Skip to main content
Log in

Preflexes and internal models in biomimetic robot systems

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The next generation of neuroprostheses, which are aimed at the restoration of natural movement of paralysed body parts or at the natural interaction with external devices, will be quite similar to biomimetic robot systems which attempt to duplicate the organization of the biological motor control system. In the paper, we review some of the organizing principles that have emerged in the last few years and might provide useful guidelines for a biomimetic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bizzi E, Hogan N, Mussa Ivaldi FA, Giszter SF (1992) Does the nervous system use equilibrium-point control to guide single and multiple movements? Behav Brain 15:603–613

    Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255

    Article  Google Scholar 

  • Brown IE, Loeb GE (1997) A reductionist approach to creating and using neuromusculoskeletal models. In: Winters JM, Crago PE (eds) Biomechanics and neural control of movement. Springer, Berlin Heidelberg New York, pp 148–163

    Google Scholar 

  • Burdet E, Osu R, Franklin DW, Milner TE, Kawato M (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449

    Article  CAS  PubMed  Google Scholar 

  • Casadio M, Morasso P, Sanguineti V (2004) Braccio di ferro: a new robotized haptic interface. Gait Posture (in press)

    Google Scholar 

  • Davidson PR, Wolpert DM (2004) Scaling down motor memories: de-adaptation after motor learning. Neurosci Lett 370:102–107

    Article  Google Scholar 

  • Della Maggiore V, Malfait N, Ostry DJ, Paus T (2004) Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J Neurosci 24:9971–9976

    Article  Google Scholar 

  • Ellaway P, Taylor A, Durbaba R, Rawlinson S (2002) Role of the fusimotor system in locomotion. Adv Exp Med Biol 508:335–342

    Google Scholar 

  • Flanagan JR, Lolley S (2001) The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 21:1361–1369

    CAS  PubMed  Google Scholar 

  • Gagey PM, Bizzo G, Ouaknine M, Weber B (2002) Two mechanical models for postural stabilization: the tactics of the center of gravity and the tactics of the center of pressure. http://perso.club-internet.fr/pmgagey/TactiqueDuPied-a.htm

  • Gatev P, Thomas S, Thomas K, Hallet M (1999) Feedforward ankle strategy of balance during quiet stance in adults. J Physiol 514:915–928

    Article  Google Scholar 

  • Gerritsen KG, van den Bogert AJ, Hulliger M, Zernicke RF (1998) Intrinsic muscle properties facilitate locomotor control—a computer simulation study. Motor Contr 2:206–220

    Google Scholar 

  • Ghez C, Gordon J, Ghilardi MF, Sainburg RL (1994) Contributions of vision and proprioception to accuracy in limb movements. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT, Cambridge, pp 549–564

    Google Scholar 

  • Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272:117–120

    CAS  PubMed  Google Scholar 

  • Goodbody SJ, Wolpert DM (1998) Temporal and amplitude generalization in motor learning. J Neurophysiol 79:1825–1838

    CAS  PubMed  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean torque. J Biomech 15:747–752

    Article  Google Scholar 

  • Jaax KN, Hannaford B (2002) A biorobotic structural model of the mammalian muscle spindle primary afferent response. Ann Biomed Eng 30:84–96

    Article  Google Scholar 

  • Jacono M, Casadio M, Morasso P, Sanguineti V (2004) The sway density curve and the underlying postural stabilization process. Motor Contr 8:292–311

    Google Scholar 

  • Karniel A, Mussa-Ivaldi FA (2003) Sequence, time, or state representation: how does the motor control system adapt to variable environments? Biol Cybern 89:10–21

    Google Scholar 

  • Lacquaniti F, Maioli C (1989) The role of preparation in tuning anticipatory and reflex responses during catching. J Neurosci 9:134–148

    Google Scholar 

  • Loram ID, Lakie M (2002a) Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J Physiol 540:1111–1124

    Google Scholar 

  • Loram ID, Lakie M (2002b) Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J Physiol 545:1041–1053

    Article  Google Scholar 

  • Morasso P (1981) Spatial control of arm movement. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Morasso P, Sanguineti V (2002) Ankle stiffness alone cannot stabilize upright standing. J Neurophysiol 88:2157–2162

    Google Scholar 

  • Morasso P, Schieppati M (1999) Can muscle stiffness alone stabilize upright standing? J Neurophysiol 82:1622–1626

    Google Scholar 

  • Peterka RJ (2000) Postural control model interpretation of stabilogram diffusion analysis. Biol Cybern 83:335–343

    Article  Google Scholar 

  • Proske U, Gregory JE (2002) Signalling properties of muscle spindles and tendon organs. Adv Exp Med Biol 508:5–12

    Google Scholar 

  • Sanguineti V, Morasso P, Baratto L, Brichetto G, Mancardi GL, Solaro, C (2003) Cerebellar ataxia: quantitative assessment and cybernetic interpretation. Human Move 22:189–205

    Article  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Tsuji T, Morasso P, Goto K, Ito K (1995) Human hand impedance characteristics during maintained posture in multi joint arm movements. Biol Cybern 72:475–485

    Article  CAS  PubMed  Google Scholar 

  • Wagner H, Blickhan R (2003) Stabilizing function of antagonistic neuromusculoskeletal systems: an analytical investigation. Biol Cybern 89:71–79

    Google Scholar 

  • Wagner H, Blickhan RR (1999) Stabilizing function of skeletal muscles: an analytical investigation. J Theor Biol 199:163–179

    Article  Google Scholar 

  • Weiss PL, Hunter IW, Kearney RE (1988) Human ankle joint stiffness over the full range of muscle activation levels. J Biomech 21:539–544

    Article  CAS  PubMed  Google Scholar 

  • Winter DA, Patla AE, Prince F, Ishac M (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221

    CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    CAS  PubMed  Google Scholar 

  • Zatsiorsky VM, Duarte M (2000) Rambling and trembling in quiet standing. Motor Contr 4:185–200

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Morasso.

Additional information

Communicated by Irene Ruspantini and Niels Birbaumer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morasso, P., Bottaro, A., Casadio, M. et al. Preflexes and internal models in biomimetic robot systems. Cogn Process 6, 25–36 (2005). https://doi.org/10.1007/s10339-004-0039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0039-6

Keywords

Navigation