Skip to main content
Log in

Direct brain communication: neuroelectric and metabolic approaches at Tübingen

  • Laboratory Notes
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The brain–computer interface (BCI) provides users with the possibility of sending messages and commands to the external world without using their muscles, thus enabling communication to occur independent of movement. Such a possibility is of utmost importance for paralyzed patients who may otherwise lose their ability to communicate. Enhanced methodology and the development of faster computers have substantially improved applications and offer new possibilities in this field. To date, there have been over 20 BCI research groups working on different approaches. In this paper, we review our studies of BCI based on electric and metabolic activity of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arthurs OJ, Williams EJ, Carpenter TA, Pickard JD, Boniface SJ (2000) Linear coupling between functional magnetic resonance imaging and evoked potential amplitude in human somatosensory cortex. Neuroscience 101(4):803–806

    Article  Google Scholar 

  • Aunon JI, Keirn ZA (1990) On intersensory evoked potentials. Biomed Sci Instrum 26:33–39

    Google Scholar 

  • Ball T, Schreiber A, Feige B, Wagner M, Lucking CH, Kristeva-Feige R (1999) The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage 10(6):682–694

    Article  Google Scholar 

  • Berger H (1929) Über das Elektrenkephalogramm des Menschen. Arch Psychiatr 87:527–570

    Google Scholar 

  • Birbaumer N (1999) Slow cortical potentials: plasticity, operant control, and behavioral effects. Neuroscientist 5:74–78

    Google Scholar 

  • Birbaumer N, Elbert T, Lutzenberger W, Rockstroh B, Schwarz J (1981) EEG and slow cortical potentials in anticipation of mental tasks with different hemispheric involvement. Biol Psychol 13:251–260

    Article  Google Scholar 

  • Birbaumer N, Elbert T, Canavan AG, Rockstroh B (1990) Slow potentials of the cerebral cortex and behavior. Physiol Rev 70(1):1–41

    Google Scholar 

  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kubler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  Google Scholar 

  • Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193

    Article  Google Scholar 

  • Dobkin BH (2003) Functional MRI: a potential physiologic indicator for stroke rehabilitation interventions. Stroke 34(5):23–28

    Article  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain 11:357–374

    Google Scholar 

  • Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  Google Scholar 

  • Egner T, Gruzelier JH (2001) Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 12(18):4155–4159

    Article  Google Scholar 

  • Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48(3):293–301

    Article  Google Scholar 

  • Esposito F, Seifritz E, Formisano E, Morrone R, Scarabino T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2003) Real-time independent component analysis of fMRI time-series. Neuroimage 20(4):2209–2224

    Article  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  • Fetz EE, Wyler AR (1973) Operantly conditioned firing patterns of epileptic neurons in the monkey motor cortex. Exp Neurol 40(3):586–607

    Article  Google Scholar 

  • Glover AA, Onofrj MC, Ghilardi MF, Bodis-Wollner I (1986) P300-like potentials in the normal monkey using classical conditioning and an auditory ‘oddball’ paradigm. Electroencephalogr Clin Neurophysiol 65(3):231–235

    Article  Google Scholar 

  • Goddard NH, Hood G, Cohen JD, Eddy WF, Genovese CR, Noll DC, Nystrom LE (1997) Online analysis of functional MRI datasets on parallel platforms. J Supercomput 11:295–318

    Article  Google Scholar 

  • Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA, Emre M, Demiralp T (2002) Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res 14(2):234–244

    Article  Google Scholar 

  • Hardman E, Gruzelier J, Cheesman K, Jones C, Liddiard D, Schleichert H, Birbaumer N (1997) Frontal interhemispheric asymmetry: self regulation and individual differences in humans. Neurosci Lett 221(2–3):117–120

    Article  Google Scholar 

  • Hinterberger T, Kaiser J, Kübler A, Neumann N, Birbaumer N (2001) The thought translation device and its applications to the completely paralyzed. In: Diebner HH, Druckrey T, Weibel P (eds) Sciences of the interfaces. Genista, Tübingen, pp 232–240

    Google Scholar 

  • Hinterberger T, Veit R, Strehl U, Trevorrow T, Erb M, Kotchoubey B, Flor H, Birbaumer N (2003) Brain areas activated in fMRI during self-regulation of slow cortical potentials (SCPs). Exp Brain Res 152(1):113–122

    Article  Google Scholar 

  • Hinterberger T, Neumann N, Pham M, Kubler A, Grether A, Hofmayer N, Wilhelm B, Flor H, Birbaumer N (2004a) A multimodal brain-based feedback and communication system. Exp Brain Res 154(4):521–526

    Article  Google Scholar 

  • Hinterberger T, Weiskopf N, Veit R, Wilhelm B, Betta E, Birbaumer N (2004b) An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):971–974

    Article  Google Scholar 

  • Kaiser J, Perelmouter J, Iversen IH, Neumann N, Ghanayim N, Hinterberger T, Kubler A, Kotchoubey B, Birbaumer N (2001) Self-initiation of EEG-based communication in paralyzed patients. Clin Neurophysiol 112(3):551–554

    Article  Google Scholar 

  • Kamiya J (1969) Operant control of the EEG alpha rhythm and some of its reported effects on consciousness. In: Tart CT (ed) Altered states of consciousness: a book of readings. Wiley, New York, pp 507–517

    Google Scholar 

  • Keirn ZA, Aunon JI (1990) A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng 37(12):1209–1214

    Article  Google Scholar 

  • Kornhuber HH, Deecke L (1965) Changes in the brain potential in voluntary movements and passive movements in man: readiness potential and reafferent potentials. Pflugers Arch Gesamte Physiol Menschen Tiere 284:1–17

    Article  Google Scholar 

  • Kotchoubey B, Blankenhorn V, Froscher W, Strehl U, Birbaumer N (1997) Stability of cortical self-regulation in epilepsy patients. Neuroreport 8(8):1867–1870

    Google Scholar 

  • Kozelka JW, Pedley TA (1990) Beta and mu rhythms. J Clin Neurophysiol 7(2):191–207

    Google Scholar 

  • Kubler A, Kotchoubey B, Salzmann HP, Ghanayim N, Perelmouter J, Homberg V, Birbaumer N (1998) Self-regulation of slow cortical potentials in completely paralyzed human patients. Neurosci Lett 252(3):171–174

    Article  Google Scholar 

  • Kubler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer M, Fritsch C, Taub E, Birbaumer N (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124(2):223–232

    Article  Google Scholar 

  • Kubler A, Kotchoubey B, Kaiser J, Wolpaw JR, Birbaumer N (2001a) Brain-computer communication: unlocking the locked in. Psychol Bull 127(3):358–375

    Article  Google Scholar 

  • Kubler A, Neumann N, Kaiser J, Kotchoubey B, Hinterberger T, Birbaumer NP (2001b) Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil 82(11):1533–1539

    Article  Google Scholar 

  • Kubler A, Neumann N, Wilhelm B, Hinterberger T, Birbaumer N (2004) Predictability of brain-computer communication. J Psychophysiol 18(2004):121–129

    Article  Google Scholar 

  • Logothetis NK (2003) MR imaging in the non-human primate: studies of function and of dynamic connectivity. Curr Opin Neurobiol 13(5):630–642

    Article  Google Scholar 

  • Lotze M, Grodd W, Birbaumer N, Erb M, Huse E, Flor H (1999) Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat Neurosci 2(6):501–502

    Article  Google Scholar 

  • Lotze M, Flor H, Grodd W, Larbig W, Birbaumer N (2001) Phantom movements and pain. An fMRI study in upper limb amputees. Brain 124(Pt 11):2268–2277

    Article  Google Scholar 

  • McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103(3):386–394

    Article  Google Scholar 

  • McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186

    Article  Google Scholar 

  • Mellinger J, Nijboer F, Pawelzik H, Schalk G, McFarland DJ, Vaughan TM, Wolpaw JR, Birbaumer B, Kübler A (2004) P300 for communication: evidence from patients with amyotrophic lateral sclerosis (ALS). Biomed Tech 49(1):71–74

    Google Scholar 

  • Miltner W, Larbig W, Braun C (1988) Biofeedback of somatosensory event-related potentials: can individual pain sensations be modified by biofeedback-induced self-control of event-related potentials? Pain 35(2):205–213

    Article  Google Scholar 

  • Moonen CTW, Bandettini PA (2000) Functional MRI. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Perelmouter J, Kotchoubey B, Kübler A, Taub E, Birbaumer N (1999) Language support program for thought-translation-devices. Automedica 18:67–84

    Google Scholar 

  • Pfurtscheller G (1989) Functional topography during sensorimotor activation studied with event-related desynchronization mapping. J Clin Neurophysiol 6(1):75–84

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G (1999) EEG event-related desynchronization (ERD) and event-related synchronization (ERS). In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 958–967

    Google Scholar 

  • Pfurtscheller G, Berghold A (1989) Patterns of cortical activation during planning of voluntary movement. Electroencephalogr Clin Neurophysiol 72(3):250–258

    Article  Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  Google Scholar 

  • Phan KL, Fitzgerald DA, Gao K, Moore GJ, Tancer ME, Posse S (2004) Real-time fMRI of cortico-limbic brain activity during emotional processing. Neuroreport 15(3):527–532

    Article  Google Scholar 

  • Polich J (1998) P300 clinical utility and control of variability. J Clin Neurophysiol 15(1):14–33

    Article  Google Scholar 

  • Posse S, Binkofski F, Schneider F, Gembris D, Frings W, Habel U, Salloum JB, Mathiak K, Wiese S, Kiselev V, Graf T, Elghahwagi B, Grosse-Ruyken ML, Eickermann T (2001) A new approach to measure single-event related brain activity using real-time fMRI: feasibility of sensory, motor, and higher cognitive tasks. Hum Brain Mapp 12(1):25–41

    Article  Google Scholar 

  • Posse S, Fitzgerald D, Gao K, Habel U, Rosenberg D, Moore GJ, Schneider F (2003) Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage 18(3):760–768

    Article  Google Scholar 

  • Rauch SL, Shin LM, Wright CI (2003) Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci 985:389–410

    Google Scholar 

  • Ravden D, Polich J (1998) Habituation of P300 from visual stimuli. Int J Psychophysiol 30(3):359–365

    Article  CAS  PubMed  Google Scholar 

  • Rockstroh B, Birbaumer N, Elbert T, Lutzenberger W (1984) Operant control of EEG and event-related and slow brain potentials. Biofeedback Self Regul 9(2):139–160

    Article  Google Scholar 

  • Rockstroh B, Elbert T, Canavan A, Lutzenberger W, Birbaumer N (1989) Slow cortical potentials and behaviour. Urban & Schwarzenberg, Baltimore

    Google Scholar 

  • Roder B, Rosler F, Hennighausen E, Nacker F (1996) Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. Brain Res Cogn Brain Res 4(2):77–93

    Google Scholar 

  • Rosenfeld JP, Rudell AP, Fox SS (1969) Operant control of neural events in humans. Science 165:821–823

    Google Scholar 

  • Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51(6):1034–1043

    Article  Google Scholar 

  • Schwartz CE, Wright CI, Shin LM, Kagan J, Whalen PJ, McMullin KG, Rauch SL (2003) Differential amygdalar response to novel versus newly familiar neutral faces: a functional MRI probe developed for studying inhibited temperament. Biol Psychiatry 53(10):854–862

    Article  Google Scholar 

  • Sommer W, Schweinberger S (1992) Operant conditioning of P300. Biol Psychol 33(1):37–49

    Article  Google Scholar 

  • Speckmann E-J, Caspers H, Elger CE (1984) Neuronal mechanisms underlying the generation of field potentials. In: Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (eds) Self-regulation of the brain and behaviour. Springer, Berlin Heidelberg New York, pp 9–25

    Google Scholar 

  • Sterman MB (1977) Sensorimotor EEG operant conditioning: experimental and clinical effects. Pavlov J Biol Sci 12(2):63–92

    Google Scholar 

  • Strong MJ, Grace GM, Orange JB, Leeper HA (1996) Cognition, language, and speech in amyotrophic lateral sclerosis: a review. J Clin Exp Neuropsychol 18(2):291–303

    Google Scholar 

  • Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C (1999) A prospective study of cognitive impairment in ALS. Neurology 53(8):1665–1670

    Google Scholar 

  • Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL (1998) Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281(5380):1188–1191

    Article  Google Scholar 

  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL (1964) Contingent negative variation: an electric sign of sensorimotor association and expectancy in the human brain. Nature 203:380–384

    CAS  PubMed  Google Scholar 

  • Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586

    Article  Google Scholar 

  • Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N (2004) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):966–970

    Article  Google Scholar 

  • Wolpaw JR, Flotzinger D, Pfurtscheller G, McFarland DJ (1997) Timing of EEG-based cursor control. J Clin Neurophysiol 14(6):529–538

    Article  Google Scholar 

  • Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8(2):164–173

    Article  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  • Wolpaw JR, McFarland DJ, Vaughan TM, Schalk G (2003) The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans Neural Syst Rehabil Eng 11(2):204–207

    Article  Google Scholar 

  • Yoo SS, Jolesz FA (2002) Functional MRI for neurofeedback: feasibility study on a hand motor task. Neuroreport 13(11):1377–1381

    Article  Google Scholar 

  • Yoo SS, Fairneny T, Chen NK, Choo SE, Panych LP, Park H, Lee SY, Jolesz FA (2004) Brain–computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10):1591–1595

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tracy Trevorrow (Chaminade University, Honolulu) and Ranga Sitaram for valuable comments. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in Germany, the National Institutes of Health (NIH) in the USA, and the Bundesministerium für Bildung und Forschung (BMBF) in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Birbaumer.

Additional information

Communicated by Irene Ruspantini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleber, B., Birbaumer, N. Direct brain communication: neuroelectric and metabolic approaches at Tübingen. Cogn Process 6, 65–74 (2005). https://doi.org/10.1007/s10339-004-0045-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0045-8

Keywords

Navigation