Skip to main content
Log in

Inertia and memory in ambiguous visual perception

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Perceptual multistability during ambiguous visual perception is an important clue to neural dynamics. We examined perceptual switching during ambiguous depth perception using a Necker cube stimulus, and also during binocular rivalry. Analysis of perceptual switching time series using variance–sample size analysis, spectral analysis and time series shuffling shows that switching times behave as a 1/f noise and possess very long range correlations. The long memory feature contrasts sharply with the traditional satiation models of multistability, where the memory is not incorporated, as well as with recently published models of multistability and neural processing, where memory is excluded. On the other hand, the long memory feature favors the concept of “dynamic core” or coalition of neurons, where neurons form transient coalitions. Perceptual switching then corresponds to replacement of one coalition of neurons by another. The inertia and memory measures the stability of a coalition: a strong and stable coalition has to be won over by another similarly strong and stable coalition, resulting in long switching times. The complicated transient dynamics of competing coalitions of neurons may be addressable using a combination of functional imaging, measurement of frequency-tagged magnetoencephalography and frequency-tagged encephalography, simultaneous recordings of groups of neurons in many areas of the brain, and concepts from statistical mechanics and nonlinear dynamics theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aks DJ, Sprott JC (2003) The role of depth and 1/f dynamics in perceiving reversible figures. Nonlinear Dynamics Psychol Life Sci 7:161–179

    Article  PubMed  Google Scholar 

  • Attneave F (1971) Multistability in perception. Sci Am 225:63–71

    PubMed  CAS  Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus Press, New York

    Google Scholar 

  • Bassingthwaighte JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, New York

    Google Scholar 

  • Billock VA (2000) Neural acclimation to 1/f spatial frequency spectra in natural images transduced by the human visual system. Phys D 137:379–391

    Article  Google Scholar 

  • Billock VA, de Guzman GC, Kelso JAS (2001) Fractal time and 1/f spectra in dynamic images and human vision. Phys D 148:136–146

    Article  Google Scholar 

  • Bisiach E, Ricci R, Lai E, De Tanti A, Inzaghi MG (1999) Unilateral neglect and disambiguation of the Necker cube. Brain 122:131–140

    Article  PubMed  Google Scholar 

  • Blake R, Logothetis NK (2002) Visual competition. Nat Rev Neurosci 3:13–23

    Article  PubMed  CAS  Google Scholar 

  • Borsellino A, Allazetta A, Bartolin B, Rinesi A, De Marco A (1972) Reversal time distribution in perception of visual ambiguous stimuli. Kybernetik 10:139–144

    Article  PubMed  CAS  Google Scholar 

  • Chen YQ, Ding MZ, Kelso JAS (1997) Long memory processes (1/f(alpha) type) in human coordination. Phys Rev Lett 79:4501–4504

    Article  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1994) Random walking during quiet standing. Phys Rev Lett 73:764–767

    Article  PubMed  Google Scholar 

  • Crick F, Koch C (2003) A framework for consciousness. Nat Neurosci 6:119–126

    Article  PubMed  CAS  Google Scholar 

  • De Marco A, Penengo P, Trabucco A, Borsellino A, Carlini F, Riani M, Tuccio MT (1977) Stochastic-models and fluctuations in reversal time of ambiguous figures. Perception 6:645–656

    Article  PubMed  Google Scholar 

  • Edelman GM, Tononi G (2000) A universe of consciousness. Basic Books, New York

    Google Scholar 

  • Elbert T, Hommel J, Lutzenberger W (1985) The perception of Necker cube reversal interacts with the Bereitschaftspotential. Int J Psychophysiol 3:5–12

    Article  PubMed  CAS  Google Scholar 

  • Feder J (1988) Fractals. Plenum, New York

    Google Scholar 

  • Fox R, Herrmann J (1967) Stochastic properties of binocular rivalry alternations. Percept Psychophys 2:432–436

    Google Scholar 

  • Gail A, Brinksmeyer HJ, Eckhorn R (2004) Perception-related modulations of local field potential power and coherence in primary visual cortex of awake monkey during binocular rivalry. Cereb Cortex 14:300–313

    Article  PubMed  Google Scholar 

  • Gao JB, Cao YH, Lee JM (2003) Principal component analysis of 1/f noise. Phys Lett A 314:392–400

    Article  CAS  Google Scholar 

  • Gao JB, Hu J, Tung WW, Cao YH, Sarshar N, Roychowdhury VP (2006) Assessment of long range correlation in time series: How to avoid pitfalls. Phys Rev E 73:016117

    Article  CAS  Google Scholar 

  • Gilden DL, Thornton T, Mallon MW (1995) 1/f Noise in human cognition. Science 267:1837–1839

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Hainline L, Abramov I, Lemerise E, Camenzuli C (1988) The distribution of fixation durations in infants and naive adults. Vis Res 28:419–432

    Article  PubMed  CAS  Google Scholar 

  • Inui T, Tanaka S, Okada T, Nishizawa S, Katayama M, Konishi J (2000) Neural substrates for depth perception of the Necker cube; a functional magnetic resonance imaging study in human subjects. Neurosci Lett 282:145–148

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Tsuda I (2003) Chaotic itinerancy. Chaos 13:926–936

    Article  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS, Case P, Holroyd T, Horvath E, Raczaszek J, Tuller B, Ding M (1995) Multistability and metastability in perceptual and brain dynamics. In: Kruse P, Stadler M (eds) Ambiguity in mind and brain. Springer, Berlin Heidelberg New York, pp 159–184

    Google Scholar 

  • Kleinschmidt A, Buchel C, Zeki S, Frackowiak RSJ (1998) Human brain activity during spontaneously reversing perception of ambiguous figures. Proc R Soc Lond B 265:2427–2433

    Article  CAS  Google Scholar 

  • Kreiman G, Fried I, Koch C (2002) Single-neuron correlates of subjective vision in the human medial temporal lobe. Proc Natl Acad Sci USA 99:8378–8383

    Article  PubMed  CAS  Google Scholar 

  • Laing CR, Chow CC (2002) A spiking neuron model for binocular rivalry. J Comput Neurosci 12:39–53

    Article  PubMed  Google Scholar 

  • van Leeuwen C, Steyvers M, Nooter M (1997) Stability and Intermittency in Large-Scale Coupled Oscillator Models for Perceptual Segmentation. J Math Psych 41:319–344

    Article  Google Scholar 

  • Lehky SR (1995) Binocular-rivalry is not chaotic. Proc R Soc Lond Ser B 259:71–76

    Article  CAS  Google Scholar 

  • Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self-similar nature of Ethernet traffic (Extended version). IEEE/ACM Trans Network 2:1–15

    Article  Google Scholar 

  • Leopold DA, Logothetis NK (1996) Activity changes in early visual cortex reflect monkeys’ percepts during binocular rivalry. Nature 379:549–553

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Logothetis NK (1999) Multistable phenomena: changing views in perception. Trends Cognit Sci 3:254–264

    Article  Google Scholar 

  • Leopold DA, Wilke M, Maier A, Logothetis NK (2002) Stable perception of visually ambiguous patterns. Nat Neurosci 5:605–609

    Article  PubMed  CAS  Google Scholar 

  • Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: Implications for functional brain imaging. Cereb Cortex 13:422–433

    Article  PubMed  Google Scholar 

  • Li W, Kaneko K (1992) Long-range correlation and partial 1/f-Alpha spectrum in a noncoding DNA-sequence. Europhys Lett 17:655–660

    Article  CAS  Google Scholar 

  • Logothetis NK, Schall JD (1989) Neuronal correlates of subjective visual-perception. Science 245:761–763

    Article  PubMed  CAS  Google Scholar 

  • Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104

    Article  PubMed  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  • Mandelbrot BB, Wallis JR (1969) Some long-run properties of geophysical records. Water Resources Res 5:321

    Article  Google Scholar 

  • Marr D (1980) Vision. MIT Press, Cambridge

    Google Scholar 

  • Merk I, Schnakenberg J (2002) A stochastic model of multistable visual perception. Bio Cybern 86:111–116

    Article  CAS  Google Scholar 

  • Murata T, Matsui N, Miyauchi S, Kakita Y, Yanagida T (2003) Discrete stochastic process underlying perceptual rivalry. Neuroreport 14:1347–1352

    Article  PubMed  Google Scholar 

  • Nakatani H, van Leeuwen C (2006) Transient synchrony of distant brain areas and perceptual switching in ambiguous figures. Biol Cybern (in press)

  • Nakatani H, van Leeuwen C (2005) Individual differences in perceptual switching rates; the role of occipital alpha and frontal theta band activity. Biol Cybern 93:343–354

    Article  PubMed  Google Scholar 

  • Pavlovskaya M, Bonneh Y, Soroker N, Sagi D, Ring H (2001) Perceptual switching in patients with attention deficit. In: Presented at the 31st annual meeting of the Society for Neuroscience, San Diego, 10–15 November

  • Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Sciortino F, Simons M, Stanley HE (1992) Long-range correlations in nucleotide-sequences. Nature 356:168–170

    Article  PubMed  CAS  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of dna nucleotides. Phys Rev E 49:1685–1689

    Article  CAS  Google Scholar 

  • Pettigrew JD, Miller SM (1998) A ‘sticky’ interhemispheric switch in bipolsar disorder? Proc R Soc Lond B 265:2141–2148

    Article  CAS  Google Scholar 

  • Press WH (1978) Flicker noises in astronomy and elsewhere. Comments on Astrophys 7:103–119

    Google Scholar 

  • Srinivasan R (2004) Internal and external neural synchronization during conscious perception Int J Bif Chaos 14:825–842

    Article  Google Scholar 

  • Steinbuchel N (1998) Temporal ranges of central nervous processing: clinical evidence. Exp Brain Res 123:220–233

    Article  Google Scholar 

  • Sterzer P, Russ MO, Preibisch C, Kleinschmidt A (2002) Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage 15:908–916

    Article  PubMed  Google Scholar 

  • Suzuki S, Grabowecky M (2002) Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry. Neuron 36:143–157

    Article  PubMed  CAS  Google Scholar 

  • Tong F, Nakayama K, Vaughan JT, Kanwisher N (1998) Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21:753–759

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Edelman GM (2000) Schizophrenia and the mechanisms of conscious integration. Brain Research Reviews 31:391–400

    Article  PubMed  CAS  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810

    Article  PubMed  CAS  Google Scholar 

  • Voss RF (1985) Random fractal forgeries. In: Earnshaw RA (ed) Fundamental Algorithms for Computer Graphics. Springer, Berlin Heidelberg New York, pp 805–835

    Google Scholar 

  • Voss RF (1992) Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Phys Rev Lett 68:3805–3808

    Article  PubMed  CAS  Google Scholar 

  • Walker P (1975) Stochastic properties of binocular rivalry alternations. Percept Psychophys 18:467–473

    Google Scholar 

  • Wornell GM (1996) Signal processing with fractals: a wavelet-based approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Zhou YH, Gao JB, White KD, Merk I, Yao K (2004) Perceptual dominance time distributions in multistable visual perception. Biol Cybern 90:256–263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gao.

Additional information

Communicated by Cees van Leeuwen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, J.B., Billock, V.A., Merk, I. et al. Inertia and memory in ambiguous visual perception. Cogn Process 7, 105–112 (2006). https://doi.org/10.1007/s10339-006-0030-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-006-0030-5

Keywords

Navigation