Skip to main content
Log in

Dynamic modulation of an orientation preference map by GABA responsible for age-related cognitive performance

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that cognitive declines in old (healthy) animals could arise from depression of intracortical inhibition, for which a decreased ability to produce GABA during senescence might be responsible. By simulating a neural network model of a primary visual cortical (V1) area, we investigated whether and how a lack of GABA affects cognitive performance of the network: detection of the orientation of a visual bar-stimulus. The network was composed of pyramidal (P) cells and GABAergic interneurons such as small (S) and large (L) basket cells. Intrasynaptic GABA-release from presynaptic S or L cells contributed to reducing ongoing-spontaneous (background) neuronal activity in a different manner. Namely, the former exerted feedback (S-to-P) inhibition and reduced the frequency (firing rate) of action potentials evoked in P cells. The latter reduced the number of saliently firing P cells through lateral (L-to-P) inhibition. Non-vesicular GABA-release, presumably from glia and/or neurons, into the extracellular space reduced the both, activating extrasynaptic GABAa receptors and providing P cells with tonic inhibitory currents. By this combinatorial, spatiotemporal inhibitory mechanism, the background activity as noise was significantly reduced, compared to the stimulus-evoked activity as signal, thereby improving signal-to-noise (S/N) ratio. Interestingly, GABA-spillover from the intrasynaptic cleft into the extracellular space was effective for improving orientation selectivity (orientation bias), especially when distractors interfered with detecting the bar-stimulus. These simulation results may provide some insight into how the depression of intracortical inhibition due to a reduction in GABA content in the brain leads to age-related cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Brickley SG, Cull-Candy SG, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 497(3):753–759

    Google Scholar 

  • Buzas P, Eysel UT, Adorjan P, Kisvarday ZF (2001) Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps. J Comp Neurol 437:259–285

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Burke DM (1993) Memory for proper names: a review. Memory 1:249–263

    Article  CAS  PubMed  Google Scholar 

  • Craik FI, Bialystok E (2006) Cognition through the lifespan: mechanisms of change. Trends Cogn Sci 10:131–138

    Article  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1998) Kinetic models of synaptic transmission. In: Koch C, Segev I (eds) Methods in neuronal modeling. The MIT Press, Cambridge, pp 1–25

    Google Scholar 

  • Drasbek KR, Jensen K (2006) THIP, a hypnotic and antinociceptive drug, enhances an extrasynaptic GABAA receptor-mediated conductance in mouse neocortex. Cereb Cortex 16:1134–1141

    Article  PubMed  Google Scholar 

  • Fujiwara H, Zheng M, Miyamoto A, Hoshino O (2011) Insufficient augmentation of ambient GABA responsible for age-related cognitive deficit. Cogn Process 12:151–159

    Article  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  CAS  PubMed  Google Scholar 

  • Hoshino O (2006) Coherent ongoing subthreshold state of a cortical neural network regulated by slow- and fast-spiking interneurons. Netw Comput Neural Syst 17:351–371

    Article  Google Scholar 

  • Hoshino O (2008a) Extrasynaptic-GABA-mediated neuromodulation in a sensory cortical neural network. Netw Comput Neural Syst 19:95–117

    Article  Google Scholar 

  • Hoshino O (2008b) An ongoing subthreshold neuronal state established through dynamic coassembling of cortical cells. Neural Comput 20:3055–3086

    Article  PubMed  Google Scholar 

  • Hoshino O (2009) GABA-transporter preserving ongoing-spontaneous neuronal activity at firing-subthreshold. Neural Comput 21:1683–1713

    Article  PubMed  Google Scholar 

  • Hoshino O (2010) Alteration of ambient GABA by phasic and tonic neuronal activation. Neural Comput 22:1358–1382

    Article  PubMed  Google Scholar 

  • Hoshino O (2011a) Neuronal responses below firing threshold for subthreshold cross-modal enhancement. Neural Comput 23:958–983

    Article  PubMed  Google Scholar 

  • Hoshino O (2011b) Subthreshold membrane depolarization as memory trace for perceptual learning. Neural Comput 23:3205–3231

    Article  PubMed  Google Scholar 

  • Katzner S, Busse L, Carandini M (2011) GABAA inhibition controls response gain in visual cortex. J Neurosci 31:5931–5941

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Shindou T (1998) Noradrenergic excitation and inhibition of GABAergic cell types in rat frontal cortex. J Neurosci 18:6963–6976

    CAS  PubMed  Google Scholar 

  • Kisvarday ZF, Beaulieu C, Eysel UT (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 327:398–415

    Article  CAS  PubMed  Google Scholar 

  • Kisvarday ZF, Eysel UT (1993) Functional and structural topography of horizontal inhibitory connections in cat visual cortex. Eur J Neurosci 5:1558–1572

    Article  CAS  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of computation. Oxford University Press, Oxford

    Google Scholar 

  • Krimer LS, Goldman-Rakic PS (2001) Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J Neurosci 21:3788–3796

    CAS  PubMed  Google Scholar 

  • Leventhal AG, Thompson KG, Liu D, Zhou Y, Ault SJ (1995) Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex. J Neurosci 15:1808–1818

    CAS  PubMed  Google Scholar 

  • Leventhal AG, Wang Y, Pu M, Zhou Y, Ma Y (2003) GABA and its agonists improved visual cortical function in senescent monkeys. Science 300:812–815

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  Google Scholar 

  • Martin KAC (2002) Microcircuits in visual cortex. Curr Opin Neurobiol 12:418–425

    Article  CAS  PubMed  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54:782–806

    CAS  PubMed  Google Scholar 

  • Miyamoto A, Hasegawa J, Zheng M, Hoshino O (2012) Diffusive feedback influences on hierarchical information processing. Neural Comput: 24:744–770

    Article  Google Scholar 

  • Nusser Z, Roberts JD, Baude A, Richards JG, Somogyi P (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J Neurosci 5:2948–2960

    Google Scholar 

  • Salthouse TA (1996) The processing-speed theory of adult age differences in cognition. Psychol Rev 103:403–428

    Article  CAS  PubMed  Google Scholar 

  • Schmolesky MT, Wang Y, Pu M, Leventhal AG (2000) Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys. Nat Neurosci 3:384–390

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Andersson A, Heeroma JH, Strandberg J, Rydenhag B, McEvoy AW, Thom M, Asztely F, Walker (2006) Tonic GABA(A) receptor-mediated currents in human brain. Eur J Neurosci 24:1157–1160

  • Semyanov A, Walker MC, Kullmann DM, Silver RA (2004) Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 27:262–269

    Article  CAS  PubMed  Google Scholar 

  • Soltesz I, Nusser Z (2001) Neurobiology. Background inhibition to the fore. Nature 409:24–25

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Kisvarday ZF, Martin KAC, Whitteridge D (1983) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Takagi H, Richards JG, Mohler H (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    CAS  PubMed  Google Scholar 

  • Totoki Y, Matsuo T, Zheng M, Hoshino O (2010) Local intracortical circuitry not only for feature binding but also for rapid neuronal responses. Cogn Process 11:347–357

    Article  PubMed  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodoriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12:395–410

    Article  PubMed  Google Scholar 

  • Xu X, Ichida J, Shostak Y, Bonds AB, Casagrande VA (2002) Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis Neurosci 19:97–108

    PubMed  Google Scholar 

  • Zilberer Y (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J Physiol 538.3:489–496

    Google Scholar 

Download references

Acknowledgments

We express our gratitude to the reviewers for giving us valuable comments and suggestions on the earlier draft of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Hoshino.

Appendix

Appendix

The neural network model

Dynamic evolution of the membrane potential of the ith pyramidal (P) cell that belongs to orientation column θ is defined by

$$ \begin{aligned} c_m^{P} \frac{du_{i}^{P}(\theta;t)}{dt} &= -g_m^{P}(u_{i}^{P}(\theta;t)-u_{\rm rest}^{P}) + I_{i,{\rm rec}}^{\rm ex}(\theta;t) + I_{i,{\rm fed}}^{ih}(\theta;t) + I_{i,{\rm lat}}^{ih}(\theta;t) + I_{\rm ext}^{ih}(t) \\ & + I_{\rm LGN}(\theta), \\ \end{aligned} $$
(1)

where I ex i,rec (θ; t) is a recurrent excitatory postsynaptic current within orientation columns, I ih i,fed (θ; t) a feedback inhibitory postsynaptic current, I ih i,lat (θ; t) a lateral inhibitory postsynaptic current, I ihext (t) an inhibitory non-postsynaptic current caused by GABA-spillover from synaptic clefts and non-vesicular GABA-release into the extracellular space, and I LGN(θ) an excitatory input current triggered by an oriented bar-stimulus (θinp). These currents are defined by

$$ I_{i,{\rm rec}}^{\rm ex}(\theta;t) = -\hat{g}_{\rm AMPA}(u_i^{P}(\theta;t) - u_{rev}^{\rm AMPA}) \sum_{j=1}^{N_\theta}w_{ij,{\rm rec}}^{\rm ex}(\theta)r_{j}^{P}(\theta;t), $$
(2)
$$ I_{i,{\rm fed}}^{ih}(\theta;t) = -\hat{g}_{\rm GABA}(u_i^{P}(\theta;t) - u_{\rm rev}^{\rm GABA})w_{i,{\rm fed}}^{ih}(\theta)r_{i}^{S}(\theta;t), $$
(3)
$$ I_{i,{\rm lat}}^{ih}(\theta;t) = -\hat{g}_{\rm GABA}(u_i^{P}(\theta;t) - u_{\rm rev}^{\rm GABA}) \sum_{\theta'=0(\theta' \ne \theta)}^{7\pi/8}\sum_{j=1}^{N_\theta}w_{ij,{\rm lat}}^{ih}(\theta,\theta') r_{j}^{L}(\theta';t), $$
(4)
$$ I_{\rm ext}^{ih}(t) = -\hat{g}_{\rm GABA}(u_i^{P}(\theta;t) - u_{rev}^{\rm GABA}) \delta r_{\rm ext}^{\rm GABA}(t), $$
(5)
$$ I_{\rm LGN}(\theta) = c_0 \times \{c_1 + cos [2(\theta-\theta_{\rm inp})]\}. $$
(6)

Dynamic evolution of the membrane potentials of small basket (S) cells and large basket (L) cells is defined by

$$ c_m^{S} \frac{du_{i}^{S}(\theta;t)}{dt} = -g_m^{S}(u_{i}^{S}(\theta;t)-u_{\rm rest}^{S}) + I_i^{S}(\theta;t), $$
(7)
$$ c_m^{L} \frac{du_{i}^{L}(\theta;t)}{dt} = -g_m^{L}(u_{i}^{L}(\theta;t)-u_{\rm rest}^{L}) + I_i^{L}(\theta;t), $$
(8)

where I S i (θ; t) and I L i (θ; t) are excitatory postsynaptic currents and defined by

$$ I_i^{S}(\theta;t) = -\hat{g}_{\rm AMPA}(u_i^{S}(\theta;t) - u_{rev}^{\rm AMPA})w_i^{S}(\theta)r_{i}^{P}(\theta;t), $$
(9)
$$ I_i^{L}(\theta;t) = -\hat{g}_{\rm AMPA}(u_i^{L}(\theta;t) - u_{\rm rev}^{\rm AMPA})w_i^{L}(\theta)r_{i}^{P}(\theta;t). $$
(10)

In these equations, c Y m is the membrane capacitance of Y (Y = P, S, L) cell, u Y i (θ; t) the membrane potential of the ith Y cell of θ column at time tg Y m the membrane conductance of Y cell, and u Yrest the resting potential. \(\hat{g}_{Z}\) and u Zrev (Z = AMPA or GABA) are, respectively, the maximal conductance and the reversal potential for the current mediated through Z-type receptor. N θ is the number of cell units constituting each orientation column. w ex ij,rec (θ) and w ih i,fed (θ) are, respectively, the excitatory synaptic strength from the jth to the ith P cell and the inhibitory synaptic strength from S-to-P cell of unit i within columns. w ih ij,lat (θ, θ′) is the inhibitory synaptic strength from the jth L cell of θ′ column to the ith P cell of θ column (θ′ ≠ θ). w S i (θ) and w L i (θ) are, respectively, the excitatory synaptic strengths from P to S cell and to L cell within unit i. θinp in Eq. 6 denotes the orientation (angle) of an input stimulus (a bar).

r P j (θ; t) is the fraction of AMPA-receptors in the open state induced by a presynaptic action potential of the jth P cell belonging to θ column, and r Y j (θ; t) is that of GABAa receptors induced by the jth presynaptic S cell (Y = S) or by the jth presynaptic L cell (Y = L). r GABAext (t) is the fraction of GABAa receptors in the open state, which are located on extrasynaptic membrane regions of P cells. δ denotes a relative amount of extrasynaptic GABAa receptors. Dynamics of these receptors are described by Destexhe et al. (1998)

$$ \frac{dr_j^{P}(\theta;t)}{dt} = \alpha_{\rm AMPA}[{\rm Glut}]_j^{P}(\theta;t)(1-r_j^{P}(\theta;t)) - \beta_{\rm AMPA} r_j^{P}(\theta;t), $$
(11)
$$ \frac{dr_j^K(\theta;t)}{dt} = \alpha_{\rm GABA}[{\rm GABA}]_j^K(\theta;t)(1-r_j^K(\theta;t)) - \beta_{\rm GABA} r_j^K(\theta;t),\quad (K = S, L) $$
(12)
$$ \frac{dr_{ext}^{\rm GABA}(t)}{dt} = \alpha_{\rm GABA}[{\rm GABA}]_{\rm ext}(t)(1-r_{\rm ext}^{\rm GABA}(t)) - \beta_{\rm GABA} r_{\rm ext}^{\rm GABA}(t), $$
(13)

where α z and β z (z = AMPA or GABA) are positive constants. [T] Y j (θ; t) (T = Glut or GABA) is the concentration of glutamate or GABA in the synaptic cleft. [T] Y j (θ; t) = T Y for 1 ms when the jth presynaptic Y cell fires, and 0 otherwise. [GABA]ext(t) is ambient (extrasynaptic) GABA concentration and defined by

$$ \begin{aligned} \frac{d[{\rm GABA}]_{\rm ext}(t)}{dt} &= \frac{1}{\tau_{\rm ext}}([{\rm GABA}]_{\rm ext}(t)- [{\rm GABA}]_0) \\ & + \sum_{\theta^{\prime}=0}^{7\pi/8}\sum_{j=1}^{N_\theta} \int_{-\infty}^tC_{\rm ext}e^{\frac{-(t-t^{\prime})}{\tau_{\rm dec}}}\{[{\rm GABA}]_j^{S} (\theta^{\prime};t^{\prime})+ [{\rm GABA}]_j^{L}(\theta^{\prime};t^{\prime})\}dt^{\prime}, \\ \end{aligned} $$
(14)

where τext is a time constant for ambient GABA concentration, and [GABA]0 is a basal (resting GABA) concentration determined by non-vesicular GABA-release. The second term (on the right-hand side of Eq. 14) describes a relative amount of GABA-spillover from the synaptic clefts of presynaptic S and L cells. C ext is a positive constant, and τdec determines a degree of contribution of previously released 1 ms pulses of GABA K (K = S, L). We assume that GABA molecules diffuse rapidly across the network.

Probability of firing of the jth Y cell belonging to θ column is defied by

$$ Prob[Y_j(\theta;t); {\rm firing}] = { \frac{1} {1+e^{-\eta_Y(u_j^Y(\theta;t)-\zeta_Y)}}}, $$
(15)

where η Y and \(\zeta_Y\) are, respectively, the steepness and the threshold of the sigmoid function. After firing, the membrane potential is reset to the resting potential.

Unless otherwise stated, c P m = 0.5 nF, c S m = 0.2 nF, c L m = 0.5 nF, g P m = 25 nS, g S m = 20 nS, g L m = 25 nS, u Prest = −65 mV, and u Srest = u Lrest = −70 mV (Koch 1999; McCormick et al. 1985; Kawaguchi and Shindou 1998). \(\hat{g}_{\rm AMPA}\) = 0.5 nS, \(\hat{g}_{\rm GABA}\) = 0.7 nS, u AMPArev = 0 mV, and u GABArev = −80 mV. Each orientation column consists of ten cell units: N θ = 10. w ex ij,rec (θ) = 5.0, w ih i,fed (θ) = w ih ij,lat (θ, θ′) = 1.0, w S i (θ) = w L i (θ) = 10.0. δ = 1000.0, c 0 = 5.0 × 10−10, c 1 = 1.0. αAMPA = 1.1 × 106, αGABA = 5.0 × 105, βAMPA = 190.0, βGABA = 180.0, Glut P = GABA S = GABA L = 1.0 mM, τext = 1.0, [GABA]0 = 1 μM, C ext = 0.2, τdec = 10.0, η P = η S = η L = 350.0, and \(\zeta_{P}\) = \(\zeta_{S}\) = \(\zeta_{L}\) = −50  mV. For these values, see our previous studies (Hoshino 2006, 2008a, b, 2009, 2010, 2011a, b).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, A., Hasegawa, J. & Hoshino, O. Dynamic modulation of an orientation preference map by GABA responsible for age-related cognitive performance. Cogn Process 13, 349–359 (2012). https://doi.org/10.1007/s10339-012-0524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-012-0524-2

Keywords

Navigation