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Abstract

Alternating direction methods of multipliers (ADMMs) are popular approaches to
handle large scale semidefinite programs that gained attention during the past decade.
In this paper, we focus on solving doubly nonnegative programs (DNN), which are
semidefinite programs where the elements of the matrix variable are constrained to
be nonnegative. Starting from two algorithms already proposed in the literature on
conic programming, we introduce two new ADMMs by employing a factorization of
the dual variable. It is well known that first order methods are not suitable to compute
high precision optimal solutions, however an optimal solution of moderate precision
often suffices to get high quality lower bounds on the primal optimal objective function
value. We present methods to obtain such bounds by either perturbing the dual objective
function value or by constructing a dual feasible solution from a dual approximate
optimal solution. Both procedures can be used as a post-processing phase in our
ADMMs. Numerical results for DNNs that are relaxations of the stable set problem
are presented. They show the impact of using the factorization of the dual variable
in order to improve the progress towards the optimal solution within an iteration of
the ADMM. This decreases the number of iterations as well as the CPU time to
solve the DNN to a given precision. The experiments also demonstrate that within a
computationally cheap post-processing, we can compute bounds that are close to the
optimal value even if the DNN was solved to moderate precision only. This makes
ADMMs applicable also within a branch-and-bound algorithm.
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1 Introduction

In a semidefinite program (SDP) one wants to find a positive semidefinite (and hence
symmetric) matrix such that linear — in the entries of the matrix — constraints are
fulfilled and a linear objective function is minimized. If the matrix is also required to
be entrywise nonnegative, the problem is called doubly nonnegative program (DNN).
Since interior point methods fail (in terms of time and memory required) when the scale
of the SDP is big, augmented Lagrangian approaches became more and more popular
to solve this class of programs. Wen et al. (2010) as well as Malick et al. (2009)
and De Santis et al. (2018) considered alternating direction methods of multipliers
(ADMMs) to solve SDPs. One can directly apply these ADMMs to solve DNNss, too,
by introducing nonnegative slack variables for the nonnegativity constraints in order
to obtain equality constraints only. However, this increases the size of the problem
significantly.

In this paper, we first present two ADMMs already proposed in the literature
(namely ConicADMM3c by Sunetal. (2015) and ADAL+ Wen et al. (2010)) to specif-
ically solve DNNs. Then we introduce two new methods: DADMM3 ¢, which employs
a factorization of the dual matrix to avoid spectral decompositions, and DADAL+ tak-
ing advantage of the practical benefits of DADAL De Santis et al. (2018). Note that
there are examples for which a 3-block ADMM (like DADAL+) diverges. However,
the question of convergence of 3-block ADMMs for SDP relaxations arising from
combinatorial optimization problems is still open.

In case the DNN is used as relaxation of some combinatorial optimization problem,
one is interested in dual bounds, i.e. bounds that are the dual objective function value
of a dual feasible solution. In case of a minimization problem this is a lower bound,
in case of a maximization problem an upper bound. Having bounds is in particular
important if one intends to use the relaxation within a branch-and-bound algorithm.
This, however, means that one needs to solve the DNN to high precision such that
the dual solution is feasible and hence the dual objective function value is a reliable
bound. Typically, first order methods can compute solutions of moderate precision in
reasonable time, whereas progressing to higher precision can become expensive. To
overcome this drawback, we present two methods to compute a dual bound from a
solution obtained by the ADMM:s within a post-processing phase.

In the following section we state our notations and introduce the formulation of
standard primal-dual SDPs and DNNs. In Sect. 2 we go through the two existing
ADMMs for DNNs we mentioned before, and in Sect. 3 we introduce the tool of dual
matrix factorization used in the new ADMMs DADAL+ and DADMM3 ¢ presented later
in the same section. In Sect. 4 we present two methods for obtaining dual bounds from
a solution of a DNN that satisfies the optimality criteria to moderate precision only.
Section 5 shows numerical results for instances of DNN relaxations of the stable set
problem. We evaluate the impact of the dual factorization within the methods as well
as the two post-processing schemes for obtaining dual bounds. Section 6 concludes
the paper.
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Improving ADMMs for solving DNNs through dual factorization 417

1.1 Problem formulation and notations

Let 8,8 be the set of n-by-n symmetric matrices, S C 8, be the set of positive
semidefinite matrices and 8,, C §, be the set of negative semidefinite matrices.
Denoting by (X, Y) = trace(XY) the standard inner product in §,, we write the
standard primal-dual pair of SDPs as

min (C, X)
st. AX=0b )]
Xes§f
and
max bly
st. Aly+zZ=cC )
Z eS8k,

where C € §,,,b € R", A : §, — R™ is the linear operator (AX); = (A;, X) with
Aje€8,i=1,...,mand AT : R"™ — 8, is its adjoint operator, so ATy = D ViAi
for y € R™.

When in the primal SDP (1) the elements of X are constrained to be nonnegative,
then the SDP is called a doubly nonnegative program (DNN). To be more precise the
primal DNN is given as

min (C, X)
st. AX=b 3)
Xe8§r, X=>0.

Introducing S as the dual variable related to the nonnegativity constraint X > 0, we
write the dual of the DNN (3) as

max bTy
st. Aly+zZ4+S5=cC 4)
Ze8F, Se8,, §=0.

We assume that both the primal DNN (3) and the dual DNN (4) have strictly
feasible points (i.e. Slater’s condition is satisfied), so strong duality holds. Under this
assumption, (y, S, Z, X) is optimal for (3) and (4) if and only if

AX = b, Aly+z+S=cC, ZX =0,
X eS8, Ze8h, (S, X)=0, &)
X >0, Ses§,, §=0,

hold. We further assume that the constraints formed through the operator A are linearly
independent.

Letv € R” and M € R™*"_ In the following, M (i, :) is defined as the ith row of
M and M(:, j) as the jth column of M. Further we denote by Diag(v) the diagonal
matrix having v on the main diagonal. The vector ¢; is defined as the ith vector of the
standard basis in R”. Whenever a norm is used, we consider the Frobenius norm in
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case of matrices and the Euclidean norm in case of vectors. Let S € §,,. We denote the
projection of S onto the positive semidefinite and negative semidefinite cone by (§)+
and (S5)_, respectively. The projection of S onto the nonnegative orthant is denoted by
(8)>0. Moreover we denote by A(S) the vector of the eigenvalues of S and by Apin (S)
and Amax (S) the smallest and largest eigenvalue of S, respectively.

2 ADMMs for doubly nonnegative programs

In this section, we present two different ADMM:s for solving DNNs. Let X € §,, be
the Lagrange multiplier for the dual equation ATy + Z+ S —C =0and o > 0 be
fixed. Then the augmented Lagrangian of the dual DNN (4) is defined as

Lo(0, S, Z:X) =bTy —(ATy +Z+ 85— C, X) — %||ATy+Z+S—C||2.

In the classical augmented Lagrangian method applied to the dual DNN (4) the problem

max Ly(y,S,Z; X) )
st. yeR" Se8§,, $>0, ZeS§,
where X is fixed and o > 0 is a penalty parameter is addressed at every iteration.
Once Problem (6) is (approximately) solved, the multiplier X is updated by the first
order rule
X=X+oAy+Z+5-0) @)

and the process is iterated until convergence, i.e., until the optimality conditions (5) are
satisfied within a certain tolerance (see Bertsekas 1982, Chapter 2 for further details).

If the augmented Lagrangian L (y, S, Z; X) is maximized with respect to y, S and
Z not simultaneously but one after the other, this yields the well known alternating
direction method of multipliers (ADMM). The number of blocks of an ADMM is
the number of blocks of variables for which Problem (6) is maximized separately, so
we consider a 3-block ADMM. Such an ADMM has been specialized and used by
Wen et al. (2010) to address DNNs and in the following we refer to this method as
ADAL+. Details will be given in Sect. 2.1. Even though in all our numerical tests this
algorithm reaches the desired precision of our stopping criteria, it has been recently
shown in Chen et al. (2016) that an ADMM with more than two blocks may diverge.

In order to overcome this theoretical issue, Sun et al. (2015) proposed to update
the third block twice per iteration, or, in other words, to maximize L4 (y, S, Z; X)
with respect to the variable y two times in one iteration. Their algorithm, named
ConicADMM3c and detailed in Sect. 2.2, is the first theoretically convergent 3-block
ADMM proposed in the context of conic programming.

2.1 ADAL+

In the following, we refer to the ADMM presented by Wen, Goldfarb and Yin in Wen
et al. (2010) and applied to the dual DNN (4) as ADAL+. As already mentioned,
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ADAL+ iterates the maximization of the augmented Lagrangian with respect to each
block of dual variables. To be more precise the new point (y¥+1, k1 zk+1 xk+1)
is computed by the following steps:

Y = argmax g Lok (v, S¥, 25 X5, ®)
S = argmaxges, 5o Lot 4T, S, 285 X5, ©
Zk = argmax g+ Lk (YL, sk Z: xR, (10)
XK = xk g gk (AT Y o Zk+ | gkt _ oy (11)

The update of y in (8) is derived from the first-order optimality condition of the
problem on the right-hand side of (8), so y**! is the unique solution of

VyLok(y, S5, 25 X%y = b — AXF + o* ATy + ZF + 5K~ 0)) =0,

that is
k+1 -1 (1 [ k k
o o
As shown in Wen et al. (2010), the update of S according to (9) is equivalent to

min ||S — UF2,
Se€8,,5>0

where U¥*t! = € — AT yk+1 — zk _ ﬁXk. Hence, S¥*1 is obtained as the projection

of U¥*! onto the nonnegative orthant, namely

gk+1 — (Uk+1)>0 _ (C AT R+ gk Lka> .
> pe 0

Then, the update of Z in (10) is conducted by considering the equivalent problem

min || Z + WKH)2, (12)
AT

with WK1 = (Ul—ka — C + ATy*1 4§51y or, in other words, by projecting
WK+l ¢ 8, onto the (closed convex) cone §,, and taking its additive inverse (see
Algorithm 1). Such a projection is computed via the spectral decomposition of the
matrix WKt

Finally, it is easy to see that the update of X in (11) can be performed considering
the projection of W *! € §, onto 8 multiplied by o*, namely

XK = xK gk aT R+ ZkHl gkl oy =
— Uk(Xk/O'k —-C +.ATyk+l + Sk+1 _ (Xk/o_k —-C +.ATyk+l + Sk+l),) —
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= ok (xkjo* — € 4 AT YR 4 sk,

We report in Algorithm 1 the scheme of ADAL+.

Algorithm 1 Scheme of ADAL+ from Wen et al. (2010)

1: Choose o > 0,6 >0, X € 8, Z e 8F, S €8, with S >0

2: § =max{rp,rp,rpp,rcs}

3: while § > ¢ do

4 y=(AAT)—1(gb—A<§X—C+Z+S))

55 S=C-ATy-z-1x)

6: Z=—X/o—C+ATy+S_andX =0(X/o —C+ATy+ 9+
7: §=max{rp,rp,rpp,rcs}
8

9:

Update o
end while

The stopping criterion of ADAL+ considers the following errors

IAX — b| ATy +Z+S—C|
rP = 9 r =

9

1+ 1] T+ 1Cl
pop 2 X =020l S X
T+IX T+ X+ IS

related to primal feasibility (AX = b, X > 0), dual feasibility (ATy + Z + S = C)
and complementarity condition ({5, X) = 0). More precisely, the algorithm stops as
soon as the quantity

8 =max{rp,rp.rpp,rcs}

is less than a fixed precision ¢ > 0.
The other optimality conditions (namely X € 8, Z € 85, S € §,, § > 0,
Z X = 0) are satisfied up to machine accuracy throughout the algorithm thanks to the

projections employed in ADAL+.

2.2 ConicADMM3c

A major drawback of ADAL+ is that it is not necessarily convergent. By considering
two updates of the variable y within one iteration, Sun, Toh and Yang are able to
prove that the algorithm ConicADMM3c proposed in Sun et al. (2015) and detailed
in Algorithm 2 is a 3-block convergent ADMM: Under certain assumptions, they
show that the sequence {(y*, $¥, Z¥; X*)} produced by ConicADMM3c converges
to a KKT point of the primal DNN (3) and the dual DNN (4). Note that also the
order of the updates on the blocks of variables is different with respect to ADAL+.
The convergence analysis is based on the fact that ConicADMM3c is equivalent to a
semi-proximal ADMM.
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With respect to ADAL+, ConicADMM3c has the drawback that fewer optimality
conditions are satisfied up to machine accuracy throughout the algorithm. Additionally
to rp,rp,rpp and rcg, the stopping criterion of ConicADMM3c has to take into
account the errors

I(=X)+l 1{Z, X) |
=— and rez=——"7-——,
L+ (X L+ XN+ 11Z]

related to the primal feasibility X € 8, and the complementarity condition ZX = 0.
In fact, as the second update of y is performed after the update of Z, the spectral
decomposition of W5t cannot be used to update X as in ADAL+ and both the com-
plementarity condition ZX = 0 and the positive semidefiniteness of X are not satisfied
by construction. (We will give a summary on the conditions satisfied throughout the
algorithms in Table 1 in a subsequent section.) From a computational point of view
this slows down the convergence of the scheme, which will be confirmed in our com-
putational evaluation in Sect. 5.

Algorithm 2 Scheme of ConicADMM3c from Sun et al. (2015)

l:Chooseo>(),e>O,X€S,T,ZES;’,SESnWithSZO
2: 8 =max{rp,rp,rpp,7PD.7CS.7CZ}

3: while § > ¢ do

Z=—X/c—C+ATy+S8)_
y=@aD T (to-adx-c+z+9)
S=(C-ATy-z-1x-0
y=(AAT)‘1(§I;7A(%X7C+Z+S))
X=X+0ATy+Z+5-0C)

9:  S§=max{rp,rp,rpp,rpPp.rCS."CZ}
10:  Update o
11: end while

A S

3 Dual matrix factorization

In this section, we present our new variants of ADAL+ and ConicADMM3c, namely
DADAL+ and DADMM3c, where a factorization of the dual variable Z is employed.
We adapt the method introduced by De Santis et al. (2018). In particular, we look at
the augmented Lagrangian problem where the positive semidefinite constraint on the
dual matrix Z is eliminated by considering the factorization Z = VV . To be more
precise, in each iteration of the ADMMs for fixed X, we focus on the problem

max Lo (y, S, V;X)

st. yeR" Se8,, §$>0 VeRY™, (13)
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where

Loy, S, V;: X)=bTy — (ATy+VVT4+85-C, X) — %||ATy+VVT+S —CJ>.

Compared to (6) the constraint Z € 87 is replaced by Z = VV T for some V € R"*",
s0 Z € 8 is fulfilled automatically. Note that the number of columns r of the matrix
V represents the rank of Z.

The use of the factorization of the dual variable in ADAL+ should improve the
numerical performance of the algorithm when dealing with structured DNNSs, as it
happens in the comparison of the algorithm DADAL with ADAL when dealing with
structured SDPs De Santis et al. (2018). For what concerns ConicADMM3c, we will
see in Sect. 3.2 that using the factorization of the dual variable allows to avoid any
spectral decomposition along the iterations of the algorithm, without compromising
the theoretical convergence of the method.

Note that Problem (13) is unconstrained with respect to the variables y and V. In
particular, the following holds.

Proposition 1 Let (y*, S*, V*) € R™ x §,, x R"*" be a stationary point of (13), then

VyLo(y*, S*, V¥, X) =b—AX +0(ATy* + V*V*T 45— C)) =0and
VyLe(y*, S, V¥ X) = —2(X +o(ATy* + V*V*T £ S —C)HV* =0. (14)

Proposition 1 implies that fulfilling the necessary optimality conditions with respect
to y is equivalent to solve one system of linear equations.

As in De Santis et al. (2018), we consider Algorithm 3 in order to update y and
V (and hence Z) for fixed S and X. In particular in Algorithm 3, starting from
(y,S,V; X), we move V along an ascent direction Dy € R™” with a stepsize
«. While doing this, we update y in such a way that we keep its optimality condi-
tions of (13) satisfied, so VyLs(y, S,V + aDy; X) = 0 holds for the updated y
(see De Santis et al. 2018, Proposition 2). We stop as soon as the necessary optimality
conditions with respect to V' (see Proposition 1) are fulfilled to a certain precision.

As in the algorithm DADAL presented in De Santis et al. (2018), in our implementa-
tion we set Dy either to the gradient of L, (y, S, V; X) or to the gradient scaled with
the inverse of the diagonal of the Hessian of L, (y, S, V; X). In order to determine a
stepsize «, at Step 4 in Algorithm 3 we could perform an exact linesearch to maximize
Los(y(V+aDy), S,V +aDy; X) with respect to «. This is a polynomial of degree
4 in «, so we can interpolate it from five different points in order to get its analytical
expression and by this determining the maximizer explicitly. In practice we evaluate
Ls(y(V+aDy), S,V 4+ aDy; X) for 1000 different values of o« € (0, 10) and take
the « corresponding to the maximum value of L.

As output of Algorithm 3, we get y and V (and therefore also Z = VV ') that
have been updated through the maximization of the augmented Lagrangian (13) with
respect to V. This leads to a new point (y, S, V; X).

This update can be used within ADAL+ and ConicADMM3c as detailed in the
following.
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Algorithm 3 Update of (y, V) for factorization Z = VV T

Input: o >O,XeS,T,yeRm,VGR”X’,SESnWithSZO
1: Choose €jper > 0

2: while [[Vy Lo (v, S, Vs X)ll < €inner do

3:  Compute ascent direction Dy € R"*"

4 Compute stepsize «

50 y=y(V+4+aDy)andV =V +aDy

6: end while

3.1 DADAL+

First we consider DADAL+, our version of ADAL+ where the use of the factorization
of the dual variable Z leads to a double update of Z. As a further enhancement of the
algorithm ADAL+ devised in Wen et al. (2010), we propose to perform also a double
update of the dual variable y.

To be more precise, we replace the first update of y in ADAL+ with a update of
y and V with Algorithm 3 in DADAL+. Furthermore in DADAL+ we update y not
only before, but also a second time after the computation of S. This second update
is performed by applying the closed formula solution of the maximization problem
in (8). Note that the second update of y is performed before the update of Z so that
by computing the spectral decomposition of W = X/o — C + ATy + S, we can
simultaneously update Z and X and both the complementarity condition ZX = 0 and
the positive semidefiniteness of X are satisfied up to machine accuracy throughout the
algorithm in the same way it is the case in ADAL+. The scheme of DADAL+ is detailed
in Algorithm 4.

Algorithm 4 Scheme of DADAL+

1: Choose o > 0,7 > 0, ¢ >O,X€8,4[,S€S,1withS20, VeR"™ yeR"
2:Z=vv"

3: 6= max{rp, rp, rPP»rCS}

4: while § > ¢ do

Update (y, V) with Algorithm 3

Z=vv’T

S=C-ATy-z-1x

y=(AAT)"! (gb —AAx—c+z+ S))

9. Z=-X/o—-C+ATy+S_andX=0(X/oc —C+ATy+8),
10:  r =rank(Z)

11:  Update V such that vvl =2z

12: 6 =max{rp,rp,rpp.rcs}

13:  Update o

14: end while

® X
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3.2 DADMM3c

We now investigate the use of the dual factorization within the algorithm ConicA
DMM3c and call the modified algorithm DADMM3c. In ConicADMM3c, the effort
spent to compute the spectral decomposition of W = X /o —C +.A Ty + S is not that
well exploited as it is used to update only the dual matrix Z but not the primal matrix
X . Hence in DADMM3 ¢ we update Z and y by employing the factorization Z = VV '
and performing Algorithm 3 instead of updating them by a spectral decomposition
and a closed formula as it is done in ConicADMM3c. Note that Algorithm 3 is able
to compute stationary points of Problem (13), that are not necessarily global optima.
However, assuming that the update of y and V at Step 5 in Algorithm 5 is done such
that Problem (13) is solved to optimality, the theoretical convergence of the method is
maintained. Note that the computation of any spectral decomposition is avoided. The
scheme of the algorithm DADMM3 c is detailed in Algorithm 5.

Algorithm 5 Scheme of DADMM3c

1: Choose o > 0,7 > 0,6 >0,X €8, S€8, with§ >0,V e RV, y e R™
2:Z=vvT

3: 8§ =max{rp,rp,rpp,.rpp,rCcS,"CZ}

4: while § > ¢ do

Update (y, V) with Algorithm 3

zZ=vvTl

S=(C-ATy-z-1x4
y=(AAT)*‘(§b—A(gx—c+z+S))
9. X=X+40(Z+S+ATy—0)

10: 8:maX{rp,rD,rpp,rpD,rCS,rCZ}

11:  Update o

12: end while

® X

A limit of DADMM3c is that the rank of Z is not updated throughout the iterations.
This means that the maximization of L(y, S, V; X) with respect to V is performed
keeping r fixed to the initial value that in our implementation is n. It is still an open
question to update the rank of Z in a beneficial way.

On the other hand, note that in DADAL+ the rank of Z is determined at every
iteration through the eigenvalue decomposition in the second update of Z.

As already mentioned in Sect. 2, some of the optimality conditions are satisfied
throughout the algorithms ADAL+/DADAL+ and ConicADMM3c/DADMM3c. A sum-
mary is presented in Table 1.

4 Computation of dual bounds
When solving combinatorial optimization problems, DNN relaxations very often yield

high quality bounds. These bounds can then be used within a branch-and-bound frame-
work in order to get an exact solution method. In this section we want to discuss how
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we can obtain lower bounds on the optimal objective function value of the primal
DNN (3) from a dual solution of moderate precision only.

Thanks to weak and strong duality results, the objective function value of every
feasible solution of the dual DNN (4) is a lower bound on the optimal objective
function value of the primal DNN (3) and the optimal values of the primal and the
dual DNN coincide. Therefore every dual feasible solution and in particular the optimal
dual solution give rise to a dual bound.

Note that the dual objective function value serves as a dual bound only if the DNN
relaxation is solved to high precision. If the DNN is solved to moderate precision,
the dual objective function value might not be a bound as the dual solution might
be infeasible. However, solving the DNN to high precision comes with enormous
computational costs.

So unfortunately ADAL+, DADAL+, ConicADMM3c and DADMM3 c are not suitable
to produce a bound fast. Running an ADMM typically gives approximate optimal
solutions rather quickly, while going to optimal solutions with high precision can be
very time consuming. As the dual constraint AT y+Z+S5—C = 0 does not necessarily
hold in every iteration of the four algorithms (see Table 1), obtaining a dual feasible
solution with sufficiently high precision with ADMMs may take extremely long.

To save time, but still ensure that we obtain a dual bound, we will stop the four
methods at a certain precision. After that we will use one of two procedures in a
post-processing phase in order to obtain a bound. In Sect. 4.1 we will describe how
to obtain a bound with a method already presented in the literature. In Sect. 4.2 we
present a new procedure for obtaining a dual feasible solution and hence a bound from
an approximate optimal solution.

4.1 Dual bounds through error bounds

In this section we present the method to obtain lower bounds on the primal optimal
value of an SDP of the form (1) introduced by Jansson et al. (2008). We adapt this
method for DNNs in order to use it in a post-processing phase of the four ADMMs

presented above. We start with the following lemma from (Jansson et al. 2008, Lemma
3.1).

Lemma 1 Let Z, X be symmetric matrices of dimension n that satisfy
Z= Amin(Z), 0 < Amin(X), Amax(X) <X (15)

for some z, x € R. Then the inequality

(Z.X)=% ) h(Z)=nimin{0,z)
ki (2)<0

holds.
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Proof Let Z = QAQT be an eigenvalue decomposition of Z with 00" =1 for
some Q € R"™" and A = Diag(A(Z)). Then

(Z, X) = trace(QAQ " X) = trace(AQ ' X Q)

=> (20 ) TXQ(. k).

k=1
Because of (15), we have 0 < Q(:, k)TXQ(:, k) < x. Therefore

(Z.X)=% ) (Z)=nimin{0, 2},
k:iar(Z)<0

O

At this point we can present the following theorem of (Jansson et al. 2008, Theorem
3.2) adapted for DNNs.

Theorem 1 Consider the primal DNN (3), let X* be an optimal solution and let p*
be its optimal value. Given 'y € R™ and S € §, with S > 0, set

Z=C—-ATy—S§ (16)

and suppose that z < Amin(Z). Assume x € R such that x > Amax(X™) is known.
Then the inequality

pr=bly+x Y (Z)=b'y+nimin(0,z) (17)
kA (Z)<0

holds.
Proof Let X* be optimal for the primal DNN (3). Then

(€. X =bTy =(C. X*) = (AX",y) = (C = ATy, X*)
=(Z+s.x7)=(z,x*)+ (5. x7).
Since S > 0 and X* > 0, the inequality
(€. Xz by +(Z x7)

is satisfied and Lemma 1 implies

Pr=(C Xz b Ty H(Z X 20Ty +E Y (@) z by + nFmin(0, 2)
ki (Z)<0

which proves (17). O
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Theorem 1 justifies to compute dual bounds via Algorithm 6. If the matrix Z defined
in (16) is positive semidefinite, then (y, V4 , §), is a dual feasible solution and b7 y is
already a bound. Otherwise, we decrease the dual objective function value b y of the
infeasible point (y, Z,5) by adding the negative term X ) = Ak (Z) to it. In this

ki (Z)<0
way, we obtain a bound (E B in Algorithm 6) as proved by Theorem 1.

Note that for the computation of the bound of Theorem 1 it is not necessary to have a
primal optimal solution X* at hand, only an upper bound on the maximum eigenvalue
of an optimal solution is needed. Such an upper bound is known for example if there
is an upper bound on the maximum eigenvalue of any feasible solution.

Algorithm 6 Scheme for Computing Error Bounds
Input: y e R™, S € 8§, with § > 0, ¥ > Amax (X*)
. Z=C-ATy-5s
2: Compute A(Z)
3EB=b"y+i Y (2
k:ag (Z)<0

4: return EB

4.2 Dual bounds through the Nightjet procedure

Next we will present a new procedure to obtain bounds. In contrast to the procedure
described in the previous section, this approach will also provide a dual feasible solu-
tion. The key ingredient to obtain such dual feasible solutions will be the following
lemma.

Lemma 2 We consider the primal DNN (3) and the dual DNN (4). Let Ze St If

max{b'y | ATy <C - Z} (18)

yeRm

has an optimal solution 3, let S = C — Z — A" 3. Then (3, S, Z) is a dual feasible
solution. If (18) is unbounded, then als~0 (4) is unbounded. If (18) is infeasible, then
there is no dual feasible solution with Z.

Proof If (18) has an optimal solution 7, then it is easy to see that § > 0 by construction.
Furthermore S € 8, because C, Z, AT y € 8,. Therefore (y, S, Z) is a dual feasible
solution. If (18) is unbounded, then the same values of y that make the objective
function value of (18) arbitrarily large can be used to make the objective function
value of (4) arbitrary large, hence also (4) is unbounded. Furthermore it is easy to
see that (18) is feasible if there is a dual feasible solution with Z. Hence if (18) is
infeasible, then there is no dual feasible solution with Z. O

Let (y, S, Z, X) be any solution (not necessarily feasible) to the primal DNN (3)
and the dual DNN (4). In the back of our minds we think of them as the solutions
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we obtained by ADAL+, DADAL+, ConicADMM3c or DADMM3c, so they are close to

optimal solutions but not necessarily dual or primal feasible. We want to obtain y, S
and Z satisfying dual feasibility

A'5+Z+8=cC, ZeS8, §e8, S§=o0. (19)

n°

We use Lemma 2 within the Nightjet procedure for obtaining such solutions in the
following way. From the given Z we obtain the new positive semidefinite matrix Z
by projecting Z onto the positive semidefinite cone. Then we solve the linear pro-
gram (18).

If (18) is infeasible, then we are neither able to construct a feasible dual solution
nor to construct a dual bound. If (18) is unbounded, then also the dual DNN (4)
is unbounded and hence the primal DNN (3) is not feasible. If (18) has an optimal
solution y, then we obtain a dual feasible solution (¥, S , 4 ) with the help of Lemma 2.
Furthermore the dual objective function value ' ¥ is a bound in this case, so we
can return a dual feasible solution and a bound. The Nightjet procedure is detailed in
Algorithm 7.

Algorithm 7 Scheme of the Nightjet Procedure
Input: Z € §,,

1: Z=(2)+

Sif {yeR" | ATy <C—Z}#0 then

y= argmaxyeRm{bTy ATy <Cc-27}
: else

return “No dual feasible solution and no bound found”
. end if

S=Cc—-7Z-ATj

:NB=b'5J

: return N B, (¥, S,7)

To summarize, we have presented two different approaches to determine dual
bounds for the primal DNN (3) from given y, S and Z.

Note that the approaches are in the following sense complementary to each other:
In the first approach from Jansson, Chaykin and Keil we fix y and S and obtain the
bound from a newly computed Z, but we do not obtain a dual feasible solution. In our
second approach, the Nightjet procedure, we fix Z to be the projection of Z onto the
positive semidefinite cone and then construct a feasible 7 and S from that.

Furthermore note that in the approach of Jansson, Chaykin and Keil the obtained
bound is always less or equal to the dual objective function value of y, because a
negative term is added to b y, the dual objective function value using y. In contrast to
that, it can happen in the Nightjet procedure that the bound is larger and hence better
than b " y. However, the Nightjet procedure comes with the drawback that it might be
unable to produce a feasible solution. In this case one should continue running the
ADMM to a higher precision and apply the procedure to the improved point.
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5 Numerical experiments

In this section we present a comparison of the four ADMMs using the two procedures
presented in Sect. 4 as post-processing phase. Towards that end we consider instances
of one fundamental problem from combinatorial optimization, the stable set problem.

5.1 The stable set problem and an SDP relaxation

Given a graph G, let V(G) be its set of vertices and E(G) its set of edges. A subset
of V(G) is called stable, if no two vertices are adjacent. The stability number «(G)
is the largest possible cardinality of a stable set. It is NP-hard to compute the stability
number Karp (1972) and it is even hard to approximate it Hastad (1999), therefore
upper bounds on the stability number are of interest. One possible upper bound is the
Lovasz theta function ¥ (G), see for example Rendl (2012). The Lovéasz theta function
is defined as the optimal value of the SDP

P(G) =max (J, X)
S.t. trace(X) =1
Xij=0 V{i,j} e E®WG)
Xesh

n’

where J is the n-by-n matrix of all ones. Note that ¢ (G) — as SDP of polynomial
size — can be computed to arbitrary precision in polynomial time. Hence ¥ (G) is a
polynomial computable upper bound on ¢ (G).

Several attempts of improving ¥ (G) towards «(G) have been done. One of the
most recent ones is including the so called exact subgraph constraints into the SDP
of computing ¥ (G), which make sure that for small subgraphs the solution is in the
respective squared stable set polytope Gaar and Rendl (2019). This approach is a
generalization of one of the first approaches to improve ¢ (G) in Schrijver (1979),
which consisted of adding the constraint X > 0. Compared to ¥ (G) this leads to an
even stronger bound on « (G) as the copositive cone is better approximated. We denote
by 94 (G) the optimal objective function value of the DNN

?4+(G) =max (J, X)
S.t. trace(X) =1
Xij=0 V{i,j}eEWG)
Xe§ X=>o0.

(20)

Note that in the DNN (20) the matrix AAT is a diagonal matrix, which leads to an
inexpensive update of y in the methods discussed.
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5.2 Dual bounds for ¢, (G)

As already discussed in Sect. 4, for a combinatorial optimization problem like the
stable set problem, bounds on the objective function value are of huge importance.

The bound according to Jansson et al. (2008) can be used for computing bounds
on U (G) very easily: We can set x = 1, as for every feasible solution X of (20) we
have trace(X) = 1 and X € 8,4,‘ and hence Ay (X) < 1.

The computation of the dual bound with the Nightjet procedure simplifies drasti-
cally. In particular there is no need to solve the linear program (18), since the solution
can be computed explicitly. To be more precise, the following holds.

Lemma 3 We consider the primal DNN (20) to compute ¥ (G) and the dual of it. Let
Vi be the dual variable for the constraint trace(X) = 1 and y. be the dual variable for
the constraint X;j = 0 for every edge e = {i, j} € E(G). Furthermore let Z € 8

and let M = max {Z,-j i, j) ¢ E(G)}
If M > 0, then it is not possible to construct a dual feasible solution with this Z. If

—1 < M < 0, then we can redefine Z as 7 = ——Z and obtain a new Zfor which
M = —1.If M < —1, then we obtain a dualfeaszble solution with

y,zmin[—l—zi,» |ie{1,2,...,n}},
Je=2(=1—2;) Ve=li,j}eE®G),
S=C—-272-A"5.

Proof We first consider the dual of (20) in more detail. To be consistent with our nota-
tion we replace the objective function max (J, X) of (20) with the equivalent objective
function — min (—J, X) in order to consider a primal minimization problem as in the
primal DNN (3). We introduce one dual variable y; for the constraint trace(X) = 1
and one dual variable y, for the constraint X;; = 0 for every edge e = {i, j} € E(G).
Then the dual of (20) is given as

—max y;
S.t. yi+ Zii + Sii = —1 Vie{l,2,...,n}
%ye+Zij+Sij=—1 Ve ={i, j} € E(G) 20
Zij+Sij=—1 V{i,j} ¢ E(G)
Ze8t, Se8,, §>0, yeR, y.eR Veec E(G).

Now we apply Lemma 2 for (20). Thus we replace the dual variable Z with the
fixed Z € 8; and the linear program (18) becomes
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—max y;
s.t. y<—1—Zyi Vi={1,2,...,n}
e<—1-2;y Ve=li,jl€E@G) (22)
Zij < -1 Vi, j} ¢ E(G)

v eR, y.eR Vee E(G).

Clearly this linear program is bounded and detecting infeasibility or constructing an
optimal solution is straightforward. Indeed, let M = max {Zi i, j} ¢ E (G)} then
it is easy to see that (22) is infeasible if M > —1. However, if —1 < M < 0 holds,
then we can redefine Z as Z = ——Z and obtain a new Z for which M = —1. On
the contrary, if M > 0, we can not update Zina straightforward way. If M < —1,
then (22) is feasible and we can construct the optimal solution as

y[:min{—l—zi,- |ie{1,2,...,n}},
Ye=2(—1—1Z2;) Ve={i,j} € EQ).

Then we let S = C—Z—A"5 and due to Lemma 2 this yields a feasible dual solution
.S, 2). O

Hence, for computing a dual bound for ¥, (G) it is not necessary to solve the
linear program (18), but the solution of it can be written down explicitly. This explicit
solution is used by the Nightjet procedure for ¥ (G) to obtain y. The computation
of Z and § is the same as in the original Nighjet procedure. The pseudocode of the
Nightjet procedure applied to the computation of ¥4 (G) can be found in Algorithm 8.

Algorithm 8 Scheme of the Nightjet Procedure for 9. (G)

Input: Z € §,

1: Z=(2)+

2 M= max{Zij i, j) ¢ E(G)}

3:if M > 0 then

4:  return “No dual feasible solution and no bound found”
5: else if 0 > M > —1 then

6: 7= WZ

7: end if

8: :min{—] —Zulie {1,2,...,n}}

o

D Ve =2(=1—2;;) Ve={i, j} € E(G)
10:S=Cc—-Z—-AT5y

11: NB=b"5

12: return N B, (3, S, 7)
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Fig.1 Evolution of the computed bounds on the instance johnson8_2_4

5.3 Comparison of the evolution of the dual bounds

In the following, we give a numerical comparison of the two procedures for the compu-
tation of bounds for ¥4 (G) on one instance from the second DIMACS implementation
challenge Johnson and Trick (1996), namely johnson8_2_4. For this instance the
stability number «(G) and ¥4 (G) coincide and both are equal to 4.

In Fig. 1, we show the evolution of the bounds along the iterations for ADAL+,
DADAL+, ConicADMM3c and DADMM3c. For each algorithm we report the dual
objective function value (dualOfv), the bound computed according to Jansson et al.
(2008) (E B) and the bound computed by the Nightjet procedure (N B) at every itera-
tion.

Note that in some iterations the dual objective function value is not a bound on
¥4+(G) = 4 and hence also not on «(G). This is due to the fact that the solution
considered is not dual feasible. (The criteria are satisfied only to moderate precision.)

We observe that for ADAL+, DADAL+ and ConicADMM3c the Nightjet bound is
always less or equal than the error bound and in several iterations it is significantly
better, in particular at the iterations in the beginning. Hence our Nightjet procedure
is an effective tool to obtain dual bounds. Note that every ADMM keeps Z positive
semidefinite along the iterations (see Table 1) and this may be in favor of the Nightjet
procedure.

5.4 Computational setup

In our numerical experiments we compare the performance of ADAL+, DADAL+,
ConicADMM3c and DADMM3c on 66 instances of the DNN (20) to compute 94 (G).
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The graphs are taken from the second DIMACS implementation challenge Johnson
and Trick (1996). Note that in that challenge the task was to find a maximum clique of
several graphs, so we consider the complement graphs of the graphs in Johnson and
Trick (1996). In Table 2, for each instance on a graph G, we report its name (Problem)
and its dimension (the number of vertices n and the number of edges m of G). The
value of the Lovasz theta function ¢ (G) for many of these instances can be found in
Giandomenico et al. (2013) and Malick et al. (2009), in this article we exclusively
focus on ¥4 (G).

We implemented the four algorithms detailed in Sects. 2 and 3in MATLAB R2019a.
In all computations, we set the accuracy level & to 107> and we set a time limit of
3600 seconds CPU time. In both DADAL+ and DADMM3 ¢ we perform two iterations
of Algorithm 3 in order to update (y, V).

It is known that the performance of ADMMEs strongly depends on the update of the
penalty parameter o . In all implementations, we use the strategy described by Lorenz
and Tran-Dinh (2019), so in iteration k we set

e _ IXH
1Z¥]

The experiments were carried out on an Intel Core i7 processor running at 3.1 GHz
under Linux.

5.5 Comparison between ADAL+ and DADAL+

In Table 3 we report the results obtained with ADAL+ and DADAL+ on the 66 instances
of computing ¥4 (G) detailed in Table 2. We include the following data for the compar-
ison: For each instance, we report its name (Problem) and its stability number («) and
for each of the two algorithms, we report the dual objective function value obtained (d
ofv), the bound obtained by computing the error bound described in Sect. 4.1 (E B),
the bound obtained by applying the Nightjet procedure described in Sect. 4.2 (N B),
the number of iterations (it) and the CPU time needed to satisfy the stopping criterion
(time).

As a further comparison, we report in Fig. 2 the performance profiles of ADAL+ and
DADAL+ withrespect to the number of iterations and the CPU time. These performance
profiles are obtained in the following way. Given our set of solvers S and a set of
problems P, we compare the performance of a solver s € S on problem p € P
against the best performance obtained by any solver in S on the same problem. To
this end we define the performance ratio r, ; = 1,/ min{t, ¢ | s' € S}, where
tp,s is the measure we want to compare, and we consider a cumulative distribution
function pg(7) = |{p € P | rps < t}|/IP|. The performance profile for s € S is the
plot of the function py.

Note that both ADAL+ and DADAL+ stopped on 7 instances because of the time
limit. In the performance profiles, we exclude those instances where at least one of
the solvers exceeds the time limit.
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Fig.2 Comparison between ADAL+ and DADAL+ on DIMACS instances Johnson and Trick (1996)

Itis clear from the results on Table 3 and from the performance profiles that DADAL+
performs much less iterations than ADAL+. However, this does not always correspond
to an improvement in terms of computational time as the double update of y is an
expensive operation.

With respect to the CPU time, Fig. 2 shows that the performance of the two algo-
rithms is similar, even if DADAL+ slightly outperforms ADAL+ as its curve is always
above the other one.

If we consider the dual objective function value in Table 3 we see that in fact the
dual objective function value obtained by ADAL+ and DADAL+ is often not a bound,
for example on the instances hamming6_4, c_fat200_1, san200_0_7_1,
san400_0_9_1, c_fat500_1 and c_fat500_5. This shows that a procedure
for obtaining a bound from the approximate solution is indeed of major importance.

Regarding the quality of the bounds, the Nightjet procedure is able to obtain better
bounds with respect to the error bounds, both when applied as post-processing phase
for ADAL+ and for DADAL+, for the vast majority of the instances. The improvement
is particularly impressive when looking at those instances where the time limit is
exceeded. We want to further highlight that the bound obtained from the Nightjet
procedure comes from a newly computed feasible dual solution. This means that
applying the Nightjet procedure as post-processing does not only guarantee a bound
generally better than the one obtained by the error bounds, but it also provides a dual
feasible solution.

5.6 Comparison between ConicADMM3c and DADMM3c

In Table 4 we report the results obtained with ConicADMM3c and DADMM3c on the
66 instances of computing ¥4 (G) detailed in Table 2.

As before, we report the name of the instances, the stability number and, for each
algorithm, the dual objective function value obtained, the bounds obtained by comput-
ing the error bound and by applying the Nightjet procedure, the number of iterations
and the CPU time needed to satisfy the stopping criterion.

ConicADMM3c was not able to stop within the time limit on 11 instances, while
DADMM3c was not able to stop within the time limit on 15 instances.
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Fig. 3 Comparison between ConicADMM3c and DADMM3c on DIMACS instances Johnson and Trick
(1996)

In general, DADMM3 c needs to perform much less iterations and it is slightly better
than ConicADMM3c in terms of CPU time as it is confirmed by the performance
profiles shown in Fig. 3. As before, we did not include the instances that exceeded
time limit in the performance profiles.

Again, the Nightjet procedure is able to obtain better bounds with respect to the
error bounds, both when applied as post-processing phase for ConicADMM3 ¢ and for
DADMM3c, for the majority of the instances. However, there exist cases (6 instances)
where the Nightjet procedure fails.

We finally mention that on several instances where the time limit was exceeded, the
bounds obtained by DADMM3 c are much better than those obtained by ConicADMM3 ¢,
see for example the instances p_hat1500_1,p_hat1500_2andp_hat1500_3.

6 Conclusions

In this paper we propose to use a factorization of the dual matrix within two ADMMs
for conic programming proposed in the literature. In particular we use a first order
update of the dual variables in order to improve the performance of the ADMMs
considered.

Our computational results on instances from a DNN relaxation of the stable set
problem show that the factorization employed gives a significant improvement in the
efficiency of the methods. We are confident that this can be the case also when dealing
with other structured DNNS. In particular, we experience a drastic reduction in terms
of number of iterations. The performance of DADMM3c may even further improve
through a smart update of the rank of Z along the iterations. This is a topic for future
investigation.

In the paper we also focus on how to obtain bounds on the primal optimal objective
function value, since the dual objective function value obtained when using first order
methods to solve DNNs is not always guaranteed to serve as bound, as the dual solution
may be infeasible. We present two methods: one that adds a sufficient (negative)
perturbation to the dual objective function value (error bounds) and one that constructs
adual feasible solution (Nightjet procedure). Both methods are computationally cheap
and produce bounds close to the optimal objective function value of the DNN if
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the obtained solution is close to the optimal solution. The Nightjet procedure works
particularly well for structured instances, like computing ¥, but comes with the
drawback that it might fail to produce a feasible solution. However, as long as the dual
solution is reasonably close to the (unknown) optimal solution, this does not happen.
We also observe that the Nightjet procedure works particularly well after ADAL+ and
DADAL+. This is due to the fact that in these algorithms the dual matrix (which is
the input for the Nightjet procedure) is positive semidefinite by construction. The
two versions of the post-processing make our methods applicable within branch-and-
bound frameworks in order to solve combinatorial optimization problems with DNN
relaxations.

Our plan for future research is to apply the methods to other structured DNN
relaxations. Furthermore, we will expand our methods to solve SDPs with general
inequality constraints instead of just nonnegativity.
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