Skip to main content
Log in

A unique visual rhythm does not pop out

  • Short Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

We investigated attentional demands in visual rhythm perception of periodically moving stimuli using a visual search paradigm. A dynamic search display consisted of vertically “bouncing dots” with regular rhythms. The search target was defined by a unique visual rhythm (i.e., a shorter or longer period) among rhythmic distractors with identical periods. We found that search efficiency for a faster or a slower periodically moving target decreased as the number of distractors increased, although searching for a faster target was about one second faster than searching for a slower target. We conclude that perception of a visual rhythm defined by a unique period is not a “pop-out” process, but a serial one that demands considerable attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bahrick LE, Lickliter R (2004) Infant’s perception of rhythm and tempo in unimodal and multimodal stimulation: a develop- mental test of the intersensory redundancy hypothesis. Cogn Affect Behav Neurosci 4:137–147

    Article  PubMed Central  PubMed  Google Scholar 

  • Bao Y, Pöppel E (2007) Two spatially separated attention systems in the visual field: evidence from inhibition of return. Cogn Process 8:37–44

    Article  PubMed  Google Scholar 

  • Bao Y, Wang Z, Liang W, Wang Y, Pöppel E, Li H (2013) Inhibition of return at different eccentricities in the visual field share the same temporal window. Neurosci Lett 534:7–11

    Article  CAS  PubMed  Google Scholar 

  • Braddick OJ, Holliday IE (1991) Serial search for targets defined by divergence or deformation of optic flow. Perception 20:345–354

    Article  CAS  PubMed  Google Scholar 

  • Brainard DH (1997) The Psychophysics Toolbox. Spatial Vis 10:433–436

    Article  CAS  Google Scholar 

  • Brandon M, Saffran JR (2011) Apparent motion enhances visual rhythm discrimination in infancy. Atten Percept Psychophys 73:1016–1020

    Article  PubMed  Google Scholar 

  • Cavanagh P, Arguin M, Treisman A (1990) Effect of surface medium on visual search for orientation and size features. J Exp Psychol Hum Percept Perform 16:479–491

    Article  CAS  PubMed  Google Scholar 

  • Dick M, Ullman S, Sagi D (1987) Parallel and serial processes in motion detection. Science 237:400–402

    Article  CAS  PubMed  Google Scholar 

  • Feldmann H (1955) Das Wesen des Rhythmus im Experiment an Gehörlosen und Normalsinnigen. Archiv für Psychiatrie und Zeitschrift für Neurologie 194:36–61

    Article  CAS  Google Scholar 

  • Franek M, Mates J, Radil T, Beck K, Pöppel E (1991) Sensorimotor synchronization: motor responses to regular auditory patterns. Percept Psychophys 49:509–516

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich FW (1920) Über die Physiologie des Zeitsinns. Zeitschrift für Sinnesphysiologie 51:153–158

    Google Scholar 

  • Grahn JA (2012) See what I hear? Beat perception in auditory and visual rhythms. Exp Brain Res 220:51–61

    Article  PubMed  Google Scholar 

  • Ivry R, Cohen A (1992) Asymmetry in visual search for targets defined by differences in movement speed. J Exp Psychol Hum Percept Perform 18:1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Moynihan H, MacKenzie N, Puente J (2002) Temporal aspects of stimulus-driven attending in dynamic arrays. Psychol Sci 13:313–319

    Article  PubMed  Google Scholar 

  • Kolers PA, Brewster JM (1985) Rhythms and responses. J Exp Psychol Hum Percept Perform 11:150–167

    Article  CAS  PubMed  Google Scholar 

  • Kosonen K, Raisamo R (2006) Rhythm perception through different modalities. Proc Eurohaptics 2006:365–369

    Google Scholar 

  • Large EW, Jones MR (1999) The dynamics of attending: how people track time-varying events. Psychol Rev 106:119–159

    Article  Google Scholar 

  • Mates J, Müller U, Radil T, Pöppel E (1994) Temporal integration in sensorimotor synchronization. J Cogn Neurosci 6:332–340

    Article  CAS  PubMed  Google Scholar 

  • MATLAB (2009a) The mathworks, Inc., Natick, Massachusetts, US

  • McLeod P, Driver J, Crisp J (1988) Visual search for a conjunction of movement and form is parallel. Nature 332:154–155

    Article  CAS  PubMed  Google Scholar 

  • Nothdurft HC (1993) Faces and facial expressions do not pop out. Perception 22:1287–1298

    Article  CAS  PubMed  Google Scholar 

  • Pashler H (1987) Detecting conjunctions of color and form: reassessing the serial search hypothesis. Percept Psychophys 41:191–201

    Article  CAS  PubMed  Google Scholar 

  • Patel AD, Iversen JR, Chen Y, Repp BH (2005) The influence of metricality and modality on synchronization with a beat. Exp Brain Res 163:226–238

    Article  PubMed  Google Scholar 

  • Pöppel E (1989) The measurement of music and the cerebral clock: a new theory. Leonardo 22:83–89

    Article  Google Scholar 

  • Pöppel E (2009) Pre-semantically defined temporal windows for cognitive processing. Philos Trans R Soc B 363:1887–1896

    Article  Google Scholar 

  • Repp BH, Penel A (2002) Auditory dominance in temporal processing: new evidence from synchronization with simultaneous visual and auditory sequences. J Exp Psychol Hum 28:1085

    Article  Google Scholar 

  • Rosenholtz R (1999) A simple saliency model predicts a number of motion popout phenomena. Vis Res 39:3157–3163

    Article  CAS  PubMed  Google Scholar 

  • Rubia K, Schuri U, von Cramon DY, Pöppel E (1997) Time estimation as a neuronal network property: a lesion study. NeuroReport 8:1273–1276

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Pöppel E (2012) Body movement enhances the extraction of temporal structures in auditory sequences. Psychol Res 76:373–382

    Article  PubMed  Google Scholar 

  • Tong F, Nakayama K (1999) Robust representations for faces: evidence from visual search. J Exp Psychol Hum Percept Perform 25:1016–1035

    Article  CAS  PubMed  Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97–136

    Article  CAS  PubMed  Google Scholar 

  • Treisman A, Gormican S (1988) Feature analysis in early vision: evidence from search asymmetries. Psychol Rev 95:15–48

    Article  CAS  PubMed  Google Scholar 

  • Treisman A, Souther J (1985) Search asymmetry: a diagnostic for preattentive processing of separable features. J Exp Psychol Gen 114:285–310

    Article  CAS  PubMed  Google Scholar 

  • Turner F, Pöppel E (1988) Metered poetry, the brain, and time. In: Rentschler I, Herzberger B, Epstein D (eds) Beauty and the brain: biological aspects of aesthetics. Birkhäuser Verlag, Basel, pp 71–90

    Chapter  Google Scholar 

  • van Zoest W, Giesbrecht B, Enns JT, Kingstone A (2006) New reflections on visual search: interitem symmetry matters! Psychol Sci 17:535–542

    Article  PubMed  Google Scholar 

  • Winkler I, Háden GP, Ladinig O, Sziller I, Honing H (2009) Newborn infants detect the beat in music. PNAS 106:2468–2471

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JM (1998) Visual search. In: Pashler H (ed) Attention. University College London Press, London, UK, pp 13–73

  • Wolfe JM, DiMase JS (2003) Do intersections serve as basic features in visual search? Perception 32:645–656

    Article  PubMed  Google Scholar 

  • Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JM, Cave KR, Franzel SL (1989) Guided search: an alternative to the feature integration model for visual search. J Exp Psychol Hum Percept Perform 15:419–433

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JM, Klempen NL, Shulman EP (1999) Which end is up? Two representations of orientation in visual search. Vis Res 39:2075–2086

    Article  CAS  PubMed  Google Scholar 

  • Wolfe JM, Vo ML, Evans KK, Greene MR (2011) Visual search in scenes involves selective and nonselective pathways. Trends Cogn Sci 15:77–84

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the grants from China Scholarship Council and LMU to Hui Li, the National Natural Science Foundation of China (No. 91120004 and 31371018) to Yan Bao, the Parmenides Foundation to Yan Bao and Ernst Pöppel, and the Bavarian Research Foundation to Yi-Huang Su.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Bao, Y., Pöppel, E. et al. A unique visual rhythm does not pop out. Cogn Process 15, 93–97 (2014). https://doi.org/10.1007/s10339-013-0581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-013-0581-1

Keywords

Navigation