Skip to main content
Log in

A matrix decomposition MFS algorithm for axisymmetric biharmonic problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the approximate solution of axisymmetric biharmonic problems using a boundary-type meshless method, the Method of Fundamental Solutions (MFS) with fixed singularities and boundary collocation. For such problems, the coefficient matrix of the linear system defining the approximate solution has a block circulant structure. This structure is exploited to formulate a matrix decomposition method employing fast Fourier transforms for the efficient solution of the system. The results of several numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Altas, J. Erhel and M. Gupta, High accuracy solution of three-dimensional biharmonic equations, Numer. Algorithms 29 (2002) 1–19.

    Google Scholar 

  2. K. Balakrishnan and P.A. Ramachandran, The method of fundamental solutions for linear diffusion–reaction equations, Math. Comput. Modelling 31 (2000) 221–237.

    Google Scholar 

  3. C. Bernardi, G. Coppoletta and Y. Maday, Some spectral approximations of multidimensional fourth order problems, Technical Report R90021, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris (1990).

  4. B. Bialecki and G. Fairweather, Matrix decomposition algorithms for separable elliptic boundary value problems in two space dimensions, J. Comput. Appl. Math. 46 (1993) 369–386.

    Google Scholar 

  5. T.A. Cruse, Boundary Element Analysis in Computational Fracture Mechanics (Kluwer Academic, Dordrecht, 1988).

    Google Scholar 

  6. P.J. Davis, Circulant Matrices (Wiley, New York, 1979).

    Google Scholar 

  7. G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math. 9 (1998) 69–95.

    Google Scholar 

  8. G. Fairweather, A. Karageorghis and P.A. Martin, The method of fundamental solutions for scattering and radiation problems, Engrg. Anal. Boundary Elements 27 (2003) 759–769.

    Google Scholar 

  9. M.A. Golberg and C.S. Chen, Discrete Projection Methods for Integral Equations (Computational Mechanics Publications, Southampton, 1996).

    Google Scholar 

  10. M.A. Golberg and C.S. Chen, The method of fundamental solutions for potential, Helmholtz and diffusion problems, in: Boundary Integral Methods and Mathematical Aspects, ed. M.A. Golberg (WIT Press/Computational Mechanics Publications, Boston, 1999) pp. 103–176.

    Google Scholar 

  11. M.A. Jaswon and G.T. Symm, Integral Equation Methods in Potential Theory and Elastostatics (Academic Press, London, 1977).

    Google Scholar 

  12. A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of the biharmonic equation, J. Comput. Phys. 69 (1987) 434–459.

    Google Scholar 

  13. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, J. Acoust. Soc. Amer. 104 (1988) 3212–3218.

    Google Scholar 

  14. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Internat. J. Numer. Methods Engrg. 44 (1999) 1653–1669.

    Google Scholar 

  15. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric elasticity problems, Comput. Mech. 25 (2000) 524–532.

    Google Scholar 

  16. M-J. Lai and P. Wenston, Trivariate C1 cubic splines for numerical solution of biharmonic equations, in: Trends in Approximation Theory, eds. K. Kopotun, T. Lyche and M. Neamtu (Vanderbilt Univ. Press, Nashville, TN, 2001) pp. 224–233.

    Google Scholar 

  17. M. Maiti and S.K. Chakrabarti, Integral equation solutions for simply supported polygonal plates, Internat. J. Engrg. Sci. 12 (1974) 793–806.

    Google Scholar 

  18. Numerical Algorithms Group, Library Mark 20, NAG Ltd, Wilkinson House, Jordan Hill Road, Oxford, UK (2001).

  19. D. Redekop and J.C. Thompson, Use of fundamental solutions in the collocation method in axisymmetric elastostatics, Comput. Struct. 17 (1983) 485–490.

    Google Scholar 

  20. J. Ribeiro dos Santos, Équations aux différences finies pour l’équation biharmonique dans l’espace en trois dimensions, C. R. Acad. Sci. Paris Sér. A/B 264 (1967) A291–A293.

    Google Scholar 

  21. V. Ruas, A quadratic finite element method for solving biharmonic problems in Rn, Numer. Math. 52 (1988) 33–43.

    Google Scholar 

  22. V. Ruas and L. Quartapelle, Uncoupled finite element solution of biharmonic problems for vector potentials, Internat. J. Numer. Methods Fluids 11 (1990) 811–822.

    Google Scholar 

  23. Y.S. Smyrlis and A. Karageorghis, Some aspects of the method of fundamental solutions for certain harmonic problems, J. Sci. Comput. 16 (2001) 341–371.

    Google Scholar 

  24. Y.S. Smyrlis and A. Karageorghis, A matrix decomposition MFS algorithm for axisymmetric potential problems, Engrg. Anal. Boundary Elements, to appear.

  25. Y.S. Smyrlis and A. Karageorghis, Numerical analysis of the MFS for certain harmonic problems, Technical Report TR/04/2003, Department of Mathematics and Statistics, University of Cyprus (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Fairweather.

Additional information

Communicated by Z. Wu and B.Y.C. Hon

AMS subject classification

65N38, 65F30, 65T50, 65Y99

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairweather, G., Karageorghis, A. & Smyrlis, YS. A matrix decomposition MFS algorithm for axisymmetric biharmonic problems. Adv Comput Math 23, 55–71 (2005). https://doi.org/10.1007/s10444-004-1808-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-004-1808-6

Keywords

Navigation