Skip to main content
Log in

A posteriori error estimates and domain decomposition with nonmatching grids

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Let F be a nonlinear mapping defined from a Hilbert space X into its dual X′, and let x be in X the solution of F(x)=0. Assume that, a priori, the zone where the gradient of the function x has a large variation is known. The aim of this article is to prove a posteriori error estimates for the problem F(x)=0 when it is approximated with a Petrov–Galerkin finite element method combined with a domain decomposition method with nonmatching grids. A residual estimator for a model semi-linear problem is proposed. We prove that this estimator is asymptotically equivalent to a simplified one adapted to parallel computing. Some numerical results are presented, showing the practical efficiency of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces (Academic Press, New York, 1975).

    Google Scholar 

  2. V.I. Aghoskov, Poincaré–Steklov’s operators and domain decomposition methods in finite-dimensional spaces, in: Proc. of the 1st Internat. Symposium on Domain Decomposition Methods, Paris, France, January 1987 (SIAM, Philadelphia, PA, 1988).

    Google Scholar 

  3. I. Babuška and Feedback, Adaptivity and a Posteriori Estimates in Finite Element: Aims, Theory, and Experience (Willey, New York, 1986).

    Google Scholar 

  4. I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12(3) (1978) 736–754.

    Google Scholar 

  5. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15(4) (1978) 736–754.

    Google Scholar 

  6. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math. 84(2) (1999) 173–197.

    Article  Google Scholar 

  7. C. Bernardi and Y. Maday, Raffinement de maillage en éléments finis par la méthode des joints (in French) (Finite-element mesh refinement by the mortar method), C. R. Acad. Sci. Paris Sér. I Math. 320(3) (1995) 373–377.

    Google Scholar 

  8. C. Bernardi, Y. Maday and T. Patera, A new non conforming approach to domain decomposition; the mortar element method, in: Nonlinear Partial Differential Equations and their Applications, eds. H. Brezis and J.L. Lions, College de France Seminar, Vol. XI (Pitman, London, 1993).

    Google Scholar 

  9. J.H. Bramble, J.E. Pasciak and A.H. Schatz, The construction of preconditioners for elliptic problems by substructuring II, Math. Comp. 49(179) (1987) 1–16.

    Google Scholar 

  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991).

    Google Scholar 

  11. G. Caloz and J. Rappaz, Handbook of Numerical Analysis, Vol. IV (North-Holland, Amsterdam, 1997).

    Google Scholar 

  12. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  13. P. Clément, Approximating by finite element function using local regularisation, RAIRO Anal. Numer. 9 (1974) 77–84.

    Google Scholar 

  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains (Pitman, Boston, 1985).

    Google Scholar 

  15. F.R. Hebeker, An a posteriori error estimator for elliptic boundary and interface problems in layered domains, Preprint 97-46, IWR University of Heidelberg.

  16. J.L. Lions, Contribution à un problème de M.M. Picone, Ann. Mat. Pura Appl. 41, 201–219.

  17. P.L. Lions, On the existence of positive solutions of semi-linear elliptic equations, SIAM Rev. 24 (1982) 441–467.

    Google Scholar 

  18. J. Medina, M. Picasso and J. Rappaz, Error estimates and adaptive finite elements for nonlinear diffusion–convection problems, Math. Models Methods Appl. Sci. 6(5) (1996) 689–711.

    Google Scholar 

  19. J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques (Masson/Academia, Paris/Prague, 1967).

    Google Scholar 

  20. L. Pouly and J. Pousin, Adaptive finite element for semi-linear convection–diffusion problem, Adv. Comput. Math. 7 (1997) 235–259.

    Google Scholar 

  21. J. Pousin and J. Rappaz, Consistance, stabilité, erreurs a priori et a posteriori pour des probèmes non linéaires, C. R. Acad. Sci. Paris Sér. I 312 (1991) 699–703.

    Google Scholar 

  22. J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems, Numer. Math. 69 (1994) 213–231.

    Google Scholar 

  23. J. Pousin and T. Sassi, Adaptive finite element and domain decomposition with nonmatching grids, in: ECCOMAS 96 (Willey, New York, 1996) pp. 820–829.

    Google Scholar 

  24. J. Pousin and T. Sassi, A posteriori error estimates and domain decomposition with nonmatching grids, Preprint of MAPLY – Laboratoire de Mathématiques Appliquées de Lyon, No. 263 (1997), http://maply.univ-lyon1.fr/maply/.

  25. J. Pousin and T. Sassi, Domain decomposition with nonmatching grids and mixed formulation in spaces W 1,p0 , W 1,q0 , Z. Angew. Math. Mech. 77(9) (1997) 639–644.

    Google Scholar 

  26. J. Pousin and T. Sassi, Domain decomposition with non matching grids and adaptive finite element techniques, East–West J. Numer. Math. 8(3) (2000).

  27. P. Robert and J.M. Thomas, Mixed and Hybrid Methods, Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), eds. P.G. Ciarlet and J.L. Lions (North-Holland, Amsterdam, 1991).

    Google Scholar 

  28. T. Tsuchiya, An application of the Kantorovich theorem to nonlinear finite element analysis, Numer. Math. 84(1) (1999) 121–141.

    Google Scholar 

  29. R. Verfürth, A posteriori errors for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62(206) (1994) 445–475.

    Google Scholar 

  30. R. Verfürth, A Review of A-Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Teubner, Stuttgart, 1996).

    Google Scholar 

  31. R. Verfürth, A posteriori error estimators for convection–diffusion equations, Numer. Math. 80 (1998) 641–663.

    Google Scholar 

  32. B. Wolhmuth, A residual based estimator for mortar finite element discretization, Numer. Math. 84 (1999) 143–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pousin.

Additional information

Communicated by C.A. Micchelli

AMS subject classification

65J10, 65N55, 65M60

T. Sassi: Present address: Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, UFR Sciences Campus II, Bd Maréchal Juin, 14032 Caen Cedex, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pousin, J., Sassi, T. A posteriori error estimates and domain decomposition with nonmatching grids. Adv Comput Math 23, 241–263 (2005). https://doi.org/10.1007/s10444-004-1779-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1779-7

Keywords

Navigation