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Abstract
Computational models introduce simplifications that need to be understood and validated. For attractor models of decision 
making, the main simplification is the high-level representation of different sub-processes of the complex decision system 
in one dynamic description of the overall process dynamics. This simplification implies that the overall process dynamics 
of the decision system are independent from specific values handled in different sub-processes. Here, we test the validity of 
this simplification empirically by investigating choice perseveration in a nonverbal, value-based decision task. Specifically, 
we tested whether choice perseveration occurred irrespectively of the attribute dimension as suggested by a simulation of 
the computational model. We find evidence supporting the validity of the simplification. We conclude that the simplification 
might capture mechanistic aspects of decision-making processes, and that the summation of the overall process dynamics 
of decision systems into one single variable is a valid approach in computational modeling. Supplement materials such as 
empirical data, analysis scripts, and the computational model are publicly available at the Open Science Framework (osf.
io/7fb5q).
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Introduction

Computational modeling is an integral part of many areas in 
cognitive science since it offers a deeper understanding of 
the mechanical underpinnings of the processes of interest, 
such as decision making. An essential part of this under-
standing is to comprehend the implications of simplification, 
which is inherent to all models (McClelland 2009). A typical 
simplification is to aggregate complex stimuli into one input 
value to the model, that is, combining multiple attributes of 

a choice-option in decision making. Recently, this important 
simplification has been applied for the modeling of decision 
processes in delay discounting, which denotes the devalua-
tion of an option’s value (usually money) by the delay with 
which it becomes available (Fredericket al. 2002; Malkoc 
and Zauberman 2019). Though such decisions are inherently 
multi-attributive (time and value of the available options 
have to be weighted against each other), they have been 
modeled using models that accumulate a single evidence 
measure for the options available, be it simple sequential 
sampling models (Dai and Busemeyer 2014; Dai et al. 2018; 
Zhao et al. 2019) for the decision process within a trial, 
or more complex attractor models (Scherbaum et al. 2016; 
Senftleben et al. 2019b) for the decision process within and 
across trials. However, one might question, whether this 
simplification is valid (Amasino et al. 2019; Cheng and 
González-Vallejo 2016; Dai et al. 2018), especially when 
modeling complex decision patterns across trials with attrac-
tor models. Here, we test the validity of this assumption for 
the predictions from an attractor model.

In attractor models of decision making (Scherbaum 
et al. 2008; Usher and McClelland, 2001; van Rooij et al. 
2013), options are represented as self-sustainable active 
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patterns of activation that constitute attractors in the sys-
tem’s state space (Miller 2016; Rolls 2010; Wang 2008). 
In such models, the stability of each attractor is determined 
by the combined value of the respective option (see Fig. 1; 
cf. Scherbaum et al. 2008). The combined values, in turn, 
are given by a function ω combining the features of each 
option into one overall-value (Farashahi et al. 2019). For 
example, in delay discounting, one could combine the time 
of delivery and the value of an option by discounting the 
value by the time according to an individual discounting 
factor (Doyle 2013; Green and Myerson 2004; Green et al. 
2005). The combined result would be the subjective value 
of the respective option. By simplifying the derivation and 
representation of the combined value, the attractor model is 
inherently independent from specific values on the feature/
attribute level and only captures the continuous competition 
of the options on the subjective value level.

However, it is unclear whether this simplification is valid. 
The general plausibility of attractor models of decision 

making is supported by a series of studies linking perceptual 
and value-based decision making with activity in competi-
tive neural networks located in the prefrontal cortex (Bogacz 
et al. 2011; Hunt et al. 2012; Jocham et al. 2012; Usher and 
McClelland 2001; Wang 2008, 2012; Wong et al. 2007). 
Additionally, computational modeling of competitive attrac-
tor networks and noninvasive brain stimulation has recently 
been used to decompose the connection between neural and 
choice variability (Bonaiuto et al. 2016; Hämmerer et al. 
2016). Yet, a test of the validity of the simplification is still 
outstanding. To perform this test, we chose a case in which 
attractor models make specific predictions across trials of 
decisions: choice perseveration.

Due to inertia and residual activity, choice perseveration 
naturally emerges from neural-inspired dynamic systems 
such as attractor models (see Fig. 2; Alós-Ferrer et al. 2016; 
Gao et al. 2009; Hämmerer et al. 2016; Scherbaum et al. 
2008; Townsend and Busemeyer 1989).

Fig. 1   Possible state spaces for a simple neural attractor model for 
the choice between option A and option B given different settings for 
the subjective value [ω(A) and ω(B)] of both options. If the combined 
values of the options differ (left and right panel), the attractor of the 

high value option is deeper and thus makes it more likely that the sys-
tem settles in the high value decision state. If both options have equal 
combined values (middle panel), both attractors are equally deep and 
there is no inherently more likely decision state

Fig. 2   Inter-trial dynam-
ics according to the attractor 
model. After choosing option 
A in a first trial, the system’s 
inertia leads to a slow relaxation 
to the neutral start point during 
the inter-trial interval; when 
the second decision trial starts, 
the system has not yet settled 
in the neutral start point and is 
still in vicinity of the attractor 
of option A, thus creating a bias 
toward option A
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In value-based decision tasks, choice perseveration can 
be studied through a sequential manipulation of the com-
bined values of the options (see “Design”), which can be 
realized by varying either one feature or all feature dimen-
sions of the options. Previous research showed in a nonver-
bal decision task (Scherbaum et al. 2013, 2018b) that the 
sequential manipulation of one feature (i.e., distance of an 
option) produces choice perseveration as predicted by the 
attractor model (Scherbaum et al. 2016, their Experiment 
3; Senftleben et al. 2019a, b). In this nonverbal decision 
task, participants collect different coins by playing an avatar 
which they move on a checkered playing field by clicking 
with the computer mouse (Fig. 3). In each trial, participants 
have to choose between two options of different reward mag-
nitude (small vs. large) at different distances (near vs. far 
fields). The playing field stays constant across trials—except 
the options which change from trial to trial—and the avatar 
starts each trial from the position of the previously chosen 
option.

The attractor model for these tasks combines the features 
of the task’s options, namely reward value and distance, into 
one combined value and hence assumes that choice persever-
ation should occur irrespective of whether one manipulates 
reward values, distances, or both. From this assumption, we 
derived three hypotheses for our current study. We hypoth-
esized that we would (H1) replicate choice perseveration 
with a sequential manipulation over the distance between 

the options,1 as well as (H2) find choice perseveration with 
a sequential manipulation over the reward magnitudes or 
all features together, that is a combination of distance and 
reward. Furthermore, we expected that (H3) the persevera-
tion effect would not differ between the different variants of 
the sequential manipulation. We corroborated the theoretical 
derivation of our hypotheses by computational simulation of 
the attractor model (please see osf.io/7fb5q for simulation 
script and the “Appendix” for a more elaborate explanation 
of the model).

Methods

Participants

We recruited forty-three participants (65% female, mean 
age = 22.98 years, SD = 5.06 years) through the depart-
ment’s database system ORSEE (Greiner 2015). The experi-
ment was conducted at the Technische Universität Dresden 
and was approved by the university’s institutional review 
board. All had normal or corrected-to-normal vision and 
gave informed consent prior to data collection. According to 
experimental protocol, three participants finished the experi-
ment after the first block due to individual choice behavior 
not allowing for a sufficient sequential manipulation of sub-
jective values in the subsequent blocks. Hence, we archived 
a final sample size of forty participants (70% female, mean 
age = 23.05 years, SD = 5.21 years) for all subsequent anal-
yses. Participants received a 2.50 € show-up fee and the 
money they collected within the experiment (mean = 3.17, 
SD = 0.39).

Apparatus and stimulus

The experiment was presented on a 17-inch screen 
(1280 × 1024 pixels, 85 Hz). As presentation software, we 
used Psychophysics Toolbox 3 (Brainard 1997; Pelli 1997) 
in MATLAB 2010b, running on a Windows XP SP2 per-
sonal computer. Responses were carried out by moving a 
computer mouse.

Participants moved an avatar on a field divided into 
20 × 20 fields (Fig. 3). Each trial consisted of two options 
(coins, one small and near—SN—and the other large and 
far away—LF) positioned in such a way that the first move 
into one direction decreased the distance to one option but 
increased the distance to the other option. For both options, 
a number printed on each coin represented the reward and 
the horizontal and vertical distance to the avatar repre-
sented the distance. Rewards ranged from 1 to 99 credits 
and distances ranged from 2 to 15 fields. Trials can also 
be described in relations: The difference of both distances 

Fig. 3   Display detail from the nonverbal computer game. Note: 
Participants control the red avatar by clicking into one of four hori-
zontally or vertically adjacent fields outlined in white. In each trial, 
participants choose between two coins by moving the avatar field-by-
field until they reach the chosen coin. Participants can move freely; 
trees (in dark green) are included for better spatial orientation, they 
do not restrict movement. The time within each block is displayed 
above the avatar. Accumulated credits (1 credit = 1/10 € cent) are dis-
played below the avatar in the moment of reward collection (not vis-
ible here)

1  A power analysis (based on recent findings; see Scherbaum et  al. 
2016, Experiment 3) revealed an approximate sample size of 19–43 
participants to detect a medium to large effect with a probability of 
95%.
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computes the interval; the ratio of both rewards computes 
the reward ratio.

Procedure

Participants’ task was to choose between two rewards and to 
collect as much reward as possible within the allotted time 
limit (4 blocks, 8 min per block, different number of trials 
per block dependent on the duration of each trial).

A trial started with an inter-trial interval (ITI) of 1.3 s. 
Within this interval, the mouse cursor was locked on the 
avatar. After the ITI, the two options were presented and 
participants could click on the adjacent fields to move the 
avatar. When the avatar reached one option, both options 
disappeared, the reward of the selected option was added to 
the credits, and the next trial started.

Between blocks, participants were informed about their 
credits and were instructed to rest briefly before the self-
paced start of the next block.

Before the start of the experimental blocks, participants 
worked through a test block of 2 min to get used to the vir-
tual environment, handling of the computer mouse, and the 
range of rewards and distances.

Design

The experiment consisted of four blocks: the assessment 
block and three experimental blocks. The initial assessment 
block differed conceptually from the three experimental 
blocks as its aim was to measure participants’ individual 
choice behavior to configure the succeeding experimental 
blocks. Over the experimental blocks, we realized different 
sequential manipulations of the options’ subjective values. 
The sequential arrangement of the experimental blocks was 
varied and balanced across participants.

In the assessment block, rewards ranged from 11 to 
99 and distances from 2 to 15. The ranges were given by 
orthogonally varying the intervals (1, 4, 8, and 12 fields), 
the reward ratios (20, 50, 70, 80, 88, 93, 97, and 99%), and 
the distance of the SN option (2 and 3 fields); the rewards 
of the LF option were randomly chosen from a discrete uni-
form distribution between 55 and 99. The combination of 8 
reward ratios, 2 distances of the SN option and 4 intervals 
yielded a complete set of 64 trials. We generated 5 such sets, 
with a randomized order of trials within each set.

For the sequential manipulation, we described partici-
pants’ choice behavior by estimating for each interval the 
reward ratio at which the subjective values of both options 

were equally high (i.e., indifference points). Based on those 
estimates, we tailored trials compatible to the respective 
sequential manipulation. The basic structure of the sequen-
tial manipulation is a stepwise change of the options’ subjec-
tive values in opposite directions. In our trial sequences, we 
aimed to change the subjective values in 12 steps as indi-
cated by the differences between the indifference points and 
the reward ratio of the trials (− 0.3000, − 0.2455, − 0.1909, 
− 0.1364, − 0.0818, − 0.0273, 0.0273, 0.0818, 0.1364, 
0.1909, 0.2455, 0.3000), that is the manipulation points.2 A 
negative manipulation point denotes a superior subjective 
value of the LF option; a positive manipulation point denotes 
a superior subjective value of the SN option. The superiority 
of either option positively correlates with the absolute value 
of manipulation points. Please note that the interpretation 
of the manipulation point is analog to the interpretation of 
the control parameter in the computational simulation (see 
“Appendix” and osf.io/7fb5q).

We then applied this manipulation in three different 
experimental blocks. Within each block, we varied the direc-
tion of the sequential manipulation (direction = SN to LF or 
LF to SN) and created eight sequences for each direction. 
This resulted in 16 possible sequences, and hence 192 trials.

In the distance block, we consecutively increased or 
decreased the distance of the LF option while keeping 
all other factors constant within the sequence. For each 
sequence, the distance of the SN option and the reward of 
the LF option were randomly chosen from discrete uniform 
distributions between 2 and 3 fields, and 55 and 99 credits, 
respectively. The reward of the SN option was randomly 
drawn from the uniform distribution between participants’ 
two indifference points at the medium intervals (i.e., [6,7]).

In the value block, we consecutively increased or 
decreased the reward of the SN option while keeping 
all other factors constant within the sequence. For each 
sequence, the distance of the SN option and the reward of 
the LF option were randomly chosen. The distance of the 
LF option was randomly drawn from the set of intervals at 
which participants’ indifference points plus or minus the 
respective manipulation points were valid (0 < x < 1). For 
each trial within the sequence, the rewards of the SN option 
were then calculated.

In the combined block, we consolidated the former manip-
ulations and varied both the distance of the LF option and 
the reward of the SN option in such a way that the manipula-
tion points consecutively increased or decreased within the 
sequence. For each sequence, the distance of the SN option 
and the reward of the LF option were randomly chosen. For 

2  For instance, a participant’s indifference point at interval 1 is 0.8. 
Given a manipulation point of − 0.3, the respective manipulated trial 
must yield a reward ratio of 0.5 at an interval of 1.
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each trial within the sequence, the distance of the LF option 
was randomly chosen from the set of intervals at which the 
respective manipulation was valid. The rewards of the SN 
option were then calculated.

Results

On average, participants completed 134 trials (SD = 23) in 
the measurement block, and chose the SN option in 56.11% 
(SD = 18.18) of the trials. The aim of the assessment block 
was to measure participants’ choice behavior as described 
by indifference points. Indifference points were given by the 
point of inflection of a logistic function that was fitted to par-
ticipants’ choices as a function of increasing reward ratios.3

In the three experimental blocks, participants completed 
387 trials (SD = 67) on average. Hence, on average, partici-
pants ran through 32 sequences (SD = 6), consisting of 16 
sequences in each direction (SD = 3, respectively). The SN 
option was chosen in 48.37% (SD = 22.19) of the trials.

Our first two hypotheses (H1 and H2) stated that choice 
perseveration would occur in each experimental condition. 
Therefore, we summarized choice ratios into one perse-
veration index by calculating the differences between par-
ticipants’ choice ratios in sequences of either direction. As 
expected, separate one-sample t tests (> 0) revealed signifi-
cant choice perseveration in the distance block (M = 0.082, 
SD = 0.11), t(39) = 4.61, p < .001, d = 0.73, BF10 = 2410.77, 
the reward block (M = 0.046, SD = 0.15), t(39) = 1.93, 
p = .030, d = 0.31, BF10 = 3.08, and the combined block 
(M = 0.057, SD = 0.11), t(39) = 3.16, p = .002, d = 0.50, 
BF10 = 77.17 (see Fig. 4a).4 Although the (frequentist) sig-
nificance of those results supported our first two hypoth-
eses (H1 and H2), the (Bayesian) evidence in favor of the 
assumed perseveration effect for the reward block was not 
overwhelming and ranged from inconclusive to moder-
ate in a sensitivity analysis.5 The statistical evaluation on 
the aggregate level was also reflected qualitatively by the 
inspection of choice perseveration on a more detailed level 
as depicted in Fig. 4b–d.

Fig. 4   Results of the Experi-
ment. a Distributions and box 
plots of the perseveration index 
between experimental condi-
tions. b, c, d Average persevera-
tion plots between experimen-
tal conditions. Plots depict 
participants’ mean response 
pattern (i.e., percentage of LF 
choices) over intervals (b) or 
manipulation points generated 
by sequential manipulation over 
rewards (c) or a rewards and 
distances (d). Note: Error bars 
depict standard error. Colors 
indicate directions

3  The fitting of the logistic regression model was performed using the 
StixBox mathematical toolbox by Anders Holtsberg (http://www.
maths​.lth.se/matst​at/stixb​ox/). The fit was based on the model 
log

[

p

1−p

]

= 1 + Xb , where p is the probability that the choice is 1 
(SN) and not 0 (LF), X represents reward ratio, and b represents the 
point estimates for the logistic function.
  .

4  Bayes factors (BF) were calculated with an informed normal-dis-
tributed prior assuming a medium effect, N(0.5, 0.1).
5  In the sensitivity analysis, we tested the robustness of the BF to dif-
ferent priors. Using uniformed Cauchy priors with various width (i.e., 
0–1.5), we found BFs in the reward block ranging from 1.02 to 2.75. 
We also tested other plausible informed normal priors, N(0.5,0.3), 
N(0.5,0.5), N(0.3,0.1), N(0.3,0.3), N(0.3,0.5), revealing BFs in the 
range from 2.04 to 5.16, and hence, anecdotal to moderate evidence.

http://www.maths.lth.se/matstat/stixbox/
http://www.maths.lth.se/matstat/stixbox/
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Our third hypothesis (H3) stated that choice persevera-
tion would not differ between experimental conditions. 
A repeated measures ANOVA on the perseveration index 
yielded no main effect, F(2,78) = 1.22, p = .30, η2 = .03, 
BF01 = 4.6, supporting our hypothesis (see Fig. 4a).

Since our analyses on an aggregate level yielded some-
what borderline results specifically with respect of the per-
severation effect in the reward block (H2) as well as the 
equality of the perseveration effect across all experimental 
blocks, we also tested our hypotheses with a generalized lin-
ear mixed model (GLMM) at the trial level using a logistic 
link function and the Laplace approximation. The analysis 
was implemented using glmer function of the lme4 package 
for R (Bates et al. 2014). For each model, we ran both a ver-
sion with random intercepts and fixed slopes, and a version 
with random intercepts and random slopes. We always chose 
the better fitting model based on the Bayesian information 
criterion (BIC), which was always the model with random 
intercepts and random slopes (for more information, please 
see the respective analysis script at osf.io/7fb5q).

Similar to our analysis on the aggregate level, we tested 
the effect of direction on choice separately for each experi-
mental block and without collapsing the interval/manipula-
tion point variable (H1 and H2). This GLMM approach also 
permitted to translate the manipulated intervals in the dis-
tance block into individualized manipulation points, which 
makes the separate analyses even more comparable. Hence, 
our three separate models included random intercepts and 
random slopes for each participant as well as fixed main and 
interaction effects for manipulation point and direction. The 
results show that direction significantly impacts participants’ 
choices in all experimental blocks, corroborating our prior 
analysis and conclusion (see Table 1).

In order to test the effect of the experimental condition 
on choice perseveration (H3), we ran a null model across 

all experimental conditions including the same random 
intercept and random slope structure as before and tested 
it against an alternative model with the same structure but 
incorporating the experimental condition nested within 
participants. The results show that the alternative model 
(BIC = 13,852, LL = − 6810.3; Χ2(10) = 1204.1, p < .001) fit-
ted the data better than the null model (BIC = 14,960, LL = 
– 7412.3), indicating that the experimental condition indeed 
induced a significant amount of variation to the choice data 
(for details, please see the respective analysis script at osf.
io/7fb5q). Hence, the result from the GLMM analysis con-
tradicts our prior analysis and conclusion.

Discussion

In this study, we aimed at testing a simplification of recent 
models of delay discounting decisions, that is, the summa-
tion of different sub-processes into one description of the 
overall process dynamics. Our results suggest that this sim-
plification seem to be valid in principle: We studied choice 
perseveration in a nonverbal decision task by sequentially 
manipulating the subjective values of the options; we found 
choice perseveration for all three feature dimensions that 
were used for the manipulation. Hence, we replicated previ-
ous findings (Scherbaum et al. 2016; Senftleben et al. 2019a, 
b), as well as, collected evidence that the simplification 
introduced by the low-dimensional attractor model seems 
to be valid with respect to modeling high-level decision-
making processes (H2). However, we revealed mixed evi-
dence with regard to the model’s prediction that the strength 
of choice perseveration would not differ between the feature 
dimensions used for sequential manipulation (H3).

In the following, we will first discuss the role of the 
assumption for modeling decision making, before we turn 

Table 1   Parameter of a 
generalized linear mixed-effect 
model analyzing choice as a 
function of manipulation point 
and direction

The model included a random intercept and a random slope for participant. The model was fitted using a 
logistic link function and the Laplace approximation

Block Weight Estimate Std. error Z value Pr(> |z|)

distance (Intercept) − 1.14 0.37 − 3.05 < 0.01
Manipulation point − 12.18 1.41 − 8.61 < 0.01
Direction 0.82 0.18 4.59 < 0.01
Manipulation point by direction − 0.09 1.16 − 0.08 0.94

Reward (Intercept) 0.20 0.30 0.66 0.51
Manipulation point − 6.07 0.58 − 10.48 < 0.01
Direction 0.44 0.19 2.25 0.02
Manipulation point by direction − 1.04 0.65 − 1.60 0.11

Combined (Intercept) − 0.09 0.22 − 0.41 0.68
Manipulation point − 6.19 0.47 − 13.22 < 0.01
Direction 0.39 0.12 3.36 < 0.01
Manipulation point by direction − 0.68 0.55 − 1.24 0.21
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to the question why the manipulation of different feature 
dimensions might lead to different strengths of the perse-
veration effect.

While we tested this simplification for a prediction of 
the attractor model, other computational models of deci-
sion making introduce similar simplifications: Basic sequen-
tial sampling models such as drift diffusion models (e.g., 
Krajbich et al. 2010) or linear ballistic accumulator mod-
els (e.g., Rodriguez et al. 2014) also capture the decision 
process on the level of competing subjective values (for an 
overview see Ratcliff et al. 2016). These models explain 
many effects found in empirical data in concordance with 
their neural underpinnings (Rodriguez et al. 2015) and their 
process dynamics (Resulaj et al. 2009), which additionally 
supports the validity of the discussed simplification.

However, we tested the assumption for the attractor model 
as this model and models with comparable dynamics extend 
the dynamic process of sequential sampling models: They 
broaden the short-term focus of sequential sampling models 
to a perspective that examines nonlinear dynamics of deci-
sion making across multiple decisions. As those nonlinear 
dynamics on the long-term timescale naturally arise from 
attractor models, they yield higher predictive power than 
basic sequential sampling models which are often seen as a 
linear simplification of attractor models (Brown and Heath-
cote 2008; Trueblood et al. 2014).

Consequently, the question arises whether the simplifica-
tion applied in attractor models and their linear derivatives 
(as outlined above) implies that all relevant features of the 
decision task are also represented one-dimensionally? Indeed, 
there is a substantial body of evidence suggesting that decision 
making is performed via hierarchical competition processes 
(Busemeyer and Townsend 1993; Glöckner and Betsch, 2008; 
Hunt et al. 2014; Roe et al. 2001; Scherbaum et al. 2012; Tset-
sos et al. 2010; Usher and McClelland 2004). Such models 
yield a higher number of hierarchically structured levels, and 
hence, they model the stream of information processing from 
the actual input (e.g., distance and reward) to the output (e.g., 
choice), and competition does not exclusively occur on the 
option level but also at the feature level (Hunt et al. 2014).

Parallel constraint satisfaction (PCS) models (e.g., Glöck-
ner et al. 2014) are one instantiation of such hierarchical mod-
els. For our paradigm, an exemplary PCS model would exhibit 
two levels: the decision level and the feature level, which are 
highly interconnected (see Fig. 5). This high number of feed-
back loops between and within levels puts the overall dynam-
ics in narrow bounds, which proposes to summarize them in 
only a few or even one collective variable constituting the very 
simplification as applied by attractor models (Kelso 1997). 
We presented a test case supporting the validity of the sim-
plification when capturing choice dynamics on a long-term 
timescale; the higher resolution of hierarchical models might 
be beneficial, though the attractor model also proved to be 
successful with this respect (Scherbaum et al. 2016, 2018a).

Though we found the perseveration effect for all feature 
manipulations, our results suggest that the choice dynamics 
on a long-term timescale might differ across the features 
(e.g., distance vs. reward). Though this cannot be explained 
by the attractor model, the exemplary PCS model provides 
insight in how this difference could come up: In PCS mod-
els, the importance of the features is represented by its 
connection to the general validity node (see Fig. 5). If this 
connection differed between the distance and the reward rep-
resentation, then it would be plausible that the short- and 
long-term dynamics differed as well. Hence, though the 
one-dimensional attractor dynamics captured the overall pro-
cess of decision making quite well, such differences in the 
weighting of the features might yield quantitative, though 
not qualitative, differences.

Connected to this reasoning, this is a second and even 
simpler potential explanation for the found differences. Since 
we do not know the absolute scales of distance ranges and 
reward ranges, difference could even occur, because the 
empirical paradigm induces different weights to the features. 
Hence, both theoretical and methodological considerations 
provide explanations for the subtle, yet detectable differ-
ences between the manipulations of different features.

Fig. 5   Parallel constraint satisfaction (PCS) model in which the gen-
eral validity node activates the units of the feature layers. The units 
of the two feature layers (representing distances and rewards of the 
options) are connected through inhibitory or excitatory bidirec-
tional connections with each unit of the option layer; the units of the 
option layer inhibit each other. Response is elicited when the stabil-
ity of activations in the network reaches a pre-defined threshold (i.e., 
changes in the weighted sum of the products of all activations fall 
below this threshold)
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Conclusion

In sum, our findings support the validity of attractor models for 
value-based decision making by understanding its simplifica-
tion: The system-wide dynamics of the decision system can be 
summarized collectively on an abstract level without a loss of 
validity in the description of the decision process (cf. Eckhoff 
et al. 2011; Wang 2012). Attractor models, hence, not only 
provide a promising path to understand the interactive dynam-
ics of behavioral phenomena and their neural underpinnings 
for basic cognitive functions such as memory and perception, 
but also extend to higher cognitive functions such as value-
based decision making. In doing so, our research contributes 
to the ongoing paradigmatic shift of psychological (decision) 
science coming from an outcome-based perspective toward a 
more process-orientated paradigm (Oppenheimer and Kelso 
2015; Schulte-Mecklenbeck et al. 2017).
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Appendix

In this computational simulation of the dynamics in value-
based decision making, we use a previously published, for-
malized attractor model (see Scherbaum et al. 2016). Hence, 
we describe the architecture of the model and the simulation 
procedure very briefly. Instead, we elaborate on the signifi-
cant differences between our low-dimensional attractor model 
and other high-dimensional, dynamic, connectionist models 
such as parallel constraints satisfaction models (Glöckner 
and Betsch 2008; Glöckner et al. 2014), decision field theory 

(Busemeyer and Townsend 1993; Roe et al. 2001), and leaky 
competing accumulator models (Scherbaum et al. 2012).

I Model architecture and mathematical 
description

The model consists of two self-excitatory neural units that are 
coupled by mutual inhibition (see Fig. 6). Activation of each 
unit is calculated by separate nonlinear first-order differential 
equations (Amari 1977; Erlhagen and Schöner 2002; Hock 
et al. 2003; Noest et al. 2007).

Here, τ denotes the timescale (defining the step size of 
the Euler solution), h the resting level, wi the (inhibitory) 
coupling strength of the two units, and wr the recurrent 
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r
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+ w
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Fig. 6   Sketch of the formalized low-level attractor model. Each units’ 
activation represents the subjective value of one option and inhibits 
the activation of the alternative option. When an option’s activation 
reaches the choice-threshold, the choice of this option is elicited

Table 2   Basic parameters of the 
model used for simulation

Parameter Values

� 10
h − 5
w
i

− 7
w
r

6
I 6
� N(0,0.1)
a 0
� N(1,0.2)
Time steps 200
tITI 55
Threshold 0.85

http://creativecommons.org/licenses/by/4.0/
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feedback; ISN and ILF define the input into the units repre-
senting the subjective value of the two options, ε denotes 
random noise (N[0, 0.1]) and σ a sigmoid nonlinearity, mir-
roring nonlinear neural population dynamics: �(u) = 1

e−�(u−a)
 . 

Hence, the nonlinearity of σ limits interactions in the net-
work only to the extent that the activation exceeds a soft 
threshold (Erlhagen and Schöner 2002).

The equation of motion that defines the dynamics of this 
system used for simulation is derived by differentiation. We 
simulated the behavior of the derived dynamical system by 
numerical integration for each trial having a maximum length 
of 200 time steps; inputs were active after t

iti
 time steps con-

stituting the system’s relaxation time between trials during 
which the each unit’s activation slowly decays; responses (i.e., 
choices) were elicited when either unit reaches the activation 
threshold (see Fig. 6). Results were obtained using MATLAB 
2015a running under Windows 10. See Table 2 for a list of the 
basic parameter in the computational simulation.

Simulation of choice perseveration

In our simulation, we varied only the control parameter c 
that modulates the continuous dynamics of the system (Case 
et al. 1995; Rączaszek et al. 1999; Scherbaum et al. 2008; 
Tuller et al. 1994). Here, the control parameter represents the 
difference of the subjective values between the options and 
was realized via the strength of the two Inputs ISN and ILF 
relative to the general input I − I

SN
= I +

c

2
 , and I

LF
= I −

c

2
 . 

Hence, the lower c, the lower the input to the SN option and 
the higher the input to the LF option, leading to a higher 
probability of uLF winning the competition over uSN; vice 
versa for a higher c, leading to a higher probability of uSN 
winning the competition over uLF (i.e., c < 0 favors the LF 
option; c > 0 favors the SN option; c = 0 favors no option). 
However, this relationship only holds when both units are 
in the same starting state (i.e., an activation u

SN
− u

LF
= 0 ). 

In contrast, if the starting state differs (i.e., u
SN

− u
LF

≠ 0 ), 
the unit with lower input might win the competition due 
to its initial advantage that arises from residual activation 
and causes choice perseveration (Alós-Ferrer et al., 2016; 
Bonaiuto et al., 2016; Hämmerer et al., 2016).

Methods

In the simulation, one unit represented the SN and the other 
unit the LF option (see Fig. 1). We varied the control param-
eter c in 12 steps (− 0.119 − 0.098 − 0.076 − 0.054 − 0.032 
− 0.010 0.010 0.032 0.054 0.076 0.098 0.119) and generated 
trial sequences of 12 trials in which each instantiation of 
c was realized. We also varied the direction of those trial 
sequences (direction = descending [SN to LF] or ascending 
[LF to SN]) and created eight sequences for each direction. 

This resulted in 16 possible sequences and hence 192 trials. 
The order of the trial sequences was randomized.

We simulated 20 participants. The gain parameter β was 
randomly drawn between participants; random noise ε was 
realized within participants for each time step; the inputs for 
both units were activated after fixed tITI = 55 (see Table 2). 
Please see the modeling script available online for further 
details and reproducibility (osf.io/7fb5q).

Results

The simulation showed choice perseveration. We summa-
rized choice ratios into one perseveration index by calculat-
ing the differences between mean choices in trial sequences 
of either direction. A one-sample t test (> 0) revealed signifi-
cant choice perseveration (M = 0.11, SD = 0.12), t(19) = 4.11, 
p < .001, d = 0.92 (Fig. 7), showing that residual activation 
from the previous decision interacts with the modulating 
effect of the control parameter on the continuous dynamics 
of the system in such a way that the system chose the option 
with the lower subjective value due to an initial advantage 
from previous decisions (Fig. 2).

Differences to high‑level connectionist 
models

The model architecture and the mathematical description 
perfectly illustrates that our low-dimensional attractor mode 
(as well as its linear derivatives) captures the dynamics of 
decision making on the subjective value level. Hence, it 
is invariant to specific values of the options’ features that 
determine the options’ subjective values, which constitutes a 

Fig. 7   Results of the simulation. Choice perseveration can be sum-
marized as the area between the two lines illustrating the model’s 
choices over sequences of descending and ascending control param-
eters
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significant simplification. This simplification makes separate 
simulations for manipulations on the feature level rather than 
the subjective value level meaningless. Yet, in experimental 
procedures, the subjective value can be manipulated differ-
ently (i.e., via only one or a combination of the options’ 
features), which we did in the associated study, and therefore 
tested the validity of the simplification.

In contrast, other high-dimensional, connectionist models 
comprise more levels of processing including a layer for 
the options’ features (e.g., Glöckner et al. 2014; Scherbaum 
et al. 2012). Such models might be sensitive to specific val-
ues of the options’ features that determine the options’ sub-
jective values making separate simulation for manipulations 
on the attribute level eligible.

However, our empirical and simulation data suggest that 
those separate simulations should lead to similar results 
irrespective of how the subjective values are manipulated. 
Hence, our empirical results constitute a new benchmark for 
testing the validity of high-level, connectionist models that 
should capture choice perseveration in value-based decision 
making.
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