
A Comparative Study of Labeling
Algorithms within the Branch-and-Price
Framework for Vehicle Routing with Time

Windows

Thèse présentée en vue de l’obtention du grade de
Docteur en Sciences Économiques et de Gestion par

Stefano Michelini
HEC Liège — Université de Liège

Promoteur:
Yasemin Arda, Université de Liège

Membres du Jury:
Yves Crama, Université de Liège
Dominique Feillet, École des Mines de Saint-Étienne
Hande Küçükaydın, MEF University, Istanbul
Martine Labbé, Université Libre de Bruxelles
Michaël Schyns, Université de Liège

ii

Summary

T he Vehicle Routing Problem with Time Windows (VRPTW) is a well-
known extension of the Vehicle Routing Problem, one of the oldest and

most studied problems in combinatorial optimization. The VRPTW consists
in finding an optimal set of routes for a fleet of vehicles based in a single depot
in order to service a set of customers. Each customer is associated with a
time window, which specifies the earliest and the latest possible service start
times. Time windows are a natural feature of a number of applications, such
as postal deliveries, grocery deliveries, or school bus routing.

In addition to the VRPTW, we consider a variant of this problem where
the aim is to minimize the total route duration, instead of just the total travel
time. Thus, the waiting times that are incurred by vehicles before they can
service a customer are taken into account in the objective function of the
problem. This aspect is relevant in applications where waiting times bear
an implicit cost, such as when the vehicles are rented by the distribution
company, or when they consume energy during idle times, as in the case of
refrigerated trucks delivering perishable goods.

Branch-and-Price (BP) is one of the most effective and commonly used
exact methodologies for solving routing problems. In recent years, several
studies have investigated advanced labeling algorithms to solve the related
pricing problem, which is usually a variant of the elementary shortest path
problem with resource constraints. Being able to solve this subproblem ef-
ficiently is crucial, since it is a major bottleneck for the performance of the
BP procedure. Each of these methods uses a certain strategy to relax the
elementarity constraints of the pricing problem in order to accelerate its solu-
tion. In this study, we investigate the performances of several such methods
within a BP framework.

In order to perform rigorous comparisons, we first parametrize several
algorithmic components. Then, we search for good parameter configurations
for each algorithm with a tool for automated parameter tuning. Finally, we
run the best configuration found for each algorithm on benchmark instances

iii

and analyze the results with statistical tests. Our results show in particular
that a class of hybrid algorithms, where multiple customer sets are used to
control the relaxation of the elementarity conditions, rather than a single
one, outperforms all the others.

iv

Acknowledgements

I t is fair to say that this work is a collaborative effort. Indeed, colleagues,
friends, and family members helped me in so many occasions and in so

many different ways that I am afraid that these acknowledgements might not
do them justice. But I am going to try.

First of all, I would like to thank my supervisor, Yasemin. This would
not have been possible without your guidance, your help, and your patience.
Thank you for giving me this opportunity, and for helping me realize its
potential from start to finish. You have been a great boss.

I would also like to acknowledge the other members of the thesis com-
mittee and jury. Thank you, Hande, for your support and counsel, which
you have given me with a contagious cheerfulness from the very start of my
doctoral studies, up to the very end. I am grateful to Prof. Crama for his
invaluable support as a teacher and as a committee member. I will always
treasure your gifts in both knowledge and wisdom. Many thanks to Prof.
Labbé for her advice as a committee member, and especially for helping me
find this opportunity in Belgium after the end of my studies for my master’s
degree. Thank you, Prof. Schyns and Prof. Feillet, for your availability as
members of the jury, for your precious feedback, and for all your kind words
abour my work.

Additionally, I would like to thank Prof. Louveaux for his supervision at
the end of my studies for the master’s degree, and for introducing me to the
Belgian OR community.

Special thanks go to Manuel López-Ibáñez and Leslie Pérez Cáceres, for
their crucial support with the irace software, and to CÉCI (Consortium des
Équipements de Calcul Intensif) for providing computational resources.

I am grateful to the Interuniversity Attraction Poles Programme of the
Belgian Science Policy Office (grant P7/36) for funding this thesis.

I am very thankful to all the former and current members of Office 334.
Elisabeth, we started this doctoral adventure together and we have ended
it (almost) at the same time. You have been a great colleague and a great

v

friend since day one. Thanks to you and Ángel for all the fun times spent
together. Virginie, you have been a great source of energy and fun for all of
us in the department. I have missed you dearly during the last few years,
but I am thankful for the time we shared an office together. Célia, you have
offered me invaluable help on so many things and on innumerable occasions,
that I am sure I would not have made it without you. Stéphanie, thank
you so much for all your advice and heartfelt conversations at the end of the
workday. Your support has meant a lot to me. Anne-Sophie, thank you for
your kindness and your constant availability to help.

Many thanks go to Alessandro, who has been a great companion for so
many good times together, including field trips, holidays, dinners, and drinks
after work. I would also like to thank all the former and current members of
QuantOM that I have had the pleasure to meet: Thierry, Véronique, Guil-
laume, Christine, Martine, Julien, Sabine, Anaïs, Maud, Reza, Bart, Quentin,
Cédric, Ashwin, Christian, Thu, and Valentin. It has been an honor to be in
the same department as you.

A lot of thanks to all my friends, including all the ones back in Italy that
welcome me with laughter and good times whenever I come back, and the
new ones I have made abroad, including Marta, Itxi, Ramona, Andrew, and
Tristan. I am thankful in particular to my friend of a lifetime, Francesco, for
all the fun times together, for always being there when I needed to talk, and
of course, for all the Lego gifts. You are a brother to me.

Grazie infinite a papà Franco e mamma Raffaella per tutto il vostro aiuto
e il vostro affetto. Non c’é giorno in cui non siate disponibili a sostenermi e
a darmi consigli, e non ce l’avrei mai fatta senza di voi. Vi voglio un mondo
di bene.

Finally, a very special thank you to my dear Charlotte. I am thankful
for your unwavering support, for your sweetness and kindness, for somehow
tolerating all my questionable attempts at humor, and for helping me up
whenever I felt down. You have been the light of my life over the past few
years, and give a special meaning to each new day. I love you.

. . . Also, many thanks to Bouh for being the silliest little dog I have ever
had the pleasure to befriend.

vi

Contents

Summary iii

Acknowledgements v

List of Abbreviations xi

List of Algorithmic Parameters xiii

1 Introduction 1
1.1 Thesis Structure . 4

2 An Overview on the Vehicle Routing Problem with Time
Windows 5
2.1 Overview . 5

2.1.1 Formulation . 7
2.2 Exact Methods . 9

2.2.1 Valid Inequalities and Branch-and-Cut 9
2.2.2 Lagrangian Relaxation 11
2.2.3 Reduced Set Partitioning 12

2.3 Heuristic Methods . 12
2.3.1 Route Construction Heuristics 13
2.3.2 Improvement Heuristics 14
2.3.3 Metaheuristics . 15
2.3.4 Matheuristics . 19

2.4 Conclusions . 20

3 Branch-and-Price Algorithms for the VRPTW 21
3.1 Column Generation . 21
3.2 Labeling Algorithm for the Pricing Problem 24

3.2.1 Basic Labeling Algorithm 24

vii

3.2.2 Bounded Bidirectional Search 28
3.3 Decremental State Space Relaxation 32

3.3.1 Insertion strategies . 34
3.3.2 Initialization strategies 35

3.4 ng-route Relaxation . 36
3.5 Hybrid Algorithms . 37
3.6 Branch-and-Bound . 39

3.6.1 Branching rules for the VRPTW 40
3.7 Conclusions . 42

4 The Vehicle Routing Problem with Time Windows and Wait-
ing Time Costs 43
4.1 Problem Definition . 45
4.2 Service Start Time and Path Duration Functions 46
4.3 A New Label Structure . 49
4.4 Bounded Bidirectional Algorithm 52

4.4.1 Backward Label Extensions 52
4.4.2 Bounding and LabelConcatenation 54
4.4.3 Computing the Total Waiting Time 54

4.5 Conclusions . 56

5 Parametrization of Branch-and-Price Algorithms 57
5.1 Features of DSSR and NGRR 58

5.1.1 DSSR Initialization Strategies 58
5.1.2 DSSR Insertion Strategies 59
5.1.3 NGRR . 60

5.2 Hybrid Algorithms . 61
5.3 Shared Algorithmic Features 63

5.3.1 Heuristic Dynamic Programming Algorithm 63
5.3.2 Strengthened Bounding for Bidirectional Label Extension 64
5.3.3 Additional Branch-and-Price Features 66

5.4 Conclusions . 68

6 Computational Experiments 69
6.1 Tuning Phase . 69

6.1.1 The irace Package 70
6.1.2 The Training Instance Set 71
6.1.3 Usage of irace . 72

6.2 Benchmarking Phase . 73
6.2.1 Benchmarking for the VRPTW 75

viii

6.2.2 Benchmarking for the VRPTWWTC 82
6.3 Configuration Analysis . 88
6.4 Size-Dependent Tuning . 92
6.5 A Comparison between the VRPTW and the VRPTWWTC 93
6.6 Conclusions . 95

7 Conclusions 97

Bibliography 103

List of Figures 115

List of Tables 117

Index 119

ix

x

List of Abbreviations

BB Branch-and-Bound
BCP Branch-and-Cut-and-Price
BP Branch-and-Price
CG Column Generation
CVRP Capacitated Vehicle Routing Problem
DSSR Decremental State Space Relaxation
ESPPRC Elementary Shortest Path Problem

with Resource Constraints
LP Linear Program
MIP Mixed-Integer Program
MP Master Problem
NGRR ng-route Relaxation
REF Resource Extension Function
RMP Restricted Master Problem
VRPTW Vehicle Routing Problem
VRPTW Vehicle Routing Problem with Time Windows
VRPTWWTC Vehicle Routing Problem with Time Windows

and Waiting Time Costs

xi

xii

List of Algorithmic
Parameters

tree_trav {breadth,
depth, best}

Strategy for BB tree traversal

n_col]0, 1] Max. num. of paths inserted in RMP
at each CG iteration

n_conc]0, 10000] Max. num. of paths generated at end
of labeling algorithm iteration

dssr_init_s {none, hca,
tca, whca,
wtca, mix}

Strategy for critical vertex set initial-
ization at start of labeling algorithm

dssr_init_n]0, 1[Num. of vertices to insert in critical
set at labeling algorithm initialization

dssr_path_s {1-p,
in-btw,
all-p}

Strategy for quantity of paths to check
for elementarity violations at end of
labeling algorithm iteration

dssr_path_n]0, 1[Num. of paths to check for elementar-
ity violations if dssr_path_s is set to
in-btw

dssr_node_s {1-n,
in-btw,
all-n}

Strategy for quantity of nodes visited
multiple times in a given path to mark
as critical

dssr_node_n]0, 1[Num. of nodes visited multiple times
in a given path to mark as critical if
dssr_path_s is set to in-btw

ng_m {tt, ccr,
mix}

Type of metric used to build ng-
neighborhoods

ng_s]0, 1[Size of ng-neighborhoods
ng_mix]0, 1[Affine combination coefficient used in

mixed metric if ng_m is set to mix

xiii

xiv

Chapter 1

Introduction

T he vehicle routing problem (VRP) is one of the most well-known prob-
lems in the field of operational research. First formally introduced

by Dantzig and Ramser (1959) under the name of “truck dispatching prob-
lem”, over the years it has been the subject of a large number of studies.
Interestingly, the VRP has a relatively straightforward structure: given a set
of geographically distributed customers and a fleet of delivery vehicles based
at a depot, the aim is to design a set of least cost routes (ordered sequences
of customers, each starting and ending at the depot, and each assigned to
a single vehicle) under a number of side constraints. In other words, it is
a generalization of the traveling salesman problem (TSP), which consists in
determining a single Hamiltonian cycle visiting all the given customers.

Even though it is easy to formulate, the VRP is quite difficult to solve:
the TSP, despite being an NP-hard problem, can nowadays be quickly solved
for thousands or tens of thousands of customers, while the VRP proves to
be a challenge for exact algorithms even for just a couple hundred customers
(Laporte et al., 2013). Because of this, it has proven to be fertile ground for
the development of both exact and heuristic solution methods.

Besides the methodological aspect, the VRP attracts a significant prac-
tical interest, given its importance in distribution management. Considering
the high number of possible side constraints or other problem features (e.g.,
whether there are pick-ups instead of, or in addition to deliveries, whether
the vehicle fleet is heterogeneous, . . .), it is faced daily in one form or another
by thousands of carriers worldwide.

In this thesis, we focus on a particular variant of the problem, which
presents a side constraint that is commonly encountered in many scenarios:
the VRP with time windows (VRPTW). Here, each customer is associated
with a time window, comprised of an earliest and a latest service start time.

1

In order to service a customer, the assigned vehicle has to reach the corre-
sponding vertex before the latest service start time. However, if it arrives
before the earliest service time, it incurs a waiting time. As we are going to
see, this problem is an important fixture of the literature in its own right,
since it has been the subject of decades of research.

In the classic VRPTW, the cost of a route is defined as in the case of
the VRP, i.e., the total distance traveled, which is commonly assumed to
be equivalent to the total travel time. However, some authors have pointed
out that the presence of time windows gives the chance to introduce more
realistic objective functions, such as the minimization of total route duration
(Savelsbergh, 1992), which takes into account vehicle waiting times, besides
the travel times. Therefore, in addition to the classic VRPTW, in this thesis
we consider a variant with such an objective function, which we call VRPTW
with waiting time costs (VRPTWWTC), where the departure times of the
vehicles at the depot also needs to be determined with the aim of minimizing
the total route duration.

There are several possible practical scenarios where waiting times bear a
meaningful cost. For instance, the hourly wages of drivers or other on-board
personnel can be a significant part of the overall transportation cost, thus
making it important to minimize their idle time. Examples include home
healthcare routing problems, where vehicles carrying nurses are dispatched
in order to provide service to their patients, or scenarios where technicians
need transportation in order to perform installations or repair operations for
the customers. Furthermore, route duration minimization can be relevant
for dial-a-ride problems of the kind faced by ride-sharing services, where
in addition to the need to compensate drivers for their idle time, one has
to consider that high waiting times can compel a driver to reject a ride
request. Another situation where waiting time minimization is relevant is
when the continued operation of the vehicle requires some sort of operational
cost, such as the energy expenditure for the refrigeration of perishable goods
(Hsu et al., 2007), or fuel cost if the vehicle is not allowed to park near a
customer while waiting (especially in the case of urban logistics). This can
also apply to scenarios where delivery vehicles are not owned, but rented
by the distribution company, since fees incurred by the company can be a
function of the duration of the rental.

As in the case of the VRP, many solution methods have been studied for
the VRPTW, both heuristic and exact. Among the exact methods, one of
the most effective and well-known is branch-and-price (BP), which consists
in a branch-and-bound algorithm, where each linear relaxation is solved with
column generation. Column generation is particularly suited to this problem,

2

given the constraining nature of time windows and the very large number of
variables that are present when each route is associated to a variable.

Nevertheless, being able to efficiently solve the associated pricing problem
remains an important issue, since it often is the main performance bottleneck.
Because of this, several algorithms have been developed in order to accelerate
the dynamic programming method that is traditionally used to solve the
pricing problem. Each of those methods attempts to speed up the solution
procedure of the pricing problem by strategically relaxing the state space in
a certain way and gives rise to a different labeling algorithm. To the best
of our knowledge, however, there has been no attempt in the literature to
systematically compare the performance of these labeling algorithms. Thus,
the aim of this thesis is to perform such a comparative study in an attempt
to determine whether there are certain common properties underlying the
most effective techniques.

While testing these methods on instances of the pricing problem can cer-
tainly be useful, this might not offer enough information on their performance
when used as a component of a BP type algorithm designed to solve a rout-
ing problem. Therefore, each labeling algorithm under our consideration is
embedded in a BP framework, and the analysis is carried out for both the
VRPTW and the VRPTWWTC.

The analysis of such algorithms presents a methodological challenge.
Each procedure we consider can adopt several algorithmic strategies for each
aspect of its execution, in addition to a quantity of numerical parameters. In
the literature, these strategies and parameters are most commonly set man-
ually after having performed preliminary experiments. However, doing so for
each of the algorithms under consideration presents the risk of performing a
fallacious analysis. Thus, for the sake of rigor, we aim to carry out a more
systematic approach: for each algorithm under our consideration, we per-
form a parametrization, i.e., we describe its possible algorithmic strategies
by the use of parameters. Then, we configure all the algorithmic parameters
employing a dedicated automatic tuner, with the aim of obtaining the best
possible configuration for each procedure. Finally, we test each algorithm
thusly tuned on a set of benchmark instances and compare the results with
statistical tests, which aim to determine whether some algorithms perform
significantly better than others.

It is important to keep in mind that in this study we do not aim to de-
velop a competitive solution method for the considered routing problems.
The current state-of-the-art is based on branch-and-cut-and-price (BCP),
which is the combination of of BP with cut generation. The most recent
algorithms (Pecin et al., 2017a,b) employ many advanced methods for the

3

acceleration of BCP present in the literature. In particular, they use valid
inequalities that are based on the well-known subset-row inequalities intro-
duced by Jepsen et al. (2008), which can significantly reduce the integrality
gap but are also known to complicate the structure of the pricing problem
and thus its resolution. While applying the methodology that we use in this
study to a more advanced BCP framework is possible, the additional algo-
rithmic strategies used in these BCP methods would increase severely the
number of parameters to tune. This would lead, for each labeling algorithm
under consideration, either to an increased parameter tuning time or less per-
formant parameter configurations. Thus, in order to maintain a reasonable
scope for our study and to focus on the comparison of labeling algorithms
using different state space relaxation techniques with regard to the elemen-
tarity resources, we use a BP framework that adopts well-known, reasonably
effective and relatively simple features.

1.1 Thesis Structure
The thesis is structured as follows. In Chapter 2, we give a general intro-

duction to VRPTW and its associated literature. Here, we formally describe
the problem, introduce some of its most widely used mathematical formu-
lations, and offer a brief overview of the solution methods that have been
developed over the years, both heuristic and exact.

Chapter 3 describes BP methods that have been proposed in the literature
for the VRPTW and presents the details of the labeling procedures for its
pricing problem, which are at the basis of the analyses carried out in this
study, while Chapter 4 introduces the VRPTWWTC, and explains how to
adapt these labeling algorithms to its special structure, according to the
theoretical results presented by Küçükaydın et al. (2014).

In Chapters 5 and 6, we present our own analyses on BP algorithms for the
VRPTW and the VRPTWWTC, and expand on the work by Michelini et al.
(2018). In the former, we present each procedure under our consideration
by describing how it works and how it is parametrized, and we discuss the
details of the shared BP framework. In the latter, we define our experimental
methodology, present the results of our computational experiments, and offer
some additional analyses.

Finally, Chapter 7 concludes this thesis and discusses possible directions
for future research.

4

Chapter 2

An Overview on the Vehicle
Routing Problem with Time
Windows

I n this chapter, we present a brief overview of the body of knowledge con-
cerning the vehicle routing problem with time windows (VRPTW) and its

solution methods. This chapter is structured as follows: in Section 2.1, we
give a general description of the VRPTW, with some of its formulations, its
history, and its applications. In Sections 2.2 and 2.3, respectively, we give
an overview of exact and heuristic methods that have been studied in the
literature.

2.1 Overview

The VRPTW is a well-known generalization of the capacitated vehicle
routing problem (CVRP). In the CVRP, we consider a set of customers, each
having a certain demand, and a homogeneous fleet of vehicles, each having
the same capacity. All the vehicles are based at a single depot. A vehicle can
leave the depot and visit a sequence of customers (a route) in order to satisfy
their demand, and then must return to the depot. The cumulative demand
of the customers visited along a route must not exceed the vehicle capacity.
The aim of the CVRP is to find a set of routes that visits all the customers,
while minimizing the total distance traveled by the vehicles.

In the VRPTW, we additionally establish that the service at each cus-
tomer has to start within an associated time interval, which we call time
window. Arrival before the opening of the time window is allowed in general,

5

but the servicing vehicle has to wait until the opening occurs in order to
start the service. This requirement is encountered in many practical appli-
cations, like postal and bank services, grocery delivery, or school bus routing
and scheduling. Several problems, most notably dial-a-ride problems, fea-
ture soft time windows, which can be violated barring a penalty cost. In this
study, we focus on the more widespread case of hard time windows.

Since the CVRP is a special case of the VRPTW (one in which all the
time windows are infinitely large), and the CVRP is an NP-hard problem, it
is easy to see that, by restriction, the VRPTW is also NP-hard. In fact, it
has been shown that finding a feasible solution for a fixed number of vehicles
is in itself an NP-complete problem (Savelsbergh, 1985).

Given the problem difficulty, it is not surprising that early work on the
VRPTW consists mainly of case studies treated employing heuristic meth-
ods, with some notable examples being the following. Pullen and Webb
(1967) considered the problem of van driver scheduling for mail delivery in
the London area. Their heuristic solution method manipulates allocations of
jobs to vehicles in order to reduce idle time and empty-running time in the
schedules. Knight and Hofer (1968) studied the fleet scheduling problem of
a contract transport company, and developed a heuristic system to increase
the utilization of vehicles. Madsen (1976) tackled a routing problem with
tight due dates faced by a newspaper and magazine distribution company,
and developed an algorithm based on Monte Carlo simulation.

Later work found fertile ground for further development of heuristic meth-
ods. For instance, Solomon (1987) worked on a variety of route construction
heuristics, obtaining satisfying results with a sequential time-space insertion
approach. Notably, in this work Solomon also introduced a set of randomly
generated instances for the VRPTW, which has since become one of the most
widely accepted standard benchmark for research on this problem. Relatedly,
literature concerning route improvement heuristics started to grow. Some of
these studies adapted existing successful methods for the CVRP (see Baker
and Schaffer, 1986, Cook and Russell, 1978). The following decade saw the
development of more heuristic methods, and also the first metaheuristics,
such as tabu search and genetic algorithms, which gradually became the
dominant class of heuristic methods for this problem.

Studies on exact methods started to appear at the beginning of the 1980s,
with some of the first branch-and-bound methods appearing in the studies
by Christofides et al. (1981b), Baker and Rushinek (1982), and Trienekens
(1982). Other early exact methods include the studies by Kolen et al. (1987)
and Jörnsten et al. (1986), which are respectively an adaptation of the q-
path relaxation algorithm of Christofides et al. (1981a) for the CVRP, and

6

an example of Lagrangian relaxation.
The following sections will examine in more detail some of the formu-

lations for the VRPTW, as well as heuristic and exact solution methods.
For further reading on the subject, the reader is referred to the surveys by
Cordeau et al. (2002), Bräysy and Gendreau (2005a,b), Kallehauge (2008),
Potvin (2009), Baldacci et al. (2012), and Desaulniers et al. (2014).

2.1.1 Formulation

The VRPTW is defined on a directed graph G = (V,A), where V =
{0, 1, . . . , n, n + 1} is the set of nodes (or vertices) and A = {(i, j) : i, j ∈
V, i 6= j} is the set of arcs. The depot is represented by the nodes 0 and n+1,
denoted as the source and sink, respectively. Each customer is associated to
a single node i ∈ N = V \ {0, n + 1}. For each node i in V , we associate
a demand di, a service time si, and a time window [ai, bi], where ai is the
earliest possible and bi the latest possible start of service time at i. To
simplify notation, we assign zero demand and service time to the depot, i.e.,
d0 = dn+1 = 0 and s0 = sn+1 = 0. Moreover, we also associate a time window
[a0, b0] = [an+1, bn+1], where a0 is the earliest possible departure time from
the depot and bn+1 is the latest possible arrival time at the depot. The depot
houses a fleet of vehicles, represented by the set K, and each vehicle has a
maximum capacity of Q. Every feasible route is then defined as a source-sink
elementary path in G that respects the capacity and time window constraints.
For each arc (i, j) in A, we denote its cost with cij and its travel time with tij .
The cost cij often corresponds to the Euclidean distance between nodes i and
j. Furthermore, we make the following assumptions regarding the problem
parameters:

• The arc travel times satisfy the triangle inequality, i.e., tih ≤ tij + tjh
for all i, j, h in V .
• We assume a0 ≤ mini∈V \{0}{bi−t0i} and bn+1 ≥ maxi∈V \{0}{max{a0 +
t0i, ai}+ si + ti,n+1}, otherwise no feasible solution can exist.
• In order to simplify the problem, we can remove from A arcs that cannot
belong to a feasible solution, either because they violate time window
or capacity constraints, i.e., any arc (i, j) such as ai + si + tij > bj or
di + dj > Q.

We present a standard mixed integer programming (MIP) formulation
for the VRPTW with two types of variables. Firstly, we associate a binary
arc-flow variable xijk with each arc (i, j) ∈ A and each vehicle k ∈ K that
assumes value 1 if arc (i, j) is used by vehicle k, and 0 otherwise. Secondly,

7

we define a time variable Tik denoting the start of the service time at node
i by vehicle k. What follows is the multi-commodity network flow model for
the VRPTW:

min
∑
k∈K

∑
(i,j)∈A

cijxijk (2.1)

s.t.
∑
k∈K

∑
j∈δ+(i)

xijk = 1 ∀i ∈ N, (2.2)

∑
j∈δ+(0)

x0jk = 1 ∀k ∈ K, (2.3)

∑
i∈δ−(j)

xijk −
∑

i∈δ+(j)
xjik = 0 ∀k ∈ K, j ∈ N, (2.4)

∑
i∈δ−(n+1)

xi,n+1,k = 1 ∀k ∈ K, (2.5)

ai ≤ Tik ≤ bi ∀k ∈ K, i ∈ V, (2.6)
Tik + si + tij − Tjk ≤Mij(1− xijk) ∀k ∈ K, (i, j) ∈ A, (2.7)∑
i∈N

di
∑

j∈δ+(i)
xijk ≤ Q ∀k ∈ K, (2.8)

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A, (2.9)

where δ−(i) and δ+(i) are the sets of predecessors and successors of i, respec-
tively, and Mij are sufficiently large constants that can be set to max{0, bi +
si + tij − aj}.

In this MIP model, objective function (2.1) aims to minimize the total
cost. Constraints (2.2) ensure that each customer is assigned to a single
vehicle. Flow constraints (2.3)-(2.5) establish that all routes are elementary
paths starting from the source and ending at the sink. Constraints (2.7)
and (2.6) ensure scheduling feasibility and that time windows are not violated,
respectively. Constraints (2.8) prevent violation of vehicle capacity. Finally,
we impose that the arc-flow variables xijk have to be binary.

Unfortunately, the linear relaxation of this model is known to provide
weak lower bounds. It is possible to obtain a different model with stronger
lower bounds by applying Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960) to the one above, once the arc-flow variables of each vehicle are aggre-

8

gated. This results in the following set partitioning model:

min
∑
r∈Ω

cryr (2.10)

s.t.
∑
r∈Ω

airyr = 1 ∀i ∈ N, (2.11)

∑
r∈Ω

yr ≤ |K| (2.12)

yr ∈ {0, 1} ∀r ∈ Ω. (2.13)

In this model, Ω is the set of all feasible routes, cr the cost of route
r ∈ Ω, and air the number of times route r visits customer i ∈ N . When
route r is elementary, air ∈ {0, 1} for all i ∈ N . Binary variable yr assumes
value 1 if route r is used in the solution and 0 otherwise. Here, objective
function (2.10) aims to minimize the total cost, constraints (2.11) express
that each customer is visited exactly once, and constraints (2.13) force the
route variables to be binary. As mentioned above, the arc-flow variables
are aggregated and do not appear explicitly in this model. Furthermore,
constraint (2.12) can be dropped when the number of vehicles at the depot is
supposed to be unlimited, i.e., |K| = +∞, which is an oft-used assumption
in the VRPTW literature. In the following chapters of this study, we make
use of this assumption, and therefore do not use constraint (2.12).

While the linear relaxation of this model does indeed provide stronger
lower bounds, its number of variables is extremely large, given that there is
one variable for each feasible route. This issue is traditionally addressed with
the use of column generation (CG) methods, upon which we will expand later
in this study.

2.2 Exact Methods
One of the leading methodologies for the VRPTW is branch-and-price,

which is treated in more detail in the next chapter. In this section, we briefly
overview some of the other existing exact methods for the VRPTW. For
additional reading, see the surveys by Kallehauge (2008), Desaulniers et al.
(2011), and Baldacci et al. (2012).

2.2.1 Valid Inequalities and Branch-and-Cut

Valid inequalities are a versatile tool to solve a MIP, since they can be
added when solving a linear relaxation in order to tighten the lower bound
or obtain integer solutions, as in the cutting plane method.

9

For instance, some of the most well-known valid inequalities for routing
problems are the κ-path inequalities, which are used for the linear relaxation
of the model (2.1)-(2.9). Let us consider a subset of customers S ⊆ N and
the flow x(S) into S, i.e., x(S) =

∑
k∈K

∑
i∈V \S

∑
j∈S xijk. Then, the classic

subtour elimination constraints can be expressed as

x(S) ≥ 1, ∀S ⊆ N, s.t.|S| ≥ 2.

These constraints can be generalized with the κ-path inequalities

x(S) ≥ κ(S) ∀S ⊆ N, s.t.|S| ≥ 2,

where κ(S) is the smallest number of vehicles that can feasibly serve the
customers in S. In the context of the VRPTW, the presence of time windows
makes the efficient calculation of κ(S) difficult to achieve for a generic subset
S. Because of this, Kohl et al. (1999) focus on subsets S that require at least
two vehicles but are currently serviced by less than two, i.e., subsets S such
that

1 < x̂(S) < 2 ∧ κ(S) ≥ 2,

where x̂(S) is the value of x(S) in the current solution. In order to check if
κ(S) > 1 for a given subset S, it suffices to solve an instance of a TSP with
capacity and time window constraints. While this problem is NP-hard, for
sets S of reasonable size it is possible to solve it quite efficiently.

Another recent example consists in the subset-row inequalities introduced
by Jepsen et al. (2008), which are used for the linear relaxation of the
model (2.10)-(2.13). These inequalities are defined over subsets of con-
straints (2.11) in the set partitioning model, and correspond to a subset
of the Chvátal-Gomory rank 1 cuts for the set partitioning polytope. They
can be defined as follows:∑

r∈Ω

⌊
1
l

∑
i∈S

air

⌋
yr ≤

⌊ |S|
l

⌋
∀S ⊆ N, 0 < l < |S|.

In their study, Jepsen et al. (2008) only consider inequalities for |S| = 3 and
l = 2, which can be generated by enumeration. Together with 2-path inequal-
ities, subset-row inequalities have successfully been used in a CG framework,
although their handling severely complicates the pricing subproblem.

Valid inequalities are of course an important component in branch-and-
cut (BC), a well-known method for solving combinatorial optimization prob-
lems (see Padberg and Rinaldi, 1987, Mitchell, 2002). It simply consists in a
branch-and-bound algorithm that embeds a cutting plane procedure in order
to tighten the linear relaxation lower bounds as much as possible.

10

The effectiveness of this method strongly depends on the quality of the
separation algorithms and of the valid inequalities used in the cutting plane
phase. Indeed, many sophisticated families of valid inequalities have been
developed since Bard et al. (2002) proposed the first BC algorithm tailored
for the VRPTW. To name a few, Lysgaard (2006) develops reachability cuts,
which strengthen κ-path inequalities taking into consideration the fact that,
due to time windows, only certain arcs can be traversed on a route serving
a given customer. Kallehauge et al. (2007) develop a family of strengthened
path inequalities that are facet-defining under certain assumptions. Finally,
Letchford and Salazar-González (2006) introduce a two-commodity flow for-
mulation for the VRPTW that allows them to derive a new family of valid
inequalities, called projection inequalities, since they are obtained by a pro-
jection onto the subspace of the arc-flow variables xij .

2.2.2 Lagrangian Relaxation

While the Dantzig-Wolfe approach is one of the most popular decomposi-
tion methods for routing problems, another such approach for combinatorial
optimization problems that has been used for the VRPTW is Lagrangian
relaxation. This method relaxes a subset of constraints and penalizes their
violations using values called Lagrange multipliers.

Let us consider constraints (2.2) of the VRPTW model, which require
that each customer has to be visited once, and the set of multipliers α =
(αi, i ∈ N), with αi ≥ 0 for all i ∈ N . The Lagrangian subproblem L(α) is
defined as

min
∑
k∈K

∑
(i,j)∈A

cijxijk +
∑
k∈K

∑
i∈N

αi

1−
∑

j∈δ+(i)
xijk

 ,
subject to (2.3)- (2.9).

For any value of α, the optimal value of L(α) is a dual lower bound for
the original VRPTW. The problem of obtaining the multipliers that yield
the best lower bound, called the Lagrangian bound L = maxα L(α), is a
concave non-differentiable maximization problem. The choice of relaxing only
the assignment constraints (2.2) is not arbitrary: if the capacity and time
window constraints are relaxed together with (2.2), the associated Lagrangian
subproblem is a pure network flow problem for which the integrality property
holds, and thus the Lagrangian bound would be no better than the linear
programming bound.

Examples of application of this decomposition approach to the VRPTW
include the studies by Kohl and Madsen (1997), who attempt to determine

11

optimal multiplier values with a combination of a subgradient algorithm and
a bundle algorithm, and Kallehauge et al. (2006), who use this decomposition
approach to develop a branch-and-cut-and-price algorithm for the VRPTW in
which the Lagrangian dual problem is solved with a cutting plane algorithm.

2.2.3 Reduced Set Partitioning

A recent promising technique is the one proposed by Baldacci et al. (2010,
2011), which attempts to reduce the size of the VRPTW set partitioning
model by fixing to 0 the value of a large number of its variables. It exploits the
following property: given an integer program and an upper bound U , a non-
negative integer variable takes value 0 in every optimal integer solution if its
reduced cost with respect to a feasible dual solution of a linear programming
relaxation exceeds U − L, where L is the lower bound associated with the
dual solution.

In the procedure proposed by the authors, the upper bound U is obtained
with a metaheuristic, while the lower bound L and the associated dual so-
lution are obtained with a sophisticated dual ascent method that combines
Lagrangian relaxation, subgradient optimization, and CG. Furthermore, the
proposed dual ascent method uses sequentially up to four heuristics. Once
the bounds are obtained, a dynamic programming algorithm is used to ob-
tain all elementary columns that satisfy the above property with respect to
U and L, and the set partitioning model is solved with a commercial MIP
solver.

2.3 Heuristic Methods

Heuristics are a class of solution procedures that aim to find relatively
good solutions for an optimization problem while using limited computational
resources. Given the inherent difficulty of the VRPTW, heuristic solution
methods have always been an extremely popular subject of study for this
problem. While initially consisting of route construction and improvement
algorithms, the landscape has been dominated by metaheuristics since their
introduction in recent years. Heuristics see also widespread adoption among
industry practitioners, given their capability to quickly obtain solutions of
good quality. For these reasons, and also for the sake of completeness, we
present here a short overview of this class of algorithms.

12

2.3.1 Route Construction Heuristics

Route construction heuristics are some of the earliest researched solution
methods for the VRPTW. They aim to create a feasible solution by repeat-
edly selecting nodes or arcs and adding them to existing routes. They can
be divided into sequential heuristics, which build a single route at a time,
and parallel heuristics, which work on multiple routes simultaneously. We
list here some of the most notable ones.

One of the earliest methods is one proposed by Solomon (1986), which is a
cluster-first, route second method that uses a giant-tour heuristic. Customers
are first scheduled in a single tour that is then divided into multiple routes.

In another seminal paper, Solomon (1987) describes several construction
heuristics for the VRPTW. These include the following: an extension of the
savings heuristic by Clarke and Wright (1964), which is one of the best-
known algorithms for the CVRP; a time-oriented nearest-neighbor heuristic;
a time-oriented sweep heuristic; and three variants of a sequential two-phase
insertion algorithm, which is reportedly the most successful. This algorithm
sequentially initializes each route with a “seed” customer, and then iteratively
proceeds with two phases. In the first phase, each unrouted customer is
assigned its best feasible insertion position in the current route based on the
minimum additional distance and time required. In its second phase, the
method selects the customer to insert in its best possible position using a
maximum savings approach.

A parallel variant of this insertion procedure was introduced by Potvin
and Rousseau (1993). Here, the set of routes is initialized all at once, and
the selection of the next customer to be inserted is based on a generalized
regret measure over all the routes. The employed measure depends on the
the gap between the first best insertion position for a customer and its best
insertion position in the other routes.

Bramel and Simchi-Levi (1996) develop an asymptotically optimal heuris-
tic based on an idea for solving the capacitated location problem with time
windows (CLPTW). In the CLPTW, the aim is to select a subset of possible
sites, assign a vehicle to each site, and to assign a subset of customers to
each vehicle. In the context of the VRPTW, selecting a set of sites equates
to selecting a seed customer for each route. The authors use a method based
on Lagrangian relaxation to solve the associated CLPTW instance, and then
associate unrouted customers to the seed customers in a greedy order.

Finally, Ioannou et al. (2001) adapt the greedy look-ahead method of
Atkinson (1994) by using the insertion procedure of Solomon (1987) men-
tioned above. This technique aims to minimize the overall impact of the

13

insertion of an unrouted customer on the chosen route and on all the remain-
ing unrouted customers.

Excluding the approach by Ioannou et al. (2001), which returns solu-
tions of better quality in a longer computing time, this class of heuristics is
generally very fast, given their relative simplicity. Compared to the more so-
phisticated route improvement methods, which we discuss in the next section,
they maintain a certain advantage with regards to computational resources,
while usually returning solutions of poorer quality.

2.3.2 Improvement Heuristics

Improvement heuristics, or local search methods, form a class of algo-
rithms that attempt to find better solutions to an optimization problem by
iteratively modifying the current solution until no further improvement is
possible. In this class of heuristics, operators and neighborhoods play a cen-
tral role. An operator changes a solution into another by modifying in a
certain way a single attribute, and the set of solutions obtained by applying
the operator to all possible attributes of the original solution is its associated
neighborhood. Thus, local search equates to iteratively exploring the neigh-
borhood of the current solution in order to find a better one. The procedure
stops when the current solution is the best one in its neighborhood, or in
other words, it is a local optimum.

In the context of the VRPTW, and of routing problems in general, neigh-
borhoods are defined by arc-exchange operators. Many of these operators
were first introduced for simpler variants of routing problems, like the travel-
ing salesman problem (TSP) or the CVRP. Efficient implementations of these
techniques for the VRPTW are reported in Savelsbergh (1985), Solomon and
Desrosiers (1988), Solomon et al. (1988), Savelsbergh (1990), and Savelsbergh
(1992).

The size of neighborhoods is an important trade-off for local search meth-
ods: larger neighborhoods lead to solutions of better quality, but evaluation
of all neighboring solutions becomes more time consuming. In fact, for k-
exchange neighborhoods (which contain the solutions that can be reached
from the current one by swapping a subset of k arcs), verifying local opti-
mality requires O(nk) time. Neighborhoods can thus be classified in two cat-
egories (Desaulniers et al., 2014): traditional and large. The former contains
the neighborhoods whose size grows polynomially in a controlled manner, and
thus can be evaluated explicitly. Large neighborhoods grow too fast with n
to allow explicit evaluation, and have to be evaluated heuristically. They
have typically been used in certain metaheuristics, which will be discussed in

14

the next section.
Traditional neighborhoods have been considered since early studies like

Russell (1977), Cook and Russell (1978), and Baker and Schaffer (1986).
They can be divided into intra-route and inter-route approaches. In the for-
mer, only one route of the current solution is altered. In the latter, new solu-
tions are obtained by moving customers between two or more routes. Intra-
route approaches include the basic 2-exchange operator (or 2-opt), which
exchanges two arcs of a single route, and the well-known Or-opt operator in-
troduced by Or (1976), which relocates a chain of consecutive customers by
replacing three arcs in the original route. Inter-route approaches include the
2-opt* introduced by Potvin and Rousseau (1995), which exchanges two arcs
between two routes (this has the advantage of maintaining the orientation
of the routes, as opposed to the 2-opt operator, clearly an important aspect
with the addition of time windows), the cross exchange of Taillard et al.
(1997), which selects two subpaths of two routes and exchanges their posi-
tion, and path relocation, which relocates a subpath from a route to another
one. This category also includes many more sophisticated techniques, such as
the GENI-Exchange operator of Gendreau et al. (1992), the λ-interchange of
Osman (1993), and the cyclic k-transfers of Thompson and Psaraftis (1993).

The quality of the solution returned by local search greatly depends on
the quality of the initial solution. This is the basic reason why certain studies
propose composite heuristics that blend route construction and improvement
methods. Examples of this category include Kontoravdis and Bard (1995),
who combine a greedy heuristic and randomization to produce initial routes
in parallel, and then improve them with local search; Russell (1995), who
develops a procedure that embeds route improvement within the construction
process; and Cordone and Calvo (2001), who use Solomon’s insertion heuristic
with a hierarchical local search approach. For an in-depth review of route
construction and improvement heuristics, the reader is referred to the survey
by Bräysy and Gendreau (2005a).

2.3.3 Metaheuristics

An important drawback of local search is that they terminate when they
reach a local optimum, which is clearly not guaranteed to be a global op-
timum, and indeed might not even be a solution of overall good quality.
Metaheuristics address this issue by implementing various techniques to es-
cape local optima and effectively explore a much larger solution space, in
the attempt to find a near-optimal solution. This class of general solution
procedures is at the core of recent developments on heuristic methods for

15

optimization problems, and routing problems have provided fertile ground
for research on these algorithms.

A novel aspect of these methods is that, in order to facilitate the ex-
ploration of the solution space, they generally allow deteriorating and even
infeasible intermediary solutions during the search process. In the context
of the VRPTW, the types of infeasibility that are generally allowed are time
window, vehicle capacity, and customer violations (i.e., when some customers
are not visited). The first two are typically considered together in a penalized
objective function.

For the VRPTW, we can identify two broad categories of metaheuristics,
which we briefly overview here: single trajectory search and population-based
search. For a more in-depth overview, the reader is referred to the survey by
Bräysy and Gendreau (2005b).

Single trajectory search

In single trajectory search, each iteration only considers one solution at a
time, and thus the search process generates a sequence of solutions that can
be seen as a trajectory along the solution space. This class of metaheuristics
includes well-known procedures like tabu search, large neighborhood search,
and iterated local search.

Tabu search, first introduced by Glover (1986), explores the solution space
by iteratively moving from the current solution s to the best solution in a
certain subset of its neighborhood N(s). Thus, the new solution might be of
poorer quality than s, in which case it is accepted only to avoid trajectories
already investigated, and ultimately to escape local optima. Furthermore,
in order to avoid cycling, solutions possessing certain features of recently
explored solutions are temporarily declared forbidden, or tabu, for a certain
number of iterations. Tabu search was first adapted for the VRPTW by Gar-
cia et al. (1994), who presented a parallel implementation utilizing Solomon’s
insertion framework for initial solutions and 2-opt* and Or-opt operators for
local search.

More recent examples include the studies by Cordeau et al. (2001, 2004).
The authors use an initial solution obtained with a sweep heuristic and use
customer relocation as the search operator. When removing a customer from
a route, its reassignment to the same route is declared tabu. Additionally,
this algorithm allows intermediary solutions that are infeasible with respect
to both the time windows and vehicle capacity, and terminates by performing
a post-optimization procedure applying to each route a heuristic designed for
the traveling salesman problem with time windows.

16

Variable neighborhood search (VNS), originally proposed by Mladenović
and Hansen (1997), essentially consists in a local search method that oscil-
lates between several neighborhood structures. More precisely, whenever a
local optimum is reached when performing local search according to a certain
operator, the algorithm switches over to a different one in order to search for
improving solutions. Indeed, a solution that is locally optimal with respect
to a certain neighborhood structure might not be so for other structures in
general, since this is guaranteed to be true only for a global optimum.

Examples of applications of this paradigm to the VRPTW include the
works of Rousseau et al. (2002), who use a VNS scheme with several new
operators (including the GENI procedure of Gendreau et al. (1992), ejection
chains, and the SMART operator, which removes arcs from the solution in-
stead of customers) within a constraint programming framework, and Bräysy
(2003), who proposes a multi-phase algorithm in which VNS is used with
modified cross-exchange and cheapest insertion heuristic. Also, Repoussis
et al. (2006) propose a multi-start metaheuristic that combines greedy ran-
domized adaptive search procedures (GRASP) with a hybrid variable neigh-
borhood tabu search, where tabu search is used as an internal component
of VNS. In this method, VNS iteratively selects a random solution of the
current neighborhood and performs local search. If the best solution does
not change after the current iteration, a different neighborhood structure is
chosen and a new search is performed, until a termination condition is met.
The study of de Armas and Melián-Batista (2015) proposes a similar ap-
proach for a dynamic rich VRPTW. The sequence of operators used by their
method includes GENI, Or-opt, cross-exchange, 2-opt, customer relocation,
and swapping.

Large neighborhood search (LNS) is a heuristic originally developed for
routing problems by Shaw (1998). As mentioned above, while large neigh-
borhoods would provide solutions of better quality in a steepest descent algo-
rithm, their size grows with n too quickly to explicitly evaluate all solutions
in them. Thus, they need to be explored heuristically. The main attributes
of LNS, which allow it to work on large neighborhoods, are the destroy and
repair operators. At each iteration, a destroy operator partially disintegrates
a solution, for instance by removing certain customers from their routes, and
a repair operator rebuilds it, for instance by reinserting all unrouted cus-
tomers, thus obtaining a temporary solution. Then, a criterion is employed
in order to determine if the temporary solution is retained for the next itera-
tion, for instance if it is better than the current solution. An example of the
application of LNS to the VRPTW is the work of Pisinger and Ropke (2007),
who transform each instance of the problem to the pickup-and-delivery prob-

17

lem with time windows, which is then solved by the LNS proposed by Ropke
and Pisinger (2006). This method adopts several operators, including simple
greedy remove and insert. The algorithm dynamically adapts itself to prefer
the most successful operators and is therefore called adaptive LNS (ALNS).

Iterated local search, introduced by Lourenço et al. (2010), is a rela-
tively simple metaheuristic framework, which is based on a series of local
searches. At each iteration, the algorithm performs a random perturbation
of the current solution to obtain a temporary one, and then uses local search
to improve the temporary solution until a stopping criterion is met. Instead
of local search, one might employ a more sophisticated metaheuristic, like
tabu search or simulated annealing. An example of this kind of iterated local
search for the VRPTW is the study by Cordeau and Maischberger (2012),
which instead of local search uses a version of the tabu search algorithm
of Cordeau et al. (2001, 2004). In this example, the perturbation step is
based on large neighborhood search, and consists in removing a cluster of
customers, which are then reinsterted in a random order using a cheapest-
insertion policy.

Population-based search

Algorithms of this category do not consider only a single solution per
iteration, but instead maintain a pool of solutions throughout execution.
The set of population-based methods for the VRPTW is mostly composed
of evolutionary algorithms and path-relinking algorithms.

Evolutionary algorithms include the well-known class of genetic algo-
rithms, introduced by Holland (1992), and memetic algorithms (Moscato
and Cotta, 2010), which extend genetic algorithms by hybridizing them with
other heuristics, such as local search. At each iteration of the classical ge-
netic algorithm, a set of new solutions S is formed by combining ones from
the existing population P , in a step called crossover. A subset of S is then
randomly perturbed in the mutation phase, obtaining S′. The pool P is then
updated with solutions from S′ according to a certain criterion. In a memetic
algorithm, the solutions in S′ are first improved with local search or another
heuristic before updating the pool P . A crucial component in the effective-
ness of these algorithms is the crossover step. Some of the most successful
crossover operators include: the EAX crossover, used originally for the TSP
by Nagata (1997), the OX crossover (Falkenauer and Bouffouix, 1991), and
multiparent recombination (Repoussis et al., 2009).

Path-relinking is a novel idea by Hashimoto and Yagiura (2008) that
treats the pool of solutions differently from evolutionary algorithms. At each

18

iteration, two solutions sa and sb from the pool are selected randomly, and
the algorithm then transforms sa into sb with a series of 2-opt* and Or-opt
operations. Some of the intermediary solutions are then improved with local
search and then reinserted in the pool.

2.3.4 Matheuristics

Over the last few decades, the progress on exact solution methods and
the increasing availability of powerful computer hardware has made it pos-
sible to solve large MIPs in reasonable amounts of time. Because of this,
several recent studies have introduced the idea of combining heuristics with
exact methodologies, or more specifically, with mathematical programming
techniques, thus coining the term matheuristics.

Archetti and Speranza (2014) survey the recent matheuristics developed
for routing problems, and classify these methods into three groups: decom-
position approaches, improvement heuristics, and BP/CG-based approaches.
In the first group, a heuristic decomposes the problem in smaller subprob-
lems, which are then solved with mathematical programming, such as the
cluster-first-route-second approach for the VRP. In improvement approaches,
the quality of a solution found by a heuristic is improved by solving a MIP
model. This can either be done as the final phase of the solution method, or
as a tool to explore the solution space and improve the solution within a local
search procedure. Finally, BP/CG-based approaches exploit the structure of
a BP scheme to produce heuristic solutions.

To the best of our knowledge, studies that apply a matheuristic approach
to the VRPTW, or one of its variants, usually fall under the latter category,
with the exception of the study by Prescott-Gagnon et al. (2009), which
consists in an improvement approach. Here, the authors propose an ALNS
that uses four heuristics in the destruction phase and a single reconstruction
procedure based on the heuristic BP algorithm proposed by Desaulniers et al.
(2008). Here, BP is used to determine the optimal set of routes servicing the
customers that have been removed during the destruction phase.

Examples of BP-based matheuristics for the VRPTW include the follow-
ing. Danna and Le Pape (2005) propose a collaboration scheme between BP
and metaheuristics with the objective to obtain good quality solutions early
in the execution of the algorithm. The authors use an LNS procedure and a
guided tabu search for two purposes. First, they generate an initial solution
for the BP algorithm. Then, at certain points during the execution of BP,
they call the heuristics to improve the incumbent solution.Desaulniers et al.

19

(2008) use tabu search to solve the pricing problem within a BCP method.
Their algorithm uses customer insertion and deletion as search operators, and
performs a multiple start procedure to diversify the search. Finally, Pillac
et al. (2013) study an extension of the VRPTW, called the technician routing
and scheduling problem, where personnel is routed to perform work on a set
of tasks, taking into account constraints such as time windows, technician
skills, tools, and available spare parts. Here, an initial solution is generated
with a constructive heuristic, which is then improved with an ALNS proce-
dure. The columns generated by the ALNS are then used in a set covering
model that is solved to optimality.

For more information on matheuristics for routing problems, see the sur-
veys of Doerner and Schmid (2010), Ball (2011) and Archetti and Speranza
(2014).

2.4 Conclusions
In this chapter, we have offered a brief overview of the vast body of work

on the VRPTW, by describing some of its formulations and presenting some
highlights in the rich landscape of solution methods, both heuristic and exact.

20

Chapter 3

Branch-and-Price Algorithms
for the VRPTW

A s we have mentioned earlier, branch-and-price (BP) is a leading method-
ology for solving exactly rich vehicle routing problems. Simply put, BP

consists in a branch-and-bound (BB) algorithm in which the linear relaxation
associated with each node of the BB tree is solved with column generation
(CG). In this chapter, we describe its main characteristics, as well as several
refinements that are an integral part of the algorithms under consideration
in this study. In Section 3.1, we give a brief overview of the CG method for
the VRPTW, and the associated pricing problem. In Section 3.2, we describe
the dynamic programming algorithm for the pricing problem used in all the
methods considered in this study. Sections 3.3 and 3.4 describe two impor-
tant extensions of the dynamic programming algorithm, while Section 3.5
introduces possible hybridizations of these extensions. Finally, Section 3.6
gives a quick overview of BB, with some specific considerations regarding
the VRPTW. For additional details on the implementation of BP for routing
problems, see the tutorial of Feillet (2010).

3.1 Column Generation

The history of CG goes back to the 1960s, with the introduction of the
decomposition principle by Dantzig and Wolfe (1960). Here, the original
linear program (LP) is reformulated as a combination of a master program
and a number of independent subprograms. The new variables represent the
extreme points and rays of the polyhedra associated to the subprograms, and
therefore they are usually exponential in number. In their seminal papers,

21

Algorithm 3.1 Basic CG.
1: procedure CG
2: Initialize RMP
3: Optimal ← false
4: while Optimal == false do
5: Solve RMP
6: Solve pricing problem
7: if No negative reduced cost column found then
8: Optimal ← true
9: else

10: Add column(s) to RMP
11: return RMP solution

Gilmore and Gomory (1961, 1963) introduced a formulation for the cutting
stock program that treated implicitly a huge number of variables. Since then,
this paradigm has been applied in many scenarios, especially ones that are
prone to include a huge number of variables, like routing problems.

Let us consider the set partitioning formulation for the VRPTW (2.10)-
(2.13) described in Chapter 2. As we have mentioned, this formulation has
the advantage of providing a relatively strong lower bound, which is obviously
useful in a BB procedure. Unfortunately, since there is one variable per
feasible route, trying to solve the linear relaxation of (2.10)-(2.13) is clearly
intractable. CG aims to address this issue.

It is possible to replace the set partitioning formulation with a set cover-
ing one, in which we simply replace constraints (2.11) with

∑
r∈Ω airyr ≥ 1,

i.e., simply impose that each customer has to be visited at least once. This
does not impact the optimal solution, since it is easy to see that under op-
timality no customer would be visited more than once, due to the triangle
inequality. This modification is usually desirable since it forces the associ-
ated dual variables to be non-negative, which is a favorable condition for the
convergence of CG algorithms. Let us then consider the linear relaxation
of the set covering variant of the formulation for the VRPTW (2.10)-(2.13),
which we call in this context the Master Problem (MP), and let us introduce
an initial subset of variables Ω ⊆ Ω.

Then the Restricted Master Problem (RMP) is simply the restriction of
the MP to the subset Ω:

22

min
∑
r∈Ω

cryr (3.1)

s.t.
∑
r∈Ω

airyr ≥ 1, ∀i ∈ N, (3.2)

yr ≥ 0, ∀r ∈ Ω. (3.3)

The associated dual program is the following, where ηi is the dual variable
associated with customer i:

max
∑
i∈N

ηi (3.4)

s.t.
∑
i∈N

airηi ≤ cr, ∀r ∈ Ω, (3.5)

ηi ≥ 0, ∀i ∈ N. (3.6)

If there is no column with negative reduced cost in Ω \ Ω, i.e., columns
such that

cr −
∑
i∈N

airηi < 0, (3.7)

then the optimal solution for the RMP is also optimal for the MP. Hence,
the main loop of CG, illustrated in Algorithm 3.1, is the following. First, we
initialize the restricted set of feasible columns Ω. Since we have no constraint
on the fleet size, we simply initialize it with the set of trivial columns, i.e.,
the routes that visit only a single customer. Whenever we solve the RMP to
optimality, we look for columns in Ω\Ω with negative reduced cost to include
in Ω, and then we reoptimize the RMP. Incidentally, finding such a column
amounts to finding a constraint of type (3.5) in Ω\Ω that the current optimal
solution for the dual program (3.4)-(3.6) violates. The pricing problem we
need to solve in order to find such columns is then an elementary shortest
path problem with resource constraints (ESPPRC), and can be formulated
in the following way:

min cr −
∑
i∈N

airηi (3.8)

s.t. r ∈ Ω. (3.9)

In the next section, we describe the most well-known exact algorithms for
the ESPPRC, which forms the basis for the ones under consideration in this
study.

23

3.2 Labeling Algorithm for the Pricing Problem

As we have mentioned above, we need to solve an ESPPRC, which con-
sists in finding a route with the least reduced cost. This route has to be
feasible with respect to the VRPTW, i.e., it has to be a path starting and
ending at the depot, visiting a subset of customers in N , and respecting the
capacity, time window, and elementarity constraints. As we have mentioned
in Chapter 2, the depot is split in two identical copies, the source, denoted
as 0, and the sink, denoted as n+ 1. The former only has exiting arcs in the
associated graph G = (V,A), where V = N ∪ {0, n+ 1}, and the latter only
entering arcs. Each feasible path is then a source-sink path that respects the
aforementioned constraints. Here, we define an elementary path as a path
that does not visit the same customer more than once.

Since the underlying graph may have negative cost cycles, given the def-
inition of reduced cost (3.7), and since we require that the solution be an
elementary path, it is impossible to use classic algorithms for the shortest
path problem such as Dijkstra’s or Bellman-Ford. Furthermore, it is possible
to prove that the ESPPRC is in fact NP-hard: Dror (1994) proved it by
showing that the NP-hard problem of sequencing within intervals (SWI) can
be polynomially transformed into the ESPPRC.

In the first implementation of BP for the VRPTW, Desrochers et al.
(1992) did not in fact consider the ESPPRC as the pricing subproblem,
given its difficulty. Indeed, they observed that by relaxing the elemen-
tarity constraints, the resulting shortest path problem with resource con-
straints (SPPRC) admits a pseudo-polynomial procedure, which is an exten-
sion of the Bellman-Ford dynamic programming algorithm. To accommodate
this change, they modify model (3.1)-(3.3) by letting parameter air in con-
straint (3.2) indicate the number of times customer i is visited in route r.
Their procedure is detailed in the next subsection.

3.2.1 Basic Labeling Algorithm

In this algorithm, a set of states is associated with each vertex. Each
state represents a feasible partial path P starting at source v0 = 0, visiting
i customers and ending at vertex vi, which we describe with the notation
P = (0 = v0, v1, . . . , vi). With each state we associate a cost Cvi and a
resource vector Rvi , in which each component represents the consumption
of a different resource along the partial path. Cost Cvi of partial path P is
defined as

∑
(vk,vk+1)∈P cvk,vk+1−

∑
vk∈P ηvk

, since the cost of a path ending at
the sink, i.e., a complete path, has to correspond to its reduced cost. While

24

vector Rvi can accommodate different resources depending on the additional
constraints of the routing problem under consideration (for instance, whether
or not there are pick-ups in addition to deliveries), in the case of the VRPTW
we consider two resources: the path duration τvi and accumulated vehicle
load qvi . More specifically, τvi denotes the timespan between the departure
from the source and the start of service at customer vi. Each resource is used
to monitor feasibility of the partial path with regard to the vehicle capacity
constraints and the time window constraints, respectively. Each state can
therefore be represented by a label lvi , which is a tuple of the form lvi =
(Cvi ,Rvi). In the following, we expand this notation to lvi = (Cvi , τvi , qvi).
For simplicity, we also denote index vi as i in the following, e.g., we denote
lvi as li.

The dynamic programming algorithm iteratively extends each label li
along all feasible arcs (i, j) ∈ A to obtain new states, according to the re-
source extension functions (REFs) explained below. If a newly computed
state is not feasible with respect to the problem constraints, it is discarded.
The algorithm is initialized with a single label at the source l0 = (0, 0, 0),
representing the empty path, and stops when all possible label extensions
have been performed. If there are labels associated with the sink n + 1, it
then returns label l∗n+1 = (C∗n+1, τ

∗
n+1, q

∗
n+1) with the least cost C∗n+1, which

corresponds to a feasible complete path with the least reduced cost.

Label Extension Rules

In order to extend a label li = (Ci, τi, qi) along an arc (i, j) ∈ A to obtain
label lj = (Cj , τj , qj), the following REFs are adopted:

Cj = Ci + cij − ηj , (3.10)
τj = max{τi + si + tij , aj}, (3.11)
qj = qi + dj ; . (3.12)

Thus, label lj is feasible if and only if τj ≤ bj and qj ≤ Q.

Label Domination

A crucial aspect in these label extension algorithms is that their compu-
tational complexity heavily depends on the proliferation of labels throughout
their execution. This is easy to see, since at every iteration, the algorithm
attempts all possible extensions for each existing label. Therefore it is crucial
to implement techniques that limit as much as possible label proliferation,
such as dominance rules. Let l1i = (C1

i , τ
1
i , q

1
i) and l2i = (C2

i , τ
2
i , q

2
i) be two

25

labels associated with two partial paths ending at customer i. If the following
conditions hold true:

C1
i ≤ C2

i , (3.13)
τ1
i ≤ τ2

i , (3.14)
q1
i ≤ q2

i , (3.15)

with at least one inequality being strict, then extending label l2i cannot lead
to the optimal solution, since any possible extension from l2i would be guar-
anteed to be worse than the same extension from l1i . We say that label l2i
is then Pareto-dominated, or just dominated, by l1i , and thus we can freely
discard it.

Enforcing Path Elementarity

In the implementation of Desrochers et al. (1992), while not explicitly
enforcing elementary routes, the authors exclude paths with 2-cycles, i.e.,
paths with cycles composed of two arcs. This technique necessitates only
a minor change in the dynamic programming algorithm, since it suffices to
record in each label the vertex previously visited. Moreover, it provides a
substantial advantage in terms of the number of possible paths removed from
the formulation and bound quality, and became a standard implementation
technique in subsequent studies.

Given the efficiency of the algorithm by Desrochers et al. (1992), Feillet
et al. (2004) consider the tractability of its application to the original ESP-
PRC. In order to adapt the labeling algorithm, the authors add a new set
of elementarity resources (Eki)k∈N (henceforth denoted as (Eki)k) to redefine
labels, which thus adopt the form li = (Ci, τi, qi, (Eki)k). For each customer
k ∈ N , resource Eki assumes value 1 if customer k is visited by the associ-
ated partial path, and 0 otherwise. We then introduce, in addition to func-
tions (3.10)—(3.11), the following REF to be employed when extending label
li = (Ci, τi, qi, (Eki)k) along arc (i, j) to obtain label lj = (Cj , τj , qj , (Ekj)

k
):

Ekj =
{
Eki + 1, if k = j,

Eki , if k 6= j.
(3.16)

Label lj corresponds to an elementary path if and only if Eki ≤ 1 ∀k ∈ N ,
otherwise, we eliminate it. Analogously, we add to the established dominance
rules (3.13)-(3.14) the following ones:

Ek,1i ≤ Ek,2i , ∀k ∈ N. (3.17)

26

Algorithm 3.2 Monodirectional Dynamic Programming.
1: procedure MDP
2: // Initialization //
3: Γ0 ← {(0, 0, 0,0)}
4: for all i ∈ V \ {0} do
5: Γi ← ∅
6: E ← {0}
7: // Search //
8: repeat
9: Select i ∈ E

10: // Extension //
11: for all li = (Ci, τi, qi, (Eki)k) ∈ Γi do
12: for all j ∈ δ+

i such that Eji = 0 do
13: lj ← Extend(li, j)
14: if lj is feasible then
15: Γj ← EFF(Γj , lj)
16: if Γj 6= ∅ and j 6= n+ 1 then
17: E ← E ∪ {j}
18: E ← E \ {i}
19: until E = ∅
20: return best path in Γn+1

Furthermore, Feillet et al. (2004) developed an improved use of the el-
ementarity resources. When a customer cannot be visited in any feasible
extension of a given label because of the resource constraints, we denote such
customers as unreachable. The authors observed that by setting the con-
sumption of the elementarity resources associated with such customers to 1,
as if they had already been visited, allows the algorithm to fathom a larger
number of states without losing the guarantee of optimality.

Algorithm 3.2 illustrates the labeling algorithm as described so far. Here,
Γi denotes the set of labels associated with customer i ∈ N , Γi ⊆ Γi is the
set of labels that have not yet been extended, E is the set of customers to
evaluate, and δ+

i is the set of successors of i, i.e., δ+
i = {j ∈ V |(i, j) ∈ A}.

Procedure Extend(li, j) extends label li to vertex j according to the given
rules, checks feasibility with respect to the resource constraints, and adjusts
the elementarity resource consumption of unreachable customers. Finally,
Procedure EFF(Γi, li) compares the newly generated label li with all the
ones existing in Γi using the dominance rules: if label li is dominated by any

27

of the labels in Γi, it is discarded; otherwise it is inserted in Γi and if any
other label in Γi is dominated by li, those are discarded instead.

3.2.2 Bounded Bidirectional Search

The complexity of the labeling algorithm depends on the number of labels
that are generated throughout its execution. It is easy to observe that in the
worst case, the number of labels generated at each execution is exponential
with the number of arcs in the path, since each time a label associated to
customer i is extended, the algorithm can generate as many labels as the
number of successors of i. The size of the problem and the tightness of its
constraints both play a role in this, since they clearly affect the maximum
possible length of a feasible route.

Because of this property, Righini and Salani (2006) propose to use bidi-
rectional label extension and bounding in order to limit the length of the
generated partial paths without losing guarantee of optimality. Intuitively,
this technique consists in performing label extensions simultaneously from
the source (as we have described above) and backwards from the sink, while
using certain bounds to limit path length to half of what they would normally
be. In the following, we describe these phases in detail.

Backward Label Extensions

Let us denote with Γfi and Γbi the sets of forward and backward labels
associated with vertex i ∈ V . In order to perform label extension backwards
from the sink, we can keep the same label structure as in the forward ex-
tension case. Thus, label lbi = (Cbi , τ bi , qbi , (Eki)bk) ∈ Γbi represents a partial
path starting from vertex i and ending at sink n+ 1, with all elements in li
denoting the same quantities as in the forward case. In particular, τ bi denotes
the elapsed time between the end of service time at i and the arrival at the
sink. The algorithm is initialized with label lbn+1 = (0, 0, 0,0) ∈ Γbn+1, repre-
senting the empty path at the sink, and each label in Γbi is extended along
the predecessors of i, i.e., the arcs in the set δ−i = {j ∈ V |(j, i) ∈ A}.

To be able to perform backward search, we now simply need to appropri-
ately modify the REFs. In fact, it suffices to change the REFs related to the
path duration, since this is the only resource that is generally not symmet-
rical with respect to the time horizon. For this purpose, Righini and Salani
(2006) introduce the backward time window [abi , bbi] for each vertex i ∈ V ,
with abi := ai + si and bbi := bi + si, representing the range of feasible depar-
ture times from i. Let us also denote with T the latest feasible arrival time
at the sink, i.e., T = maxi∈V {bi + si + ti,n+1}.

28

Thus, when extending label lbi to label lbj = (Cbj , τ bj , qbj , (Ekj)b
k
) along arc

(j, i) ∈ A we adopt the following REF regarding resource τ bj :

τ bj = max{τ bi + si + tji, T − bbj}, (3.18)

with lbj being feasible with respect to its duration if and only if τ bj ≤ T − abj ,
since τ bj represents the time span between the departure from j and the arrival
at t. The remaining REFs are the same as in the forward case:

Cbj = Cbi + cji − ηj ; (3.19)
qbj = qbi + dj ; (3.20)

Ek,bj =
{
Ek,bi + 1, if k = j,

Ek,bi , if k 6= j,
(3.21)

where label lbj is feasible with respect to capacity and elementarity if and
only if qbj ≤ Q and Ek,bj ≤ 1, for all k ∈ N . The dominance rules are
also the same as in the forward case: given two backward labels lb,1i =
(Cb,1i , τ b,1i , qb,1i , (Ekj)b,1

k
) and lb,2i = (Cb,2i , τ b,2i , qb,2i , (Ekj)b,2

k
) associated with two

partial paths ending at customer vi, the former dominates the latter if

Cb,1i ≤ C
b,2
i , (3.22)

τ b,1i ≤ τ
b,2
i , (3.23)

qb,1i ≤ q
b,2
i , (3.24)

Ek,b,1i ≤ Ek,b,2i , ∀k ∈ N, (3.25)

with at least one inequality being strict.

Label Concatenation

In order to obtain a feasible complete path by concatenating a forward
label lfi = (Cfi , q

f
i , τ

f
i , (Eki)fk) and a backward label lbj = (Cbj , qbj , τ bj , (Ekj)b

k
)

along arc (i, j) ∈ A, we need to compute the total reduced cost C, the total
vehicle load q, and the total duration τ in the following way:

C = Cfi + Cbj + cij , (3.26)

τ = τ fi + si + tij + sj + τ bj , (3.27)

q = qfi + qbj . (3.28)

29

The label concatenation is feasible if and only if q ≤ Q, τ ≤ T . Furthermore,
we need to impose that the same customer cannot be visited by both partial
paths, i.e.,

Ek,fi + Ek,bj ≤ 1, ∀k ∈ N. (3.29)

Bounding

When using bidirectional search, we have to impose an additional fathom-
ing condition on label extensions, otherwise we would simply generate twice
as many states, compared to the original algorithm. Righini and Salani
(2006) describe two different techniques to achieve this: arc bounding and
resource bounding.

Arc bounding consists in computing for each label an upper bound on the
number of arcs that can be added to the associated path without violating
the resource constraints. This can be achieved by formulating and solving an
instance of a multi-knapsack problem. We do not consider this technique in
our study, since it has been shown to be outperformed by the second one.

Resource bounding consists in selecting a resource, denoted as the critical
resource, whose consumption is monotone along the paths. Then, we do not
extend the labels in which at least half of the available amount of this resource
has been already consumed. In the case of the VRPTW, Righini and Salani
(2006) propose to designate as the critical resource the total path duration
τ , for which the total available amount corresponds to the latest feasible
arrival time at the sink T . Thus, this corresponds to the following stopping
condition: extend only states such that τ < T/2.

Duplicate Elimination

After having performed label extensions, concatenation is performed it-
erating over the feasible arcs (i, j) ∈ A. In this phase, there is the risk of
generating the same path more than once. For instance, if a feasible path con-
tains the subsequence of vertices (i, j, k), it can be obtained by concatenating
a pair of labels along arc (i, j) or arc (j, k). To avoid producing duplicate
paths in this phase, we apply a method also described by Righini and Salani
(2006), which takes into account the critical resource used for bounding the
extension procedure. Among all possible ways to produce the same s−t path,
we choose the one produced in the point where the forward and backward
consumptions of the critical resource are as close as possible to the half of the
overall consumption of that path. Let τ fi and τ bj indicate the consumption of
the critical resource on the forward partial path ending at i and the backward

30

Algorithm 3.3 Duplicate elimination.
1: procedure Halfway(lfi , lbj)
2: Take τ fi from lfi
3: Take τ bj from lbj
4: Φ(i,j) = |τ fi − τ bj |
5: if τ fi < τ bj then
6: τ fj = τ f (lfi , j)
7: Take τ bj+1 from lbj+1
8: Φ(j,j+1) ← |τ

f
j − τ bj+1|

9: if Φ(i,j) < Φ(j,j+1) then
10: return true
11: else
12: return false
13: else
14: τ bi = τ b(lbj , i)
15: Take τ fi−1 from lfi−1
16: Φ(i−1,i) ← |τ

f
i−1 − τ bi |

17: if Φ(i,j) ≤ Φ(i−1,i) then
18: return true
19: else
20: return false

partial path ending at i, respectively. Then we accept the path only if it is
produced on an arc (i, j) where Φ(i,j) = |τ fi − τ bj | is minimum.

The procedure Halfway(lfi , lbj) is described in Algorithm 3.3. In this
procedure, we indicate with i− 1 the predecessor of i in the partial path as-
sociated with label lfi , and with j+ 1 the successor of j in the one associated
with lbj . Function τ f (lfi , j) determines the forward critical resource consump-
tion at vertex j by using the associated REF on label lfi , and function τ b(lbj , i)
the backward one at i from label lbj . Since these functions take constant time
to return their values, function Halfway(lfi , lbj) takes constant time as well.

The bounded bidirectional search procedure with all the components de-
scribed so is given in Algorithm 3.4, as presented by Righini and Salani
(2006). Here, the procedure Feasible(lfi , lbj) checks if the two labels can
generate a feasible path, while the procedure Concatenate(lfi , lbj) performs
the concatenation and returns the resulting path, which is added to the set

31

Π of feasible paths with negative reduced cost.

3.3 Decremental State Space Relaxation
Feillet et al. (2004) observed that the addition of elementarity resources

did indeed improve the quality of the bounds, but at a severe cost in terms
of computational complexity. Because of this, and given the success of the
2-cycle elimination technique used by Desrochers et al. (1992), other authors
started experimenting with alternative techniques to handle the elementarity
constraints. For instance, Irnich and Villeneuve (2006) consider the removal
of k-cycles, performing experiments for k = 3 and k = 4. In this section,
we consider one of the first of such techniques that behave dynamically, de-
veloped by Righini and Salani (2008): decremental state space relaxation
(DSSR). The underlying concept of DSSR was simultaneously developed by
Boland et al. (2006), who called it state space augmenting algorithm. Here,
we are going to predominantly use the notation and the algorithmic structure
described by the former authors.

State space relaxation for dynamic programming algorithms was origi-
nally described by Christofides et al. (1981b), and it consists in projecting
the state space S explored by the algorithm onto a lower dimensional space T
in such a way that every state in T keeps the best cost of the states in S that
are mapped to it. The reason behind this technique is that a lower dimen-
sional space is faster to explore; however the search in a relaxed state space
does not guarantee feasibility, since infeasible solutions in S may be projected
onto feasible ones in T . In the context of the VRPTW, state space relaxation
can be applied by relaxing the elementarity constraint on the vertices, thus
allowing cycles in the solutions. Therefore, it is equivalent to solving the
SPPRC, as in Desrochers et al. (1992) (without 2-cycle elimination).

In DSSR, the aim is to generalize the aforementioned technique by dy-
namically transitioning from a complete state space relaxation to an exact
algorithm for the ESPPRC. Intuitively, we progressively “activate” as many
of the binary resources as necessary in order to ensure the elementarity of
the optimal path. The algorithm works as follows.

We maintain a set Θ of critical vertices, that is initialized as empty (or
with a certain subset of vertices, according to the strategies described in
Section 3.3.2), and at each iteration of the label extension algorithm we only
use the elementarity resources Ek such that k ∈ Θ. Thus, we explicitly forbid
multiple visits only to the vertices in Θ, potentially allowing them on the
others. If at the end of an iteration there are no paths with negative reduced
cost, the algorithm stops. Otherwise, if there are non-elementary solutions

32

Algorithm 3.4 Bounded bidirectional dynamic programming.
1: procedure BBDP
2: // Initialization //
3: Γf0 ← {(0, 0, 0,0)}, Γbn+1 ← {(0, 0, 0,0)}, Π← ∅
4: for all i ∈ V \ {0} do
5: Γfi ← ∅
6: for all i ∈ V \ {n+ 1} do
7: Γbi ← ∅
8: E ← {0, n+ 1}
9: // Search //

10: repeat
11: Select i ∈ E
12: for all lfi = (Ci, τi, qi, (Eki)k) ∈ Γfi do // Forward extension //
13: for all j ∈ δ+

i such that Eji = 0 do
14: lj ← Extendf (li, j)
15: if lj is feasible then
16: Γfj ← EFF(Γfj , lj)
17: if Γfj 6= ∅ then
18: E ← E ∪ {j}
19: for all lbi = (Ci, τi, qi, (Eki)bk) ∈ Γbi do // Backward extension //
20: for all k ∈ δ−i such that Ek,bi = 0 do
21: lbk ← Extendb(lbi , k)
22: if lbk is feasible then
23: Γbk ← EFF(Γbk, lbk)
24: if Γbk 6= ∅ then
25: E ← E ∪ {k}
26: E ← E \ {i}
27: until E = ∅
28: // Label concatenation //
29: for all (i, j) ∈ A do
30: for all lfi ∈ Γf

i do
31: for all lbj ∈ Γf

j do
32: if Feasible(lfi, lbj) and Halfway(lfi, lbj) then
33: P = Concatenate(lfi, lbj)
34: Π← Π ∪ {P}
35: return best path in Π

33

with negative reduced cost, we identify vertices that are visited multiple times
(according to the different criteria described in Section 3.3.1) and insert them
in Θ, and we perform another iteration of the labeling algorithm. When Θ
is empty, the algorithm is equivalent to the normal state space relaxation
algorithm. When Θ = N , it is equivalent to the conventional bidirectional
dynamic programming algorithm.

It is important to observe that the main trade-off emerging from this
procedure is the cost of a single iteration versus the number of iterations
overall. In fact, when Θ has few vertices, the cost of an iteration is low,
but the algorithm is expected to require a higher number of iterations to
obtain an elementary solution. Conversely, when Θ is large, the cost of an
iteration is higher, but it is more likely to find a feasible solution within a
lower number of iterations. The initialization and vertex insertion strategies
described below are focused on balancing this trade-off.

3.3.1 Insertion strategies

At the end of each iteration of DSSR, if the path with the least reduced
cost is not feasible with respect to the elementarity constraints we need to
mark one or more of the vertices visited multiple times as critical and in-
sert them in Θ. In a study about an exact optimization algorithm for the
orienteering problem with time windows, Righini and Salani (2009) compare
the performance of various different approaches to perform this step, defined
originally by Boland et al. (2006):

• HMO (highest multiplicity on the optimal path): insert one vertex at a
time, selecting the vertex that is visited the most in the optimal path.
In case of ex aequo, choose one vertex at random.
• HMO-All: insert all vertices in the path that are visited the maximum

number of times.
• MO-All (multiplicity greater than one on the optimal path): insert all
vertices visited more than once in the optimal path. This strategy is
equivalent to the one used originally by Righini and Salani (2008).

According to the computational experiments carried out by the authors,
the HMO strategy is the most conservative approach, yielding the smallest
cardinality of Θ at the end of the algorithm, and requiring the highest number
of iterations. The MO-All strategy behaves in a complementary manner,
requiring the least number of iterations but eagerly increasing the size of Θ.
While neither of these two strategies dominate one another, they both seem
to outperform the HMO-All strategy.

34

Algorithm 3.5 Decremental State Space Relaxation
1: procedure DSSR
2: // Initialization //
3: Θ← InitCriticalSet()
4: Ψ← ∅
5: repeat
6: Θ = Θ ∪Ψ
7: P ← BBDP(Θ)
8: // Search for vertices visited more than once //
9: Ψ←MultipleVisits(P)

10: until Ψ = ∅
11: return P

In our own analysis, described in Chapter 5, we attempt to generalize
those strategies, even extending the search of vertices visited multiple times
outside of the optimal path.

3.3.2 Initialization strategies

In addition to the techniques described above, Righini and Salani (2009)
explore different strategies concerning the initialization of the set of critical
vertices Θ. The intuition behind this is that by inserting vertices that are
highly likely to be visited multiple times from the start of the algorithm, it
is possible to accelerate the whole procedure. In order to achieve this, the
authors define a measure fij of “cycling attractiveness” of a vertex i with
respect to a vertex j as the ratio of the dual price ηi over the duration of the
2-cycle i− j − i:

fij = ηi/(si + tij + sj + tji).
Then they introduce four possible orderings of the vertices in N according
to this measure (all these orderings are non-increasing):

1. Highest cycling attractiveness (HCA): order by maxj∈N\{i} fij .
2. Total cycling attractiveness (TCA): order by

∑
j∈N\{i} fij .

3. Weighted HCA (WHCA): order by (bi − ai) maxj∈N\{i} fij .
4. Weighted TCA (WTCA): order by (bi − ai)

∑
j∈N\{i} fij .

Additionally, the authors define a mixed strategy, which works in the fol-
lowing way: let us define the sets HCAm, TCAm, WHCAm, and WTCAm,
1 ≤ m ≤ n, as the sets composed by the first m elements of N sorted ac-
cording to their respective ordering. Then, the mixed strategy consists in

35

initializing the set of critical vertices with their intersection, i.e., MIXm =
HCAm ∩ TCAm ∩WHCAm ∩WTCAm.

According to the results obtained by the authors, while none of the orig-
inal four strategies dominates another, initialization proves to be advanta-
geous, since in general it seems to reduce the number of iterations and overall
computing time. For the MO-All insertion strategy in particular, initializ-
ing Θ seems to mitigate the insertion of vertices that are not necessary to
compute an optimal path. The adoption of the mixed strategy seems also
to reduce considerably the overall computing time for the HMO and MO-All
insertion strategies. The authors perform computational experiments on a
mixed data set composed of the Solomon’s and Cordeau’s instances for the
VRPTW, with a cardinality of at least 100 customers. For the parameter m,
they consider values of m = 5, m = 10 and m = 20, concluding that the best
results are obtained when m is about half the expected optimal path length.

Algorithm 3.5 describes DSSR. Here, the procedure InitCriticalSet()
uses one of the strategies described above to determine how to initialize the
set Θ. Procedure MultipleVisits(P) extracts from path P the vertices that
are to be marked as critical according to the chosen insertion strategy and
stores them in the auxiliary set Ψ, which is used to update Θ at the start of
each iteration of the dynamic programming procedure.

3.4 ng-route Relaxation

Another state space relaxation strategy for solving ESPPRC efficiently
is ng-route relaxation (NGRR), originally proposed by Baldacci et al. (2010,
2011) for their reduced set partitioning method described in Section 2.2.3.
This technique partially relaxes the elementarity conditions while loosening
the lower bound in order to improve the pricing efficiency. To this end, it
first introduces an ng-neighborhoodMi ⊂ N for each vertex i ∈ N consisting
of its nearest vertices and vertex i itself. A path that is feasible with respect
to capacity, duration, and time window constraints but contains cycles in the
form (i− · · · − j − · · · − i) such that i /∈Mj is called an ng-path. Since such
cycles tend to be expensive, they are therefore unlikely to appear in the best
solution found by the algorithm. In this study, we refer to them as cycles
that are valid according to the ng-neighborhoods, or valid ng-cycles.

Each time a label li is extended to create a new label lj , the elementarity
resource Ekj is set to zero for k /∈ Mj . In other words, for each label li it is
possible to define a set of vertices R(li) containing the vertices that cannot
be visited from lj , i.e., R(li) := {k ∈ N |Eki = 1}. Then, when creating a new

36

label lj , it is possible to determine R(lj) with

R(lj) = (R(li) ∪ {j} ∪ Uj) ∩Mj ,

where Uj is the set of unreachable vertices for lj as defined in Section 3.2. This
accelerates the label dominance since at most |Mj | elementarity resources of
two partial paths arriving at vertex j are compared.

Let us illustrate how NGRR works within the label extension algorithm
with the following example, illustrated in Figure 3.4.

Example 3.4.1. We want to extend the forward label l3 representing partial
path P = (0, 1, 2, 3) to node 4. Here, the set of prohibited vertices is simply
comprised by the ones visited by P, i.e., R(l3) = {0, 1, 2, 3}. Thus, the
consumption of the elementarity resource is set to one only for the respective
customers, i.e., Ej3 = 1 for j = 1, 2, 3 (recall that there is no need for an
elementarity resource for the source 0). Let us define the ng-neighborhood
M4 = {2, 3, 4, 5}. Since 0 and vertex 1 are not in M4, we remove them
from the set of prohibited vertices for the new label l4. Therefore, R(l4) =
{2, 3, 4} and the elementarity resource consumption E1

4 is set to 0. Note that
extending l4 to vertex 1 is now possible, although it is not likely to lead to
the optimal solution since t4,1 is implied to be large.

3.5 Hybrid Algorithms

Both DSSR and NGRR are attempts to treat efficiently the binary re-
sources of a label in order to ensure elementarity either for each optimal path
found at the subproblem level, or at least for the paths that are part of the
final VRPTW solution returned by the BP algorithm. Thus, it is natural
to attempt to combine these two techniques, and indeed a few authors have
developed some promising techniques in the recent years.

In particular, Martinelli et al. (2014) and Dayarian et al. (2015b) simul-
taneously observed that it is possible to augment the ng-neighborhoods of
NGRR dynamically, in an analogous way to the set of critical vertices Θ in
DSSR. Using the same notation of Dayarian et al. (2015b), we then introduce
the applied neighborhoods M̂i ⊆ Mi, for all i ∈ N . These sets are then used
throughout the label extension procedure, according to the rules described
in the previous section, instead of the original sets Mi. The applied neigh-
borhoods are initialized as empty, and updated dynamically according to the
following rule.

37

Figure 3.1: Label extension with ng-route relaxation. Prohibited vertices for
the partial paths are colored.

0

1

2

3

4

5

M4

0

1

2

3

4

5

M4

0

1 4

Allowed! (valid ng-cycle)

Let C = (i, j1, . . . , jm, i) be a cycle that is not valid with respect to the
original neighborhoods Mj , j ∈ N . Therefore, according to the rules de-
scribed in Section 3.4, it holds that i ∈ Mjk , for all k ∈ {1, . . . ,m}. Indeed,
if there were one neighborhood that did not contain i, say Mj1 , then the ele-
mentarity resource Eij1 would be reset to 0 and another extension to i would
be allowed. Since this cycle occurred after running the labeling algorithm,
it follows that there exists a k ∈ {1, . . . ,m} such that i /∈ M̂jk . Thus, in
order to prevent the generation of this cycle in the future, it suffices to insert
vertex i in all applied neighborhoods M̂jk .

In their study, Dayarian et al. (2015b) compare this method with a dif-
ferent hybridization between NGRR and DSSR. Here, at the end of each
iteration, vertex i in the invalid cycle C = (i, j1, . . . , jk, i) is marked as criti-
cal and added to the applied neighborhoods of all other vertices that consider
i as neighbor, i.e., we add i to each M̂j such that i ∈ Mj . According to the
computational experiments of the authors, this strategy is less efficient when
compared to the previous one.

38

Finally, let us describe two additional variations of the original hybrid
algorithm, considered by the same authors mentioned above. Martinelli et al.
(2014) also consider a modified version in which the sets M̂i, while behaving
in the same way as explained above, are not necessarily a subset of the original
neighborhoods. Here, the update procedure is applied whenever any cycle is
detected. Indeed, this version does not use ng-routes at all, producing only
elementary routes.

In a different study, Dayarian et al. (2015a) prevent obtaining a non-
elementary optimal path while using ng-routes in a different manner. Here,
if the algorithm returns a non-elementary ng-route, it is not left to terminate
normally, but an additional layer of DSSR is run instead. Thus, the repeating
vertex i in any valid ng-cycle is then marked as critical and added to all the
applied neighborhoods M̂j , j ∈ N , such that i ∈Mj .

All the algorithms described in this section are going to be considered in
more detail in Chapters 5 and 6.

3.6 Branch-and-Bound
As mentioned earlier, in order to obtain a BP procedure, we need to

embed CG within BB. BB is a classic methodology to solve combinatorial
optimization problems, and in particular integer programs, to optimality. It
basically consists in a selective exploration of the solution space that uses
available bounds on the optimal value in order to avoid unnecessary explo-
ration of the areas of the solution space in which the optimal solution cannot
be found. This exploration is performed within a tree structure, and at each
node of the tree we solve a linear relaxation of the original problem. In BP,
this relaxation is solved with CG.

We consider here as an illustrative example a generic 0–1 minimization
problem:

min cx (3.30)
s.t. Ax ≥ b, (3.31)

x ∈ {0, 1}n. (3.32)

Let x be the solution to its linear relaxation. In general, x is not an
integer solution, so here we can assume it to be fractional (if it was integer,
the algorithm would simply stop). Let then x0 be a fractional component
of x. We can then perform the branching operation by introducing two
subproblems, which consist in the same linear relaxation of the LP above,
but with one additional constraint each: in the first one, we impose x0 = 0,

39

while in the second one we impose x0 = 1. We then create two child nodes
for the root node represented by the original LP, for which the fractional
solution x is clearly infeasible.

It is important to observe that performing this operation recursively to
obtain a complete binary tree corresponds to an exhaustive search of the
solution space, which would clearly be too inefficient in general, and especially
in our case. This is where bounding plays an important role. Assume that
we know a valid upper bound z′ to the optimal value of the original integer
program (for instance, obtained through the use of an heuristic), and let z∗
be the optimal solution of the linear relaxation at the current node of the
BB tree. It is easy to see that if z′ < z∗, then the part of the tree that is
rooted at the current node cannot lead to the optimal solution of the original
LP, since z∗ is a lower bound for the optimal integer solution of the current
node. Therefore, we can discard (or prune) the current node and explore
the remaining nodes. Furthermore, we can avoid branching on a node if the
associated LP is infeasible or if its solution is integer. In the latter case, if the
value of the solution is lower than the best available upper bound, then the
solution becomes the new best available one (also known as the incumbent).
Algorithm 3.6 describes branch-and-bound for a 0–1 minimization problem.

Due to the versatility of BB, there are several other algorithmic choices
that one can make when using it within CG for routing problems, such as the
strategy used to navigate the tree, or where and how to use certain methods to
further tighten the bounds. In Chapter 6, we discuss all the implementation
details that are relevant for our study. We conclude this chapter with an
observation about how to perform branching when solving routing problems
with CG.

3.6.1 Branching rules for the VRPTW

While branching on the 0–1 route variables yr in the RMP (3.1)-(3.3)
is certainly possible, it is ill-advised for two reasons. The first one is the
difficulty of implementation: while imposing yr = 1 is easy, forbidding a route
by imposing yr = 0 would present some complications at the subproblem level
(see Feillet, 2010). The second and main reason is that the resulting BB tree
would be heavily imbalanced, and therefore inefficient: while imposing a
route is a very strong branching rule, doing the opposite is an exceptionally
weak one. In fact, removing a single route from the search space would affect
the difficulty of the problem at a child node only negligibly, given the very
large amount of route variables.

Because of this, alternative branching rules are used in the context of

40

Algorithm 3.6 Generic branch-and-bound.
1: procedure BB
2: UB← +∞
3: Incumbent←null
4: Q← {Root Node}
5: while Q not empty do
6: Take node q from Q
7: Solve LP of N
8: if LP is feasible then
9: S ← LP solution

10: C ← cost of S
11: if C < UB then
12: if S is integral then
13: Incumbent← S
14: UB← C
15: else
16: Find fractional variable x of S
17: Generate child node q0 where x ≡ 0
18: Generate child node q1 where x ≡ 1
19: Q← Q ∪ {q0, q1}
20: return Incumbent

routing problems. The most popular of such rules (see the survey of De-
saulniers et al., 2014), and the one that we adopt in this study, consists
in branching on fractional arc flow, i.e., branching on the variables of the
compact formulation (2.1)-(2.9). Given a fractional solution to the RMP, let
bijr = 1 if route r traverses arc (i, j) ∈ A and 0 otherwise. We identify an
arc (i, j) ∈ A such that 0 < fij < 1, where the arc flow fij is computed
as fij =

∑
r∈Ω bijrxr. If this is not possible, i.e., we have a solution such

that fij ∈ {0, 1} for every arc (i, j), then one can prove that such a solution
represents a feasible set of routes (Feillet, 2010). While any fractional arc
can be used, in our implementation we choose an arc whose flow is closest
to 1

2 , in other words we choose the most fractional arc. We then create two
branches: one in which the arc is forbidden (xij = 0) and one in which it is
enforced (xij = 1). Implementation-wise, in order to forbid an arc in the CG
scheme at a child node, one simply has to first remove any route r such that
bijr = 1, and then remove arc (i, j) from the graph. Analogously, in order to
enforce an arc (i, j), one simply has to forbid any arc of the form (k, j) with
k 6= i or (i, h) with h 6= j.

41

3.7 Conclusions
In this chapter, we have presented the general structure of BP for the

VRPTW, discussing in detail the labeling algorithms that are used to solve
the associated pricing problem, the ESPPRC. Since solving the ESPPRC
efficiently is crucial for the effectiveness of the whole BP procedure, we have
presented some of the most well-known techniques that have been developed
to improve these labeling algorithms.

However, due to previously mentioned considerations related to the scope
of this study, we have omitted certain advanced topics. In particular, we have
not considered dual variable stabilization, which is an important set of tech-
niques for the effectiveness of CG. In cases in which the RMP is degenerate,
the marginal cost of customers can be badly estimated and dual variables
can oscillate between very different values, causing the insertion of undesir-
able columns in the RMP and the increase of the number of necessary CG
iterations. To address this, several techniques have been proposed to counter
dual variable oscillation by limiting the distance traveled in the dual space
from one iteration to the next. These methods include for instance the defi-
nition of boxes around the current dual values and preventing the selection of
values outside them (Marsten et al., 1975), or the linear penalization of the
distance traveled in the dual space (Kim et al., 1995). For a more detailed
review on stabilization techniques, see for instance the surveys of Lübbecke
and Desrosiers (2005) or Briant et al. (2008).

In the next chapter, we are going to discuss how to adapt the labeling
procedures discussed so far to a variant of the VRPTW, before presenting
our own analysis of these techniques later in this study.

42

Chapter 4

The Vehicle Routing
Problem with Time Windows
and Waiting Time Costs

I n most of the existing studies for the VRPTW, the objective of the problem
is to minimize the total distance traveled, which is usually supposed to be

equivalent to the total traveling time. In this chapter, we consider instead a
variant of the VRPTW, whose aim is to minimize the total route duration,
i.e., the sum of the traveling, service, and waiting times. Thus, the vehicle
departure times from the depot directly influence the objective value. We
refer to this problem as the vehicle routing problem with time windows and
waiting time costs (VRPTWWTC).

Route duration is defined as the length of the interval between the de-
parture and arrival times of the vehicle at the depot. As such, it is supposed
that operational costs are not incurred before the departure and after the ar-
rival at the depot while waiting after the departure is as costly as traveling.
This objective function can be suitable for modeling situations where waiting
times bear a certain operational cost, such as fuel consumption during vehi-
cle idle time (Suzuki, 2011). Another example is the delivery of perishable
goods, where the need for on-board refrigeration entails a certain expenditure
of energy per time unit (Hsu et al., 2007).

Route duration minimization is also relevant when the vehicles are not
owned but hired by the distribution company to be used for servicing cus-
tomers. Each vehicle is requested to be at the depot at the departure time
determined by the distribution company and the rental fee is charged per
time unit of vehicle usage, i.e., the rental fee is a function of the total route

43

duration. In some situations, the on-board personnel is qualified for ser-
vicing operations and, additionally, they also execute on-ground operations
during a working day. The general aim is then to maximize the utilization
rate of the on-board personnel for the servicing operations, which can be de-
fined as the percentage of the total working time where personnel is servicing
customers. Such an objective can be faced for example when the on-board
personnel comprises nurses that carry out home healthcare operations or
qualified technicians executing material installation or repair operations.

Working time minimization can also be applicable in dial-a-ride prob-
lems where drivers are paid per working time unit. In dial-a-ride problems
(Cordeau and Laporte, 2007), passengers request rides where each ride is
specified for a pick-up and a drop-off location together with a pick-up time
and/or a drop-off time. While dial-a-ride problems are commonly faced
by non-profit organizations providing transportation services for elderly or
disabled people, they also are increasingly attractive for ride-sharing busi-
nesses offering on-demand door-to door transportation services in urban
areas. Platform-based ride-sharing companies like Uber and Lyft connect
drivers with riders through a digital platform. The studied objective func-
tion can be relevant in similar dial-a-ride systems since waiting for riders
reduces the willingness of the drivers to accept requests, and since drivers
are usually compensated for the time spent waiting at a pick-up location
besides the travel related expenses.

Total route duration has been considered in several studies. Savelsbergh
(1992) investigates edge-exchange methods for the VRPTW with the aim of
minimizing the total route duration. Dabia et al. (2013) adopt this objective
function for a VRPTW in which arc travel times are time-dependent. They
develop a BP algorithm treating the vehicle departure times from the depot as
decision variables. Bettinelli et al. (2011) develop a branch-and-cut-and-price
algorithm for a VRPTW variant that generates routes of minimal duration,
while ultimately aiming to minimize the total traveling distance and the
vehicle fixed costs. François et al. (2017) show that, in the context of a
multi-trip VRPTW, adopting the total duration as the objective function,
instead of total travel time, results in huge savings in terms of waiting times
with a relatively small travel time increase.

Various studies consider certain generalizations of this attribute. For
instance, Ioachim et al. (1998) develop a dynamic programming algorithm for
the shortest path problem with time windows and linear node costs, which
includes as a special case the shortest path problem with linear waiting costs
studied by Desaulniers and Villeneuve (2000). Additionally, a related class of
problems employ soft time windows, in which a linear penalty is paid when

44

a time window violation occurs (see for instance Liberatore et al., 2011).
This chapter is structured as follows. Section 4.1 formally describes the

problem, while the following sections present the main theoretical results
of the work by Küçükaydın et al. (2014). Section 4.2 discusses how some
the aspects of the studied problem are described as functions of the route
start time. Then, we introduce the main properties that allow obtaining a
new label structure, as well as the associated resource extension functions
(REFs) and dominance rules for a monodirectional algorithm (Section 4.3).
Finally, we discuss the remaining results that are necessary to transform the
monodirectional algorithm into a bounded bidirectional one (Section 4.4).

4.1 Problem Definition

Consider a directed graph G = (V,A) with vertex set V and arc set A.
The vertex set is defined as V = N ∪ {0, n+ 1}, where N is the set of n
customers, and vertex 0 and vertex n + 1 represent two copies of the depot
known as the source and the sink, respectively. Each customer i ∈ N is
associated with a delivery demand di ≥ 0, a service time si ≥ 0, and a time
window [ai, bi], where ai is the earliest service start time and bi the latest.
Every customer i ∈ N has to receive its demand di within its associated time
window [ai, bi] but can be visited at most once. Arriving at a customer i
before the start ai of its time window is allowed, but the vehicle must then
wait until ai to start serving the customer. In addition, it takes s0 units of
time to load a vehicle at the depot. Without loss of generality, we assume
that d0 = dn+1 = sn+1 = 0.

The arc set is defined as A = {(i, j) ∈ V × V : i 6= j, ai + si + tij ≤
bj}, where tij denotes the non-negative travel time from vertex i to vertex
j. There is an infinite fleet of homogeneous vehicles, each with capacity
Q, available at the depot. A vehicle can serve a subset of customers by
traveling along a route starting at the source and ending at the sink. In
order to represent the real-life constraint related to driver shifts, we impose
a maximum duration of S time units for each route. The transportation cost
of a route depends on the total amount of time that the vehicle spends to
serve its assigned customers, including traveling, waiting, and service times.
The departure time from the depot is a decision variable for each vehicle and
thus we do not impose explicit bounds on the time windows of the source
and the sink, i.e., [a0, b0] = [an+1, bn+1] =]−∞,∞[.

45

4.2 Service Start Time and Path Duration Func-
tions

In addition to the sequence of customers to be visited, the start time
T0 of a vehicle has also to be decided with the aim of minimizing the total
duration of the path followed by the vehicle. As a consequence, the service
start time at any customer and the resulting transportation cost, which is
simply the path duration, become functions of T0, where T0 ∈]−∞,∞[. Let
us consider a feasible partial path P = (0 = v0, v1, . . . , vi). Since such a path
either arrives at vertex vi before avi or within [avi , bvi], it is clear that the
service start time at vi, denoted by Tvi(T0), is represented by the recursive
function

Tvi(T0) = max
{
avi , Tvi−1(T0) + tvi−1,vi

}
, (4.1)

where tvi−1,vi
:= svi−1 + tvi−1,vi . For simplicity, we denote the index vi as i in

the following, e.g., we denote the service start time Tvi(T0) at vi as Ti(T0).
The service start time function Ti(T0) can be explicitly written by means

of the latest feasible start time νi from the source and the earliest feasible
service start time µi at vi. The latest feasible start time νi can be expressed
as

νi = min
1≤k≤i

{bk − θk} , (4.2)

where θk is the cumulative travel time and updated as θk = θk−1 + tk−1,k.
Thus, T0 is restricted to lie in the range]−∞, νi].

Similarly, the earliest feasible service start time µi is determined recur-
sively by

µi = max {ai, µi−1 + ti−1,i} , (4.3)

where µ0 := −∞. Hence, when µi < νi+θi (which we refer to as Condition I),
we can compute the service start time Ti(T0) at vertex vi visited by path P
as follows:

Ti(T0) =
{
µi if T0 ≤ µi − θi,
T0 + θi if µi − θi ≤ T0 ≤ νi.

(4.4)

In this case, the service start time is a piecewise linear function composed
of two pieces, one constant and one linear. Whenever µi becomes greater
than or equal to νi + θi (which we refer to as Condition II), Ti(T0) becomes
a constant function and is equal to µi for T0 ≤ νi. This case can only arise
when waiting at a vertex k, 1 ≤ k ≤ i, cannot be avoided.

46

The time spent by a vehicle following path P , in other words the duration
of path P , is calculated as Di(T0) := Ti(T0) − T0. Evidently, it is also a
function of T0, and when Condition I holds, it can be rewritten as follows:

Di(T0) =
{
µi − T0 if T0 ≤ µi − θi,
θi if µi − θi ≤ T0 ≤ νi.

(4.5)

Analogously to the service start time function Ti(T0), the path duration
function Di(T0) is a piecewise linear function consisting of one linear and
one constant piece when µi < νi + θi. In the case where waiting becomes
inevitable for path P , Di(T0) becomes a linear function expressed by µi−T0
with T0 ≤ νi, as opposed to Ti(T0).

If functions Ti(T0) and Di(T0) are composed of two pieces, the minimum
duration of path P is equal to θi, which is the cumulative travel time, obtained
for any value of the start time T0 within the range [µi − θi, νi]. On the
other hand, if waiting becomes unavoidable, both functions are minimized
for T0 = νi and the minimum duration of P is calculated as µi − νi. We can
easily conclude that for any path P , the optimal value for T0 is provided by
the latest feasible start time νi from the source regardless of whether or not
waiting takes place.

Although we are able to find the optimal value of T0 for any predefined
path, establishing paths taking into account their feasible start times from
the source is a challenging task within a BP framework. Compared with
the traditional VRPTW minimizing the total distance traveled, it calls for
employing extra resources with non-decreasing resource extension functions
(see Irnich, 2008). The increased number of resources naturally increases the
number of dominance criteria used to eliminate the paths that are not leading
to optimality and makes the pricing problem more time consuming.

Let us illustrate the behavior of these functions with an example.

Example 4.2.1. Let us consider a partial path P = (0 = v0, v1, v2, v3). The
time windows of v1, v2, v3 are given by [8, 15], [10, 16], [20, 23], respectively,
and furthermore we establish that t01 = 1, t12 = 3, and t23 = 2. We start
by computing the earliest service start time µ1 and the latest feasible start
time ν1 from the depot for v1, and obtain µ1 = max {8,−∞} = 8 and
ν1 = 15 − 1 = 14. Condition I is satisfied, since µ1 < ν1 + θ1 where θ1 = 1.
Thus, the service start time function T1(T0) is expressed by the following:

T1(T0) =
{

8, if T0 ≤ 7
T0 + 1, if 7 ≤ T0 ≤ 14.

47

T00 7 14

T1, D1

1

8

15

T1

D1

Figure 4.1: Service start time function T1 and duration function D1.

Similarly, the total duration function is given by

D1(T0) =
{

8− T0, if T0 ≤ 7
1, if 7 ≤ T0 ≤ 14.

It is easy to see that the behavior of these two functions is caused by the
fact that there is a positive waiting time at v1 if T0 < 7. Both functions are
depicted in Figure 4.1.

Before extending the partial path to v2, we need to update µ2 and ν2
using equations (4.3) and (4.2), respectively: µ2 = max {10, 8 + 3} = 11 and
ν2 = min {14, 16− 4} = 12, where θ2 = 4. Condition I is satisfied again,
since µ2 < ν2 + θ2. Therefore T2(T0) is written as the following:

T2(T0) =
{

11, if T0 ≤ 7
T0 + 4, if 7 ≤ T0 ≤ 12,

while D2(T0) is written as:

D2(T0) =
{

11− T0, if T0 ≤ 7
4, if 7 ≤ T0 ≤ 12.

48

T00 7 12

T2, D2

4

11

16

T1

D1

T2

D2

Figure 4.2: Service start time function T2 and duration function D2.

These functions are depicted in Figure 4.2.
Extending to vertex v3 yields µ3 = max {20, 11 + 2} = 20 and ν3 =

min {12, 23− 6} = 12. Since θ3 = 6 and µ3 > ν3 + θ3, Condition II holds.
Thus, T3(T0) ≡ 20 and D3(T0) = 20−T0 for T0 ≤ 12, as shown in Figure 4.3.

We can observe that, given the arrangement of the time windows, it is
necessary for the vehicle to wait until µ3 before serving customer v3, dif-
ferently from the previous cases. Furthermore, departing any earlier of the
latest feasible time ν3 is going to cause additional waiting time.

To conclude, we define the total cost function Ci(T0) for vertex vi in a
partial path P as the difference between the total duration and the cumulated
sum of the dual prices, i.e., Ci(T0) := Di(T0)−

∑i−1
k=0 ηk.

We can now discuss how to use these functions of T0 in a label structure
that allows to fathom partial paths that cannot lead to the optimal solution.

4.3 A New Label Structure

Let us consider two different partial paths P1 = (0 = v1
0, v

1
1, . . . , v

1
i−1, vi)

and P2 = (0 = v2
0, v

2
1, . . . , v

2
i−1, vi) starting from source 0 and ending at the

49

T00 12

T3, D3

20

T1

D1

T2

D2

T3

D3

Figure 4.3: Service start time function T3 and duration function D3.

same vertex vi. If one were to use a label structure akin to the one we have
defined in Chapter 3 for the VRPTW, these paths would be represented
with labels l1 = (C1

i , D
1
i , T

1
i , q

1
i , (Eki)1

k) and l2 = (C2
i , D

2
i , T

2
i , q

2
i , (Eki)2

k), re-
spectively. In order for P1 to dominate P2, it would then suffice to check
whether C1

i ≤ C2
i , D1

i ≤ D2
i , T 1

i ≤ T 2
i , q1

i ≤ q2
i , and Ek,1i ≤ Ek,2i for each

k ∈ N .
While the comparisons of the vehicle load and elementarity resources pose

no issue, since these resources take numerical values, the other ones are not
straightforward since they compare functions of T0. Furthermore, even if
C1
i (T0) ≤ C2

i (T0), D1
i (T0) ≤ D2

i (T0), and T 1
i (T0) ≤ T 2

i (T0) for all T0, one
could not immediately guarantee that the same would hold for index j when
extending both partial paths to the same vertex vj . In particular, in order to
discard path P2, it has to hold that ν2

i ≤ ν1
i and ν2

j ≤ ν1
j , otherwise functions

C2
j (T0), D2

j (T0), and T 2
j (T0) would be defined for values T0 ∈]ν1

j , ν
2
j], which

would prevent the elimination of the second label.
Küçükaydın et al. (2014) are able to determine sufficient conditions for

dominance, which we condense in the following propositions.

50

Proposition 4.3.1. Let ν2
i ≥ ν1

i and D1
i (T0) ≤ D2

i (T0), for T0 ≤ ν2
i . Then,

when extending to the same vertex vj , the following holds:

ν1
j ≥ ν2

j ,

D1
j (T0) ≤ D2

j (T0) ∀ T0 ≤ ν2
j ,

T 1
i (T0) ≤ T 2

i (T0) ∀ T0 ≤ ν2
i .

Furthermore, if
i−1∑
k=0

η1
k ≥

i−1∑
k=0

η2
k, then

C1
j (T0) ≤ C2

j (T0) ∀ T0 ≤ ν2
j .

Thus, in order to define label dominance rules it only remains to establish
the conditions under which D1

i (T0) ≤ D2
i (T0), for T0 ≤ ν2

i . Given the pre-
viously discussed structure of the duration function, it suffices to determine
whether µ1

i = D1
i (0) ≤ D2

i (0) = µ2
i and ζ1

i ≤ ζ2
i , where ζi is defined as the

minimum value of Di(T0). The authors obtain the following result regarding
ζi when extending a label to a new vertex.

Proposition 4.3.2. Let P be a partial path ending at vertex vi with duration
function Di(T0) and ζi its minimum value. Then the following holds when
extending P to vertex vj :

ζj = max {ζi + ti,j , µj − νj} .

We can now establish the following label structure λi for a partial path
P = (0 = v0, v1, . . . , vi).

λi :=
(
δi, νi, µi, ζi, qi, (Eki)k

)
, (4.6)

where δi :=
∑i−1
k=0 ηk. The associated REFs are then expressed as follows:

δj = δi + ηj , (4.7)
νj = min {νi, bj − θj} , (4.8)
µj = max {aj , µi + tij} , (4.9)
ζj = max {ζi + tij , µj − νj} , (4.10)
qj = qi + dj , (4.11)

Ekj =
{
Eki + 1, if k = j,

Eki , if k 6= j,
∀k ∈ N, (4.12)

51

where θj is updated as θj = θi + tij . The new label λj is considered feasible
if and only if µj ≤ bj , ζj ≤ S, qj ≤ Q and Ekj ≤ 1, for all k ∈ N . Finally,
label λ1

i dominates λ2
i if δ1

i ≥ δ2
i , ν1

i ≥ ν2
i , µ1

i ≤ µ2
i , ζ1

i ≤ ζ2
i , q1

i ≤ q2
i and

Ek,1i ≤ Ek,2i for all k ∈ N . However, it is possible to reduce the number of
comparisons, and thus to accelerate the labeling algorithm, without losing
guarantee of optimality by applying stronger domination rules.

Proposition 4.3.3. Let λ1
i and λ2

i be two feasible labels. Then, λ1
i dominates

λ2
i if δ1

i + min{ν1
i − ν2

i , 0} ≥ δ2
i , µ1

i ≤ µ2
i , ζ1

i ≤ ζ2
i , q1

i ≤ q2
i and Ek,1i ≤ Ek,2i

for all k ∈ N .

With Proposition 4.3.3, the number of comparisons that are necessary
in order to verify label dominance decreases by one, i.e., we now need to
perform 4 + n comparisons.

4.4 Bounded Bidirectional Algorithm

As we have seen in the previous chapter, the bounded bidirectional proce-
dure by Righini and Salani (2006) is more efficient than the monodirectional
one, given the reduced number of labels that are generated. Thus, we now
describe how to perform backward label extensions for our problem, as well
as the details concerning label concatenation.

4.4.1 Backward Label Extensions

Clearly, the same issues discussed previously arise in this case as well.
In particular, the duration, total cost, and service start time resources are
functions of a decision variable, which in this case is the time of arrival at
the depot Tn+1.

Thus, given a backward partial path P b = (n + 1 = vb0, . . . , v
b
i) starting

at the sink and ending at a vertex vbi , the service start times as functions of
Tn+1 can be expressed as

T bi (Tn+1) = min
{
bi, T

b
i−1(T0) + ti,i−1

}
, (4.13)

analogously to equation (4.1). Let us now define the earliest feasible arrival
time at the depot, which for path P b is defined as σi := max1≤k≤i{ak + θbk},
where θbi :=

∑i
k=1 tk,k−1, and the latest feasible service start time at customer

vi, ρi := min{bi, ρi−1 − ti,i−1}, where ρ0 = +∞. Then, the service start time
at vertex vi is defined as follows:

52

• Condition I: If σi − θbi < ρi

T bi (Tn+1) =
{
Tn+1 − θbi , if σi ≤ Tn+1 ≤ ρi + θbi
ρi, if Tn+1 ≥ ρi + θbi

• Condition II: Else if σi − θbi ≥ ρi

T bi (Tn+1) = ρi for Tn+1 ≥ σi.

Let us now introduce a large enough positive constant M and apply the
following inversions. We can rewrite equation (4.13) thusly:

M − T bi (Tn+1) = max
{
M − bi, (M − T bi (Tn+1)) + ti,i−1

}
(4.14)

Additionally, we can introduce the backward time windows for each vertex
as [abi , bbi] := [M − bi,M − ai]. Finally, let us define T b0 := M − Tn+1 and
T bi (T b0) := M − T bi (Tn+1). It is then easy to see that it is possible to use
the same label structure and associated rules from Section 4.3 and obtain
feasible label extensions. Indeed, since it holds that T bi (T b0) ≤M−ai for each
vi, it follows that T bi (Tn+1) ≥ ai. Furthermore, the earliest feasible arrival
time at the depot σi can be derived as M − νbi , where νbi := min1≤k≤i{M −
ak − θbk} is the backward equivalent to the latest feasible vehicle departure
time (4.2), and the latest feasible service start time ρi is M − µbi , where
µbi := max{M − bi, µbi−1 + ti,i−1} corresponds to (4.3). The other elements
of the label structure can be easily derived applying the same reasoning of
Section 4.3.

To summarize, after having computed all the backward time windows
[abi , bbi], we perform label extensions using the structure

λbi :=
(
δbi , ν

b
i , µ

b
i , ζ

b
i , q

b
i , (E

k,b
i)k

)
, (4.15)

using the following REFs when extending to vertex vj :

δbj = δbi + ηj , (4.16)

νbj = min
{
νbi , b

b
j − θbj

}
, (4.17)

µbj = max
{
abj , µ

b
i + tji

}
, (4.18)

ζbj = max
{
ζbi + tji, µ

b
j − νbj

}
, (4.19)

qbj = qbi + dj , (4.20)

Ek,bj =
{
Ek,bi + 1, if k = j,

Ek,bi , if k 6= j,
∀k ∈ N, (4.21)

53

where θbj is updated as θbj = θbi + tji. The feasibility and dominance rules are
the same ones described in Section 4.3 and Proposition 4.3.3.

4.4.2 Bounding and LabelConcatenation

As we have mentioned earlier, when performing bidirectional label ex-
tensions it is necessary to choose a criterion to stop extending labels such
that the optimal path is obtained without generating an excessive number
of labels. In our case, we use the same criterion that is used for the classic
VRPTW, i.e., we use total duration as the critical resource (see Section 3.2).
In particular, Küçükaydın et al. (2014) propose to extend a forward label λfi
only if ζi ≤ S/2, analogously to the approach of Righini and Salani (2006),
and apply the same for backward labels.

In order to obtain a complete feasible path, the authors choose further-
more to concatenate a forward label λfi and a backward label λbi . Clearly,
to satisfy the capacity and elementarity constraints, it suffices to impose
qfi + qbi − di ≤ Q and Ek,fi + Ek,bi ≤ 1 for each k ∈ N \ {vi}, respectively.
They also derive the following result to ensure feasibility with respect to the
service start times.

Proposition 4.4.1. The concatenation of λfi and λbi is feasible with respect
to the time constraints if and only if the earliest service start time at vi is
not greater than the latest feasible service start time, i.e., µi ≤ ρi.

4.4.3 Computing the Total Waiting Time

Before we can conclude, we have to observe that even after identifying a
feasible concatenation, computing the overall path duration is not straight-
forward, since the total waiting time w of the resulting path is not necessarily
the sum of the waiting times wf and wb of the forward partial path and the
backwards path, respectively. However, it is possible to use the concatenation
theorem of Savelsbergh (1992) in order to compute w.

Here, Savelsbergh (1992) introduces the forward time slack F for a feasible
path, which indicates how much the service start time of a visited vertex can
be shifted forward without making the path infeasible with regards to the
time resource. Let P f1 = (0 = v0, . . . , vi) and P b2 = (vj , . . . , vm = n + 1)
be a feasible forward partial path and a feasible backward partial path with
forward time slacks F1 and F2, respectively. Then, the vehicle departure time
T0 of the concatenated path P can be shifted forward by

F = min
{
F1, F2 + w1 + T bj − (Ti + tij)

}
. (4.22)

54

Table 4.1: Total waiting time w on a concatenated path.
ξj ≥ 0 ξj < 0

w2 = 0 w1 w1 + max {0,−ξj −B2}
w2 > 0 w1 + max {0, w2 − ξj} w1 + w2 − ξj

Additionally, we need to define ξj := Ti + tij − T bj , which is the change of
the service start time at vj , and the backward time slack B2 of path P b2 ,
which indicates how much the service start time of vertex vj can be shifted
backward without creating additional waiting time on P b2 . Then, there are
four possible ways to determine w, shown in Table 4.1, depending on the sign
of ξj and whether w2 is positive or zero.

In order to obtain F , w1, w2, ξj and B2, we assume that Ti = µi and
T bj = ρj , and therefore that T0 = µi− θi if Condition I holds, or that T0 = νi
otherwise. Since we set T bj equal to the latest feasible service start time ρj ,
it follows that F2 = 0. We can also observe that ξj can be at most 0, since
µi ≤ ρi ≤ ρj − tij . Indeed,

ξj = Ti + tij − T bj = µi + tij − ρj ≤ 0.

We can compute the other quantities as follows:

F1 = max{0, θi − (µi − νi)},
w1 = max{0, (µi − νi)− θi},
B2 = max{0, θbj − (µbj − νbj)},
w2 = max{0, (µbj − νbj)− θbj}.

Indeed, if the difference between the sum of the travel and service times θi
is greater or equal than the difference between the earliest service time µi
and the latest departure time νi, then the forward time slack of the forward
partial path is equal to θi − (µi − νi). Otherwise, if (µi − νi) > θi, then
the waiting time of the forward partial path is equal to (µi − νi) − θi. We
can compute analogously the quantities associated with the backward partial
path. Then, we use (4.22) to obtain F . Finally, if F ≥ w, we can set the
final vehicle departure time at T0 + F , obtaining a total waiting time of
0. Otherwise, the final waiting time is equal to w − F . Additionally, the
optimal start time from the depot can actually be chosen from the interval
[T0 + min{F,w}, T0 + F]. Once the total waiting time is determined, it is
trivial to determine the minimum total duration of the concatenated path,
and thus its total cost.

55

4.5 Conclusions
In this chapter, we have discussed the theory regarding the VRPTWWTC

and have presented the results that are necessary to implement an exact
bounded bidirectional labeling algorithm. Although these results are not the
focus of the next chapters, which concentrate more on the empiric analysis
of BP algorithms that mainly manipulate the elementarity resources of a
label, they are an important component of our study since we carry out
computational experiments on this problem variant as well as the classic
VRPTW.

56

Chapter 5

Parametrization of
Branch-and-Price Algorithms

A s we have seen in Chapter 3, the introduction of NGRR inspired sev-
eral recent articles that propose various hybrid algorithms that merge

this technique with DSSR, such as the work of Martinelli et al. (2014) and
Dayarian et al. (2015b). This line of research that consists in efficiently ma-
nipulating the elementarity constraints, is quite promising, given the clear
impact of the associated resources on label domination. However, to the best
of our knowledge, there has been no attempt to compare the efficiency of
these labeling algorithms in a comprehensive manner.

Furthermore, it is important to observe that these algorithms, including
DSSR and NGRR, rely on many components and parameters, whose val-
ues have been manually chosen by the authors on the basis of preliminary
computational experiments. Recently, several tools for automatic param-
eter tuning have been developed with the intention of obtaining the most
effective parameter configurations through a systematic approach. In partic-
ular, López-Ibáñez et al. (2016) develop an iterated racing procedure, called
irace, in order to automatically configure optimization algorithms given a
set of tuning instances and parameter value ranges.

Thus, the aim of the following two chapters is to rigorously compare the
efficiency of seven pricing algorithms proposed in the literature within a BP
framework. Our approach is composed of the following phases:

1. In the first phase, we identify several algorithmic strategies and numer-
ical attributes, some of which are naturally shared by multiple algo-
rithms, and we represent them in terms of parameters;

2. In the second phase, we let the seven algorithms undergo a tuning

57

process with the help of irace in order to obtain the best possible
parameter configuration for each one separately;

3. In the last and third phase, the tuned algorithms are run on benchmark
instances and the results are compared with the aid of statistical tests
in order to determine whether there are outperforming algorithms.

The first phase is presented in this chapter, while the remaining two are
the subject of Chapter 6. In Section 5.1, we discuss the parametrization of
DSSR and NGRR. Section 5.2 describes the hybrid labeling algorithms and
how they inherit the parameters of the previous two algorithms. Finally,
Section 5.3 describes the main features of the BP framework in which each
labeling algorithm is embedded.

5.1 Features of DSSR and NGRR

In this section, we discuss the way in which we can generalize and then
parametrize different algorithmic components of DSSR and NGRR. More
specifically, for each algorithmic strategy or numerical value that can be
chosen by the decision maker during the algorithm design phase, we assign
a parameter and specify a set of options or a range of numerical values,
respectively.

5.1.1 DSSR Initialization Strategies

As we have seen in Chapter 3, Righini and Salani (2009) explore different
initialization strategies for the set Θ containing the critical vertices, i.e., the
vertices on which the elementarity constraints are active during the execution
of the labeling algorithm. Their idea is to determine at the initialization of
the algorithm some critical vertices that are likely to be visited multiple
times.

In order to determine at the initialization of the algorithm some criti-
cal vertices that are likely to be visited multiple times, they introduce the
measures HCA, TCA, WHCA, and WTCA, described in Section 3.3.2.

At the start of the algorithms, the vertices are sorted in non-increasing
order according to the selected measure and the first m vertices are inserted
into Θ, wherem = dαΘne with αΘ ∈]0, 1[. Let us denote the sets constructed
in this way by HCAm, TCAm, WHCAm, and WTCAm. We also consider
the mixed strategy suggested by Righini and Salani (2009) in addition to
these four strategies, where the critical vertex setMIXm is initialized by the
intersection of these four sets, i.e., MIXm = HCAm ∩ TCAm ∩WHCAm ∩

58

WTCAm. In our algorithms, we decide on the strategy to initialize the set
Θ by introducing two parameters: dssr_init_s, which controls which one
of the five strategies is implemented, and dssr_init_n, which controls the
value of αΘ. Parameter dssr_init_s can be assigned one of the following
values: hca, tca, whca, wtca, mixed, and none, the latter indicating that no
initialization strategy is used.

5.1.2 DSSR Insertion Strategies

As mentioned in Chapter 3, in order to update the set Θ at the end of
each DSSR iteration, Boland et al. (2006) examine the following strategies
for inserting new vertices into Θ when the best path obtained at the end of
an iteration is not elementary:

• HMO: insert only the vertex that is visited the most;
• HMO-All: insert all vertices visited the maximum number of times;
• MO-All: insert all vertices visited more than once in the optimal path.

In our algorithms, at each iteration of our CG procedure, we add at most
NCG negative reduced cost columns into the RMP (see Section 5.3.3). In
order to generalize the three strategies of Boland et al. (2006), we make the
following two independent decisions:

(1) the number of negative reduced cost paths to examine so as to detect
vertices visited multiple times;

(2) the number of such vertices to add into the set Θ.

For the first decision given in (1), we suggest three alternatives: exam-
ining only the best path, examining the highest possible number of paths
NINSMAX , or examining an intermediate number of paths ranging from one
to NINSMAX . NINSMAX is determined as the number of negative reduced
cost paths generated in the current iteration, unless this number is higher
than NCG , which is the maximum number of columns that can be inserted
in the RMP (see Section 5.3.3), in which case NINSMAX is set to NCG . An
alternative is chosen by assigning one of the following respective values to
a parameter dssr_path_s: one-path (1-p), all-paths (all-p), or in-between
(in-btw). If the third alternative is chosen, the algorithm examines at most
dαPNCGe paths, where the value of αP ∈]0, 1[is controlled by parameter
dssr_path_n.

For the second decision given in (2), we define three alternatives: inserting
only the vertex visited the most (analogously to HMO), inserting all vertices

59

visited more than once (analogously to MO-All), or inserting an intermediate
number of vertices. A parameter dssr_node_s determines the alternative to
be employed and can assume the respective values: one-node (1-n), all-nodes
(all-n), or in-between (in-btw). Let NV be the set of vertices to insert
with the second alternative. For the third alternative, we sort all the NV

candidate vertices in decreasing order of the number of times they are visited
and we insert the first dαVNV e vertices into the critical vertex set. The value
αV ∈]0, 1[is determined by parameter dssr_node_n.

5.1.3 NGRR

The effectiveness of NGRR hinges on the fact that it attempts to prevent
the generation of cycles that have a low total cost, since routes with expensive
cycles are unlikely to appear in the optimal solution. Thus, the criteria used
to construct the ng-neighborhoods Mi strongly influence the performance of
the algorithm.

We suggest the following three construction strategies, each using a dif-
ferent metric Dk(i, j) (k = 1, 2, 3) depending on the travel time tij . The
strategy to be implemented is chosen by assigning the corresponding value
to parameter ng_m.

1. The travel time (tt): ∆1(i, j) := tij ;
2. The cheap cycle risk (ccr): ∆2(i, j) := (tij + tji)/o(i, j), where o(i, j)

shows the overlap of time windows of i and j;
3. The mixed measure (mix): ∆3(i, j) := αM∆1(i, j) + (1 − αM)∆2(i, j),

where αM ∈]0, 1[.

The first strategy (tt) simply constructs the ng-neighborhoods using only
the travel times tij , as it is done in the existing studies adopting NGRR,
whereas the second one (ccr) utilizes the ratio of the duration of a 2-cycle
formed by vertices i and j to the overlap of their time windows. The ob-
servation behind this measure is that the smaller the duration of the 2-cycle
is compared to the overlap, the easier it is to feasibly visit i and j multiple
times. Lastly, the metric employed by the third strategy (mix) is an affine
combination of the first two strategies. The value of αM is controlled by an
additional parameter ng_mix. Finally, if a 2-cycle with vertices i and j is
guaranteed to be infeasible, then we let Dk(i, j) := +∞ for k = 1, 2, 3. That
is to say, we set Dk(i, j) equal to ∞ for k = 1, 2, 3, if either ai + tij > bj or
aj + tji > bi or max{ai + tij , aj}+ tji > bi and max{aj + tji, ai}+ tij > bj .

The size of ng-neighborhoods is another critical issue influencing the effec-
tiveness of the algorithm. Obviously, the larger the size of the neighborhoods

60

is, the less is the probability of having cycles in the optimal path. For this
purpose, we let |Mi| = dαSne with αS ∈]0, 1[for each vertex i ∈ N . The
value of αS , is controlled by parameter ng_s. At the initialization of BP, all
vertices are sorted in increasing order according to one of the three strategies
given above and the first dαSne − 1 neighbors are added to Mi.

5.2 Hybrid Algorithms
Both DSSR and NGRR rely on the relaxation of elementarity conditions.

However, each algorithm relaxes the state space by employing a different ap-
proach. The DSSR follows what we call a global approach by maintaining a
single critical vertex set for all vertices, while NGRR uses a local approach by
defining an individual critical vertex set for each single vertex of the graph.
With the aim of studying the effectiveness of these approaches, we investi-
gate five additional algorithms, namely global ng-DSSR, local ng-DSSR, local
DSSR, elementary global ng-DSSR, and elementary local ng-DSSR. Each one
of these algorithms, most of which we have already described in Section 3.5,
hybridizes DSSR and NGRR in a different way while adhering to either the
global or the local approach. Additionally, the first two hybrid algorithms
may provide non-elementary ng-paths at the end, whereas the others yield
only elementary paths.

The algorithms can be described as follows.

• Global ng-DSSR (NG-DSSR-G): This first hybrid algorithm basi-
cally combines ng-route relaxation and DSSR by utilizing both a critical
vertex set Θ and ng-neighborhoods Mi for each vertex i ∈ N . It im-
plements the basic ng-route relaxation procedure with the difference
that visiting vertex j from vertex i is prohibited only when j belongs
to both the critical vertex set Θ and the ng-neighborhood Mi of i, in
other words only when j ∈ Θ∩Mi. Furthermore, a vertex k visited mul-
tiple times is designated as critical and inserted in the set Θ only if it
belongs to an invalid cycle. The algorithm incorporates all parameters
of DSSR and ng-route relaxation described in the previous sections.
• Local ng-DSSR (NG-DSSR-L): As we have seen earlier, this proce-
dure was originally described by Martinelli et al. (2014) and Dayarian
et al. (2015b), and forgoes the use of the critical set Θ while calling
forth the notion of applied neighborhoods M i ⊆ Mi for all i ∈ N ,
which are initially empty. The ng-neighborhoods {Mi}i∈N are used to
check at the end of each DSSR iteration whether the optimal paths are
ng-paths. If an invalid ng-path is detected, the applied neighborhoods

61

{M i}i∈N are updated according to the rule described in Section 3.5,
which we repeat here.

Let C = (i− k1 − · · · − kl − i) be an invalid cycle, i.e., a cycle that
cannot appear in an ng-path. Then the repeated vertex i must belong
to the ng-neighborhood Mkh

of all kh with h = 1, . . . , l, i.e., i ∈ Mkh

for all h = 1, . . . , l. However, for such a cycle to occur, there exists at
least one h ∈ {1, . . . , l} such that i /∈Mkh

. Hence, vertex i is included
in the applied neighborhood Mkh

of each kh with h = 1, . . . , l so as to
prevent cycle C re-emerging in any path in subsequent iterations.

We label this algorithm as local, since we do not have a global
critical vertex set such as Θ. As in Dayarian et al. (2015b), due to the
high likelihood of the recreation of the same invalid cycles at different
nodes of the BP tree, the applied neighborhoods are initialized as empty
sets only at the root node and maintained throughout the execution of
the entire BP algorithm.

This algorithm inherits all the parameters described previously, ex-
cept the following ones: dssr_init_s and dssr_init_n, since the ap-
plied neighborhoods are initialized as empty sets; dssr_node_s and
dssr_node_n, since we apply the update procedure described above for
every invalid cycle we examine.

• Local DSSR (DSSR-L): This hybrid algorithm is derived by apply-
ing the local approach exclusively to DSSR, and is also introduced in
Martinelli et al. (2014). To this end, we define a collection of critical sets
{Θi}i∈V analogous to the applied neighborhoods used for NG-DSSR-
L. We initialize these sets employing the initialization strategies of the
global critical vertex set Θ used for DSSR. Furthermore, the update
procedure is similar to the one used in the NG-DSSR-L algorithm. The
main difference lies in the detection of critical vertices: every repeated
vertex giving rise to a cycle is designated as critical, that is, if a cycle
C = (i − k1 − · · · − kl − i) is detected, then vertex i is added to the
critical vertex set Θkh

for all kh with h = 1, . . . , l. Differently from
NG-DSSR-L, the critical sets are clearly not restricted to be subsets of
any neighborhoods.

This algorithm uses all the parameters defined for DSSR except
the parameters dssr_node_s and dssr_node_n, since vertex insertion
strategies for DSSR do not apply in the same way.

• Elementary Global and Local ng-DSSR (NG-DSSR-G-E and
NG-DSSR-L-E): These two algorithms are extensions of NG-DSSR-
G and NG-DSSR-L and based on a technique proposed by Dayarian

62

et al. (2015a) for guaranteeing the elementarity of paths. The NG-
DSSR-G and NG-DSSR-L algorithms terminate when the best path
obtained is an ng-path, which may not be elementary. Conversely, the
respective extensions do not terminate until the best path obtained is
elementary: in case the best path is a non-elementary ng-path, the
algorithms simply switch to the respective variant of DSSR (differently
from the approach of Dayarian et al. (2015a), where the second phase
is always the classic DSSR) in order to achieve elementarity. These
two exact algorithms inherit the same parameters of their respective
ng-DSSR versions.

Since the aforementioned studies generally conclude that each of the con-
sidered procedures has been found to perform better than the standard la-
beling algorithm for the ESPPRC, we do not take it into account in our
computational study.

5.3 Shared Algorithmic Features

Each labeling algorithm is embedded in a BP framework in order to solve
the VRPTW and the VRPTWWTC. Furthermore, each algorithm uses the
label structure, the associated REFs, and the dominance rules described in
Chapter 3 when solving the VRPTW, and the ones in Chapter 4 when solving
the VRPTWWTC. We set cij = tij for each arc (i, j) ∈ A when solving the
VRPTW, as is common practice in the literature.

There are additional aspects shared by all algorithms that we describe in
this section.

5.3.1 Heuristic Dynamic Programming Algorithm

In order to quickly find promising columns at the start of a CG iteration,
we devise two heuristic DP algorithms for solving the pricing problem, one
for the VRPTW and the other for the VRPTWWTC. Each heuristic is based
on the respective version of bounded bidirectional DP, and simply consist in
a relaxation of the label dominance rules. Consequently, the number of labels
generated reduces significantly, since the number of conditions that need to
be tested is considerably cut down.

The heuristic for the VRPTW relaxes all dominance criteria, except the
one related to the reduced cost. Therefore, for each customer i, the only
existing labels are the ones associated to partial paths ending at i with the
least reduced cost.

63

The heuristic for the VRPTWWTC is based on relaxing the dominance
rules given in Proposition 4.3.3. The DP heuristic omits the dominance cri-
teria related to the earliest feasible arrival time µi, the minimum possible
duration ζi, the accumulated vehicle load qi, and the elementarity resources
(Eki)k∈N of a partial path arriving at customer i. Thus, it only takes into con-
sideration the improved dominance criterion introduced in Proposition 4.3.3,
which compares the sum δi of dual prices and the latest feasible starting time
νi from the depot. Since these heuristics do not take into account the set
of elementarity resources, which are the main element that the algorithms
under our consideration manipulate in order to accelerate the label extension
procedure, we do not analyze their overall impact on the BP procedure.

5.3.2 Strengthened Bounding for Bidirectional Label Exten-
sion

In Chapter 3, we discussed how bounding label extensions is critical for
the effectiveness of bidirectional DP, since it prevents the generation of un-
necessary labels (thus reducing computational cost), without losing the guar-
antee of optimality, i.e., the guarantee of generating the optimal path. As
we have seen, bounding is performed by extending only the labels such that
τi ≤ T/2 in the case of the VRPTW, where τi is the total duration for label li
and T is the latest feasible arrival time at the depot (see Section 3.2.2), and
ζi ≤ S/2 in the case of the VRPTWWTC, where ζi is the minimum total du-
ration for label λi and S is the maximum allowed duration (see Section 4.4).
Under this rule, it is then possible to retain labels such that τi > T/2 and
ζi > S/2 respectively (such labels are only prevented from being extended
further.)

In our study, we observed that it is possible to adopt a slightly stronger
bounding rule, which allows us to discard a higher number of labels without
losing guarantee of optimality. According to this bounding rule, we can safely
discard every label such that τi > T/2 for the VRPTW and ζi > S/2 for the
VRPTWWTC. The following propositions prove the validity for this rule for
each problem variant we consider.

Proposition 5.3.1. Let P = (0 = v0, v1, . . . , vm−1, vm = n+ 1) be a feasible
path. Then, there exists k ∈ {0, . . . ,m} such that P can be concatenated
along arc (vk, vk+1) with the forward label lfk associated with vk having τ fk ≤
T/2 and the backwards label lbk+1 associated with vk+1 having τ bk+1 ≤ T/2.

Proof. By the way of contradiction, assume that for each k ∈ {0, . . . ,m−1},
it holds that τ fk > T/2 or τ bk+1 > T/2. Let k∗ ∈ {0, . . . ,m − 1} be the

64

maximal index such that τ fk∗ ≤ T/2. We then assume that τ bk∗+1 > T/2, and
it holds that

τ fk∗+1 = max{ak∗+1, τ
f
k∗ + sk∗ + tk∗,k∗+1} > T/2.

If τ fk∗+1 = τ fk∗ + sk∗ + tk∗,k∗+1 > T/2, then we derive from equation (3.27)
that, since we assume that τ bk∗+1 > T/2, the total duration τ of path P would
be

τ = τ fk∗ + sk∗ + tk∗,k∗+1 + sk∗+1 + τ bk∗+1 > T,

which contradicts our hypothesis that P is feasible.
Let us now consider the case τ fk∗+1 = ak∗+1. Recall that we impose that

τ bk+1 ≤ T − abk+1 for each k ∈ {0, . . . ,m − 1} in order to obtain a feasible
backward label. Then, since ak∗+1 = τ fk∗+1 > T/2, it holds that

τ bk∗+1 ≤ T − abk∗+1 = T − ak∗+1 − sk∗+1 ≤ T/2,

contradicting again our hypothesis.

Proposition 5.3.2. Let P = (0 = v0, v1, . . . , vm−1, vm = n+ 1) be a feasible
path. Then, there exists k ∈ {0, . . . ,m} such that P can be concatenated
along arc (vk, vk+1) with the forward label λfk associated with vk having ζfk ≤
S/2 and the backwards label λbk+1 associated with vk+1 having ζbk+1 ≤ S/2.

Proof. Let k∗ ∈ {1, . . . ,m} be the maximal index such that ζfk∗−1 ≤ S/2.
Thus, ζfk∗ > S/2. It suffices to show that ζbk∗ ≤ S/2, given the symmetry
of the label extension procedures. Assume that this is not the case, i.e.,
ζbk∗ > S/2, and let us recall that ζfk = max{θk, µk − νk}, and analogously,
ζbk = max{θbk, µbk − νbk}, for all k ∈ {0, . . . ,m}.

We consider the following three cases:

1. ζfk∗ = θk∗ and ζbk∗ = θbk∗ ;

2. ζfk∗ = θk∗ and ζbk∗ = µbk∗ − νbk∗ ;

3. ζfk∗ = µk∗ − νk∗ and ζbk∗ = µbk∗ − νbk∗ .

We do not need to prove the case in which ζfk∗ = µk∗ − νk∗ and ζbk∗ = θbk∗

since, because of the symmetry of the extension procedures, it can be proven
analogously to case 2.

Case 1. The total duration τ of path P would be

τ ≥ θk∗ + θbk∗ = ζfk∗ + ζbk∗ > S/2 + S/2,

65

which contradicts that P is a feasible path.
Case 2. Since ζfk∗ = θk∗ , there is no waiting time on the forward partial

path, while the opposite is true for the backward partial path since ζbk∗ =
µbk∗ − νbk∗ . We can determine that the forward time slack of the forward
partial path is F1 = θk∗ − (µk∗ − νk∗) > 0 and that the total forward time
slack of the path is F = min{F1,−ξ(k∗+1)}, according to equation (4.22) (the
forward time slack of the backward partial path F2 and the waiting time on
the forward partial path w1 are both 0), which implies that ξ(k∗+1) + F ≤ 0.
We know that in this problem, in order for the concatenation to be feasible
we need ξ(k∗+1) ≤ 0. This, together with the fact that w1 = 0 and the
waiting time on the backwards partial path w2 is positive, implies that the
total waiting on the path is w−F = w2−ξ(k∗+1)−F , according to Table 4.1.
The total duration τ of path P is therefore

τ = θk∗ + θbk∗ + w2 − ξ(k∗+1) − F
≥ θk∗ + θbk∗ + w2 = θk∗ + µbk∗ − νbk∗

> S/2 + S/2.

Case 3. We know that in order to have a feasible concatenation between
the partial paths, we need to impose µk∗ ≤M−µbk∗ , sinceM−µbk∗ is the latest
feasible departure time from vertex vk∗ . We also know that the difference
between the earliest feasible arrival time at the depot M − νbk∗ and the latest
feasible departure time from the depot νk∗ is a lower bound to the overall
duration τ of the path P , i.e., M − νbk∗ − νk∗ ≤ τ ≤ S. However, then we
have

S/2 < µbk∗ − νbk∗ ≤M − µk∗ − νbk∗

≤M − µk∗ + S + νk∗ −M = S − (µk∗ − νk∗) < S/2.

5.3.3 Additional Branch-and-Price Features

In order to decide the maximum number of negative reduced cost columns
that are generated during the label concatenation phase, we define the quan-
tity NC = dαCne, where the value of the multiplier αC ∈]0, 10000] is con-
trolled by parameter n_conc. We determined the upper bound of this range
through preliminary experiments. Moreover, at each iteration of the CG pro-
cedure, we impose the maximum number of negative reduced cost columns
that can be inserted in the RMP as NCG = dαCGNCe, with the value of the
multiplier αCG ∈]0, 1] being controlled by parameter n_col.

66

Table 5.1: Algorithmic parameters.
Parameter DSSR NGRR NG-DSSR-G NG-DSSR-L DSSR-L NG-DSSR-G-E NG-DSSR-L-E Range
tree_trav† X X X X X X X {breadth, depth, best}
n_col X X X X X X X]0, 1]
n_conc X X X X X X X]0, 10000]
dssr_init_s X X X X {none, hca, tca,

whca, wtca, mix}
dssr_init_n X X X X]0, 1[
dssr_path_s X X X X X X {1-p, in-btw, all-p}
dssr_path_n X X X X X X]0, 1[
dssr_node_s X X X {1-n, in-btw, all-n}
dssr_node_n X X X]0, 1[
ng_m X X X X X {tt, ccr, mix}
ng_s X X X X X]0, 1[
ng_mix X X X X X]0, 1[
† Parameter without root node duplicate.

We implement several strategies to traverse the BB tree, namely depth-
first search, breadth-first search, and best-first search. In best-first search,
we choose to evaluate first the nodes whose parent node yields the small-
est lower bound, and in case of ex aequo we choose the highest number of
arc flow variables set to 1, since such a node is expected to be evaluated
faster. Depth-first search consists in fully exploring each branch of the tree
before backtracking. In order to implement it, all the nodes that need to be
evaluated are recorded into a stack, which is a data structure that follows
the last-in-first-out principle. Thus, each time a child node is generated after
having processed the current node, it is going to be the next node to be evalu-
ated. Conversely, breadth-first search traverses the tree layer-wise, exploring
all neighboring nodes before going deeper down the tree. To implement it, it
suffices to use a queue, which follows the first-in-first-out principle, instead of
a stack. Hence, if the current node generates children, these are going to be
evaluated after all the nodes that are currently in the queue. In both depth-
first and breadth-first search, in the case two child nodes are generated, we
evaluate first the one for which the relevant arc-flow variable has been fixed
to 1. A parameter named tree_trav controls the choice of the tree traversal
strategy.

Table 5.1 outlines all the parameters of our BP algorithms. For each of
those, except for tree_trav, we use an additional parameter that controls
the associated quantity when solving the root node.

Finally, to solve the RMP at each CG iteration, we use a commercial MIP
solver, CPLEX 12.6.3. In order to obtain an upper bound early in the execu-
tion of the algorithm, we call CPLEX to solve the RMP with the integrality
constraints immediately after obtaining a valid lower bound at the root node,
using all the columns available in the pool. In order to guarantee that all the

67

paths used in the solution providing this upper bound are elementary when
using ng-route algorithms, we use the set partitioning formulation instead
of the set covering one. We also implement the option to use CPLEX to
recover an upper bound, i.e., search for an integer solution with the columns
generated so far, if the algorithm fails to solve the RMP at the root node
within its time limit. In this case, an additional time limit of three hours
is provided to CPLEX to attempt recovery. In the next chapter, we specify
when this option is used.

5.4 Conclusions
In this chapter, we have discussed the details of the algorithms under

our consideration, i.e., DSSR, NGRR, and five hybrid procedures. More
specifically, we have specified how DSSR and NGRR can be parametrized,
the way in which the hybrid algorithms inherit features and parameters from
these two procedures, and the common aspects of the BP framework in which
they are embedded.

As we are going to see in the next chapter, the two different paradigms, in
which these algorithms manipulate the elementarity constraints during label
extensions (which we denote as the global and the local approaches), are of
key importance within the scope of this study.

68

Chapter 6

Computational Experiments

I n this chapter, we first introduce the experimental methodology we have
adopted in order to compare the algorithms described in the previous chap-

ter. Then, we present and discuss the obtained results.
As mentioned in Chapter 5, our methodology is composed of two phases:

a parameter tuning phase and a benchmarking phase. Section 6.1 describes
the former, in which we use a software package for automated tuning in order
to obtain the best possible parameter configuration for each algorithm under
our consideration, for both VRPTW and the VRPTWWTC. In Section 6.2
we describe the latter phase, in which we first run each algorithm on a set of
benchmark instances, and then we analyze the results with statistical tests.

Sections 6.3, 6.4 and 6.5 present additional analysis. More specifically, the
first one compares the parameter values of the best configurations obtained
for the more performant algorithms according to the benchmarking phase,
the second one performs additional tuning and analysis of two of the best
algorithms for the VRPTWWTC, with respect to the number of customers
in an instance, and the third presents a comparison of the VRPTW and the
VRPTWWTC with regard to the respective objective function values and
elapsed computing times.

6.1 Tuning Phase

It is often the case in the literature that algorithmic parameters are man-
ually chosen by the authors after several preliminary experiments. As algo-
rithmic complexity increases, so does the potential number of parameters,
and consequently manual tuning becomes less practical. In recent years,
several techniques for automated parameter tuning have arisen, which allow

69

for a more systematic approach to obtain good configurations. In our view,
adopting such a technique is necessary in order to rigorously compare dif-
ferent algorithms with a substantial number of parameters, since the poor
performance of an algorithm might be due to a bad configuration, rather
than a fundamental flaw in its design. This section describes the method
and toolset we use in order to obtain a good parameter configuration for
each of the algorithms under our consideration, for both problem variants.

6.1.1 The irace Package

The main tool we utilize for parameter tuning is irace, developed by
López-Ibáñez et al. (2016), a software package developed using the R pro-
gramming language for automated algorithmic configuration that implements
the iterated racing procedure.

In order to obtain good parameter configurations for a given algorithm
and its parameter space, irace randomly samples numerous possible config-
urations and tests them on a set of training instances provided by the user. It
relies on a user-provided measure in order to compare the performance of two
configurations on the same instance. At each iteration, irace performs sta-
tistical tests to eliminate underperforming configurations and resamples new
ones derived from the best configurations obtained so far. More specifically,
irace adopts the non-parametric Friedman’s two-way analysis of variance
by ranks and the associated post-hoc analysis of Conover (1999), with a sig-
nificance level of 0.05. The former is a family-wise test, in the sense that it
works on all the candidate configurations simultaneously; if the test is pos-
itive, in other words, if it reports a significant difference in quality among
the configurations, the post-hoc pair-wise analysis is performed in order to
determine the best configurations.

Additionally, irace implements Student’s t-test as an alternative to Fried-
man’s test. The former is recommended when the magnitude of the difference
between the performances of two configurations has to be taken into account,
and thus when the best configurations should obtain the best average per-
formance, while the latter is recommended when the best performing con-
figuration should be among the best in as many instances as possible. This
is because Friedman’s test is non-parametric, i.e., no assumption is made on
the distribution of data. Indeed, it performs the analysis on a ranking of
the data: for each instance, the performance of each tested configuration is
ranked from the smallest to the largest, with the smallest one having the best
performance, as explained in Section 6.1.3. The configuration that performs
best in as many instances as possible has thus the lowest average or total

70

rank, computed over all the instances.
There are several possible stopping conditions for the procedure. It can

either stop when a minimum number of surviving configurations is reached,
or when a computational budget has been depleted, where the budget can
either be total computing time, or the maximum number of experiments
irace is allowed to run. Here, an experiment is defined as the execution of
a specific parameter configuration on a specific instance. Upon termination,
irace returns a set of configurations, called elite configurations, which are
statistically equivalent to each other with regard to their performance. The
number of elite configurations returned by irace is determined by the size
of the parameter space. They are provided in increasing order according to
the ranking statistic used by Friedman’s test.

6.1.2 The Training Instance Set

In the field of machine learning, it is well-known that separating the
data set used for training a machine from the data used to test its quality is
necessary in order to avoid the phenomenon called over-fitting, which consists
in the overestimation of the performance of the machine. In the case of irace,
the analogous phenomenon is called over-tuning, and consists in the over
specialization of the tuned algorithm for a specific set of instances (Birattari,
2009).

In order to avoid over-tuning, we need to have different sets of instances
for tuning and benchmarking, and thus we consider the instances provided
by Gehring and Homberger (2001) for tuning purposes and the widely used
Solomon’s instances for the VRPTW (Solomon, 1987) for benchmarking.
Both instance sets are structured according to the same criteria. First,
they are divided into three classes, namely clustered (C), random (R), and
random-clustered (RC) instances, based on the spatial distribution of cus-
tomers on the Euclidean plane. In addition, they are divided into two series
depending on the length of the time windows of the customers and the plan-
ning horizon. The instances of Series 1 present narrower windows and a
shorter horizon than the ones of Series 2, and are therefore easier to solve
with exact algorithms.

In order to build a diversified tuning set, and thus attempt to remove
bias depending on the size or the structure of the instances, we randomly
sample two instances from each class of Gehring and Homberger’s instances
by considering either the first 25 or the first 50 customers. Due to hardware
and time constraints, we only consider instances of Series 1 with at most 50
customers. As a result, we obtain six tuning instances. While determining

71

these instances, for each candidate instance, a preliminary test was made
with a random configuration of one of the BP algorithms in order to perceive
its computing time. A candidate instance was not included in the tuning set
if its computing time was under ten seconds. The purpose of this is to avoid
including instances that can be solved easily by all algorithms, since these
cannot offer meaningful information when performing the statistical tests.

It is worth to observe that, while we use Solomon’s instances for bench-
marking (given their widespread use in the literature) and the similarly struc-
tured Gehring and Homberger’s set for the tuning phase, it is an equally valid
approach to consider combinations of additional sets from those that have
been proposed in the literature, such as the instances of Cordeau et al. (2001),
as long as one remains aware of the danger of over-tuning.

6.1.3 Usage of irace

In order to identify the outperforming configurations, irace requires a
scalar quantity as a performance measure for all algorithms; more specifically,
a cost function for a given configuration θ on an instance i. Since the algo-
rithms employ a BP framework, we have to impose a time limit. Hence, we
cannot use computing time alone to determine the algorithmic performance.
Otherwise, it would be impossible to differentiate between two configurations
that reach the time limit but report different upper bounds. Thus, we define
the following performance measure t′(i, θ) for a configuration θ on an instance
i:

t′(i, θ) =


t(i, θ) if t(i, θ) < TL
TL + UB(i, θ) if the root node is solved and TL is reached
M otherwise,

where t(i, θ) is the elapsed time until completion in seconds, UB(i, θ) is the
best upper bound obtained, and M is a large positive constant. Here, we set
the time limit TL to 10800 seconds (three hours), and M >> 10800. Note
that in this phase, if an algorithm fails to solve even the root node within
the time limit, we do not attempt an upper bound recovery, as described in
the previous chapter.

Recall that the statistical tests we adopt are non parametric, and that
they are based on a ranking statistic. Hence, the only property that is
required in order for our performance measure to represent the case that
configuration θ1 performs better than configuration θ2 on instance i is that
t′(i, θ1) < t′(i, θ2). In fact, the magnitude of the difference t′(i, θ2)−t′(i, θ1) is

72

Table 6.1: VRPTW — Elementary algorithms — 3 hours.
DSSR DSSR-L NG-DSSR-G-E NG-DSSR-L-E

Class NI S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%)
C1–25 9 9 10.23 9 5.27 9 140.3 9 10.03
R1–25 12 12 1.20 12 1.23 12 1.87 12 1.20
RC1–25 8 8 5.26 8 3.80 8 18.17 8 4.46
C1–50 9 8 13.84 9 105.4 8 82.46 9 184.9
R1–50 12 11 1 435.8 4.59 11 1 193.8 4.47 11 1 1015 4.59 11 1 154.5 3.99
RC1–50 8 2 6 1863 12.01 2 6 1682 12.64 2 6 3442 12.11 2 6 1723 11.0

irrelevant for the purposes of the test. The chosen measure allows us to estab-
lish that configuration θ1 performs better than configuration θ2 on instance
i if one of the following occurs:

• both θ1 and θ2 terminate before the time limit and the elapsed time of
θ1 is smaller than the one of θ2;
• θ1 terminates before the time limit while θ2 does not;
• both θ1 and θ2 do not terminate before the time limit but are able
to evaluate the root node and obtain an upper bound, and the upper
bound of θ1 is smaller than the one of θ2;
• θ1 is able to evaluate the root node and obtain an upper bound while
θ2 is not.

As the stopping condition of the tuning procedure, we adopt a compu-
tational budget of 5000 experiments per algorithm. We implemented all the
algorithms in Java 8 and performed the tunings on two computing clusters:
the first with AMD Bulldozer 6272 processors, 2.1 GHz and 4 GB of RAM
per core, and the second one with Intel E5–2650 processors, 2.0 GHz and 4
GB of RAM per core, both operating under Linux.

Finally, once the tuning phase is complete, we pick one configuration to
study in the benchmarking phase among the ones returned by irace, which
are six in number for each algorithm. For this purpose, we choose the first
one returned by irace, i.e., the one with the lowest ranking.

6.2 Benchmarking Phase
In this phase, we perform up to two rounds of benchmarking and statisti-

cal analysis for each problem variant. In each round, we first run each of the
considered algorithms with the obtained configuration on a set of benchmark
instances, and then we analyze the results using a similar procedure to the
one used by irace for testing configurations.

73

Table 6.2: VRPTW — ng-route algorithms — 3 hours.
NGRR NG-DSSR-G NG-DSSR-L

Class NI S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%)

C1–25 9 9 1.49 9 3.22 9 2.25
R1–25 12 12 0.95 12 2.02 12 1.14
RC1–25 8 8 3.22 8 3.49 8 3.91
C1–50 9 9 40.39 9 491.0 9 55.56
R1–50 12 11 1 495.1 5.22 10 2 65.67 3.75 11 1 127.6 4.34
RC1–50 8 2 6 2478 12.27 2 6 3963 10.63 2 6 1683 11.8

More specifically, considering the same performance measure t′(i, θ) used
in the tuning phase, we apply Friedman’s test. Under the null hypothesis
of this test, the algorithms have negligible performance differences, which
means that when it is rejected, there is at least one algorithm that performs
significantly better than at least one of the others. Once again, we adopt
the standard significance level of 0.05. Thus, if this process yields a p-value
significantly smaller than 0.05, we then reject the null hypothesis.

If this is the case, since Friedman’s test is a family-wise test, in other
words, since it is applied to the results of all the algorithms simultaneously,
we need to carry out a post-hoc analysis. To this end, we now make use
of Wilcoxon’s signed-rank test (see Conover, 1999), which performs pairwise
comparisons: for each pair of algorithms, if the associated p-value returned
by the test is smaller than the significance level of 0.05, it can be concluded
that one of the two algorithms is significantly more efficient than the other.
It is possible to determine the most performant algorithm by taking into
consideration the ranking statistic used by Friedman’s test, and observing
which algorithm has the lowest average rank.

It is worth pointing out that this phase is indeed very similar to a sin-
gle iteration of irace, where there are only seven configurations to test. In
fact, one might apply a different approach, where the choice of the labeling
algorithms to use in the BP framework is delegated to some additional pa-
rameters. This approach would require tuning a single BP algorithm, instead
of seven, with which no benchmarking phase would be needed. Furthermore,
this approach could result in a more effective BP algorithm that is able to
switch between different labeling algorithms as needed, for example using
one algorithm while evaluating the root node and switching to another af-
terwards. However, the increase in the number of parameters would also
require an increased tunning budget to be able to obtain high quality con-
figurations, which would make the tuning phase very hard to implement in
practice given the hardware and time limitations. Moreover, we believe that

74

Table 6.3: VRPTW — Benchmarks — 6 hours.
DSSR-L NG-DSSR-L-E NGRR NG-DSSR-L

Class NI S PS R Time Gap (%) S PS R Time Gap (%) S PS R Time Gap (%) S PS R Time Gap (%)
C1–50 9 9 105.4 9 184.9 9 40.39 9 55.56
R1–50 12 11 1 193.8 4.04 11 1 154.5 3.87 11 1 495.1 4.95 11 1 127.6 4.07
RC1–50 8 2 6 1682 12.22 2 6 1723 10.97 2 6 2478 12.01 2 6 1683 11.12
C1–75 9 8 1 835.7 3.05 8 1 610.6 3.45 8 1 1545 3.39 8 1 475.4 3.39
R1–75 12 10 2 3679 2.38 10 2 2079 2.48 9 3 2447 2.95 10 2 3633 2.90
RC1–75 8 1 5 2 924.5 6.36 2 6 9868 6.79 1 6 0 580.7 6.47 1 7 985.0 6.20
C1–100 9 9 358.7 9 288.0 9 2063 9 296.5
R1–100 12 6 4 2 4738 2.01 6 5 1 4108 2.40 4 8 353.3 2.11 6 5 0 4096 1.95
RC1–100 8 5 3 3.96 5 3 4.97 5 2 6.16 6 1 4.84

this methodology would offer us less information on the overall effectiveness
of each labeling algorithm, which is what we are interested to evaluate in this
study.

In the first round of benchmarking, we run each of the seven algorithms on
Solomon’s instances of Series 1 with 25 and 50 customers using the obtained
configuration. A time limit of three hours is allotted for each algorithm. Note
that these are similar conditions to the ones of the tuning phase.

At this point, if the tests indicate that there is a significant difference in
algorithmic performance, we select the best algorithms and proceed with a
second round of benchmarking. While the first round is carried out under
conditions that are consistent with the tuning phase, here the idea is to
study the algorithms on instances of larger size while providing a higher
computing time limit. Thus, we run each of the best performing algorithms
on Solomon’s instances of Series 1 with 25, 50, 75, and 100 customers, with
the same configurations used in the first round. The time limit is set to
six hours instead of three. Furthermore, upper bound recovery as defined
in Section 5.3.3 is attempted only at this round, when even the root node
cannot be solved within the time limit. We finally proceed with the statistical
analysis as previously done.

The benchmarking is performed on a computer with an Intel i7–3930K @
3.20Ghz processor with 6 cores and 60GB of RAM, operating under Windows
10 Pro.

6.2.1 Benchmarking for the VRPTW

Tables 6.1 and 6.2 synthetically present the benchmark results of the first
round. For each instance class, we report the number of instances in that
class in column “NI”, the number of instances solved to optimality in column
“S”, and the number of partially solved instances in column “PS”. Note that
the instances for which the algorithm is able to solve at least the root node

75

0 1 2 3 4 5 6 7 8 9 10

DSSR-L

NG-DSSR-L-E

NGRR

NG-DSSR-L

0.24 1.820.81

0.36 2.841.14

0.36 2.51.03

0.52 3.641.81

RG(%) - G(%)

Figure 6.1: VRPTW — Differences between root gap and best gap. Median,
upper quartile and upper whisker values are reported.

and obtain a feasible integer solution are called partially solved. As explained
in Section 5.3.3, CPLEX is called once the root node is evaluated in order to
obtain an integer solution. Furthermore, in this case, upper bound recovery
does not count for considering an instance as partially solved. The column
“Time” shows the average computing time calculated taking into account
only the solved instances. Finally, the column “Gap (%)” gives the average
gap calculated over the partially solved instances. For each instance, the gap
is computed as (UB − LB)/LB × 100, where UB is the best upper bound
obtained throughout the execution of the algorithm and LB is the lower
bound obtained at the root node.

Friedman’s test yields a p-value significantly smaller than 0.05, i.e., p <
2.2e−16, thus rejecting the null hypothesis. We are now justified to proceed
with Wilcoxon’s test. According to its results, NG-DSSR-L and NG-DSSR-
L-E outperform DSSR, NG-DSSR-G, and NG-DSSR-G-E with p < 0.01,
while there is no statistical difference between the performances of NG-DSSR-
L, NG-DSSR-L-E, DSSR-L, and NGRR. The lowest average ranking was
achieved by DSSR-L, while NG-DSSR-G-E obtained the highest one. This
suggests that the local approach performs significantly better than the global
approach. A possible explanation for this is that the local approach allows
to store more information about the cycles, since there is a set maintaining
such information for each customer, instead of a single global set. Indeed,

76

Table 6.4: VRPTW — Best elementary route algorithms — 6 hours, 25 and
50 customers.

DSSR-L NG-DSSR-L-E
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–25 0.26 191.3 191.3 191.3 0 0 1 0.53 191.3 191.3 191.3 0 0 1
C102–25 1.18 190.3 190.3 190.3 0 0 1 1.5 190.3 190.3 190.3 0 0 1
C103–25 4.05 190.3 190.3 190.3 0 0 1 7.7 190.3 190.3 190.3 0 0 1
C104–25 37.69 186.9 186.9 186.9 0 0 1 76.4 186.9 186.9 186.9 0 0 1
C105–25 0.44 191.3 191.3 191.3 0 0 1 0.55 191.3 191.3 191.3 0 0 1
C106–25 0.41 191.3 191.3 191.3 0 0 1 0.52 191.3 191.3 191.3 0 0 1
C107–25 0.49 191.3 191.3 191.3 0 0 1 0.51 191.3 191.3 191.3 0 0 1
C108–25 1.04 191.3 191.3 191.3 0 0 1 0.81 191.3 191.3 191.3 0 0 1
C109–25 1.84 191.3 191.3 191.3 0 0 1 1.77 191.3 191.3 191.3 0 0 1
R101–25 0.17 617.1 617.1 617.1 0 0 1 0.28 617.1 617.1 617.1 0 0 1
R102–25 0.54 547.1 546.3 547.1 0.14 0.14 5 0.56 547.1 546.3 547.1 0.14 0.14 3
R103–25 0.47 454.6 454.6 454.6 0 0 1 0.51 454.6 454.6 454.6 0 0 1
R104–25 0.45 416.9 416.9 416.9 0 0 1 0.62 416.9 416.9 416.9 0 0 1
R105–25 0.25 530.5 530.5 530.5 0 0 1 0.31 530.5 530.5 530.5 0 0 1
R106–25 0.52 465.4 457.3 465.4 1.77 1.77 3 1.24 465.4 457.3 468 1.77 2.34 7
R107–25 0.62 424.3 424.3 424.3 0 0 1 0.62 424.3 424.3 424.3 0 0 1
R108–25 2.21 397.3 396.8 397.3 0.12 0.12 5 1.16 397.3 396.8 397.3 0.12 0.12 5
R109–25 0.38 441.3 441.3 441.3 0 0 1 0.47 441.3 441.3 441.3 0 0 1
R110–25 1.92 444.1 438.3 444.7 1.31 1.45 19 2.95 444.1 438.3 444.1 1.31 1.31 25
R111–25 1.45 428.8 427.3 430.1 0.36 0.66 9 1.14 428.8 427.3 428.8 0.36 0.36 5
R112–25 5.71 393 387.1 393 1.54 1.54 19 4.58 393 387.1 393 1.54 1.54 19
RC101–25 18.32 461.1 406.6 474.4 13.4 16.7 417 20.3 461.1 406.6 475.5 13.40 16.94 443
RC102–25 1.57 351.8 351.8 351.8 0 0 1 1.03 351.8 351.8 351.8 0 0 1
RC103–25 1.84 332.8 332.8 332.8 0 0 1 1.33 332.8 332.8 332.8 0 0 1
RC104–25 2.31 306.6 306.6 306.6 0 0 1 2.27 306.6 306.6 306.6 0 0 1
RC105–25 0.76 411.3 411.3 411.3 0 0 1 0.74 411.3 411.3 411.3 0 0 1
RC106–25 0.83 345.5 345.5 345.5 0 0 1 0.93 345.5 345.5 345.5 0 0 1
RC107–25 1.53 298.3 298.3 298.3 0 0 1 1.87 298.3 298.3 298.3 0 0 1
RC108–25 3.22 294.5 294.5 294.5 0 0 1 7.22 294.5 294.5 294.5 0 0 1
C101–50 0.67 362.4 362.4 362.4 0 0 1 0.93 362.4 362.4 362.4 0 0 1
C102–50 2.78 361.4 361.4 361.4 0 0 1 3.16 361.4 361.4 361.4 0 0 1
C103–50 9.1 361.4 361.4 361.4 0 0 1 22.61 361.4 361.4 361.4 0 0 1
C104–50 920.4 358 358 358 0 0 1 1624 358 358 358 0 0 1
C105–50 1.59 362.4 362.4 362.4 0 0 1 1.31 362.4 362.4 362.4 0 0 1
C106–50 1.09 362.4 362.4 362.4 0 0 1 1.08 362.4 362.4 362.4 0 0 1
C107–50 1.52 362.4 362.4 362.4 0 0 1 1.41 362.4 362.4 362.4 0 0 1
C108–50 3.41 362.4 362.4 362.4 0 0 1 2.38 362.4 362.4 362.4 0 0 1
C109–50 7.96 362.4 362.4 362.4 0 0 1 5.91 362.4 362.4 362.4 0 0 1
R101–50 0.72 1044 1043.4 1044 0.06 0.06 3 0.72 1044 1043.3 1044 0.06 0.06 3
R102–50 0.64 909 909 909 0 0 1 0.76 909 909 909 0 0 1
R103–50 6.48 772.9 769.2 772.9 0.48 0.48 11 6.84 772.9 769.2 773.5 0.48 0.56 13
R104–50 117.4 625.4 619.1 629 1.02 1.60 47 59.07 625.4 619.1 625.4 1.02 1.02 31
R105–50 7.35 899.3 892.1 904.4 0.80 1.38 51 5.51 899.3 892.1 904.7 0.80 1.41 35
R106–50 3.32 793 791.3 797.1 0.21 0.72 5 3.06 793 791.37 797.3 0.21 0.75 5
R107–50 11.51 711.1 707.2 713 0.54 0.81 17 10.79 711.1 707.2 711.3 0.54 0.57 17
R108–50 21600 618.7 594.7 625.4 4.04 5.16 11400 21600 617.7 594.7 622.2 3.87 4.62 14745
R109–50 88.92 786.8 775.3 789.4 1.48 1.81 319 74.27 786.8 775.3 789.2 1.48 1.79 297
R110–50 13.63 697 695.1 713.7 0.28 2.68 15 7.56 697 695.1 697 0.28 0.28 11
R111–50 237.4 707.2 696.2 719.9 1.57 3.39 215 86.21 707.2 696.3 710 1.57 1.97 193
R112–50 1644 630.2 614.8 639.3 2.50 3.98 1497 1444 630.2 614.8 636.9 2.50 3.59 1695
RC101–50 21600 951.1 850.0 992.6 11.89 16.77 44301 21600 948 850 976.7 11.53 14.90 54123
RC102–50 21600 830.7 721.8 830.7 15.09 15.09 19248 21600 822.5 721.8 828.2 13.95 14.74 27090
RC103–50 21600 737.2 645.2 737.2 14.24 14.24 9492 21600 716.3 645.2 738.8 11.01 14.49 14162
RC104–50 31.34 545.8 545.8 545.8 0 0 1 32.54 545.8 545.8 545.8 0 0 1
RC105–50 21600 876.5 761.5 876.5 15.09 15.09 24927 21600 855.4 761.5 883.2 12.32 15.97 41880
RC106–50 3332 723.2 664.4 724.8 8.85 9.09 4935 3413 723.2 664.4 729.6 8.85 9.81 4841
RC107–50 21600 642.7 603.5 642.7 6.48 6.48 6674 21600 642.7 603.5 642.7 6.48 6.48 9087
RC108–50 21600 598.1 541.1 598.1 10.52 10.52 2514 21600 598.1 541.1 598.1 10.52 10.52 4595

77

Table 6.5: VRPTW — Best ng-route algorithms — 6 hours, 25 and 50 cus-
tomers.

NGRR NG-DSSR-L
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–25 0.53 191.3 191.3 191.3 0 0 1 0.39 191.3 191.3 191.3 0 0 1
C102–25 1.12 190.3 190.3 190.3 0 0 1 1.23 190.3 190.3 190.3 0 0 1
C103–25 3.16 190.3 190.3 190.3 0 0 1 2.80 190.3 190.3 190.3 0 0 1
C104–25 4.19 186.9 186.9 186.9 0 0 1 11.41 186.9 186.9 186.9 0 0 1
C105–25 0.46 191.3 191.3 191.3 0 0 1 0.52 191.3 191.3 191.3 0 0 1
C106–25 0.41 191.3 191.3 191.3 0 0 1 0.40 191.3 191.3 191.3 0 0 1
C107–25 0.56 191.3 191.3 191.3 0 0 1 0.51 191.3 191.3 191.3 0 0 1
C108–25 0.76 191.3 191.3 191.3 0 0 1 0.88 191.3 191.3 191.3 0 0 1
C109–25 2.16 191.3 191.3 191.3 0 0 1 2.11 191.3 191.3 191.3 0 0 1
R101–25 0.24 617.1 617.1 617.1 0 0 1 0.26 617.1 617.1 617.1 0 0 1
R102–25 0.50 547.1 546.3 547.1 0.14 0.14 3 0.58 547.1 546.3 547.1 0.14 0.14 5
R103–25 0.46 454.6 454.6 454.6 0 0 1 0.49 454.6 454.6 454.6 0 0 1
R104–25 0.54 416.9 416.9 416.9 0 0 1 0.58 416.9 416.9 416.9 0 0 1
R105–25 0.28 530.5 530.5 530.5 0 0 1 0.31 530.5 530.5 530.5 0 0 1
R106–25 0.92 465.4 457.3 470.2 1.77 2.82 7 1.03 465.4 457.3 487.9 1.77 6.69 9
R107–25 0.52 424.3 424.3 424.3 0 0 1 0.65 424.3 424.3 424.3 0 0 1
R108–25 1.32 397.3 396.8 403.2 0.12 1.61 5 1.99 397.3 396.8 404.5 0.12 1.94 5
R109–25 0.59 441.3 441.3 441.3 0 0 1 0.42 441.3 441.3 441.3 0 0 1
R110–25 2.46 444.1 438.3 444.1 1.31 1.31 25 2.04 444.1 438.3 444.1 1.31 1.31 15
R111–25 1.05 428.8 427.2 428.8 0.36 0.36 5 1.79 428.8 427.2 428.8 0.36 0.36 9
R112–25 2.49 393 387.1 393 1.54 1.54 15 3.53 393 387.1 393 1.54 1.54 17
RC101–25 15.07 461.1 406.6 474.2 13.40 16.62 321 18.23 461.1 406.6 498.3 13.40 22.55 417
RC102–25 0.99 351.8 351.8 351.8 0 0 1 1.15 351.8 351.8 351.8 0 0 1
RC103–25 1.60 332.8 332.8 332.8 0 0 1 1.42 332.8 332.8 332.8 0 0 1
RC104–25 1.78 306.6 306.6 306.6 0 0 1 2.05 306.6 306.6 306.6 0 0 1
RC105–25 0.92 411.3 410.95 412.5 0.09 0.38 3 0.84 411.3 411.3 411.3 0 0 1
RC106–25 0.53 345.5 345.5 345.5 0 0 1 0.85 345.5 345.5 345.5 0 0 1
RC107–25 1.83 298.3 298.3 298.3 0 0 1 2.06 298.3 298.3 298.3 0 0 1
RC108–25 3.04 294.5 294.5 294.5 0 0 1 4.64 294.5 294.5 294.5 0 0 1
C101–50 0.98 362.4 362.4 362.4 0 0 1 0.92 362.4 362.4 362.4 0 0 1
C102–50 2.52 361.4 361.4 361.4 0 0 1 3.27 361.4 361.4 361.4 0 0 1
C103–50 9.52 361.4 361.4 361.4 0 0 1 16.81 361.4 361.4 361.4 0 0 1
C104–50 335.6 358 358 358 0 0 1 467.04 358 358 358 0 0 1
C105–50 1.28 362.4 362.4 362.4 0 0 1 1.30 362.4 362.4 362.4 0 0 1
C106–50 1.41 362.4 362.4 362.4 0 0 1 1.11 362.4 362.4 362.4 0 0 1
C107–50 2.79 362.4 362.4 362.4 0 0 1 1.64 362.4 362.4 362.4 0 0 1
C108–50 2.35 362.4 362.4 362.4 0 0 1 2.57 362.4 362.4 362.4 0 0 1
C109–50 6.95 362.4 362.4 362.4 0 0 1 5.36 362.4 362.4 362.4 0 0 1
R101–50 0.81 1044 1043.3 1046.7 0.06 0.32 3 0.72 1044 1043.3 1044 0.06 0.06 3
R102–50 0.71 909 909 909 0 0 1 0.75 909 909 909 0 0 1
R103–50 6.57 772.9 769.2 776.6 0.48 0.96 15 5.69 772.9 769.23 774.4 0.48 0.67 11
R104–50 300.7 625.4 619.1 629.4 1.02 1.67 211 69.08 625.4 619.1 633.3 1.02 2.30 33
R105–50 4.05 899.3 892.1 903.7 0.80 1.30 25 7.52 899.3 892.1 904.7 0.80 1.41 49
R106–50 2.05 793 791.3 797.3 0.21 0.75 3 2.56 793 791.3 797.1 0.21 0.72 5
R107–50 15.89 711.1 707.2 716.8 0.54 1.35 17 11.68 711.1 707.2 711.1 0.54 0.54 15
R108–50 21600 624.1 594.6 628.9 4.95 5.76 13099 21600 618.9 594.7 625.5 4.07 5.18 13653
R109–50 116.3 786.8 775.3 791.9 1.48 2.14 501 57.27 786.8 775.3 787.6 1.48 1.58 261
R110–50 14.65 697 695.1 697 0.28 0.28 13 13.68 697 695.1 711.6 0.28 2.38 23
R111–50 2018 707.2 696.3 714.4 1.57 2.60 1885 156.6 707.2 696.3 711.4 1.57 2.17 237
R112–50 2965 630.2 614.6 635 2.53 3.32 2265 1078 630.2 614.8 635 2.50 3.28 1439
RC101–50 21600 971.1 850 990.1 14.24 16.48 100773 21600 946.9 850 999.4 11.40 17.57 52064
RC102–50 21600 830.4 721.8 840.1 15.04 16.39 22475 21600 827.3 721.8 844.3 14.61 16.97 24779
RC103–50 21600 727.9 645.2 737 12.80 14.21 23251 21600 717.5 645.2 717.5 11.19 11.19 10333
RC104–50 18.55 545.8 545.8 545.8 0 0 1 46.74 545.8 545.8 545.8 0 0 1
RC105–50 21600 860.4 761.5 885.6 12.98 16.29 52519 21600 856.9 761.5 878.2 12.52 15.32 31866
RC106–50 4937 723.2 664.4 741.4 8.85 11.58 5833 3319 723.2 664.4 734.1 8.85 10.49 4865
RC107–50 21600 642.7 603.5 642.7 6.48 6.48 6750 21600 642.7 603.5 642.7 6.48 6.48 8364
RC108–50 21600 598.1 541.1 598.1 10.52 10.52 3100 21600 598.1 541.1 598.1 10.52 10.52 3868

78

Table 6.6: VRPTW — Best elementary route algorithms — 6 hours, 75 and
100 customers.

DSSR-L NG-DSSR-L-E
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–75 1.58 649.2 649.2 649.2 0.00 0.00 1 1.99 649.2 649.2 649.2 0.00 0.00 1
C102–75 7.61 649.2 649.2 649.2 0.00 0.00 1 6.38 649.2 649.2 649.2 0.00 0.00 1
C103–75 39.59 649 649 649 0.00 0.00 1 33.47 649 649 649 0.00 0.00 1
C104–75 21600 642.6 623.58 642.6 3.05 3.05 109 21600 645.1 623.58 645.1 3.45 3.45 355
C105–75 2.34 649.2 649.2 649.2 0.00 0.00 1 2.58 649.2 649.2 649.2 0.00 0.00 1
C106–75 6.53 647.3 632.35 648.8 2.36 2.60 3 5.9 647.3 632.35 649.2 2.36 2.66 3
C107–75 3.5 647.3 647.3 647.3 0.00 0.00 1 2.85 647.3 647.3 647.3 0.00 0.00 1
C108–75 41.29 645.5 631.15 647.8 2.27 2.64 9 19.24 645.5 631.15 645.5 2.27 2.27 7
C109–75 6582 639.2 625 639.2 2.27 2.27 647 4812 639.2 625 639.6 2.27 2.34 829
R101–75 0.7 1425.1 1425.1 1425.1 0.00 0.00 1 0.83 1425.1 1425.1 1425.1 0.00 0.00 1
R102–75 1.82 1268.5 1268.5 1268.5 0.00 0.00 1 1.41 1268.5 1268.5 1268.5 0.00 0.00 1
R103–75 4.12 1013.2 1013.2 1013.2 0.00 0.00 1 3.55 1013.2 1013.2 1013.2 0.00 0.00 1
R104–75 14425 807.2 796.59 818 1.33 2.69 1509 6948 807.2 796.59 836.7 1.33 5.04 855
R105–75 1.51 1161.6 1161.6 1161.6 0.00 0.00 1 1.34 1161.6 1161.6 1161.6 0.00 0.00 1
R106–75 113.4 1075.6 1068.79 1075.6 0.64 0.64 85 58.81 1075.6 1068.79 1075.6 0.64 0.64 93
R107–75 564.3 919.1 912.23 923.2 0.75 1.20 147 187.9 919.1 912.23 923.5 0.75 1.24 119
R108–75 8351 786.5 775.8 798.1 1.38 2.87 1187 2624 786.5 775.8 805.7 1.38 3.85 561
R109–75 21600 1020.8 994.17 1044.8 2.68 5.09 11355 21600 1020.8 994.17 1044.2 2.68 5.03 14970
R110–75 21600 923.1 904.34 930.9 2.07 2.94 9559 21600 924.9 904.34 942.4 2.27 4.21 11680
R111–75 2753 896.3 884.78 907.9 1.30 2.61 785 2743 896.3 884.78 910.4 1.30 2.90 1673
R112–75 10577 815 803.75 821.5 1.40 2.21 2627 8220 815 803.75 828.6 1.40 3.09 3541
RC101–75 924.5 1361.3 1335.9 1367.8 1.90 2.39 1963 1231 1361.3 1335.9 1391.8 1.90 4.18 2895
RC102–75 21600 1270.6 1197.04 1270.6 6.15 6.15 17652 21600 1249 1197.04 1267.8 4.34 5.91 18298
RC103–75 21600 1085.9 1019.94 1085.9 6.47 6.47 4344 21600 1083.5 1019.94 1083.5 6.23 6.23 9216
RC104–75 21600 973.6† 21600 978.1 919.35 978.1 6.39 6.39 601
RC105–75 21600 1279 1194.08 1279 7.11 7.11 20646 21600 1244.5 1194.08 1278.4 4.22 7.06 17184
RC106–75 21600 1141.4 1078.62 1141.4 5.82 5.82 13312 18505 1128.3 1078.62 1140.4 4.61 5.73 13509
RC107–75 21600 1027.8 967.19 1027.8 6.27 6.27 2574 21600 1055.1 967.19 1055.1 9.09 9.09 1475
RC108–75 21600 948.9† 21600 970.9 878.97 970.9 10.46 10.46 1704
C101–100 3.34 827.3 827.3 827.3 0.00 0.00 1 2.88 827.3 827.3 827.3 0.00 0.00 1
C102–100 23.8 827.3 827.3 827.3 0.00 0.00 1 56.89 827.3 827.3 827.3 0.00 0.00 1
C103–100 95.39 826.3 826.3 826.3 0.00 0.00 1 132.9 826.3 826.3 826.3 0.00 0.00 1
C104–100 2918 822.9 822.9 822.9 0.00 0.00 1 2338 822.9 822.9 822.9 0.00 0.00 1
C105–100 4.93 827.3 827.3 827.3 0.00 0.00 1 5.39 827.3 827.3 827.3 0.00 0.00 1
C106–100 9.95 827.3 827.3 827.3 0.00 0.00 1 7.14 827.3 827.3 827.3 0.00 0.00 1
C107–100 7.61 827.3 827.3 827.3 0.00 0.00 1 6.27 827.3 827.3 827.3 0.00 0.00 1
C108–100 50.03 827.3 827.3 827.3 0.00 0.00 1 10.58 827.3 827.3 827.3 0.00 0.00 1
C109–100 115.2 827.3 827.3 827.3 0.00 0.00 1 30.9 827.3 827.3 827.3 0.00 0.00 1
R101–100 13.7 1637.7 1631.15 1639.6 0.40 0.52 15 12.74 1637.7 1631.15 1638.2 0.40 0.43 15
R102–100 6.02 1466.6 1466.6 1466.6 0.00 0.00 1 3.73 1466.6 1466.6 1466.6 0.00 0.00 1
R103–100 165.5 1208.7 1206.78 1218.4 0.16 0.96 25 559.3 1208.7 1206.78 1214.9 0.16 0.67 199
R104–100 21600 980.3 956.97 980.3 2.44 2.44 745 21600 984.8 956.97 984.8 2.91 2.91 1726
R105–100 384.4 1355.3 1346.14 1363.3 0.68 1.27 325 1232 1355.3 1346.14 1367.9 0.68 1.62 1121
R106–100 12311 1234.6 1226.91 1241.1 0.63 1.16 1313 7944 1234.6 1226.91 1249.1 0.63 1.81 3533
R107–100 21600 1080.6 1053.26 1080.6 2.60 2.60 631 21600 1064.6 1053.26 1070 1.08 1.59 4557
R108–100 21600 962.7† 21600 963.3†
R109–100 15549 1146.9 1134.28 1158.6 1.11 2.14 3241 14897 1146.9 1134.28 1155.9 1.11 1.91 4763
R110–100 21600 1070.9 1055.88 1070.9 1.42 1.42 2302 21600 1086.1 1055.88 1086.1 2.86 2.86 4302
R111–100 21600 1051 1034.73 1051 1.57 1.57 1509 21600 1050.9 1034.73 1058.5 1.56 2.30 4320
R112–100 21600 967.1† 21600 959.8 926.72 959.8 3.57 3.57 1446
RC101–100 21600 1620.6 1584.09 1655.1 2.30 4.48 14633 21600 1657.5 1584.09 1657.7 4.63 4.65 14600
RC102–100 21600 1507.2† 21600 1506.2 1406.44 1506.2 7.09 7.09 6918
RC103–100 21600 1278.4 1225.65 1278.4 4.30 4.30 1136 21600 1302.9†
RC104–100 21600 1174.2 1101.81 1174.2 6.57 6.57 96 21600 1162.7†
RC105–100 21600 1536.7 1471.94 1548.8 4.40 5.22 7513 21600 1534.6 1471.94 1556.1 4.26 5.72 2611
RC106–100 21600 1390.1† 21600 1395.1 1318.8 1395.1 5.79 5.79 4415
RC107–100 21600 1209.8 1183.37 1209.8 2.23 2.23 1480 21600 1220 1183.37 1220 3.10 3.10 3218
RC108–100 21600 1154.4† 21600 1208.1†

† Recovered upper bound.

79

Table 6.7: VRPTW — Best ng-route algorithms — 6 hours, 75 and 100
customers.

NGRR NG-DSSR-L
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–75 1.75 649.2 649.2 649.2 0.00 0.00 1 1.88 649.2 649.2 649.2 0.00 0.00 1
C102–75 8.33 649.2 649.2 649.2 0.00 0.00 1 5.54 649.2 649.2 649.2 0.00 0.00 1
C103–75 38.82 649 649 649 0.00 0.00 1 43.95 649 649 649 0.00 0.00 1
C104–75 21600 644.3 623.1 644.3 3.39 3.39 14 21600 644.3 623.1 644.3 3.39 3.39 137
C105–75 3.38 649.2 649.2 649.2 0.00 0.00 1 2.63 649.2 649.2 649.2 0.00 0.00 1
C106–75 7.31 647.3 632.3 648.9 2.36 2.62 3 6.32 647.3 632.3 648.9 2.36 2.62 3
C107–75 3.49 647.3 647.3 647.3 0.00 0.00 1 2.73 647.3 647.3 647.3 0.00 0.00 1
C108–75 28.39 645.5 631.1 648.1 2.27 2.69 7 12.43 645.5 631.1 648.9 2.27 2.81 3
C109–75 12268 639.2 625 649.4 2.27 3.90 1187 3727 639.2 625 639.6 2.27 2.34 613
R101–75 0.7 1425.1 1425.1 1425.1 0.00 0.00 1 0.82 1425.1 1425.1 1425.1 0.00 0.00 1
R102–75 1.18 1268.5 1268.5 1268.5 0.00 0.00 1 1.75 1268.5 1268.5 1268.5 0.00 0.00 1
R103–75 3.28 1013.2 1013.2 1013.2 0.00 0.00 1 3.48 1013.2 1013.2 1013.2 0.00 0.00 1
R104–75 9704 807.2 796.5 821.4 1.34 3.12 2400 21600 820.5 796.6 820.5 3.00 3.00 3867
R105–75 1.17 1161.6 1161.6 1161.6 0.00 0.00 1 1.32 1161.6 1161.6 1161.6 0.00 0.00 1
R106–75 64.95 1075.6 1068.8 1075.6 0.64 0.64 79 57.05 1075.6 1068.8 1075.9 0.64 0.67 95
R107–75 1209 919.1 912.04 925.4 0.77 1.46 421 440.5 919.1 912.2 923.5 0.75 1.24 213
R108–75 21600 786.5 775.8 805.9 1.38 3.88 2589 3027 786.5 775.8 802.5 1.38 3.44 663
R109–75 21600 1036.7 994.1 1036.7 4.28 4.28 15339 21600 1022 994.1 1043.3 2.80 4.94 13733
R110–75 21600 933.1 904.3 933.1 3.18 3.18 10322 21044 923.1 904.3 929.4 2.07 2.77 12473
R111–75 4556 896.3 884.8 900 1.30 1.72 1977 3320 896.3 884.8 905.9 1.30 2.39 1697
R112–75 6485 815 803.7 817.1 1.40 1.66 1207 8440 815 803.7 839 1.40 4.39 3389
RC101–75 580.6 1361.3 1335.9 1362.9 1.90 2.02 1381 985 1361.3 1335.9 1389.3 1.90 4.00 2063
RC102–75 21600 1264.5 1197 1265.1 5.64 5.69 28053 21600 1256.6 1197 1286.2 4.98 7.45 18014
RC103–75 21600 1098.1 1019.9 1098.1 7.66 7.66 22629 21600 1117.5 1019.9 1117.5 9.57 9.57 6318
RC104–75 21600 999.3 919.2 999.3 8.71 8.71 10410 21600 961.7 919.3 961.7 4.61 4.61 876
RC105–75 21600 1272.5 1194.1 1280.9 6.57 7.27 30565 21600 1243.4 1194.1 1269.2 4.13 6.29 17715
RC106–75 21600 1135.1 1078.6 1137.8 5.24 5.49 17295 21600 1124 1078.6 1163.3 4.21 7.85 14606
RC107–75 21600 1015.6 967.2 1038.9 5.01 7.41 8769 21600 1017.7 967.2 1017.7 5.22 5.22 7742
RC108–75 21600 21600 973.2 878.9 973.2 10.72 10.72 913
C101–100 3.06 827.3 827.3 827.3 0.00 0.00 1 2.94 827.3 827.3 827.3 0.00 0.00 1
C102–100 42.35 827.3 827.3 827.3 0.00 0.00 1 19.75 827.3 827.3 827.3 0.00 0.00 1
C103–100 467.4 826.3 826.3 826.3 0.00 0.00 1 239 826.3 826.3 826.3 0.00 0.00 1
C104–100 17967 822.9 822.9 822.9 0.00 0.00 1 2343 822.9 822.9 822.9 0.00 0.00 1
C105–100 5.64 827.3 827.3 827.3 0.00 0.00 1 5.31 827.3 827.3 827.3 0.00 0.00 1
C106–100 8.85 827.3 827.3 827.3 0.00 0.00 1 7.55 827.3 827.3 827.3 0.00 0.00 1
C107–100 7.93 827.3 827.3 827.3 0.00 0.00 1 6.46 827.3 827.3 827.3 0.00 0.00 1
C108–100 15.03 827.3 827.3 827.3 0.00 0.00 1 9.13 827.3 827.3 827.3 0.00 0.00 1
C109–100 47.68 827.3 827.3 827.3 0.00 0.00 1 34.58 827.3 827.3 827.3 0.00 0.00 1
R101–100 22.21 1637.7 1631.1 1644.2 0.40 0.80 33 16.07 1637.7 1631.1 1647.5 0.40 1.00 19
R102–100 3.83 1466.6 1466.6 1466.6 0.00 0.00 1 3.76 1466.6 1466.6 1466.6 0.00 0.00 1
R103–100 286.8 1208.7 1206.7 1210.6 0.16 0.32 57 550.4 1208.7 1206.7 1213.7 0.16 0.57 151
R104–100 21600 982.4 956.8 984.8 2.67 2.92 1092 21600 977.4 956.9 977.4 2.13 2.13 1975
R105–100 1100 1355.3 1346.1 1371.4 0.68 1.88 1029 305.1 1355.3 1346.1 1366.9 0.68 1.54 313
R106–100 21600 1240.3 1226.9 1254 1.09 2.21 8677 6166 1234.6 1226.9 1248 0.63 1.72 2613
R107–100 21600 1074.1 1053.2 1074.1 1.98 1.98 1820 21600 1064.6 1053.2 1067.7 1.08 1.37 3350
R108–100 21600 936.6 913.4 936.6 2.54 2.54 251 21600
R109–100 21600 1146.9 1134.3 1153.4 1.11 1.69 4127 17537 1146.9 1134.3 1156.4 1.11 1.95 5333
R110–100 21600 1072.5 1055.8 1072.5 1.57 1.57 2026 21600 1069.9 1055.9 1075.4 1.33 1.85 4488
R111–100 21600 1054.8 1034.7 1054.8 1.94 1.94 3185 21600 1051 1034.7 1061.5 1.57 2.59 3358
R112–100 21600 963.6 926.7 963.6 3.98 3.98 383 21600 960.5 926.7 960.5 3.65 3.65 871
RC101–100 21600 1662.4 1584.1 1665.9 4.94 5.16 17194 21600 1621.2 1584.1 1658.4 2.34 4.69 13707
RC102–100 21600 1499.2 1406.4 1504.3 6.60 6.96 11213 21600 1526.2 1406.4 1526.2 8.52 8.52 5535
RC103–100 21600 1306.2 1225.6 1306.2 6.57 6.57 7086 21600
RC104–100 21600 1167.1† 21600 1163.7 1101.8 1163.7 5.62 5.62 146
RC105–100 21600 1556.3 1471.9 1573.8 5.73 6.92 12753 21600 1516.9 1471.9 1563.7 3.05 6.23 6641
RC106–100 21600 21600 1396.7 1318.8 1396.7 5.91 5.91 6418
RC107–100 21600 1244.6 1183.3 1244.6 5.17 5.17 4022 21600 1225.8 1183.4 1225.8 3.59 3.59 3342
RC108–100 21600 1151.6† 21600 1211.4†

† Recovered upper bound.

80

while a certain cycle with endpoints on customer i can be likely to occur,
it might be unnecessary to mark i as critical for customers that are outside
the cycle. This granularity also allows for an update rule that performs the
least necessary work in order to prevent the further generation of encountered
cycles, while maintaining the number of “activated” elementarity resources
low in order to speed up the label extension phase.

Next, we run the four more performing algorithms, namely DSSR-L, NG-
DSSR-L, NG-DSSR-L-E, and NGRR, on Solomon’s instances of Series 1 with
25, 50, 75, and 100 customers, with a time limit of six hours. Table 6.3 sum-
marizes these results using the same format of Tables 6.1 and 6.2, although
since the four algorithms are able to solve all the instances with 25 customers
within three hours, these are omitted. Furthermore, column “R” in Table 6.3
reports where appropriate the number of instances for which CPLEX is able
to recover an upper bound if the algorithm fails to solve the root node within
the time limit of six hours.

Tables 6.4, 6.5, 6.6, and 6.7 report the detailed results of these exper-
iments. For each instance considered, we give the corresponding computing
time in seconds (column “Time”), the best upper bound obtained (column
“UB”), the lower bound obtained at the root node (column “LB”), the upper
bound provided by CPLEX at the root node (column “RUB”), the integral-
ity gap computed using the best available upper bound (column “G (%)”),
the gap computed using the upper bound obtained at the root node (column
“RG (%)”), and the total number of nodes in the branch-and-bound tree
that have been explored by the algorithm (column “Nodes”). Moreover, the
values marked with (†) in the “UB” column indicate that the upper bound is
recovered by CPLEX. The time limit for CPLEX in this case is set to three
hours. Note that if only the trivial columns are available in the pool, CPLEX
is not called.

At this stage, Friedman’s test does not indicate any significant difference
between the four algorithms (p = 0.11). While the test is inconclusive, Ta-
ble 6.3 and the detailed tables suggest that NGRR is generally able to solve
less instances than the other algorithms, and when it is able to solve the
same number of instances, it often achieves worse computing times on aver-
age. This is also supported by the fact that NGRR has the highest ranking
statistic among all four algorithms (the lowest one is achieved by NG-DSSR-
L). As we are going to see in the next section, this result is similar to what
we have observed for the VRPTWWTC.

Finally, Figure 6.1 depicts the distribution of the differences between the
gap computed at the root node and the gap computed using the best available
upper bound, calculated only for solved or partially solved instances such

81

Table 6.8: VRPTWWTC — Elementary algorithms — 3 hours.
DSSR DSSR-L NG-DSSR-G-E NG-DSSR-L-E

Class NI S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%)
C1–25 9 5 1 1030 0.28 6 3 874.1 0.20 5 1 1016 0.33 5 3 75.1 0.19
R1–25 12 12 103.7 12 11.7 12 145.7 12 23.2
RC1–25 8 8 59.4 8 7.91 8 56.5 8 18.8
C1–50 9 4 167 6 907.2 5 2065 6 1 923.7 0.01
R1–50 12 5 6 2211 1.17 9 3 1342 1.99 5 7 1102 1.24 10 2 2458 1.73
RC1–50 8 6 6.83 1 7 209.7 6.43 1 7 7800 6.63 1 7 1487 6.39

Table 6.9: VRPTWWTC — ng-route algorithms — 3 hours.
NGRR NG-DSSR-G NG-DSSR-L

Class NI S PS Time Gap (%) S PS Time Gap (%) S PS Time Gap (%)

C1–25 9 5 4 238.7 0.27 5 2 1142 0.31 5 4 109.5 0.41
R1–25 12 12 37.9 12 74.8 12 12.9
RC1–25 8 8 1643 8 158.8 8 29.2
C1–50 9 6 1754 4 180.0 5 1 211.8 0.02
R1–50 12 7 5 1362 2.12 6 6 2519 1.63 9 3 1893 2.08
RC1–50 8 1 7 9347 6.17 1 7 2175 6.53 1 7 359.7 6.66

that the lower bound is not already the optimal solution. The horizontal
axis indicates the difference in percentage points. We can observe that in
general the gap at the root node is often very close to, or the same as, the
best gap overall. Indeed, the lowest quartile of the difference is 0 for all
the algorithms. This is an interesting result, considering the generally high
number of nodes that are evaluated by the BP procedure on such instances.

6.2.2 Benchmarking for the VRPTWWTC

Tables 6.8 and 6.9 synthetically present the benchmark results of the first
round for the VRPTWWTC. As it was the case for the VRPTW, Friedman’s
test yields a p-value significantly smaller than 0.05, i.e., p < 2.2e−16, which
justifies us to proceed with Wilcoxon’s test. According to its results, DSSR-
L outperforms DSSR, NGRR, NG-DSSR-G, and NG-DSSR-G-E with p <
1e−7. In addition, we observe that the performances of DSSR-L, NG-DSSR-
L, and NG-DSSR-L-E are not significantly different from each other. The
lowest average ranking was still achieved by DSSR-L, while DSSR obtained
the highest one. Once again, it can be concluded that the local approach
performs significantly better than the global approach, even when solving
the VRPTWWTC.

As for the VRPTW, we run the four more performing algorithms, namely
DSSR-L, NG-DSSR-L, NG-DSSR-L-E, and NGRR, on Solomon’s instances

82

Table 6.10: VRPTWWTC — Benchmarks — 6 hours.
DSSR-L NG-DSSR-L-E NGRR NG-DSSR-L

Class NI S PS R Time Gap (%) S PS R Time Gap (%) S PS R Time Gap (%) S PS R Time Gap (%)
C1–25 9 7 2 3533 0.32 6 3 3054 0.21 6 3 3465 0.27 7 2 5201 1.49
R1–25 12 12 13.2 12 23.1 12 33.3 12 13.1
RC1–25 8 8 11.2 8 24.3 8 1968 8 96.8
C1–50 9 6 1 1 1701 0.01 6 1 1 607.2 0.01 6 2 930.9 6 1 2 926.8 0.02
R1–50 12 9 3 1528 2.03 10 2 3601 2.06 8 4 1676 2.16 9 3 1898 2.02
RC1–50 8 2 6 10478 6.72 1 7 1213 6.39 1 7 8058 7.21 1 7 737.8 6.70
C1–75 9 5 1 3 4274 0.21 5 1 2 1787 0.20 5 4 3614 5 3 2992
R1–75 12 3 9 54.3 1.35 4 8 4923 1.34 4 8 1986 1.43 4 8 2925 1.47
RC1–75 8 8 3.12 8 3.03 8 3.50 1 7 17613 3.45
C1–100 9 5 3 1896 5 3 955.4 5 3 4172 5 4 1702
R1–100 12 2 2 5 9121 0.74 3 1 6 10726 0.80 2 2 3 7270 0.40 3 1 5 6492 0.80
RC1–100 8 2 6 1.27 2 6 1.72 3 5 1.97 5 2 2.05

of Series 1 with 25, 50, 75, and 100 customers, with a time limit of six
hours. Tables 6.11, 6.12, 6.13, and 6.14 report the detailed results of
these experiments, while Table 6.10 summarizes these results. According to
the data provided in Table 6.10, increasing the allotted time limit of BP
algorithms does not significantly increase the number of solved or partially
solved instances in the classes with 25 and 50 customers. Furthermore, it can
be observed that NG-DSSR-L is able to solve the root node and provide a
feasible solution for five RC class instances with 100 customers. This value
reaches down to 2 with the other algorithms. Table 6.10 also reports the
number of instances for which CPLEX is able to recover an upper bound in
column “R”.

We analyze the computational results reported in Tables 6.11, 6.12, 6.13,
and 6.14 by utilizing again Friedman’s test. The results offered by the test
imply that there is a significant performance difference between the algo-
rithms with a p-value of 5.093e−5. Then, Wilcoxon’s signed-rank test is used
for the post-hoc analysis, which clearly shows that NGRR is outperformed by
the other three algorithms with a p-value smaller than 0.01, confirming the
previous results. Additionally, NGRR presents the highest ranking statistic
while NG-DSSR-L has the lowest one, as it occurs with the VRPTW.

It can be observed from the data provided in the detailed tables, with
regard to the three best algorithms, i.e., DSSR-L, NG-DSSR-L, and NG-
DSSR-L-E, that on a few instances, NG-DSSR-L offers slightly worse gaps
than DSSR-L, and more rarely they are slightly better. This would be con-
sistent with the idea that an algorithm using only elementary routes would
have a tighter lower bound than one based on ng-routes. However, most of
the time the gaps are the same, often because the algorithms find the optimal
solution at the root node. There is a small difference between NG-DSSR-L-
E and DSSR-L with respect to the gaps, with only a handful of instances

83

Table 6.11: VRPTWWTC — Best elementary route algorithms — 6 hours,
25 and 50 customers.

DSSR-L NG-DSSR-L-E
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–25 0.54 2465.2 2465.2 2465.2 0 0 1 0.84 2465.2 2465.2 2465.2 0 0 1
C102–25 4853 2464.2 2458.7 2464.2 0.22 0.22 171 17791 2464.2 2458.7 2464.2 0.22 0.22 167
C103–25 21600 2457.5 2455.5 2457.5 0.08 0.08 14 21600 2457.5 2455.4 2457.5 0.08 0.08 2
C104–25 21600 2462.1 2448.1 2462.1 0.57 0.57 10 21600 2454.4 2448.1 2454.4 0.25 0.25 2
C105–25 2.84 2465.2 2464.3 2465.2 0.03 0.03 3 2.66 2465.2 2464.3 2465.2 0.03 0.03 3
C106–25 0.58 2465.2 2465.2 2465.2 0 0 1 0.77 2465.2 2465.2 2465.2 0 0 1
C107–25 9.19 2465.2 2461.3 2465.2 0.15 0.15 7 8.30 2465.2 2461.3 2465.2 0.15 0.15 5
C108–25 888.3 2465.2 2461 2465.2 0.17 0.17 13 523.3 2465.2 2461 2465.2 0.17 0.17 15
C109–25 18972 2463.8 2457 2463.8 0.28 0.28 239 21600 2463.8 2457 2463.8 0.28 0.28 297
R101–25 0.19 978.9 978.9 978.9 0 0 1 0.25 978.9 978.9 978.9 0 0 1
R102–25 2.23 875.2 872.4 875.2 0.32 0.32 3 2.33 875.2 872.4 875.2 0.32 0.32 3
R103–25 9.92 744.2 742.2 744.2 0.27 0.27 9 10.74 744.2 742.2 744.2 0.27 0.27 9
R104–25 8.29 686.8 686.5 686.8 0.03 0.03 3 12.77 686.8 686.5 686.8 0.03 0.03 5
R105–25 0.28 805.4 805.4 805.4 0 0 1 0.36 805.4 805.4 805.4 0 0 1
R106–25 3.12 744.5 735.5 747.2 1.22 1.59 3 4.62 744.5 735.5 747.2 1.22 1.59 5
R107–25 5.26 683.9 683.9 683.9 0 0 1 3.78 683.9 683.9 683.9 0 0 1
R108–25 63.09 653.4 645.7 662.1 1.19 2.54 37 170.3 653.4 645.7 662.1 1.19 2.54 113
R109–25 1.26 691.3 691.3 691.3 0 0 1 1.20 691.3 691.3 691.3 0 0 1
R110–25 11.33 694.1 688.3 694.1 0.84 0.84 11 16.09 694.1 688.3 694.1 0.84 0.84 13
R111–25 6.57 684.6 683 684.6 0.22 0.22 5 8.72 684.6 683 684.6 0.22 0.22 5
R112–25 34.18 643 637 643 0.93 0.93 19 45.72 643 637 643 0.93 0.93 17
RC101–25 10.25 722.4 661.4 722.4 9.21 9.21 197 8.85 722.4 661.4 722.4 9.21 9.21 101
RC102–25 2.84 602.7 602.7 602.7 0 0 1 4.69 601.8 601.8 601.8 0 0 1
RC103–25 24.66 588.7 588.7 588.7 0 0 1 27.78 585.1 585.1 585.1 0 0 1
RC104–25 28.81 572.4 572.4 572.4 0 0 1 44.46 572.4 572.4 572.4 0 0 1
RC105–25 1.44 681.5 681.5 681.5 0 0 1 8.26 681.5 681.5 681.5 0 0 1
RC106–25 3.00 595.5 595.5 595.5 0 0 1 5.21 595.5 595.5 595.5 0 0 1
RC107–25 6.02 548.3 548.3 548.3 0 0 1 44.75 548.3 548.3 548.3 0 0 1
RC108–25 12.37 544.5 544.5 544.5 0 0 1 50.58 544.5 544.5 544.5 0 0 1
C101–50 4.92 4929.6 4929.6 4929.6 0 0 1 6.77 4929.6 4929.6 4929.6 0 0 1
C102–50 21600 4897.2 4896.5 4897.2 0.01 0.01 3 21600 4897.2 4896.5 4897.2 0.01 0.01 2
C103–50 21600 4869.4† 0 21600 0
C104–50 21600 0 21600 4882.5† 0
C105–50 126 4894.1 4891.3 4894.1 0.06 0.06 11 112.9 4894.1 4891.3 4894.1 0.06 0.06 11
C106–50 8.99 4865 4865 4865 0 0 1 10.54 4865 4865 4865 0 0 1
C107–50 32.75 4867.2 4867.2 4867.2 0 0 1 31.23 4867.2 4867.2 4867.2 0 0 1
C108–50 560.2 4862.4 4862.4 4862.4 0 0 1 456.2 4862.4 4862.4 4862.4 0 0 1
C109–50 9471 4862.4 4862.4 4862.4 0 0 1 3025 4862.4 4862.4 4862.4 0 0 1
R101–50 2.91 1739.9 1736.2 1740.6 0.21 0.25 11 5.25 1739.9 1736.2 1740.6 0.21 0.25 17
R102–50 12.35 1509.5 1509.5 1509.5 0 0 1 12.35 1509.5 1509.5 1509.5 0 0 1
R103–50 689.2 1312 1310.5 1315.6 0.11 0.39 17 690.3 1312 1310.5 1312.6 0.11 0.16 19
R104–50 1645 1132.3 1124.8 1132.8 0.67 0.71 23 9268 1132.3 1124.8 1135 0.67 0.91 209
R105–50 33.67 1432.7 1422.3 1435.3 0.73 0.91 45 56.85 1432.7 1422.3 1435.3 0.73 0.91 57
R106–50 144.9 1294.8 1293.4 1294.8 0.10 0.10 11 126.1 1294.8 1293.4 1294.8 0.10 0.10 9
R107–50 21600 1218.5 1206.3 1218.5 1.01 1.01 467 18330 1218.5 1206.3 1225.7 1.01 1.60 505
R108–50 21600 1132.1 1100.2 1132.1 2.89 2.89 376 21600 1130.4 1100.2 1130.4 2.74 2.74 3981
R109–50 899.14 1286.8 1275.3 1289.2 0.90 1.09 241 1107 1286.8 1275.3 1289.2 0.90 1.09 347
R110–50 849.6 1200 1195.8 1205.4 0.35 0.80 21 529.7 1200 1195.8 1205.4 0.35 0.80 25
R111–50 9478 1210.6 1200.1 1211.7 0.87 0.96 251 5881 1210.6 1200.1 1211.7 0.87 0.96 223
R112–50 21600 1139.3 1114.8 1139.3 2.19 2.19 549 21600 1130.2 1114.8 1146.3 1.38 2.82 1077
RC101–50 21600 1465.8 1358.9 1465.8 7.86 7.86 45774 21600 1465.8 1358.9 1465.8 7.86 7.86 55838
RC102–50 21600 1304.7 1212.3 1307 7.62 7.81 4783 21600 1307 1212.3 1307 7.81 7.81 2739
RC103–50 21600 1237.4 1151.4 1237.4 7.47 7.47 233 21600 1227.3 1146.9 1230 7.01 7.25 102
RC104–50 343 1052 1052 1052 0 0 1 1212 1052 1052 1052 0 0 1
RC105–50 21600 1384.1 1277.6 1384.1 8.33 8.33 12471 21600 1380 1277.6 1387.5 8.01 8.60 7387
RC106–50 20613 1223.2 1164.4 1224 5.05 5.12 5463 21600 1223.2 1164.4 1224 5.05 5.12 2687
RC107–50 21600 1142.7 1103.5 1142.7 3.54 3.54 498 21600 1140.3 1101.1 1140.3 3.55 3.55 133
RC108–50 21600 1098.1 1041.1 1098.1 5.47 5.47 196 21600 1098.1 1041.1 1098.1 5.47 5.47 44
† Recovered upper bound.

84

Table 6.12: VRPTWWTC — Best ng-route algorithms — 6 hours, 25 and
50 customers.

NGRR NG-DSSR-L
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–25 0.63 2465.2 2465.2 2465.2 0 0 1 0.67 2465.2 2465.2 2465.2 0 0 1
C102–25 16335 2464.2 2457.8 2464.2 0.26 0.26 329 17988 2464.2 2457.2 2464.2 0.29 0.29 189
C103–25 21600 2457.5 2454.2 2457.5 0.13 0.13 79 21600 2484.3 2450.2 2484.3 1.39 1.39 521
C104–25 21600 2454.4 2445.6 2454.4 0.36 0.36 42 21600 2482.2 2443.2 2490.4 1.60 1.93 29
C105–25 2.98 2465.2 2464.4 2465.2 0.03 0.03 3 2.93 2465.2 2464.4 2465.2 0.03 0.03 3
C106–25 0.73 2465.2 2465.2 2465.2 0 0 1 0.80 2465.2 2465.2 2465.2 0 0 1
C107–25 16.72 2465.2 2461.4 2465.2 0.15 0.15 9 10.85 2465.2 2461.4 2465.2 0.15 0.15 9
C108–25 970.7 2465.2 2458.3 2465.2 0.28 0.28 53 546.6 2465.2 2461 2465.2 0.17 0.17 17
C109–25 21600 2463.8 2456.3 2463.8 0.31 0.31 1187 17860 2463.8 2457 2463.8 0.28 0.28 245
R101–25 0.27 978.9 978.9 978.9 0 0 1 0.24 978.9 978.9 978.9 0 0 1
R102–25 2.31 875.2 872.4 875.2 0.32 0.32 3 2.57 875.2 872.4 875.2 0.32 0.32 3
R103–25 14.83 744.2 742.2 744.2 0.27 0.27 15 9.30 744.2 742.2 744.2 0.27 0.27 9
R104–25 14.79 686.8 686.5 686.8 0.03 0.03 7 6.61 686.8 686.5 686.8 0.03 0.03 3
R105–25 0.51 805.4 805.4 805.4 0 0 1 0.43 805.4 805.4 805.4 0 0 1
R106–25 4.18 744.5 735.5 750.6 1.22 2.05 5 4.34 744.5 735.5 747.2 1.22 1.59 5
R107–25 4.40 683.9 683.9 683.9 0 0 1 2.98 683.9 683.9 683.9 0 0 1
R108–25 114.9 653.4 645.3 662.1 1.24 2.59 63 27.20 653.4 645.3 667 1.24 3.35 15
R109–25 5.62 691.3 691.3 691.3 0 0 1 1.11 691.3 691.3 691.3 0 0 1
R110–25 49.24 694.1 682.6 694.1 1.67 1.67 133 15.80 694.1 686.7 694.1 1.07 1.07 15
R111–25 22.53 684.6 680.4 684.6 0.62 0.62 21 18.79 684.6 680.4 684.6 0.62 0.62 19
R112–25 165.6 643 631.5 643 1.81 1.81 145 67.94 643 636.3 643 1.04 1.04 37
RC101–25 17.09 722.4 661.4 722.4 9.21 9.21 225 10.13 722.4 661.4 722.4 9.21 9.21 123
RC102–25 2.94 601.8 601.8 601.8 0 0 1 2.94 601.8 601.8 601.8 0 0 1
RC103–25 392.4 585.1 573.1 649 2.09 13.24 93 5.09 585.1 585.1 585.1 0 0 1
RC104–25 5499 572.4 558.7 587.8 2.45 5.21 3477 59.47 572.4 572.4 572.4 0 0 1
RC105–25 6.42 681.5 681.1 682.7 0.05 0.23 5 2.80 681.5 681.1 681.5 0.05 0.05 3
RC106–25 3.54 595.5 595.5 595.5 0 0 1 2.51 595.5 595.5 595.5 0 0 1
RC107–25 150 548.3 546.9 548.3 0.24 0.24 39 10.34 548.3 548.3 548.3 0 0 1
RC108–25 9673 544.5 535.5 546.3 1.67 2.01 2451 681 544.5 543.3 544.5 0.22 0.22 9
C101–50 6.32 4929.6 4929.6 4929.6 0 0 1 4.84 4929.6 4929.6 4929.6 0 0 1
C102–50 21600 4897.2† 0 21600 4897.2 4896.5 4897.2 0.02 0.02 3
C103–50 21600 4886.2† 0 21600 4869.4† 0
C104–50 21600 0 21600 4890.3† 0
C105–50 124.7 4894.1 4891.4 4894.1 0.06 0.06 9 63.48 4894.1 4891.4 4894.4 0.06 0.06 9
C106–50 9.94 4865 4865 4865 0 0 1 6.3 4865 4865 4865 0 0 1
C107–50 57.63 4867.2 4867.2 4867.2 0 0 1 25.63 4867.2 4867.2 4867.2 0 0 1
C108–50 393.6 4862.4 4862.4 4862.4 0 0 1 1024 4862.4 4862.4 4862.4 0 0 1
C109–50 4993 4862.4 4862.4 4862.4 0 0 1 4435 4862.4 4862.4 4862.4 0 0 1
R101–50 10.39 1739.9 1736.2 1740.6 0.21 0.25 35 2.32 1739.9 1736.2 1740.6 0.21 0.25 5
R102–50 15.62 1509.5 1509.5 1509.5 0 0 1 7.79 1509.5 1509.5 1509.5 0 0 1
R103–50 1388 1312 1310.5 1312.6 0.12 0.16 47 639.2 1312 1310.5 1312.6 0.12 0.16 19
R104–50 6627 1132.3 1124.8 1139.9 0.67 1.35 199 8880 1132.3 1124.8 1132.3 0.67 0.67 197
R105–50 69.64 1432.7 1422.3 1435.3 0.73 0.91 73 51.4 1432.7 1422.3 1435.3 0.73 0.91 55
R106–50 195.9 1294.8 1293.5 1295.1 0.10 0.13 11 64.82 1294.8 1293.5 1295.1 0.10 0.13 5
R107–50 21600 1223 1206.4 1223 1.38 1.38 2313 21600 1220.7 1206.4 1222.5 1.19 1.34 921
R108–50 21600 1127.2 1099.8 1127.2 2.49 2.49 2478 21600 1129.2 1099.8 1129.2 2.68 2.68 1118
R109–50 1634 1286.8 1274.1 1290.7 1.00 1.31 501 825.8 1286.8 1275.4 1289.2 0.90 1.09 313
R110–50 3464 1200 1194 1210.2 0.51 1.36 291 2076 1200 1195.9 1217.4 0.35 1.80 115
R111–50 21600 1210.6 1186.8 1211.7 2.00 2.10 2148 4532 1210.6 1199.6 1215 0.92 1.29 155
R112–50 21600 1140.2 1109.8 1144.5 2.74 3.13 3645 21600 1139.2 1114.6 1139.3 2.21 2.21 1099
RC101–50 21600 1475.5 1359 1496.6 8.57 10.13 67197 21600 1478.4 1359 1494.4 8.79 9.97 71436
RC102–50 21600 1306.4 1210.2 1307 7.95 8.00 3284 21600 1313.7 1212.3 1316.2 8.36 8.57 2971
RC103–50 21600 1260.9 1130 1277.9 11.59 13.09 2126 21600 1232.5 1144.5 1232.5 7.69 7.69 323
RC104–50 8057 1052 1050.4 1052 0.15 0.15 73 737.8 1052 1052 1052 0 0 1
RC105–50 21600 1382.3 1277.7 1382.3 8.19 8.19 5104 21600 1380 1277.7 1389.3 8.01 8.74 3706
RC106–50 21600 1223.2 1164.4 1224 5.05 5.12 3486 21600 1223.2 1164.4 1224 5.05 5.12 3052
RC107–50 21600 1140.3 1100.3 1140.3 3.64 3.64 1236 21600 1140.3 1101.2 1140.3 3.55 3.55 165
RC108–50 21600 1098.1 1041.2 1098.1 5.47 5.47 412 21600 1098.1 1041.2 1098.1 5.47 5.47 37
† Recovered upper bound.

85

Table 6.13: VRPTWWTC — Best elementary route algorithms — 6 hours,
75 and 100 customers.

DSSR-L NG-DSSR-L-E
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–75 19.71 7399.2 7399.2 7399.2 0 0 1 17.18 7399.2 7399.2 7399.2 0 0 1
C102–75 20348 7399.2 7399.2 7399.2 0 0 1 21600 7399.2† 0
C103–75 21600 7399.2† 0 21600 7399.2† 0
C104–75 21600 7398.3† 0 21600 0
C105–75 80.62 7399.2 7399.2 7399.2 0 0 1 27.55 7399.2 7399.2 7399.2 0 0 1
C106–75 807.5 7397.3 7382.3 7397.3 0.20 0.20 3 254.9 7397.3 7382.3 7397.3 0.20 0.20 3
C107–75 112.8 7397.3 7397.3 7397.3 0 0 1 108.1 7397.3 7397.3 7397.3 0 0 1
C108–75 21600 7396.3 7381.1 7396.3 0.21 0.21 7 8527 7396.3 7381.1 7396.3 0.21 0.21 3
C109–75 21600 7389.2† 0 21600 7389.6 7375 7389.6 0.20 0.20 2
R101–75 12.31 2435.1 2434.8 2435.1 0.01 0.01 7 7.21 2435.1 2434.8 2435.1 0.01 0.01 3
R102–75 124.3 2169.1 2169.1 2169.1 0 0 1 78.38 2169.1 2169.1 2169.1 0 0 1
R103–75 21600 1824.6 1819.2 1824.6 0.29 0.29 78 19582 1824.6 1819.2 1825.6 0.29 0.35 141
R104–75 21600 1564.8 1544 1564.8 1.34 1.34 11 21600 1574.7 1544 1574.9 1.98 2.00 32
R105–75 26.23 1931.1 1930.1 1931.1 0.05 0.05 3 25.33 1931.1 1930.1 1931.1 0.05 0.5 3
R106–75 21600 1847.3 1830.8 1849.2 0.90 1.00 184 21600 1846.8 1830.8 1849.7 0.87 1.03 390
R107–75 21600 1686.9 1664.4 1686.9 1.35 1.35 12 21600 1685.4 1664.4 1685.4 1.26 1.26 69
R108–75 21600 1550.7 1520.3 1550.7 2.00 2.00 11 21600 1532.8 1520.3 1551.6 0.82 2.06 23
R109–75 21600 1780.6 1744.5 1780.6 2.07 2.07 537 21600 1780.7 1744.5 1781.4 2.07 2.11 1906
R110–75 21600 1684.7 1654.4 1684.7 1.83 1.83 42 21600 1686.2 1654.4 1686.2 1.92 1.92 431
R111–75 21600 1654.1 1636 1654.1 1.10 1.10 28 21600 1650 1636 1650 0.85 0.85 47
R112–75 21600 1573.9 1553.7 1573.9 1.30 1.30 12 21600 1568.8 1553.7 1568.8 0.97 0.97 40
RC101–75 21600 2159.1 2117.7 2163.7 1.95 2.17 9900 21600 2158.5 2117.7 2163.7 1.92 2.17 9880
RC102–75 21600 2008 1947.8 2008 3.09 3.09 486 21600 2006.8 1947.8 2006.8 3.03 3.03 3190
RC103–75 21600 1833.3 1764.2 1833.3 3.91 3.91 20 21600 1836.4 1764.2 1836.4 4.09 4.09 112
RC104–75 21600 1710.6 1665.4 1710.6 2.71 2.71 4 21600 1689.8 1665.4 1689.8 1.46 1.46 2
RC105–75 21600 2023 1967.9 2023 2.80 2.80 1566 21600 2027.1 1967.9 2033.6 3.01 3.34 5096
RC106–75 21600 1897.9 1834.2 1897.9 3.47 3.47 686 21600 1899.6 1834.2 1900.3 3.56 3.60 3078
RC107–75 21600 1768.9 1717.1 1768.9 3.01 3.01 17 21600 1773.2 1717.1 1773.2 3.26 3.26 209
RC108–75 21600 1693.9 1628.9 1693.9 3.99 3.99 19 21600 1692.2 1628.9 1692.2 3.89 3.89 170
C101–100 42.22 9827.3 9827.3 9827.3 0 0 1 51.26 9827.3 9827.3 9827.3 0 0 1
C102–100 21600 9827.3† 0 21600 9827.3† 0
C103–100 21600 9851.4† 0 21600 0
C104–100 21600 9871.2† 0 21600 9846.6† 0
C105–100 172.8 9827.3 9827.3 9827.3 0 0 1 114.9 9827.3 9827.3 9827.3 0 0 1
C106–100 3001 9827.3 9827.3 9827.3 0 0 1 714.3 9827.3 9827.3 9827.3 0 0 1
C107–100 216.8 9827.3 9827.3 9827.3 0 0 1 220.7 9827.3 9827.3 9827.3 0 0 1
C108–100 6048 9827.3 9827.3 9827.3 0 0 1 3675 9827.3 9827.3 9827.3 0 0 1
C109–100 21600 0 21600 9827.3† 0
R101–100 859.4 2886.5 2881.2 2888.6 0.18 0.26 193 1872 2886.5 2881.2 2888.6 0.18 0.26 423
R102–100 17382 2593.3 2592.5 2593.3 0.03 0.03 15 17652 2593.3 2592.5 2593.3 0.03 0.03 27
R103–100 21600 2247.7† 0 21600 2251.2† 0
R104–100 21600 1987.2† 0 21600 0
R105–100 21600 2375.8 2363.1 2383.4 0.54 0.86 889 12654 2375.8 2363.1 2378.7 0.54 0.66 593
R106–100 21600 0 21600 2244.2† 0
R107–100 21600 2068.2† 0 21600 2064.7† 0
R108–100 21600 0 21600 1980.5† 0
R109–100 21600 2152.6 2134 2152.6 0.87 0.87 24 21600 2151 2134 2154.6 0.80 0.96 83
R110–100 21600 0 21600 0
R111–100 21600 2057.6† 0 21600 2058.8† 0
R112–100 21600 2014.8† 0 21600 1972.4† 0
RC101–100 21600 2640.7 2610.9 2667.1 1.14 2.15 2086 21600 2668.8 2610.9 2668.8 2.21 2.21 2927
RC102–100 21600 2495.3† 0 21600 2517.6† 0
RC103–100 21600 2300.2† 0 21600 2351.5† 0
RC104–100 21600 2183.3† 0 21600 2157.3† 0
RC105–100 21600 2552.5† 0 21600 2552.9† 0
RC106–100 21600 2391.8† 0 21600 2392.9† 0
RC107–100 21600 2214 2183.3 2214 1.40 1.40 7 21600 2210.3 2183.3 2210.3 1.23 1.23 2
RC108–100 21600 2142.7† 0 21600 2126.7† 0
† Recovered upper bound.

86

Table 6.14: VRPTWWTC — Best ng-route algorithms — 6 hours, 75 and
100 customers.

NGRR NG-DSSR-L
Time UB LB RUB G(%) RG(%) Nodes Time UB LB RUB G(%) RG(%) Nodes

C101–75 20.21 7399.2 7399.2 7399.2 0 0 1 12.97 7399.2 7399.2 7399.2 0 0 1
C102–75 21600 7414.2† 0 21600 7399.2† 0
C103–75 21600 7405† 0 21600 7417.3† 0
C104–75 21600 7423.7† 0 21600 7455.1† 0
C105–75 95.97 7399.2 7399.2 7399.2 0 0 1 65.30 7399.2 7399.2 7399.2 0 0 1
C106–75 686.3 7397.3 7382.4 7397.3 0.20 0.20 3 467.6 7397.3 7382.4 7397.3 0.20 0.20 3
C107–75 216.9 7397.3 7397.3 7397.3 0 0 1 60.37 7397.3 7397.3 7397.3 0 0 1
C108–75 17048 7396.3 7381.2 7396.3 0.21 0.21 7 14354 7396.3 7381.2 7399.2 0.21 0.24 7
C109–75 21600 7389.2† 0 21600 0
R101–75 8.15 2435.1 2434.9 2435.1 0.01 0.01 3 7.99 2435.1 2434.9 2435.1 0.01 0.01 3
R102–75 119.2 2169.1 2169.1 2169.1 0 0 1 32.19 2169.1 2169.1 2169.1 0 0 1
R103–75 7785 1824.6 1819.3 1824.6 0.29 0.29 35 11641 1824.6 1819.3 1824.6 0.29 0.29 61
R104–75 21600 1571.9 1544 1571.9 1.81 1.81 39 21600 1567.5 1544 1567.5 1.52 1.52 54
R105–75 31.83 1931.1 1930.2 1931.1 0.05 0.05 3 20.21 1931.1 1930.2 1931.1 0.05 0.05 3
R106–75 21600 1846.8 1829.4 1851.6 0.95 1.21 348 21600 1846.8 1830.8 1848.9 0.87 0.99 463
R107–75 21600 1683.1 1662.4 1683.1 1.25 1.25 69 21600 1688.6 1664 1690.5 1.48 1.59 65
R108–75 21600 1532.8 1519.3 1541.8 0.89 1.48 19 21600 1538.3 1520.2 1538.3 1.19 1.19 21
R109–75 21600 1771.7 1744.6 1775.8 1.56 1.79 1293 21600 1776.1 1744.6 1776.1 1.81 1.81 1144
R110–75 21600 1683.1 1651 1683.9 1.95 2.00 289 21600 1681 1654.4 1681.6 1.61 1.64 144
R111–75 21600 1654.2 1632.3 1654.2 1.34 1.34 127 21600 1660.4 1635.9 1660.4 1.50 1.50 92
R112–75 21600 1579.6 1553.2 1579.6 1.70 1.70 132 21600 1581.3 1553.7 1581.3 1.78 1.78 70
RC101–75 21600 2158.5 2117.7 2159.4 1.92 1.97 11073 17613 2158.5 2117.7 2159.4 1.92 1.97 9563
RC102–75 21600 2001 1945.2 2001 2.87 2.87 1996 21600 2001.1 1947.8 2001.1 2.74 2.74 4586
RC103–75 21600 1838.8 1730.4 1838.8 6.26 6.26 3131 21600 1838.5 1764.3 1838.5 4.21 4.21 421
RC104–75 21600 1708.8 1645.8 1708.8 3.83 3.83 145 21600 1693.5 1665.3 1693.5 1.69 1.69 2
RC105–75 21600 2024.6 1968 2026 2.88 2.95 6665 21600 2035.7 1968 2037.1 3.44 3.51 6500
RC106–75 21600 1906.7 1834.3 1906.7 3.95 3.95 3531 21600 1907.7 1834.3 1907.7 4.00 4.00 3092
RC107–75 21600 1750.6 1714.7 1768.5 2.09 3.14 785 21600 1788.7 1717.2 1788.7 4.17 4.17 42
RC108–75 21600 1693.8 1625.2 1693.8 4.22 4.22 1402 21600 1692.1 1628.9 1692.1 3.88 3.88 38
C101–100 38.22 9827.3 9827.3 9827.3 0 0 1 25.46 9827.3 9827.3 9827.3 0 0 1
C102–100 21600 9828† 0 21600 9851.3† 0
C103–100 21600 9856.7† 0 21600 9833.6† 0
C104–100 21600 0 21600 9882.5† 0
C105–100 140.3 9827.3 9827.3 9827.3 0 0 1 274.7 9827.3 9827.3 9827.3 0 0 3
C106–100 4940 9827.3 9827.3 9827.3 0 0 1 1769 9827.3 9827.3 9827.3 0 0 1
C107–100 357.3 9827.3 9827.3 9827.3 0 0 1 194.4 9827.3 9827.3 9827.3 0 0 1
C108–100 15384 9827.3 9827.3 9827.3 0 0 1 6244 9827.3 9827.3 9827.3 0 0 1
C109–100 21600 9827.3† 0 21600 9827.3† 0
R101–100 249.3 2886.5 2881.2 2886.5 0.18 0.18 37 1557 2886.5 2881.2 2886.5 0.18 0.18 509
R102–100 21600 2593.3 2592.5 2593.4 0.03 0.03 11 11110 2593.3 2592.5 2593.3 0.03 0.03 13
R103–100 21600 0 21600 0
R104–100 21600 2004.2† 0 21600 2010.5† 0
R105–100 14291 2375.8 2363.1 2381.6 0.54 0.78 595 6807 2375.8 2363.1 2390.6 0.54 1.16 849
R106–100 21600 0 21600 2253.4† 0
R107–100 21600 0 21600 2145.8† 0
R108–100 21600 2001† 0 21600 0
R109–100 21600 2150.5 2134 2150.5 0.77 0.77 72 21600 2151 2134 2152.8 0.80 0.88 75
R110–100 21600 2139.1† 0 21600 2146.7† 0
R111–100 21600 0 21600 2131.2† 0
R112–100 21600 0 21600 0
RC101–100 21600 2668.8 2611 2668.8 2.21 2.21 3323 21600 2640.7 2611 2675.7 1.14 2.48 970
RC102–100 21600 2518.4† 0 21600 2492.8 2422.1 2492.8 2.92 2.92 334
RC103–100 21600 2296.8† 0 21600 2294.7† 0
RC104–100 21600 2260† 0 21600 2163.3† 0
RC105–100 21600 2548.8 2492.3 2548.8 2.27 2.27 421 21600 2547.1 2492.3 2555.3 2.20 2.53 781
RC106–100 21600 2388.5† 0 21600 2383.8 2319.8 2383.8 2.76 2.76 330
RC107–100 21600 2208.9 2178.1 2208.9 1.41 1.41 22 21600 2210 2183.4 2210 1.22 1.22 8
RC108–100 21600 2144† 0 21600 0
† Recovered upper bound.

87

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

DSSR-L

NG-DSSR-L-E

NG-DSSR-L

9 · 10−2

2 · 10−2

0.25
0.1

0.18
7 · 10−2

RG(%) - G(%)

Figure 6.2: VRPTWWTC — Differences between root gap and best gap.
Upper quartile and upper whisker values are reported.

reaching differences of at most 1%. Regarding the number of explored nodes
of the branch-and-bound tree, DSSR-L generally evaluates fewer nodes than
the other algorithms, except the RC class instances with 50 customers.

Finally, Figure 6.2 shows the distribution of the differences between the
gap at the root node and the best gap overall, computed in the same way
of Figure 6.1, i.e., on instances that are solved or partially solved such that
the lower bound is not already the optimal solution. Here, the differences
are even smaller than the ones for the VRPTW, and indeed even the median
difference is 0 for all algorithms. As in the case of the VRPTW, the quality
of the upper bound obtained at the root node, along with the high number
of nodes that are evaluated on these instances, suggests that terminating the
BP procedure once the root node is evaluated and CPLEX is called to obtain
an upper bound can be the basis for an effective heuristic algorithm.

6.3 Configuration Analysis

In this section, we discuss the parameter configurations of the best per-
forming algorithms for each problem variant. More precisely, we consider all

88

Table 6.15: VRPTW — Best parameter configurations.
DSSR-L NG-DSSR-L-E NGRR NG-DSSR-L

Best Avg Min Max Best Avg Min Max Best Avg Min Max Best Avg Min Max
n_col_root 7% 8% 1% 24% 1% 15% 1% 31% 3% 31% 3% 87% 3% 10% 1% 38%
n_conc_root 3206 5894 3206 9589 5711 6950 5711 8777 8903 5574 1702 8903 4417 6011 3367 9734
n_col 54% 56% 36% 80% 9% 23% 3% 43% 45% 44% 4% 79% 76% 68% 43% 90%
n_conc 9981 9363 8518 9981 7417 8062 6867 9097 9278 8593 6919 9903 6728 8676 8094 9998
tree_nav best best (4) breadth breadth (6) depth depth (3) breadth breadth (5)
dssr_init_s_root whca whca (6)
dssr_init_n_root 12% 24% 12% 37%
dssr_path_s_root all-p all-p (6) in-btw in-btw (3) in-btw in-btw (5)
dssr_path_n_root 31% 16% 15% 31% 70% 74% 62% 88%
dssr_init_s wtca wtca (4)
dssr_init_n 21% 21% 15% 32%
dssr_path_s all-p all-p (6) in-btw in-btw (6) all-p all-p (5)
dssr_path_n 91% 88% 74% 95%
ng_m_root mix mix (6) mix mix (6) mix mix (3)
ng_s_root 81% 64% 54% 81% 22% 31% 22% 38% 43% 53% 43% 74%
ng_mix_root 10% 8% 1% 25% 46% 53% 32% 74% 94% 89% 84% 94%
ng_m ccr ccr (3) ccr ccr (3) tt tt (4)
ng_s 17% 23% 11% 35% 30% 34% 20% 52% 52% 73% 52% 89%

the configurations returned by irace for a given algorithm, not only the one
used for benchmarking. Note that for each algorithm, irace recommended
six configurations.

Table 6.15 summarizes the configurations of the best algorithms for the
VRPTW, while Table 6.16 does it for the VRPTWWTC. In both tables,
column “Best” presents the parameter value in the best configuration, i.e.,
the one used in the benchmarking phase. Column “Avg” presents the average
value of a parameter offered by the best six configurations or the most preva-
lent choice for a categorical parameter such as tree_nav. The lowest and
highest occurring values of each numerical parameter are given in column
“Min” and “Max”, respectively. Parameters dssr_node_s, dssr_node_n,
and ng_mix with their root node counterparts are not included in the Ta-
ble 6.16, either because they do not assume values in the configurations, or
they are not defined for the considered algorithms. Table 6.15 also ignores
all these parameters, except for ng_mix_root.

In Table 6.15, we can observe that the most frequent tree navigation
strategy is breadth-first search for NG-DSSR-L and NG-DSSR-L-E, while
best-first search and depth-first search are preferred by DSSR-L and NGRR,
respectively, although by a smaller margin. All the algorithms tend to accept
a small percentage of concatenated paths at the root node, reaching only 1%
of paths for NG-DSSR-L-E, while generating an average number of paths at
the concatenation phase (remember that this parameter can assume at most
the value of 10000). Outside the root node, this behavior changes; indeed
both the average percentage of accepted paths and the number of generated
paths significantly increase for all algorithms. A possible explanation for
this phenomenon is that the columns that are generated while evaluating

89

the root node can be of relatively poor quality, or that the algorithm takes
benefit from inserting in the RMP a smaller number of columns with very
low negative reduced cost early on, while this effect is lessened outside the
root node.

DSSR-L seems to assume a different initialization strategy when outside
the root node, changing from WHCA to WTCA, while the best values for
dssr_init_n_root and dssr_init_n are all grouped relatively close to 20%.
Regarding the insertion strategies, all algorithms seem to prefer either the all-
paths or the in-between strategy, with NG-DSSR-L-E adopting the one that
allows examining the least number of paths at the root node (in-between,
average of 16%). This indicates that the best approach might be to examine
a high number of paths at the end of a DSSR iteration in order to detect as
many invalid cycles as possible, especially outside the root node.

The mixed strategy is the preferred one for all the algorithms that use
ng-neighborhoods at the root node, with varying values of the parameter
ng_mix_root. Outside the root node this seems more varied, with the cheap
cycle risk (ccr) measure being chosen more often by a small margin. This
suggests that metrics different from the travel time used to construct the
ng-neighborhoods can present a valid alternative and might be the subject of
further research. Finally, we can observe that the sizes of the neighborhoods
vary quite considerably depending on the algorithm and on the phase of the
BP algorithm, which makes it hard to draw definite conclusions. NGRR and
NG-DSSR-L experience a slight increase in size outside the root node, which
can suggest that it might be necessary to prevent cycles in the final phase
of the algorithm (recall that the higher the size of the neighborhoods, the
harder it is for a valid ng-route to have a cycle), although NG-DSSR-L-E
experiences a significant decrease.

For the VRPTWWTC, we can observe in Table 6.16 that the most fre-
quent tree navigation strategy is still best-first search in DSSR-L, while it is
depth-first search for the algorithms using ng-neighborhoods, differently from
the case of the classic VRPTW. DSSR-L tends to create fewer paths during
the concatenation phase at the root node, while including a high percentage
of the concatenated paths into the RMP. At the child nodes, this behavior is
reversed, i.e., the number of concatenated paths dramatically increases and
a smaller percentage of the concatenated paths are inserted in the RMP. We
can observe that this is virtually the opposite behavior of what occurs in
the case of the VRPTW, suggesting that DSSR-L might be able to generate
good columns with relatively few label concatenations early in the execu-
tion of the algorithm. On the other hand, NG-DSSR-L and NG-DSSR-L-E
basically maintain the previously observed behavior, with NG-DSSR-L-E

90

Table 6.16: VRPTWWTC — Best parameter configurations.
DSSR-L NG-DSSR-L-E NG-DSSR-L

Best Avg Min Max Best Avg Min Max Best Avg Min Max
n_col_root 82% 42% 10% 81% 4% 10% 1% 35% 27% 45% 26% 98%
n_conc_root 2820 3998 2764 8481 8752 6900 5476 8752 7910 5949 1003 8320
n_col 31% 35% 22% 63% 14% 24% 11% 63% 42% 37% 36% 42%
n_conc 9247 8902 7308 9867 3079 3540 1100 4519 9845 8688 5234 9923
tree_nav best best (5) depth depth (6) depth depth (6)
dssr_init_s_root none none (6)
dssr_init_n_root
dssr_path_s_root in-btw in-btw (6) all-p all-p (6) 1-p 1-p (6)
dssr_path_n_root 25% 38% 24% 47%
dssr_init_s none none (6)
dssr_init_n
dssr_path_s in-btw in-btw (6) in-btw in-btw (6) in-btw in-btw (6)
dssr_path_n 39% 57% 38% 80% 35% 31% 26% 34% 98% 81% 72% 97%
ng_m_root tt tt (6) tt tt (5)
ng_s_root 17% 17% 14% 24% 6% 9% 4% 21%
ng_m tt tt (5) tt tt (6)
ng_s 88% 81% 50% 97% 23% 24% 16% 45%

accepting only the best 4% of concatenated paths at the root node.

Another interesting finding for DSSR-L is that the critical node sets are
initialized as empty, differently from what has been observed in the litera-
ture for the global DSSR algorithm and in our own analysis for the VRPTW.
It is possible that the critical sets’ update procedure works well enough for
DSSR-L when solving the VRPTWWTC that no initialization is necessary.
Additionally, we can observe that the behavior regarding the insertion strate-
gies is largely the same as the case of the VRPTW, which corroborates the
idea that the best approach is to examine as many paths as possible in order
to detect invalid cycles.

When we examine ng-route parameters, we can observe that the size of
the neighborhoods is clearly different depending on the algorithm in use, and
tendentially smaller at the root node than at the child nodes. This can be
observed especially for NG-DSSR-L. As mentioned before, this can imply
that the algorithm permits more cycles at the root node, while being more
restrictive in the rest of the tree. The explanation for this might lie in the
fact that the algorithm keeps a smaller neighborhood size at the start of the
algorithm in order to speed up label extension, while it is forced to prevent
more cycles at the end in order to find elementary routes.

Finally, we can note that these results as a whole seem to strongly suggest
that the significant differences in the parameter values for the root and child
nodes justify our approach of treating these parameters separately.

91

6.4 Size-Dependent Tuning
In this section, we analyze the impact of the tuning set composition on the

performances of the obtained parameter configurations for the VRPTWWTC.
For that purpose, we further tune DSSR-L and NG-DSSR-L in the following
way. First, we tune each algorithm using a tuning set consisting of six in-
stances with only 25 customers. We denote the best obtained configurations
as DSSR-L-25 and NG-DSSR-L-25. Later, we tune each algorithm using a
tuning set consisting of six instances with only 50 customers, obtaining con-
figurations DSSR-L-50 and NG-DSSR-L-50. In this section, we denote the
previously obtained configurations as NG-DSSR-L and DSSR-L.

Analogously to the previous experiments, we run each best configuration
on Solomon’s benchmark instances with 25, 50, 75, and 100 customers with
a time limit of six hours. We then perform the following comparisons, using
again Friedman’s and Wilcoxon’s tests:

1. NG-DSSR-L, NG-DSSR-L-25, and NG-DSSR-L-50 considering only the
results on instances with 25 customers;

2. NG-DSSR-L, NG-DSSR-L-25, and NG-DSSR-L-50 on instances with
50 customers;

3. DSSR-L, DSSR-L-25, and DSSR-L-50 on instances with 25 customers;
4. DSSR-L, DSSR-L-25 and DSSR-L-50 on instances with 50 customers;
5. NG-DSSR-L, NG-DSSR-L-25 and NG-DSSR-L-50 on instances with 75

and 100 customers;
6. DSSR-L, DSSR-L-25 and DSSR-L-50 on instances with 75 and 100

customers.

In the first four comparisons, we want to analyze whether tuning an
algorithm using a set of instances of a certain size affects significantly its
performance on instances of the same size. For instance, an algorithm tuned
on instances of only 25 customers, which are relatively easy, might be at a
disadvantage when evaluated on instances of 50 customers. Also, an algo-
rithm trained exclusively on instances of 50 customers might have a better
performance on similar instances when compared to an algorithm tuned on a
more heterogeneous set. Among these comparisons, only test 2 reports signif-
icant findings. Here, Friedman’s test reports a difference in the performance
of the configurations (p < 0.04), and Wilcoxon’s signed-rank test reports
that NG-DSSR-L-50 is significantly better than NG-DSSR-L-25 (p < 0.05),
while not being significantly different than NG-DSSR-L. This suggests that

92

an algorithm tuned on easier instances can indeed perform more poorly on
harder ones than one tuned on such instances.

In the latter two comparisons, we want instead to analyze whether tuning
an algorithm using sets of instances of a certain size affects its performance
on instances of larger sizes. Note that we cannot perform tests such as the
previous ones when taking into account large instances, since tuning the al-
gorithms on instances larger than 50 customers would require a prohibitively
long computing time. Indeed, in order to have meaningful results it would
be necessary to increase considerably the time limit given to solve each in-
stance. In Test 6, Friedman’s test reports a significant difference among the
configurations with p < 0.05, whereas Wilcoxon’s test gives evidence that
DSSR-L-50 is better than DSSR-L-25, but under a different significance level
(p < 0.08). Overall, these tests offer some evidence suggesting that, when
tuning algorithms, the best approach would be to construct a tuning set with
at least some instances, if not all, with the biggest possible size for which it
is feasible to perform the tuning process.

6.5 A Comparison between the VRPTW and the
VRPTWWTC

To conclude this chapter, we present here a comparative analysis of the
VRPTW and the VRPTWWTC with regard to the respective objective func-
tion values and computing times. To perform this analysis, we take into
account the results of one of the best performing algorithms, NG-DSSR-L,
obtained on the 61 Solomon’s instances that can be solved to optimality for
both problems in the second benchmarking round.

We consider first the comparison with respect to the objective function
values. In the VRPTW, the aim is to minimize the total travel time, while in
the VRPTWWTC the objective function to minimize is total route duration.
For each instance i, the optimal solution SVRPTW

i of the VRPTW is prone
to have a greater total waiting time than the optimal solution SWTC

i of the
VRPTWWTC, since waiting times are not part of the objective function,
while SWTC

i might present a greater total travel time than SVRPTW
i , in an

effort to minimize the overall duration. Let us denote the total travel time
of a solution S with T (S), and its total waiting time with W (S). Hence, for
each instance i, we consider the difference of the total travel times

∆Ti := T (SVRPTW
i)− T (SWTC

i),

93

−28−26−24−22−20−18−16−14−12−10 −8 −6 −4 −2 0 2

∆W
∆T

−7.96 −3.48−12.61−25.88 −18.63

Figure 6.3: Waiting time gain per travel time spent

the difference of the total waiting times

∆Wi := W (SVRPTW
i)−W (SWTC

i),

and their ratio ∆Wi
∆Ti

, which denotes the number of waiting time units reduced
for each unit of travel time increase in SWTC

i . Here, we are interested in
observing the distribution of ∆Wi

∆Ti
over each instance i, reported in Figure 6.5.

Out of the 61 Solomon’s instances that can be solved to optimality for both
problems, 22 are such that T (SVRPTW

i) = T (SWTC
i), i.e., ∆Wi

∆Ti
is not defined.

Due to the high spread of outliers, we omit them from the figure. We can
observe that the median ratio is −12.61, which is indeed quite a large value:
a travel time increase of 1% in SWTC

i with respect to SVRPTW
i leads to a

decrease in total waiting time of more than 12%. On the other hand, that
means that in order to minimize total travel time in the VRPTW, one has
to allow a significant increase in the total waiting times.

Finally, we consider the relative difference of the elapsed computing time.
For each instance i, we denote with CPU VRPTW

i and CPU WTC
i the com-

puting time of NG-DSSR-L on i for the VRPTW and the VRPTWWTC,
respectively. The relative difference for instance i is defined as

∆CPU i := CPU WTC
i − CPU VRPTW

i

CPU VRPTW
i

.

Figure 6.5 depicts the distribution of the relative differences, again omitting
the outliers.

We can observe that the median relative difference is quite high: the
median performance of NG-DSSR-L on the VRPTWWTC is almost 15 times
slower than on the VRPTW, and the right hand side of the distribution has
a significantly large spread. This may be due to an inherent higher difficulty
of the VRPTWWTC with respect to the VRPTW, therefore suggesting that
it can be worth to investigate ways to strengthen the performance of the
available algorithms when solving this problem.

94

0 20 40 60 80 100 120 140 160

∆CPU

4.12

−0.44 14.78 150.7184.46

Figure 6.4: Relative elapsed time difference

6.6 Conclusions

In this chapter, we have described our experimental methodology, and
we have presented the results of our computational experiments. Further-
more, we have discussed the parameter configurations of the best performing
algorithms for each problem, and analyzed the impact of the tuning set com-
position on the algorithmic configurations for the VRPTWWTC.

We can summarize some of our most important results thusly. First,
the algorithms following the local approach, which aims to guarantee route
elementarity by maintaining an individual critical set for each vertex in the
graph, consistently outperforms the global approach, where a single set is
maintained. In particular, it seems that this approach is especially successful
when used with the hybrid algorithms under our consideration, i.e., when
the critical sets are updated dynamically. This is in contrast to standard
NGRR, where the sets are determined a priori. Indeed, the hybrid algorithms
DSSR-L, NG-DSSR-L and NG-DSSR-L-E either perform as well as NGRR
(as in the case of the VRPTW), or outperform it (as in the case of the
VRPTWWTC). This seems to corroborate the validity of the techniques
proposed by Martinelli et al. (2014) and Dayarian et al. (2015b).

Furthermore, when the best performing algorithms are able to solve the
root node, the upper bound obtained by CPLEX on the MIP just after the
evaluation of the root node is usually very good compared to the best upper
bound found throughout their execution. This suggests that a method in
which only the root node is evaluated, followed by a call to a MIP solver, can
be the basis to an effective matheuristic method.

Additionally, we have seen how the parametrization and tuning of com-
plex exact algorithms can be a valid line of research by bringing to light
several interesting observations. In particular, we have noted a few trending
properties among the best configurations. First of all, during the evalua-
tion of the root node the tendency is to include a relatively small part of
the generated columns in the relaxed master problem at the end of each

95

column generation iteration, consisting in the ones with the lowest reduced
cost, while reversing this behavior outside the root node. Then, at the end
of a decremental state space relaxation iteration, the best approach seems to
evaluate as many generated columns as possible to detect invalid cycles. Fi-
nally, one might want to increase the size of existing ng-neighborhoods in the
child nodes of the brand-and-price tree in order to prevent the generation of
more cycles. Overall, we can also conclude that having different parameters
when evaluating the root node of the search tree seems to be an important
feature for a branch-and-price procedure, since a good configuration requires
very different parameter values for this phase of the algorithm.

Lastly, we have compared the VRPTW and the VRPTWWTC with re-
spect to their objective function values and computing times, observed on
the instances that were solved to optimality by NG-DSSR-L (one of the
best performing algorithms according to our analysis) for both problems in
the second round of benchmarking. Here, we have observed that the me-
dian number of waiting time units reduced in the optimal solution of the
VRPTWWTC for each unit of travel time increase with respect to the op-
timal solution of the VRPTW is quite substantial. On the other hand, the
median relative difference in computing time also has a high value, denoting
that the VRPTWWTC is harder to solve than the VRPTW. Thus, while
using the available BP algorithms to minimize total route duration is an
effective way to reduce total waiting time, thus obtaining solutions of high
quality for certain practical applications, it is necessary to investigate ways to
improve their performance in order to obtain competitive solution methods
for this problem.

96

Chapter 7

Conclusions

I n this study, we present a comparative analysis of several labeling algo-
rithms embedded in a branch-and-price framework to solve two types of

routing problems with time windows. The first problem is the classical vehicle
routing problem with time windows, which has been an important object of
study in operational research literature for decades. We give a brief overview
of this vast body of work, which encompasses a varied landscape of solution
methods, both heuristic and exact, in Chapter 2.

In Chapter 3, we discuss more in detail one of the leading exact solu-
tion methods for this problem, branch-and-price, consisting in a branch-and-
bound algorithm where each linear relaxation is solved with column gener-
ation. In particular, we present the classic dynamic programming method,
called labeling algorithm, that has been proposed for the solution of the
associated pricing problem, the elementary shortest path problem with re-
source constraints. Additionally, we introduce several well-known methods
that have been developed to improve its effectiveness, such as bidirectional
label extensions, decremental state space relaxation, and ng-route relaxation.

Chapter 4 introduces the second problem under our consideration, a spe-
cial variant of the vehicle routing problem with time windows, where the
objective is to minimize the total route duration. In certain applications,
this objective function is arguably more realistic than the minimization of to-
tal distance traveled when time windows are present. For instance, it can be
used to model cases where the wages of drivers (or other on-board personnel)
per time unit worked is significant, such as when vehicles are carrying nurses
for home healthcare operations, or in certain possible applications of dial-
a-ride problems, such as ride-sharing services. Additionally, route duration
minimization can be relevant in cases where vehicles are rented by the dis-
tribution company, or where vehicle idle times bear an implicit cost, such as

97

fuel consumption, or energy expenditure in the case of the delivery of perish-
able goods, which require refrigeration. Here, we discuss the changes in the
label structure and dominance rules proposed by Küçükaydın et al. (2014)
that are necessary in order to use the labeling algorithm mentioned above
to solve the corresponding elementary shortest path problem with resource
constraints.

For both problems under our consideration, a significant part of the com-
plexity of the branch-and-price procedure lays in the solution of the pricing
problem. In recent years, several methods have been proposed to further
improve the effectiveness of the labeling algorithm. More specifically, these
methods consist in hybridizations of decremental state space relaxation and
ng-route relaxation techniques. This is a natural development, since in order
to speed up their execution all those techniques relax, each in a different
way, the state-space regarding the elementarity resources of the generated
routes, whose numerousness may hamper label dominance and thus increase
computing time.

However, to the best of our knowledge no systematic analysis of the effec-
tiveness of the hybrid algorithms, especially when compared to decremental
state space relaxation and ng-route relaxation, has been carried out in the
literature. Because of this, our aim in this study is to perform such an
analysis. Hence, we do not attempt to propose an algorithm that performs
competitively with respect to the state of the art, but rather to identify the
underlying properties of those techniques that allow for better performance.

Additionally, it is often the case in the literature that algorithmic strate-
gies and parameters, which form an important set of decisions on the part
of the algorithm designer, are simply set manually, at most with the aid of
observations or preliminary experiments. In our view, it is necessary to make
these decisions more rigorously when carrying out such an analysis. Thus, we
parametrize such aspects and use an automated tuner, the irace package, in
order to obtain the best possible parameter configurations for each algorithm.
In Chapter 5, we further elaborate on these concepts, while describing the
implementation details of each algorithm and their shared branch-and-price
framework.

Finally, in Chapter 6 we introduce the methodology we use to compare
the algorithms, once the best available configuration is obtained for each one.
Furthermore, we discuss the results of our computational experiments and
present some further analyses. In particular, according to our results, the
algorithmic paradigm we have denoted as the local approach significantly
outperforms the alternative, and that the hybrid algorithms that adopt it
may even outperform standard ng-route relaxation. Thus, the most efficient

98

way to handle elementarity resources seems to consist in maintaining individ-
ual critical sets for each vertex in the graph, which are updated dynamically
throughout the execution of the algorithm. This seems to corroborate the
findings of Martinelli et al. (2014) and Dayarian et al. (2015b), whose pro-
posed methods are part of the current state of the art (Pecin et al., 2017a).

Additionally, the best performing configurations we have obtained demon-
strate that tuning the parameters of these complex procedures can be a del-
icate task. Indeed, the best parameter values might even change depending
on which part of the search tree the algorithm is exploring, as the differences
in the values at the root node have shown in our case. We have also observed
a few recurring qualities in the best performing configurations, which might
be desirable aspects of an effective BP algorithm for the considered problems.

Furthermore, we have compared the optimal objective function values
for the two problems under our consideration, computed on the instances
that one of the best solution methods available to us can solve to optimality
for both problems, taking also into account the computing times necessary
to obtain the optimal solutions. According to our results, minimizing total
route duration allows the algorithm to find solutions where waiting times are
reduced considerably with respect to the increase in total travel time, which
can be attractive in relevant practical applications. However, the perfor-
mance of the solution method is adversely affected, suggesting that it might
be necessary to investigate ways to improve its effectiveness when minimizing
total route duration.

There are several possible directions for future research. In recent years,
branch-and-cut-and-price, which adds cut separation to the methods con-
sidered in this thesis, has proven to be very effective when solving routing
problems. In fact, it has proven successful even when solving the capacitated
vehicle routing problem, which is generally more difficult to solve than the
version with time windows for branch-and-price. Indeed, since it is a less
constrained problem, it is more difficult to fathom infeasible partial paths,
and thus the algorithm uses more computational resources. Recently, Pecin
et al. (2017a,b) have proposed state-of-the-art methods that combine many
of the recent advancements in this field, using such techniques as subset-row
inequalities (Jepsen et al., 2008), route enumeration, and strong branching,
among others. We did not include these features in this thesis, since we
wanted to concentrate on analyzing the performance of labeling algorithms.
Indeed, certain features of state-of the-art methods can substantially compli-
cate the structure of the pricing problem. In particular, the use of subset-row
inequalities, while currently being considered an indispensable part of any
state-of-the-art procedure, increases the difficulty of the pricing problem,

99

since whenever an inequality is added to the model, an associated resource
has to be added to the label structure. As we have seen, this can make label
domination harder, and thus cause an overall increase in computing time.
However, the set of resources associated with these inequalities is separate
from the elementarity resources that are manipulated by the algorithms con-
sidered in this study. Thus, it is likely that, when a few subset-row inequali-
ties are included, the results that we have presented in this thesis regarding
the best performant labeling algorithms still hold, while thusly developed
BCP algorithms would still need to be tuned taking into account all the ad-
ditional parameters. Note that the best performant algorithms are the same
for both problem variants under consideration, which have different sets of
resources. In the VRPTW, three resources have to be considered besides the
elementarity resources, with just as many comparisons for dominance, while
in the VRPTWWTC there are five such resources, with four comparisons.
In any case, it would be certainly interesting in a future work to study some
of these additional state-of-the-art aspects using a similar approach.

The past few years have also seen the emergence of a class of heuristic
solution methods that hybridize heuristics with mathematical programming
techniques, called matheuristics. In particular, Archetti and Speranza (2014)
survey the existing matheuristics for routing problems and propose to clas-
sify such methods in three groups: decomposition approaches, improvement
heuristics, and branch-and-price based approaches. Technically speaking,
each algorithm under our consideration can already be used as a matheuris-
tic belonging to the third group. Indeed, it suffices to stop execution once the
root node is solved and CPLEX has been called to obtain an integer solution.
As we have observed in Chapter 6, the integrality gaps computed at the root
node are often very close to the gaps computed with the best available upper
bound, suggesting that this can indeed be a promising heuristic method. It
would be interesting in the future to consider advanced techniques aimed at
improving its effectiveness, since it is often the case that fully evaluating the
root node can be a hard task by itself when solving large instances.

Moreover, it would be interesting to apply our methodology to another
variant of the vehicle routing problem, which is harder to solve than the
ones we have considered: the multi-trip vehicle routing problem with time
windows. In a multi-trip routing problem, each vehicle is allowed to return
to the depot between delivery routes in order to load/unload deliverables
and thus potentially serve more customers during a journey. This case is
particularly interesting in certain practical situations, e.g., when the fleet
size is low compared to the number of vehicles that are necessary to service
all customers in the single-trip variant, when each vehicle can only serve a

100

few customers at a time due to low capacity, or when the planning horizon is
relatively long compared to the average travel time between two customers.
Cattaruzza et al. (2016) have presented a detailed survey of the literature on
such problems. In particular, Hernandez et al. (2014, 2016) have developed
effective column generation-based approaches to solve a multi-trip problem
with time windows. It would be interesting to compare such algorithms
to the ones considered in our study, in particular when the objective is to
minimize total route duration. Indeed, François et al. (2017) argue that good
solutions with respect to this objective are much more realistic in practice
than those obtained when aiming to minimize the total travel time, since
they can feature drastically lower waiting times for drivers.

101

102

Bibliography

Archetti, C. and Speranza, M. G. (2014). A survey on matheuristics for rout-
ing problems. EURO Journal on Computational Optimization, 2(4):223–
246.

Atkinson, J. B. (1994). A greedy look-ahead heuristic for combinatorial opti-
mization: an application to vehicle scheduling with time windows. Journal
of the Operational Research Society, 45(6):673–684.

Baker, E. and Rushinek, S. (1982). Large scale implementation of a time
oriented vehicle scheduling model. Technical report, US Department of
Transportation, Urban Mass Transit Administration, Washington, D.C.

Baker, E. and Schaffer, J. R. (1986). Computational experience with branch
exchange heuristics for vehicle routing problems with time window con-
straints. American Journal of Mathematical and Management Sciences,
6:261—-300.

Baldacci, R., Bartolini, E., Mingozzi, A., and Roberti, R. (2010). An exact
solution framework for a broad class of vehicle routing problems. Compu-
tational Management Science, 7(3):229–268.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation
and pricing strategies for the vehicle routing problem. Operations research,
59(5):1269–1283.

Baldacci, R., Mingozzi, A., and Roberti, R. (2012). Recent exact algorithms
for solving the vehicle routing problem under capacity and time window
constraints. European Journal of Operational Research, 218(1):1–6.

Ball, M. O. (2011). Heuristics based on mathematical programming. Surveys
in Operations Research and Management Science, 16(1):21–38.

103

Bard, J. F., Kontoravdis, G., and Yu, G. (2002). A branch-and-cut procedure
for the vehicle routing problem with time windows. Transportation Science,
36(2):250–269.

Bettinelli, A., Ceselli, A., and Righini, G. (2011). A branch-and-cut-and-price
algorithm for the multi-depot heterogeneous vehicle routing problem with
time windows. Transportation Research Part C: Emerging Technologies,
19(5):723–740.

Birattari, M. (2009). Tuning Metaheuristics, volume 197 of Studies in Com-
putational Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg.

Boland, N., Dethridge, J., and Dumitrescu, I. (2006). Accelerated label
setting algorithms for the elementary resource constrained shortest path
problem. Operations Research Letters, 34(1):58–68.

Bramel, J. and Simchi-Levi, D. (1996). Probabilistic analyses and practical
algorithms for the vehicle routing problem with time windows. Operations
Research, 44(3):501–509.

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-
routing problem with time windows. INFORMS Journal on Computing,
15(4):347–368.

Bräysy, O. and Gendreau, M. (2005a). Vehicle routing problem with time
windows, part I: route construction and local search algorithms. Trans-
portation Science, 39(1):104–118.

Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time
windows, part II: metaheuristics. Transportation Science, 39(1):119–139.

Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., and Van-
derbeck, F. (2008). Comparison of bundle and classical column generation.
Mathematical Programming, 113(2):299–344.

Cattaruzza, D., Absi, N., and Feillet, D. (2016). Vehicle routing problems
with multiple trips. 4OR, 14(3):223–259.

Christofides, N., Mingozzi, A., and Toth, P. (1981a). Exact algorithms for
the vehicle routing problem, based on spanning tree and shortest path
relaxations. Mathematical Programming, 20(1):255–282.

Christofides, N., Mingozzi, A., and Toth, P. (1981b). State-space relaxation
procedures for the computation of bounds to routing problems. Networks,
11(2):145–164.

104

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research, 12(4):568–581.

Conover, W. J. (1999). Practical nonparametric statistics. Wiley, Ney York,
NY, third edition.

Cook, T. M. and Russell, R. A. (1978). A simulation and statistical analysis
of stochastic vehicle routing with timing constraints. Decision Sciences,
9(4):673–687.

Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M. M., and Soumis,
F. (2002). VRP with time windows. In Toth, P. and Vigo, D., editors, The
Vehicle Routing Problem, chapter 7, pages 157—-193. SIAM, Philadelphia,
PA.

Cordeau, J.-F. and Laporte, G. (2007). The dial-a-ride problem: models and
algorithms. Annals of Operations Research, 153(1):29–46.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search
heuristic for vehicle routing problems with time windows. Journal of the
Operational Research Society, 52(8):928–936.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2004). Improved tabu search
algorithm for the handling of route duration constraints in vehicle routing
problems with time windows. Journal of the Operational Research Society,
55(5):542–546.

Cordeau, J.-F. and Maischberger, M. (2012). A parallel iterated tabu search
heuristic for vehicle routing problems. Computers & Operations Research,
39(9):2033–2050.

Cordone, R. and Calvo, R. W. (2001). A heuristic for the vehicle routing
problem with time windows. Journal of Heuristics, 7(2):107–129.

Dabia, S., Ropke, S., van Woensel, T., and De Kok, T. (2013). Branch and
price for the time-dependent vehicle routing problem with time windows.
Transportation Science, 47(3):380–396.

Danna, E. and Le Pape, C. (2005). Branch-and-price heuristics: A case study
on the vehicle routing problem with time windows. In Column Generation,
pages 99–129. Springer.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem.
Management Science, 6(1):80–91.

105

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear
programs. Operations Research, 8(1):101–111.

Dayarian, I., Crainic, T. G., Gendreau, M., and Rei, W. (2015a). A branch-
and-price approach for a multi-period vehicle routing problem. Computers
& Operations Research, 55:167–184.

Dayarian, I., Crainic, T. G., Gendreau, M., and Rei, W. (2015b). A col-
umn generation approach for a multi-attribute vehicle routing problem.
European Journal of Operational Research, 241(3):888–906.

de Armas, J. and Melián-Batista, B. (2015). Variable Neighborhood Search
for a Dynamic Rich Vehicle Routing Problem with time windows. Com-
puters & Industrial Engineering, 85:120–131.

Desaulniers, G., Desrosiers, J., Spoorendonk, S., Desaulniers, G., Desrosiers,
J., and Spoorendonk, S. (2011). The vehicle routing problem with time
windows: state-of-the-art exact solution methods. In Wiley Encyclopedia
of Operations Research and Management Science. John Wiley & Sons, Inc.,
Hoboken, NJ, USA.

Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu Search, Partial
Elementarity, and Generalized k-Path Inequalities for the Vehicle Routing
Problem with Time Windows. Transportation Science, 42(3):387–404.

Desaulniers, G., Madsen, O. B., and Ropke, S. (2014). The vehicle routing
problem with time windows. In Vehicle Routing: Problems, Methods, and
applications, chapter 5, pages 119–159. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Desaulniers, G. and Villeneuve, D. (2000). The shortest path problem with
time windows and linear waiting costs. Transportation Science, 34(3):312–
319.

Desrochers, M., Desrosiers, J., and Solomon, M. M. (1992). A new opti-
mization algorithm for the vehicle routing problem with time windows.
Operations Research, 40(2):342–354.

Doerner, K. F. and Schmid, V. (2010). Survey: Matheuristics for Rich Vehicle
Routing Problems. In Hybrid Metaheuristics, pages 206–221. Springer,
Berlin, Heidelberg.

Dror, M. (1994). Note on the complexity of the shortest path models for
column generation in VRPTW. Operations Research, 42(5):977–978.

106

Falkenauer, E. and Bouffouix, S. (1991). A genetic algorithm for job shop.
In Proceedings. 1991 IEEE International Conference on Robotics and Au-
tomation, pages 824–829. IEEE Comput. Soc. Press.

Feillet, D. (2010). A tutorial on column generation and branch-and-price for
vehicle routing problems. 4OR, 8(4):407–424.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. (2004). An exact algo-
rithm for the elementary shortest path problem with resource constraints:
Application to some vehicle routing problems. Networks, 44(3):216–229.

François, V., Arda, Y., and Crama, Y. (2017). Adaptive large neighborhood
search for multi-trip vehicle routing with time windows. Working paper,
Université de Liège.

Garcia, B.-L., Potvin, J.-Y., and Rousseau, J.-M. (1994). A parallel imple-
mentation of the Tabu search heuristic for vehicle routing problems with
time window constraints. Computers & Operations Research, 21(9):1025–
1033.

Gehring, H. and Homberger, J. (2001). A parallel two-phase metaheuristic for
routing problems with time windows. Asia-Pacific Journal of Operational
Research, 18(1):35.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postop-
timization procedures for the traveling salesman problem. Operations Re-
search, 40(6):1086–1094.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach
to the cutting-stock problem. Operations Research, 9(6):849–859.

Gilmore, P. C. and Gomory, R. E. (1963). A linear programming approach to
the cutting stock problem—part II. Operations Research, 11(6):863–888.

Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers & Operations Research, 13(5):533–549.

Hashimoto, H. and Yagiura, M. (2008). A path relinking approach with an
adaptive mechanism to control parameters for the vehicle routing prob-
lem with time windows. In EvoCOP 2008: Evolutionary Computation in
Combinatorial Optimization, pages 254–265. Springer, Berlin, Heidelberg.

Hernandez, F., Feillet, D., Giroudeau, R., and Naud, O. (2014). A new
exact algorithm to solve the multi-trip vehicle routing problem with time
windows and limited duration. 4OR, 12(3):235–259.

107

Hernandez, F., Feillet, D., Giroudeau, R., and Naud, O. (2016). Branch-and-
price algorithms for the solution of the multi-trip vehicle routing problem
with time windows. European Journal of Operational Research, 249(2):551–
559.

Holland, J. H. J. H. (1992). Adaptation in natural and artificial systems :
an introductory analysis with applications to biology, control, and artificial
intelligence. MIT Press.

Hsu, C.-I., Hung, S.-F., and Li, H.-C. (2007). Vehicle routing problem with
time-windows for perishable food delivery. Journal of Food Engineering,
80(2):465–475.

Ioachim, I., Gélinas, S., Soumis, F., and Desrosiers, J. (1998). A dynamic
programming algorithm for the shortest path problem with time windows
and linear node costs. Networks, 31(3):193–204.

Ioannou, G., Kritikos, M., and Prastacos, G. (2001). A greedy look-ahead
heuristic for the vehicle routing problem with time windows. Journal of
the Operational Research Society, 52(5):523–537.

Irnich, S. (2008). Resource extension functions: properties, inversion, and
generalization to segments. OR Spectrum, 30(1):113–148.

Irnich, S. and Villeneuve, D. (2006). The shortest-path problem with resource
constraints and k-cycle elimination for k ≥ 3. INFORMS Journal on
Computing, 18(3):391–406.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-
row inequalities applied to the vehicle-routing problem with time windows.
Operations Research, 56(2):497–511.

Jörnsten, K., Madsen, O. B., and Sørensen, B. (1986). Exact solution of
the vehicle routing and scheduling problem with time windows by vari-
able splitting. Technical report, Institute of Mathematical Statistics and
Operations Research, Technical University of Denmark, DK-2800 Lyngby,
Denmark.

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle
routing problem with time windows. Computers & Operations Research,
35(7):2307–2330.

Kallehauge, B., Boland, N., and Madsen, O. B. (2007). Path inequalities for
the vehicle routing problem with time windows. Networks, 49(4):273–293.

108

Kallehauge, B., Larsen, J., and Madsen, O. B. (2006). Lagrangian duality
applied to the vehicle routing problem with time windows. Computers &
Operations Research, 33(5):1464–1487.

Kim, S., Chang, K.-N., and Lee, J.-Y. (1995). A descent method with lin-
ear programming subproblems for nondifferentiable convex optimization.
Mathematical Programming, 71(1):17–28.

Knight, K. W. and Hofer, J. P. (1968). Vehicle scheduling with timed and
connected calls: a case study. OR, 19(3):299.

Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., and Soumis, F.
(1999). 2-path cuts for the vehicle routing problem with time windows.
Transportation Science, 33(1):101–116.

Kohl, N. and Madsen, O. B. (1997). An optimization algorithm for the
vehicle routing problem with time windows based on lagrangian relaxation.
Operations Research, 45(3):395–406.

Kolen, A. W. J., Rinnooy Kan, A. H. G., and Trienekens, H. W. J. M. (1987).
Vehicle routing with time windows. Operations Research, 35(2):266–273.

Kontoravdis, G. and Bard, J. F. (1995). A GRASP for the vehicle routing
problem with time windows. ORSA Journal on Computing, 7(1):10–23.

Küçükaydın, H., Arda, Y., and Crama, Y. (2014). Optimization of the service
start time for an elementary shortest path problem with time windows.
Working paper, Université de Liège.

Laporte, G., Toth, P., and Vigo, D. (2013). Vehicle routing: historical per-
spective and recent contributions. EURO Journal on Transportation and
Logistics, 2(1-2):1–4.

Letchford, A. N. and Salazar-González, J.-J. (2006). Projection results for
vehicle routing. Mathematical Programming, 105(2-3):251–274.

Liberatore, F., Righini, G., and Salani, M. (2011). A column generation
algorithm for the vehicle routing problem with soft time windows. 4OR,
9(1):49–82.

López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., and
Stützle, T. (2016). The irace package: iterated racing for automatic algo-
rithm configuration. Operations Research Perspectives, 3:43–58.

109

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search:
framework and applications. In Gendreau, M. and Potvin, J.-Y., editors,
Handbook of Metaheuristics, pages 363–397. Springer, Boston, MA.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected Topics in Column Gen-
eration. Operations Research, 53(6):1007–1023.

Lysgaard, J. (2006). Reachability cuts for the vehicle routing problem with
time windows. European Journal of Operational Research, 175(1):210–223.

Madsen, O. B. (1976). Optimal scheduling of trucks - a routing problem with
tight due times for delivery. In Strobel, H., Genser, R., and Etschmaier,
M., editors, Optimization applied to transportation systems, pages 126–136.
IIASA, International Institute for Applied System Analysis, Laxenburgh,
Austria.

Marsten, R. E., Hogan, W. W., and Blankenship, J. W. (1975). The Boxstep
Method for Large-Scale Optimization. Operations Research, 23(3):389–405.

Martinelli, R., Pecin, D., and Poggi, M. (2014). Efficient elementary and
restricted non-elementary route pricing. European Journal of Operational
Research, 239(1):102–111.

Michelini, S., Arda, Y., and Küçükaydın, H. (2018). A comparative study
of labeling algorithms for vehicle routing problems with time windows and
waiting time costs. Working paper, Université de Liège.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimiza-
tion problems. In Pardalos, P. M. and Resende, M. G., editors, Handbook
of applied optimization, pages 65–77. Oxford University Press.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Com-
puters & Operations Research, 24(11):1097–1100.

Moscato, P. and Cotta, C. (2010). A modern introduction to memetic algo-
rithms. In Handbook of Metaheuristics, pages 141–183. Springer, Boston,
MA.

Nagata, Y. (1997). Edge assembly crossover: a high-power genetic algorithm
for the traveling salesman problem. Proceedings of 7th International Con-
ference on Genetic Algorithms, 1997, pages 450–457.

Or, I. (1976). Traveling salesman-type combinatorial optimization problems
and their relation to the logistics of regional blood banking. PhD thesis,
Northwestern University, Evanston, IL.

110

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search
algorithms for the vehicle routing problem. Annals of Operations Research,
41(4):421–451.

Padberg, M. and Rinaldi, G. (1987). Optimization of a 532-city symmet-
ric traveling salesman problem by branch and cut. Operations Research
Letters, 6(1):1–7.

Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. (2017a). New en-
hancements for the exact solution of the vehicle routing problem with time
windows. INFORMS Journal on Computing, 29(3):489–502.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017b). Improved branch-
cut-and-price for capacitated vehicle routing. Mathematical Programming
Computation, 9(1):61–100.

Pillac, V., Guéret, C., and Medaglia, A. L. (2013). A parallel matheuristic
for the technician routing and scheduling problem. Optimization Letters,
7(7):1525–1535.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing
problems. Computers & Operations Research, 34(8):2403–2435.

Potvin, J.-Y. (2009). State-of-the-art review: evolutionary algorithms for
vehicle routing. INFORMS Journal on Computing, 21(4):518–548.

Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building algo-
rithm for the vehicle routing and scheduling problem with time windows.
European Journal of Operational Research, 66(3):331–340.

Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for routeing
problems with time windows. The Journal of the Operational Research
Society, 46(12):1433.

Prescott-Gagnon, E., Desaulniers, G., and Rousseau, L.-M. (2009). A branch-
and-price-based large neighborhood search algorithm for the vehicle rout-
ing problem with time windows. Networks, 54(4):190–204.

Pullen, H. G. M. and Webb, M. H. J. (1967). A computer application to a
transport scheduling problem. The Computer Journal, 10(1):10–13.

Repoussis, P. P., Paraskevopoulos, D. C., Tarantilis, C. D., and Ioannou,
G. (2006). A Reactive Greedy Randomized Variable Neighborhood Tabu
Search for the Vehicle Routing Problem with Time Windows. In Hybrid
Metaheuristics, pages 124–138. Springer, Berlin, Heidelberg.

111

Repoussis, P. P., Tarantilis, C. D., and Ioannou, G. (2009). Arc-guided
evolutionary algorithm for the vehicle routing problem with time windows.
IEEE Transactions on Evolutionary Computation, 13(3):624–647.

Righini, G. and Salani, M. (2006). Symmetry helps: bounded bi-directional
dynamic programming for the elementary shortest path problem with re-
source constraints. Discrete Optimization, 3(3):255–273.

Righini, G. and Salani, M. (2008). New dynamic programming algorithms
for the resource constrained elementary shortest path problem. Networks,
51(3):155–170.

Righini, G. and Salani, M. (2009). Decremental state space relaxation strate-
gies and initialization heuristics for solving the orienteering problem with
time windows with dynamic programming. Computers & Operations Re-
search, 36(4):1191–1203.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation science, 40(4):455–472.

Rousseau, L.-M., Gendreau, M., and Pesant, G. (2002). Using constraint-
based operators to solve the vehicle routing problem with time windows.
Journal of Heuristics, 8(1):43–58.

Russell, R. A. (1977). An effective heuristic for the M-tour traveling salesman
problem with some side conditions. Operations Research, 25(3):517–524.

Russell, R. A. (1995). Hybrid heuristics for the vehicle routing problem with
time windows. Transportation Science, 29(2):156–166.

Savelsbergh, M. W. P. (1985). Local search in routing problems with time
windows. Annals of Operations Research, 4(1):285–305.

Savelsbergh, M. W. P. (1990). An efficient implementation of local search
algorithms for constrained routing problems. European Journal of Opera-
tional Research, 47(1):75–85.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time win-
dows: minimizing route duration. ORSA journal on computing, 4(2):146–
154.

Shaw, P. (1998). Using constraint programming and local search methods to
solve vehicle routing problems. In CP-98 (Fourth International Conference

112

on Principles and Practice of Constraint Programming), pages 417–431.
Springer, Berlin, Heidelberg.

Solomon, M. M. (1986). On the worst-case performance of some heuristics for
the vehicle routing and scheduling problem with time window constraints.
Networks, 16(2):161–174.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling
problems with time window constraints. Operations Research, 35(2):254–
265.

Solomon, M. M., Baker, E. K., and Schaffer, J. R. (1988). Vehicle routing
and scheduling problems with time window constraints: efficient imple-
mentations of solution improvement procedures. In Golden, B. and Assad,
A., editors, Vehicle Routing: Methods and Studies, pages 85–106. Elsevier
Science Publishers, Amsterdam, The Netherlands.

Solomon, M. M. and Desrosiers, J. (1988). Survey paper—time window
constrained routing and scheduling p-roblems. Transportation Science,
22(1):1–13.

Suzuki, Y. (2011). A new truck-routing approach for reducing fuel consump-
tion and pollutants emission. Transportation Research Part D: Transport
and Environment, 16(1):73–77.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. (1997).
A tabu search heuristic for the vehicle routing problem with soft time
windows. Transportation Science, 31(2):170–186.

Thompson, P. M. and Psaraftis, H. N. (1993). Cyclic Transfer Algorithm
for Multivehicle Routing and Scheduling Problems. Operations Research,
41(5):935–946.

Trienekens, H. W. J. M. (1982). The time constrained vehicle routing prob-
lem. Technical report, Erasmus University, Rotterdam, The Netherlands.

113

114

List of Figures

3.1 Label extension with ng-route relaxation. Prohibited vertices
for the partial paths are colored. 38

4.1 Service start time function T1 and duration function D1. . . . 48
4.2 Service start time function T2 and duration function D2. . . . 49
4.3 Service start time function T3 and duration function D3. . . . 50

6.1 VRPTW — Differences between root gap and best gap. Me-
dian, upper quartile and upper whisker values are reported. . 76

6.2 VRPTWWTC — Differences between root gap and best gap.
Upper quartile and upper whisker values are reported. 88

6.3 Waiting time gain per travel time spent 94
6.4 Relative elapsed time difference 95

115

116

List of Tables

4.1 Total waiting time w on a concatenated path. 55

5.1 Algorithmic parameters. 67

6.1 VRPTW — Elementary algorithms — 3 hours. 73
6.2 VRPTW — ng-route algorithms — 3 hours. 74
6.3 VRPTW — Benchmarks — 6 hours. 75
6.4 VRPTW — Best elementary route algorithms — 6 hours, 25

and 50 customers. 77
6.5 VRPTW — Best ng-route algorithms — 6 hours, 25 and 50

customers. 78
6.6 VRPTW — Best elementary route algorithms — 6 hours, 75

and 100 customers. 79
6.7 VRPTW — Best ng-route algorithms — 6 hours, 75 and 100

customers. 80
6.8 VRPTWWTC — Elementary algorithms — 3 hours. 82
6.9 VRPTWWTC — ng-route algorithms — 3 hours. 82
6.10 VRPTWWTC — Benchmarks — 6 hours. 83
6.11 VRPTWWTC—Best elementary route algorithms— 6 hours,

25 and 50 customers. 84
6.12 VRPTWWTC — Best ng-route algorithms — 6 hours, 25 and

50 customers. 85
6.13 VRPTWWTC—Best elementary route algorithms— 6 hours,

75 and 100 customers. 86
6.14 VRPTWWTC — Best ng-route algorithms — 6 hours, 75 and

100 customers. 87
6.15 VRPTW — Best parameter configurations. 89
6.16 VRPTWWTC — Best parameter configurations. 91

117

118

Index

Backward Label Extensions, 28, 52
Benchmark, 58, 73
Branch-and-Bound, 6, 21, 39

Tree, 39, 67
Branch-and-Cut, 10
Branch-and-Cut-and-Price, 3, 99
Branch-and-Price, 2, 19, 21, 66, 97
Branching Rule, 40

Column Generation, 2, 21, 66
CPLEX, 67, 81, 95
Critical Vertices, 32, 38, 62

Decremental State Space Relaxation,
32, 57

Initialization Strategies, 35, 58
Insertion Strategies, 34, 59

Dual Variable, 23
Stabilization, 42

Duplicate Elimination, 30
Dynamic Programming, see Labeling

Algorithm

Elementarity, 26, 32, 36, 57, 61
Exact Methods, 9, 21

Friedman’s Test, 70, 74

Genetic Algorithms, 18
Global Approach, 61, 76, 82, 95

Heuristics, 6, 12, 63
Improvement, 14
Route Construction, 13

Hybrid Algorithms, 37, 61, 95, 98

irace, 57, 70, 98
Iterated Local Search, 18

Label, 25, 49
Bounding, 30, 54, 64
Concatenation, 29, 54, 66
Dominance, 25, 29, 52, 100

Labeling Algorithm, 3, 24, 97
Bounded Bidirectional, 28, 52

Lagrangian Relaxation, 11
Large Neighborhood Search, 17
Local Approach, 61, 62, 76, 82, 95

Matheuristics, 19, 100
Metaheuristics, 15
Multi-Trip Vehicle Routing Problem

with Time Windows, 101

ng-Route Relaxation, 36, 57
Neighborhood, 36, 60, 96
Applied, 37, 61

Strategies, 60

Parameter
Configuration, 58, 69, 88, 99
Tuning, 58, 69, 95

Parametrization, 3, 57, 95
Performance Measure, 72
Pricing Problem, 3, 23, 98

Reduced Cost, 23, 49
Reduced Set Partitioning, 12

119

Resource, 24
Resource Extension Function, 25, 28,

51, 53
Restricted Master Problem, 22
Root Node, 67, 76, 82, 88, 95, 100

Set Covering, 22, 68
Set Partitioning, 9, 22, 68
Subset-Row Inequalities, 4, 10, 99

Tabu Search, 16
Total Route Duration, 2, 43, 93, 97
Total Waiting Time, 54, 94
Tuning Instance Set, 71, 92

Upper Bound Recovery, 68, 75, 81

Valid Inequalities, 9
Variable Neighborhood Search, 17
Vehicle Routing Problem, 1, 5
Vehicle Routing Problem with Time

Windows, 1, 5, 7, 75, 93, 96,
99

Vehicle Routing Problem with Time
Windows and Waiting Time
Costs, 2, 43, 82, 93, 96, 99

Wilcoxon’s Signed-Rank Test, 74

120

	Summary
	Acknowledgements
	List of Abbreviations
	List of Algorithmic Parameters
	Introduction
	Thesis Structure

	An Overview on the Vehicle Routing Problem with Time Windows
	Overview
	Formulation

	Exact Methods
	Valid Inequalities and Branch-and-Cut
	Lagrangian Relaxation
	Reduced Set Partitioning

	Heuristic Methods
	Route Construction Heuristics
	Improvement Heuristics
	Metaheuristics
	Matheuristics

	Conclusions

	Branch-and-Price Algorithms for the VRPTW
	Column Generation
	Labeling Algorithm for the Pricing Problem
	Basic Labeling Algorithm
	Bounded Bidirectional Search

	Decremental State Space Relaxation
	Insertion strategies
	Initialization strategies

	ng-route Relaxation
	Hybrid Algorithms
	Branch-and-Bound
	Branching rules for the VRPTW

	Conclusions

	The Vehicle Routing Problem with Time Windows and Waiting Time Costs
	Problem Definition
	Service Start Time and Path Duration Functions
	A New Label Structure
	Bounded Bidirectional Algorithm
	Backward Label Extensions
	Bounding and LabelConcatenation
	Computing the Total Waiting Time

	Conclusions

	Parametrization of Branch-and-Price Algorithms
	Features of DSSR and NGRR
	DSSR Initialization Strategies
	DSSR Insertion Strategies
	NGRR

	Hybrid Algorithms
	Shared Algorithmic Features
	Heuristic Dynamic Programming Algorithm
	Strengthened Bounding for Bidirectional Label Extension
	Additional Branch-and-Price Features

	Conclusions

	Computational Experiments
	Tuning Phase
	The irace Package
	The Training Instance Set
	Usage of irace

	Benchmarking Phase
	Benchmarking for the VRPTW
	Benchmarking for the VRPTWWTC

	Configuration Analysis
	Size-Dependent Tuning
	A Comparison between the VRPTW and the VRPTWWTC
	Conclusions

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Index

