) is important to take square roots on both sides of (C −µ(a))2 ≥
(qε ·
√
σ>a)2 (see (6)) without causing a case study. ut

Remark 4 Note that, in practical applications, we always have ε� 1, and hence the
condition of the above theorem is satisfied. Moreover, observe that (5) can also be
written as ∑

i∈I

(
q2
ε · σ2

i + 2Cµi
)
ai − a>µµ>a ≤ C2 (7)

which involves the negative (semi-)definite rank-one-matrix −µµ>, i.e., the left-
hand-side of (7) represents a concave function.

4 Lower and Upper Bounds for the Optimal Value of the ND-CSP

Since the ordinary bin packing problem (or cutting stock problem) is contained in
the set of all ND-CSP (namely for σi = 0, i ∈ I), the problem under consideration is
obviously NP-hard meaning that approximation algorithms and heuristic solutions
are of great scientific interest. Hence, before dealing with exact solution approaches,
we will present different possibilities to obtain lower and upper bounds for the opti-
mal objective value of the ND-CSP. Note that these information can also be helpful
to (later) reduce the numbers of variables and/or constraints in the exact modeling
approaches.

4.1 Lower Bounds

Let E = (n, c,C,P , ε) denote an instance of the ND-CSP with normally distributed
item sizes. A first (almost trivial) lower bound is based on the quantity

γ := γ(E) := max

{∑
i∈I

ai

∣∣∣∣∣a = (a1, . . . , an)> ∈ P (E)

}
(8)

that indicates the maximum number of jobs (or items) that can be contained in one
single consolidation (or pattern). Because of (3), the constraint a ∈ P (E) in problem
(8) is nonlinear. Therefore, reasonable approximations of γ can be of interest. In
particular, an easily computable upper bound for γ can be obtained by solving the
binary knapsack problem

γ0 := γ0(E) := max

{∑
i∈I

ai

∣∣∣∣∣∑
i∈I

µiai ≤ C, ai ∈ B, i ∈ I

}
. (9)
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10 John Martinovic et al.

Then, the value

lb1 := lb1(E) :=
⌈
n

γ0

⌉
(10)

obviously states a lower bound for the optimal objective value. Observe that this
value does not make use of all the available instance-specific input data, since lb1 is
independent of the variances σ2

i , i ∈ I.

A more sophisticated way to obtain a lower bound is given by the following obser-
vation:

Lemma 4 Let 0 < ε ≤ 0.5 be given, then the value

lb2 := lb2(E) :=

 1
C

∑
i∈I

µi + qε

√∑
i∈I

σ2
i

 (11)

defines a lower bound for the optimal objective value z? of the ND-CSP with normally
distributed workloads ci ∼ N (µi,σ2

i ), i ∈ I.

Proof Consider an optimal solution of the ND-CSP with objective value z?. Then,
any of the patterns (belonging to this solution) has to satisfy the feasibility condition
presented in Lemma 3. Let Ik ⊆ I denote the items of pattern k, then we have

∑
i∈Ik

µi + qε ·
∑
i∈Ik

σ2
i

)1/2

≤ C

for k ∈ {1, . . . , z?}. Summing up all these conditions leads to

z?∑
k=1

∑
i∈Ik

µi + qε ·
∑
i∈Ik

σ2
i

)1/2
 ≤ z? · C

or, equivalently, ∑
i∈I

µi + qε

z?∑
k=1

∑
i∈Ik

σ2
i

)1/2

≤ z? · C.

Due to
z?∑
k=1

∑
i∈Ik

σ2
i

)1/2

≥

√√√√ z?∑
k=1

∑
i∈Ik

σ2
i =

√∑
i∈I

σ2
i

we finally obtain

z? ≥ 1
C

∑
i∈I

µi + qε

√∑
i∈I

σ2
i


whenever qε ≥ 0 is satisfied (i.e., for 0 < ε ≤ 1/2). Then the claim follows by
rounding up the right hand side (which is possible due to z? ∈ Z+). ut

Whenever there are several bounds the question of dominance relations arises. In
what follows, we will clarify that neither lb1(E) > lb2(E) nor lb2(E) > lb1(E) holds
for all instances E of the ND-CSP. Without loss of generality, we use C = 1 for the
corresponding exemplary instances:

Final edited form was published in "4OR: quarterly journal of the Belgian, French and Italian Operations Research Societies". 17. S. 173–200. ISSN 1614-2411. 
https://doi.org/10.1007/s10288-018-0384-4

10 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Cutting Stock Problems with Nondeterministic Item Lengths 11

– Consider an instance E with normally distributed workloads ci ∼ N (µi,σ2
i ) with

µi = 1/3 + δ (for some sufficiently small δ > 0) and σi := σ for all i ∈ I. Then,
we obviously have γ0 = 2 which leads to lb1 = dn/2e. On the other hand, we
obtain

lb2 =
⌈n

3 + n · δ + qε
√
n · σ

⌉
.

Altogether, this leads to
lim
n→∞

(lb1 − lb2)→∞

for appropriately chosen values of δ and σ.
– Consider an instance E with n = 2k (for k ∈ N) normally distributed workloads
ci ∼ N (µi,σ2

i ) satisfying µi = 2/n (for i = 1, . . . , k), µi = 1 − δ (for i =
k + 1, . . . ,n and some sufficiently small δ > 0), and σi := σ for all i ∈ I. Then,
we have γ0 = n/2 which implies lb1 = 2. On the other hand, we obtain

lb2 =
⌈
1 + n

2 (1− δ) + qε
√
n · σ

⌉
.

Altogether, this leads to
lim
n→∞

(lb2 − lb1)→∞

for appropriately chosen values of δ and σ.

As these examples show, there is no dominance relation between these two lower
bounds. More interestingly, the absolute difference between both values can be ar-
bitrarily large. Therefore, and since both computations can be done with very low
effort, the value

lb := lb(E) := max {lb1(E), lb2(E)} (12)

will be used as a general lower bound in our simulations.

Remark 5 Interestingly, the second set of exemplary instances also shows that

lim
n→∞

lb2(E)
lb1(E) →∞

holds for appropriately chosen values of δ and σ, i.e., the ratio lb2(E)/lb1(E) of both
lower bounds is unbounded. However, as regards the opposite fraction lb1(E)/lb2(E)
we have

sup
E

lb1(E)
lb2(E) = 2.

An exemplary sequence of instances leading to this upper bound is given by C = 1,
µi = µ = 1/2 + δ and σi = σ for all i ∈ I (with sufficiently small values δ → 0 and
σ → 0).

4.2 Upper Bounds

In contrast to lower bounds, upper bounds of minimization problems are often based
on the construction of feasible solutions. Hence, not only an approximation for the
optimal objective value but also a feasible consolidation strategy will be obtained.
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12 John Martinovic et al.

4.2.1 An Upper Bound Based on a Deterministic CSP

The first approach consists in transforming the given nondeterministic setting to a
scenario with modified (but deterministic) item lengths so that state-of-the-art solu-
tion approaches can directly be applied. To this end, let us go back to the definition

P (E) =
{
a ∈ Bn

∣∣∣µ>a+ qε ·
√
σ>a ≤ C

}
of the pattern set for a moment. Obviously, one of the main drawbacks of this
description is the nonlinear constraint. Fortunately, assuming 0 < ε ≤ 1/2 (in order
to ensure qε ≥ 0), the following observation can be made: thanks to√∑

i∈I

ui =
∣∣∣∣(√u1, . . . ,

√
un)>

∣∣∣∣
2 ≤

∣∣∣∣(√u1, . . . ,
√
un)>

∣∣∣∣
1 =

∑
i∈I

√
ui (13)

for all u1, . . . ,un ≥ 0, we obtain a sufficient (and linear) condition for a ∈ Bn to be
a pattern by means of

µ>a+ qε · r>a ≤ C,

where r = (
√
σ2

1 , . . . ,
√
σ2
n)> = (σ1, . . . ,σn)>. Hence, a subset of P (E) with linear

description is given by

P̃ (E) =
{
a ∈ Bn

∣∣ (µ+ qε · r)>a ≤ C
}

. (14)

In order to approximately solve the nondeterministic cutting stock problem, it is
possible to consider an instance ED = (n, l,C, e) with e = (1, . . . , 1)> ∈ Rn (to
indicate that each item is available only once) of an ordinary (deterministic!) 1D CSP
(or BPP) where li = µi+qε ·σi holds for all i ∈ I. Then, all models and corresponding
algorithms known in literature [16,18,30] (e.g., the pattern-based model, the arcflow
model, or the one-cut model) can be applied. Note that, since only a subset P̃ (E)
of the pattern set P (E) is used, we obtain an upper bound (referred to as ubCSP :=
ubCSP (E)) for the optimal objective value of the original ND-CSP. According to
the well-known MIRUP conjecture [36], a (much) faster way to obtain an upper
bound of nearly the same quality consists in solving the continuous relaxation (of
the corresponding deterministic CSP) and adding one to its rounded-up optimal
value. Since there is no non-MIRUP instance (of the CSP) known in literature, this
idea can be considered as an exact approach for (almost) all instances.

Remark 6 The quality of this approach mainly depends on the tightness of the in-
equality used in (13). It is well-known that∣∣∣∣(√u1, . . . ,

√
un)>

∣∣∣∣
2 ≥

1√
n

∣∣∣∣(√u1, . . . ,
√
un)>

∣∣∣∣
1

holds for any u = (√u1, . . . ,√un)> (with u1, . . . ,un ≥ 0), where equality is attained
if and only if u1 = . . . = un. However, in most practical cases, this worst-case ratio of
1/
√
n can be replaced by a much better value. On the one hand, since only a subset

of items can simultaneously be involved in a pattern, n can be replaced by γ from
(8). On the other hand, the tightness of (13) improves if the variances σ2

1 , . . . ,σ2
n

come closer to each other.
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Cutting Stock Problems with Nondeterministic Item Lengths 13

4.2.2 An Upper Bound Based on an FFD-Heuristic for the ND-CSP

The previous upper bound ubCSP was based on transferring the ND-CSP to an in-
stance of the ordinary CSP with modified item lengths. Thereby, we noted that the
perfomance of this approach strongly depends on the tightness of inequality (13), see
Remark 6. Moreover, observe that the variables obtained by solving the deterministic
CSP (for instance with the arcflow model) have to be retranslated to the original
pattern context which might lead to some additional work.

Hence, we will now introduce a method to obtain approximate solutions without
modifying the given instance of the ND-CSP. Thereby, not only the obtained objec-
tive value ubFFD := ubFFD(E), but also the consolidation strategy itself can directly
be used as a feasible (nearly optimal) solution of the ND-CSP. The following algo-
rithm can be interpreted as a first fit decreasing heuristic (FFD) [26] with respect
to the mean values µi (i ∈ I) of the item sizes:

Algorithm 1 First Fit Decreasing Heuristic for ND-CSP
1: Initialize an empty pattern a(1), and renumber all items so that their mean values do not

increase, i.e., µ1 ≥ µ2 ≥ . . . ≥ µn.
2: for all i ∈ I do
3: Find the lowest-indexed pattern a(j), such that item i can be added to a(j) without

violating the feasibility condition in Lemma 3. If such a pattern does not exist,
generate a new (empty) pattern and assign item i to it.

4: end for

From a theoretical point of view, there is no dominance relation between the two
upper bounds ubFFD and ubCSP . For that purpose, consider C = 100, ε = 0.05,
qε ≈ 1.6449, and normally distributed workloads ci ∼ N (µi,σ2

i ), i ∈ I:
– A very simple instance E with ubFFD(E) = 1 < 2 = ubCSP (E) is given by n = 2,
µ = (40, 50)>, and σ = (9, 16)>.

– A possible instance E with ubFFD(E) = 3 > 2 = ubCSP (E) is given by n = 10,
σi = 1 for all i ∈ I, and µ = (15, 15, 16, 16, 16, 18, 18, 20, 22, 23)>. Here we have
the optimal allocations (referred to by the indices of the given items) B1 =
{7, 8, 9, 10}, B2 = {2, 3, 4, 5, 6}, and B3 = {1} for the FFD heuristic, as well as
B1 = {1, 2, 3, 8, 10} and B2 = {4, 5, 6, 7, 9} for the deterministic CSP.

A more detailed investigation of the computational behavior of the introduced upper
(and lower) bounds is part of the next subsection.

4.3 Numerical Experiments

In order to compare the numerical performance of all approximate approaches, we
randomly generated 20 instances each for C = 100, and every pair (ε,n) of input
data with ε ∈ {0.05, 0.1, 0.25} and n ∈ {10, 20, 30, 50, 100}. Thereby, µi was chosen
from uniformly distributed integer numbers in [10, 50], and σi was selected from
uniformly distributed integers in[

1,
⌊

1
2 ·min

{
µi
qε

, C − µi
qε

}⌋]
, (15)
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14 John Martinovic et al.

which implies that

– the solvability condition P [ci > C] ≤ ε presented in Theorem 1 is guaranteed,
– and the probability P [ci < 0] is very small (e.g., less than 10−4 for ε = 0.05).

The following tables contain the averaged values of:

– the lower bounds lb1 and lb2,
– the upper bounds ubFFD (obtained by the FFD heuristic) and ubCSP (obtained

by the deterministic CSP),
– the computation times tFFD and tCSP (in sec.).

Remark 7 Since the choice of ε has a direct influence on the possible values of σi
(in order to avoid too large probabilities for c < 0 or c > C), see (15), the following
tables are not based on the same instances for fixed n and varying ε.

Table 1 Average simulation results for the lower and upper bounds

ε = 0.05 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.55 4.00 5.10 7.95 12.80
lb2 3.80 6.95 10.25 16.35 31.30

ubFFD 4.15 7.80 11.45 18.65 36.40
ubCSP 5.25 9.20 13.05 20.30 38.60
tFFD 0.0008 0.0012 0.0021 0.0048 0.0148
tCSP 0.0220 0.0298 0.0388 0.0557 0.0929

ε = 0.10 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.50 3.95 5.00 7.70 12.65
lb2 3.80 6.85 10.05 16.40 31.25

ubFFD 4.15 7.85 11.45 19.00 36.50
ubCSP 5.25 9.05 12.60 20.55 38.70
tFFD 0.0008 0.0012 0.0017 0.0046 0.0158
tCSP 0.0217 0.0298 0.0387 0.0563 0.0931

ε = 0.25 n = 10 n = 20 n = 30 n = 50 n = 100

lb1 2.50 3.90 5.15 7.55 12.60
lb2 3.65 6.95 10.40 15.75 31.55

ubFFD 4.15 7.95 11.95 17.95 36.65
ubCSP 5.20 9.15 13.15 19.80 38.80
tFFD 0.0008 0.0011 0.0019 0.0040 0.0147
tCSP 0.0205 0.0258 0.0391 0.0617 0.0902

It can clearly be seen that in our simulations the average value of lb2 is strictly better
than that of lb1. More interestingly, this relation could be observed for every single
instance of our test set. This is mainly caused by the general fact that lb2 uses all
available input data of the given instances so that more accurate approximations
are usually possible. As regards the upper bounds, both approaches are very fast
and provide solutions of roughly the same quality. The (time) complexity of the
FFD algorithm is known to be O(n · log(n)), whereas the other heuristic (i.e., the
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Cutting Stock Problems with Nondeterministic Item Lengths 15

approximation based on a deterministic CSP) mainly depends on the (worst-case)
performance of the simplex method which is exponential4 in the numbers of variables
nv and constraints nc. In our particular sets of random instances, it turned out that
the first fit decreasing heuristic always leads to slightly better estimates for the
optimal objective value of the original problem which may be caused by the fact
that the exact pattern definition is used therein. Moreover, this heuristic approach
was (marginally) less time-consuming in all investigated cases.

Hence, even if both approximation algorithms (to obtain upper bounds) possess a
similar perfomance, we will use the FFD heuristic for our further considerations.
Based on this decision, the (approximation) quality of the feasible solution obtained
by Algorithm 1 is of great interest, and shall therefore be addressed by the following
theorem. Note that, for the sake of a better readibility, the corresponding proof and
the discussion of the additional assumptions are shifted to Appendix A.

Theorem 3 Let E = (n, c,C,P , ε) be an instance of the ND-CSP with normally
distributed workloads satisfying

1. 0 < ε ≤ 0.5,

2.
∑
i∈I

µi + qε ·
∑
i∈I

σ2
i

)1/2

> C,

3. ∃β ∈ R+ ∀i ∈ I : σi ≤ βµi.

Then, we have

1 ≤ FFD(E)
OPT (E) <

5
2 + 2qεβ.

According to (15), our randomly generated instances definitely satisfy σi ≤ µi/(2qε)
(which means β ≤ 1/(2qε)), and therefore a performance ratio of at most 7/2 is
guaranteed for the simulation results presented above. However, as the comparison
of lb2 and ubFFD clearly shows, the true perfomance of the FFD heuristic is much
better in our simulations.

Remark 8 Most probably, the upper bound provided by the previous theorem is not
tight in the sense, that

sup
E

FFD(E)
OPT (E) = 5

2 + 2qεβ

holds. In general, a very weak inequality used within the proof (see Appendix A) is
given by ∑

i∈I′
k

µi ≤ 2
∑
i∈Ik

µi

(with |I ′k| = |Ik| + 1), which can be improved if, for instance, |I ′k| ≥ 2 is known (or
can be assumed if those bins that only contain one single item are somehow treated
separately).

4 However, note that the average empirical complexity of the simplex method is given by
O(n2

c · nv) [2, p.206], for instance with nc ∼ O(n + C) and nv ∼ O(nC) in the theoretical
worst case, if the arcflow model is chosen to solve the related optimization problem (thanks to
reduction methods [30], the actual numbers are much lower, in general).

Final edited form was published in "4OR: quarterly journal of the Belgian, French and Italian Operations Research Societies". 17. S. 173–200. ISSN 1614-2411. 
https://doi.org/10.1007/s10288-018-0384-4

15 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



16 John Martinovic et al.

5 An Assignment Model for the ND-CSP

5.1 The Basic Model

As a consequence of the considerations in Section 3 (and especially Theorem 2),
we are now able to formulate an assignment model that roughly corresponds to the
approach of Kantorovich [27] for ordinary cutting stock problems. In order to ease
the notation we will use the abbreviation

αi := q2
ε · σ2

i + 2Cµi − µ2
i

for all i ∈ I. Moreover, let u ∈ Z+ denote an upper bound for the optimal objective
value of the considered ND-CSP. For instance, u = ubFFD (see Section 4) can be
chosen. Then, we define decision variables

yk =

{
1, if bin k is used,
0, otherwise,

for k ∈ K := {1, . . . ,u}, and

xik =

{
1, if item i is assigned to bin k,
0, otherwise,

for (i, k) ∈ I ×K. Thereby, we obtain the following (basic) assignment model:

Assignment Model for the ND-CSP

z =
∑
k∈K

yk → min

s.t.
∑
k∈K

xik = 1, i ∈ I, (16)∑
i∈I

αixik − 2
∑
i∈I

∑
j>i

µiµjxikxjk ≤ C2 · yk, k ∈ K, (17)

∑
i∈I

µixik ≤ C · yk, k ∈ K, (18)

yk ∈ B, k ∈ K, (19)
xik ∈ B, (i, k) ∈ I ×K. (20)

The objective function minimizes the total number of used bins. Condition (16)
states that each item i ∈ I is packed exactly once. Conditions (17) and (18) can be
interpreted as coupling conditions between both types of variables: if yk = 1 holds
(i.e., if the k-th bin is used), the pattern property of Theorem 2 has to be satisfied
for the corresponding items. On the other hand, if yk = 0 holds (i.e., if the k-th bin
is not used) all corresponding variables xik (i ∈ I) have to be equal to zero which is
ensured by (18).

Altogether, this formulation possesses nv = u+ u · n ≤ n2 + n binary variables and
nc = n+ 2u ≤ 3n constraints (n+ u ≤ 2n of them are linear, and u ≤ n of them are
quadratic).
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Cutting Stock Problems with Nondeterministic Item Lengths 17

5.2 An Improved Formulation

The basic model presented in the previous subsection contains some drawbacks that
are mainly based on the Kantorovich-type structure of the model itself. In particular,
the following symmetry property can be observed:

Remark 9 If (y?,x?) with

y? = (y?1 , . . . , y?u)> , x? = (x?ik)(i,k)∈I×K

represents a (feasible) solution of the assignment model, then a further (feasible)
solution (ỹ, x̃) with ỹk = y?π(k) and x̃ik = x?iπ(k) for all i ∈ I and k ∈ K can be
obtained by an arbitrary permutation π ∈ Π(K) on the set K. In particular, the
assignment model possesses (at least) u! optimal solutions.

In general, such symmetries in the set of feasible solutions should be avoided since
they may most probably degrade the performance of branch-and-bound based tech-
niques for the solution. To this end, it is possible to define a certain (pattern) order
prior to the optimization. In other words, note that it is sufficient to consider only
those variables xik with k ≤ i. This corresponds to the fact that we can always num-
ber the obtained patterns with respect to the following criterion: item i = 1 appears
in pattern k = 1, item i = 2 either appears in pattern k = 1 or in a new pattern
k = 2, etc. Thereby, we obtain xik = 0 for k > i and x11 = 1; hence, it is sufficient
to consider the index set Q := {(i, k) ∈ I ×K | i ≥ k} for the x-variables. In order
to simplify the notation we additionally define

Tk := {(i, j) ∈ I × I | (i, k) ∈ Q, (j, k) ∈ Q, j > i}

for all k ∈ K.

Moreover, some of the y-variables can be set to yk = 1 prior to the optimization if
a lower bound η ∈ Z+ for the optimal objective value z? is known in advance. As
motivated in Section 4, we will use η := lb from (12).

Improved Assignment Model for the ND-CSP (Model 1)

z =
∑
k∈K

yk → min

s.t.
∑

(i,k)∈Q

xik = 1, i ∈ I, (21)

∑
(i,k)∈Q

αixik − 2
∑

(i,j)∈Tk

µiµjxikxjk ≤ C2 · yk, k ∈ K, (22)

∑
(i,k)∈Q

µixik ≤ C · yk, k ∈ K, (23)

yk = 1, k ∈ {1, . . . , η}, (24)
x11 = 1, (25)
yk ∈ B, k ∈ K, (26)
xik ∈ B, (i, k) ∈ Q. (27)
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18 John Martinovic et al.

Note that it is also possible to completely remove those variables that are fixed
prior to the optimization, but then the quite regular structure of the coefficient
matrices and right hand sides appearing in the (linear) inequalities may be lost
which would cause certain additional expenses in terms of the model generation
itself (for CPLEX).

In this formulation, the number of variables is given by

nv = u+ u(u+ 1)
2 + (n− u)u ≤ n+ n(n+ 1)

2 ∼ O(n2),

whereas the (effective) number of constraints is still given by nc = n + 2u ≤ 3n ∼
O(n) (plus a small number of equality constraints to fix some variables in advance).
Hence, both models (the basic model and the improved version) are of pseudopoly-
nomial complexity.

Remark 10 Note that this improved model still contains the quadratic terms xik ·xjk
for k ∈ K and (i, j) ∈ Tk. However, it is possible to remove this nonlinearity by
introducing additional binary variables ξkij ∈ B (instead of the products xik · xjk)
and demanding

ξkij ≤ xik, ξkij ≤ xjk, ξkij ≥ xik + xjk − 1,

for all k ∈ K and (i, j) ∈ Tk. Then, we obviously have ξkij = 1 if and only if xik ·xjk =
1 holds. In this way, a linear description of the pattern set can be obtained by means
of (at most) O(n3) additional binary variables and (at most) O(n3) additional linear
constraints.

More precisely, the idea of the previous remark leads to the

Linearized Improved Assignment Model for the ND-CSP (Model 2)

z =
∑
k∈K

yk → min

s.t.
∑

(i,k)∈Q

xik = 1, i ∈ I, (28)

∑
(i,k)∈Q

αixik − 2
∑

(i,j)∈Tk

µiµjξ
k
ij ≤ C2 · yk, k ∈ K, (29)

∑
(i,k)∈Q

µixik ≤ C · yk, k ∈ K, (30)

ξkij ≤ xik, k ∈ K, (i, j) ∈ Tk, (31)
ξkij ≤ xjk, k ∈ K, (i, j) ∈ Tk, (32)
xik + xjk − ξkij ≤ 1, k ∈ K, (i, j) ∈ Tk, (33)
yk = 1, k ∈ {1, . . . , η}, (34)
x11 = 1, (35)
yk ∈ B, k ∈ K, (36)
xik ∈ B, (i, k) ∈ Q, (37)
ξkij ∈ B, k ∈ K, (i, j) ∈ Tk. (38)
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Cutting Stock Problems with Nondeterministic Item Lengths 19

It can be calculated that this model contains

nv = u+ u(u+ 1)
2 + (n− u)u+ u

6
(
3n2 − 3u · n+ u2 − 1

)
≤ n+ n(n+ 1)

2 + n

6
(
n2 − 1

)
∼ O(n3)

binary variables and

nc = n+ 2u+ u

2
(
3n2 − 3u · n+ u2 − 1

)
≤ 3n+ n

2
(
n2 − 1

)
∼ O(n3)

linear constraints (and some further equality constraints for fixing variables). Hence,
the difficulty of handling quadratic constraints has been replaced by coping with
significantly increased numbers of binary variables and constraints. Due to these
reasons, both modeling approaches (i.e., the improved model and its linearized ver-
sion) can be expected to be very hard to solve, even for moderately sized instances.

6 Simulation Results

For our numerical simulations, we implemented both models in MATLAB R2015b
and solved the corresponding integer programs by means of its CPLEX-interface
(version 12.6.1) on an Quad-Core Intel i7-5600 server with 2.6 GHz and 12 GB RAM.
Therefore, we randomly generated 20 instances for C = 100, and each pair (ε,n)
with ε ∈ {0.05, 0.1, 0.25} and n ∈ {10, 12, 14}. In order to avoid too large items5, µi
(i ∈ I) was chosen from uniformly distributed integer numbers in [10, 50]. Moreover,
σi (i ∈ I) was selected from uniformly distributed integer numbers (depending on
µi) as described in (15) of Sect. 4.

In our first computational experiment, we compare the average performance of both
models6 with respect to the following criteria: the computation times t (in sec.),
the number of CPLEX iterations nit, the optimal objective value z?, the number of
binary variables nv, and the number of constraints nc. Moreover, we report on the
values of the lower bound η = lb (as defined in (12)) and the upper bound u = ubFFD
provided by the FFD heuristic.
Among others, the following observations can be made based on the Tables 2-4:

– In most scenarios, the first model (with the quadratic constraints) required a
(much) higher computation time compared to its linearized version, even though
the numbers of variables and constraints are significantly higher in this second
approach. It turned out that CPLEX needs a lot of time to find feasible solu-
tions of the improved assignment model; therefore, for most of the more complex
instances (n ∈ {12, 14}), the number of CPLEX iterations is considerably higher
compared to the linear formulation. Solving quadratically constrained binary pro-
grams might be easier for CPLEX, if special structures or favorable properties of

5 Very large items are likely to appear alone in feasible patterns, such that the problem
might be reduced prior to the optimization. Hence, dealing with moderately sized or rather
small items typically increases the number of possible combinations, leading to more difficult
scenarios.

6 The first model is given by the improved assignment formulation, whereas the second model
refers to the linearized approach. Note that, obviously, the optimal values of both models are
the same.

Final edited form was published in "4OR: quarterly journal of the Belgian, French and Italian Operations Research Societies". 17. S. 173–200. ISSN 1614-2411. 
https://doi.org/10.1007/s10288-018-0384-4

19 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



20 John Martinovic et al.

Table 2 Comparison of both models for ε = 0.05

n = 10 n = 12 n = 14
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.07 0.07 0.57 0.15 28.95 3.24
nit 894.15 2.0 · 103 2.4 · 104 8.8 · 104 8.4 · 105 2.2 · 105

η 3.80 4.55 5.00
z? 4.05 4.80 5.50
u 4.15 4.90 5.60
nv 34.85 170.95 49.10 280.50 65.30 426.65
nc 19.30 534.30 22.80 867.20 26.20 1.31 · 103

Table 3 Comparison of both models for ε = 0.1

n = 10 n = 12 n = 14
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.06 0.05 0.78 0.28 20.81 3.09
nit 1.3 · 103 809.7 3.0 · 104 1.8 · 104 6.7 · 105 2.1 · 105

η 3.80 4.60 5.15
z? 4.00 5.05 5.60
u 4.15 5.20 5.75
nv 34.70 169.95 51.15 288.80 66.70 434.05
nc 19.30 531.30 23.40 893.00 26.50 1.33 · 103

Table 4 Comparison of both models for ε = 0.25

n = 10 n = 12 n = 14
Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

t 0.09 0.09 0.67 0.27 19.49 3.42
nit 1.8 · 103 3.4 · 103 2.7 · 104 1.7 · 104 5.2 · 105 2.4 · 105

η 3.65 4.60 4.90
z? 4.00 5.05 5.30
u 4.15 5.10 5.40
nv 34.75 170.25 50.55 286.75 63.55 417.95
nc 19.30 532.20 23.20 886.55 25.80 1.3 · 103

the considered quadratic terms (e.g., positive (semi-)definite matrices leading to
convex constraints) are available which is not the case in our formulations. Hence,
we may state that the second formulation is more appropriate to be considered
for further simulations.

– Obviously, both models are very hard to solve, in general. Even for the rather
small instances considered above, up to approximately half a minute is needed
to solve a single instance. It can be seen in the computational data, that in some
cases up to roughly one million iterations have to be performed underlining the
difficulty of the considered ND-CSP. (Both numbers are observed for the case
(n, ε) = (14, 0.05).)

– The upper bound u obtained by the FFD heuristic provides very good estimates
for the optimal objective value. In many cases, we even noticed that z? = u holds.

Final edited form was published in "4OR: quarterly journal of the Belgian, French and Italian Operations Research Societies". 17. S. 173–200. ISSN 1614-2411. 
https://doi.org/10.1007/s10288-018-0384-4

20 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Cutting Stock Problems with Nondeterministic Item Lengths 21

Of course, this tightness is mainly based on the fact that we are dealing with
rather small instances and objective values, respectively. Nevertheless, according
to these observations, the FFD heuristic can be seen as an important tool for the
approximate solution of larger instances.

– The computational data only vary slightly with respect to different values of ε.
It seems that, in these small examples, ε does not influence the pattern property
(3) (or the upper bound u) very much.

Remark 11 As indicated in Remark 7, the computations are not based on the same
set of instances for fixed n and varying ε. Hence, although increasing the value ε
would normally lead to a higher level of tolerable server overload (and, thus, to a
lower optimal objective value), the value of z? has increased, for instance, for the
step (n, ε) = (14, 0.05)→ (14, 0.1).

Because of the points observed in the first series of test instances, we now only
focus on the linearized approach and a fixed value ε = 0.25. Again, we randomly
generated 20 instances each (under the same conditions as above) and report on
their computational behavior for different choices of n. Note that for those values
of n that have already been considered previously, we use the corresponding data of
Table 4.

Table 5 Computational results for the linearized model (Model 2) and ε = 0.25

n = 9 n = 10 n = 11 n = 12 n = 13

t 0.04 0.09 0.18 0.27 1.02
nit 894.0 3.4 · 103 1.1 · 104 1.7 · 104 7.8 · 104

η 3.40 3.65 4.05 4.60 4.65
z? 3.65 4.00 4.55 5.05 5.20
u 3.75 4.15 4.55 5.10 5.30
nv 128.50 170.25 221.60 286.75 350.65
nc 404.75 532.20 688.45 886.55 1.1 · 103

n = 14 n = 15 n = 16 n = 17 n = 18

t 3.42 13.29 51.31 202.90 666.33
nit 2.4 · 105 8.9 · 105 3.1 · 106 1.0 · 107 2.4 · 107

η 4.90 5.20 5.80 6.00 6.20
z? 5.30 5.70 6.30 6.50 6.80
u 5.40 5.80 6.55 6.55 6.90
nv 417.95 508.30 631.75 748.20 819.05
nc 1.3 · 103 1.6 · 103 1.9 · 103 2.3 · 103 2.5 · 103

Table 5 shows that also the linearized model can only cope with medium-sized or
rather small instances in reasonable time. This behavior is mainly caused by the
fact that a very large number of binary variables has to be considered. Moreover,
note that we are dealing with an assignment model that is principally related to the
Kantorovich model for ordinary cutting stock problems which is known to possess
some computational drawbacks, e.g., a quite weak continuous relaxation leading to
many iterations and large branch-and-bound trees, in general. Without going more
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into detail, note that, in all our calculations, the LP bound (at the root node) was
equal to the lower bound η.
As we have seen, the exact approaches are, at the moment, appropriate to deal with
instances of rather small or medium sizes. However, note that in practice jobs that
only differ slightly (in terms of µ or σ) might be considered as equivalent. Then, the
number n of different (groups of) jobs is usually small, and the resulting problems
can be solved (by appropriately modified modeling formulations) within reasonable
time. Interestingly, the corresponding calculations also pointed out the good quality
of the FFD heuristic, at least for the considered choices of n. Consequently, this very
fast heuristic (see Section 4) might also provide upper bounds of reasonable quality
for much larger numbers of items.
Remark 12 Note that is it not straightforward to efficiently apply some other well-
known modeling frameworks to the nondeterministic context. More precisely, this is
due to the following explanations:
– Column Generation: Due to the huge cardinality of the pattern set, a model

of Gilmore-Gomory-type cannot be solved directly by standard software, in gen-
eral. Although the corresponding LP relaxation can (theoretically) be tackled by
column generation, its applicability seems to be limited in the current scenario.
This is mainly based on the fact that, in our case, the generation problems aris-
ing during this procedure are very hard because of the nonlinear description of
the pattern set. Even using the quadratic characterization introduced in Sect. 3
would either lead to a concave constraint or to a very large number of additional
binary variables and constraints in the slave problems. Moreover, as x?j ∈ [0, 1]
(j ∈ J , where J is an index set of P (E)) would hold for the counting variables
of any optimal solution, common (easy) rounding approaches cannot be applied
to obtain feasible integer solutions of reasonable quality. Altogether, solving the
LP relaxation of a pattern based model would only provide an additional lower
bound for the optimal objective value of the ND-CSP. However, as our current
lower bound lb from (12) actually leads to sufficiently good approximations (with
much lower computational efforts), see Sect. 4, a more detailed consideration of
this approach is not needed.

– Branch-and-bound (b&b) together with column generation: In order
to exactly solve the pattern-based model, a branch-and-bound procedure has to
be applied together with column generation. Note that, besides the high efforts
to solve the LP relaxation at the different nodes of the branching tree (as de-
scribed in the previous point), the combination of b&b and column generation
for cutting and packing problems is very hard, in general. This is mainly because
of the fact that branching constraints usually destroy the regular structure of the
subproblems so that problem-specific and tailored branching strategies have to
be developed, see [15,38]. Hence, an application of this solution method is not
obvious and requires a more detailed theoretical analysis which would be out of
the scope of the current manuscript.

– Arcflow (or one-cut) models: In general, the basic principle of these pseu-
dopolynomial formulations [16,18,20,30] is given by different states indicating
the progress of filling a single bin of capacity C and allowing an easy translation
to the pattern context. Hence, a reasonably convenient description of the pattern
set (or the single patterns) is of great importance. In our case, based on the char-
acterizations presented in Sect. 3, a pattern can either be described by one single
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nonlinear inequality or by one linear and one quadratic inequality. Whichever the
case may be, note that these constraints do not exhibit a separable structure,
meaning that adding an item to a current state (in order to obtain its successive
state) would also need all the information of the previously contained items (and
not only the information of the considered current state) due to the nonlinear
behavior of the σ-terms. Consequently, an efficient implementation of an arcflow
graph (or a one-cut structure) does not seem to be straightforward.

7 Conclusions and Outlook

In this paper, we investigated a cutting stock problem with nondeterministic item
lengths that is of high relevance for server consolidation applications. In particular,
we considered the special case of normally distributed item lengths in more detail.
Within this framework, we derived two lower bounds as well as two approximate
solution techniques to obtain upper bounds by either transferring the considered
problem to a deterministic setting with modified item lengths or directly applying
an appropriately adapted FFD heuristic to the stochastical scenario. Moreover, we
developed an exact description of the pattern set, and showed how this representa-
tion can be used to state two exact models of pseudopolynomial complexity.

A main part of our future research is given by identifying valid inequalities for the
proposed models in order to strengthen their continuous relaxations. Note that this
may prove beneficial for branch-and-bound techniques since a lower number of iter-
ations can be expected, in general. Another important field of research is given by
tackling the problems mentioned with respect to possible alternative modeling formu-
lations. In the light of our numerical results, also a more detailed theoretical analysis
of the FFD heuristic (and possibly further heuristics), especially regarding a tighter
performance guarantee, seems to be worthwile. Moreover, multi-dimensional exten-
sions and generalizations (e.g., for jobs that are described by several characteristic
data) will be investigated in order to obtain fully application-oriented descriptions
of server consolidation problems.
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A Proof of Theorem 3

At first, we briefly comment on the different assumptions listed in the theorem:

1. This condition implies qε ≥ 0 and is important for most of the inequalities used in the
following proof.

2. This assumption leads to OPT (E) ≥ 2, so that only the trivial case where all jobs can be
processed on a single server is excluded. (Note that the FFD heuristic will always find an
optimal assignment whenever OPT (E) = 1 holds.)

3. This condition can be interpreted as a coupling constraint between the mean values and
the variances of the workloads.

Assume that the FFD heuristic provides a solution using s = FFD(E) non-empty bins. Due
to OPT (E) ≥ 2 we certainly have s ≥ 2, and for k ∈ {1, . . . , s} the pattern property

∑
i∈Ik

µi + qε ·
∑
i∈Ik

σ2
i

)1/2

≤ C. (39)

has to hold, where Ik ⊂ I contains the indices of the items allocated to bin k. Furthermore,
let i?(k) define the index of the last object that was added to bin k during the FFD heuristic.
In particular, item i?(k) cannot be packed feasibly into the bins 1, . . . , k−1. For the first s−1
bins, this observation leads to:

∑
i∈Ik∪{i?(k+1)}

µi + qε ·

 ∑
i∈Ik∪{i?(k+1)}

σ2
i

1/2

> C. (40)

Defining I′k := Ik ∪ {i?(k + 1)} ⊃ Ik we further obtain

s− 1 <
1
C

s−1∑
k=1

∑
i∈I′

k

µi + qε ·

∑
i∈I′

k

σ2
i

1/2



=
1
C

s−1∑
k=1

∑
i∈I′

k

µi + qε ·
s−1∑
k=1

∑
i∈I′

k

σ2
i

1/2
 .
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Since exactly one item was added to Ik (and since its mean value is bounded above by the
smallest mean value corresponding to the index set I(k)), the following inequality holds:∑

i∈I′
k

µi ≤ 2
∑
i∈Ik

µi.

Thanks to qε ≥ 0, this observation can be used to continue our main calculation:

s− 1 < . . . ≤
1
C

2
s−1∑
k=1

∑
i∈Ik

µi + qε ·
s−1∑
k=1

∑
i∈I′

k

σ2
i

1/2


Based on the fact that the p-norm ||x||p of a fixed vector is monotonically decreasing for
increasing value of p, we obtain ∑

i∈I′
k

σ2
i

1/2

≤
∑
i∈I′

k

σi

for all k ∈ {1, . . . , s− 1}. By means of qε ≥ 0 this leads to

s− 1 < . . . ≤
1
C

2
s−1∑
k=1

∑
i∈Ik

µi + qε ·
s−1∑
k=1

∑
i∈I′

k

σi

 .

But now, we have

s−1∑
k=1

∑
i∈Ik

µi ≤
∑
i∈I

µi and
s−1∑
k=1

∑
i∈I′

k

σi ≤ 2
∑
i∈I

σi,

due to
⋃s−1
k=1 Ik ⊆ I (possibly some objects from bin s are missing in order to obtain the

complete index set I) and the fact that
⋃s−1
k=1 I

′
k contains each element of I at most twice (but

most of them exactly once, some of them are possibly not contained at all). Applying the third
assumption σi ≤ βµi, we obtain

s− 1 < . . . ≤
1
C

2
∑
i∈I

µi + 2qε ·
∑
i∈I

βµi

)
.

Altogether we have shown

FFD(E) = s <
1
C

(2 + 2qεβ)
∑
i∈I

µi

)
+ 1.

which can be used in the following calculation

FFD(E)
OPT (E)

<

1
C

(
(2 + 2qεβ)

∑
i∈I µi

)
+ 1

OPT (E)
=

2+2qεβ
C

∑
i∈I µi

OPT (E)
+

1
OPT (E)

≤ 2 + 2qεβ +
1
2

=
5
2

+ 2qεβ,

where OPT (E) ≥ 1
C

∑
i∈I µi and OPT (E) ≥ 2 were used. ut
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