Skip to main content
Log in

Insufficient augmentation of ambient GABA responsible for age-related cognitive deficit

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Age-related degeneration of intracortical inhibition could underlie declines in cognitive function during senescence. Based on a hypothesis that a decrease in basal concentration of ambient (extrasynaptic) GABA with aging leads to depressing intracortical inhibition, we investigated how the basal concentration affects stimulus-evoked activity (as signal), ongoing-spontaneous activity (as noise) of neurons and their (signal-to-noise) ratio S/N. We simulated a neural network model equipped with a GABA transport system that regulates ambient GABA concentration in a neuronal activity-dependent manner. An increase in basal concentration augmented ambient GABA, increased GABA-mediated inhibitory current, and depressed ongoing-spontaneous activity while still keeping stimulus-evoked activity. This led to S/N improvement, for which it was necessary for the reversal potential of GABA transporter to be close to the resting potential of neurons. Above the resting potential, ongoing-spontaneous activity was predominantly enhanced due to excessive GABA-uptake from the extracellular space by transporters. Below the resting potential, stimulus-evoked activity was predominantly depressed, caused by excessive GABA-release. We suggest that the insufficient augmentation of ambient GABA due to a decrease in its basal concentration may be one of the possible causes of cognitive deficit with aging, increasing ongoing-spontaneous neuronal activity as noise. GABA transporter may contribute to improving S/N, provided that its reversal potential is close to the resting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12:12–21

    Article  PubMed  CAS  Google Scholar 

  • Banay-Schwartz M, Lajtha A, Palkovits M (1989) Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem Res 14:555–562

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372

    PubMed  CAS  Google Scholar 

  • Cavelier P, Hamann M, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87:3–16

    Article  PubMed  CAS  Google Scholar 

  • Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138

    Article  PubMed  Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    Article  PubMed  Google Scholar 

  • El Idrissi A (2008) Taurine improves learning and retention in aged mice. Neurosci Lett 436:19–22

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Messing J, Scalia J, Trenkner E (2003) Prevention of epileptic seizures by taurine. Adv Exp Med Biol 526:515–525

    PubMed  CAS  Google Scholar 

  • Hagberg H, Lehmann A, Sandberg M, Nystrom B, Jacobson I, Hamberger A (1985) Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J Cereb Blood Flow Metab 5:413–419

    Article  PubMed  CAS  Google Scholar 

  • Hoshino O (2006) Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons. Network: Comput Neural Syst 17:351–371

    Article  Google Scholar 

  • Hoshino O (2008) An ongoing subthreshold neuronal state established through dynamic coassembling of cortical cells. Neural Comput 20:3055–3086

    Article  PubMed  Google Scholar 

  • Hoshino O (2009) GABA-transporter preserving ongoing-spontaneous neuronal activity at firing-subthreshold. Neural Comput 21:1683–1713

    Article  PubMed  Google Scholar 

  • Lerma J, Herranz AS, Herreras O, Abraira V, Martin dR (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384:145–155

    Article  PubMed  CAS  Google Scholar 

  • Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818

    PubMed  CAS  Google Scholar 

  • Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815

    Article  PubMed  CAS  Google Scholar 

  • Manunta Y, Edeline JM (1997) Effects of noradrenaline on frequency tuning of rat auditory cortex neurons. Eur J Neurosci 9:833–847

    Article  PubMed  CAS  Google Scholar 

  • Manunta Y, Edeline JM (1998) Effects of noradrenaline on rate-level function of auditory cortex neurons: is there a “gating” effect of noradrenaline? Exp Brain Res 118:361–372

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nature Rev Neurosci 5:793–807

    Article  CAS  Google Scholar 

  • Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27:569–575

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 8:1693–1703

    Google Scholar 

  • Phillis JW, Smith-Barbour M, Perkins LM, O’Regan MH (1994) Characterization of glutamate, aspartate, and GABA release from ischemic rat cerebral cortex. Brain Res Bull 34:457–466

    Article  PubMed  CAS  Google Scholar 

  • Richerson GB (2004) Looking for GABA in all the wrong places: the relevance of extrasynaptic GABA(A) receptors to epilepsy. Epilepsy Curr 4:239–242

    Article  PubMed  Google Scholar 

  • Richerson GB, Wu Y (2003) Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J Neurophysiol 90:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428

    Article  PubMed  CAS  Google Scholar 

  • Salthouse TA (1999) Step toward the explanation of adult age differences in cognition. In: Perfect TJ, Mylor EA (eds) Models of cognitive aging. Oxford University Press, New York, pp 19–49

    Google Scholar 

  • Santhakumar V, Hanchar HJ, Wallner M, Olsen RW, Otis TS (2006) Contributions of the GABAA receptor alpha6 subunit to phasic and tonic inhibition revealed by a naturally occurring polymorphism in the alpha6 gene. J Neurosci 26:3357–3364

    Article  PubMed  CAS  Google Scholar 

  • Schmolesky MT, Wang Y, Pu M, Leventhal AG (2000) Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat Neurosci 3:384–390

    Article  PubMed  CAS  Google Scholar 

  • Scimemi A, Andersson A, Heeroma JH, Strandberg J, Rydenhag B, McEvoy AW, Thom M, Asztely F, Walker MC (2006) Tonic GABA(A) receptor-mediated currents in human brain. Eur J Neurosci 24:1157–1160

    Article  PubMed  Google Scholar 

  • Tossman U, Jonsson G, Ungerstedt U (1986) Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol Scand 127:533–545

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Zhang N, Peng Z, Houser CR, Mody I (2003) Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 23:10650–10661

    PubMed  CAS  Google Scholar 

  • Wu Y, Wang W, Diez-Sampedro A, Richerson GB (2007) Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56:851–865

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Wang W, Richerson GB (2003) Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release. J Neurophysiol 89:2021–2034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Discussions with Tomoya Suzuki are gratefully acknowledged. We express our gratitude to anonymous reviewers for giving us valuable comments and suggestions on the earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hoshino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (63 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, H., Zheng, M., Miyamoto, A. et al. Insufficient augmentation of ambient GABA responsible for age-related cognitive deficit. Cogn Process 12, 151–159 (2011). https://doi.org/10.1007/s10339-010-0375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-010-0375-7

Keywords

Navigation